JP3871027B2 - 色データ変換装置 - Google Patents

色データ変換装置 Download PDF

Info

Publication number
JP3871027B2
JP3871027B2 JP2001308843A JP2001308843A JP3871027B2 JP 3871027 B2 JP3871027 B2 JP 3871027B2 JP 2001308843 A JP2001308843 A JP 2001308843A JP 2001308843 A JP2001308843 A JP 2001308843A JP 3871027 B2 JP3871027 B2 JP 3871027B2
Authority
JP
Japan
Prior art keywords
data
look
interpolation
value
address
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001308843A
Other languages
English (en)
Other versions
JP2003116013A (ja
Inventor
悟朗 野田
泰直 海野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Fujifilm Business Innovation Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd, Fujifilm Business Innovation Corp filed Critical Fuji Xerox Co Ltd
Priority to JP2001308843A priority Critical patent/JP3871027B2/ja
Publication of JP2003116013A publication Critical patent/JP2003116013A/ja
Application granted granted Critical
Publication of JP3871027B2 publication Critical patent/JP3871027B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Image Processing (AREA)
  • Facsimile Image Signal Circuits (AREA)
  • Color Image Communication Systems (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ルック・アップ・テーブルと補間演算手段により3つの構成要素からなる入力信号を他の信号に変換する色データ変換装置に関するものである。例えば、レッド(以下、Rと記す)、グリーン(以下、Gと記す)、ブルー(以下、Bと記す)で構成される入力信号値をイエロー(以下、Yと記す)、マゼンタ(以下、Mと記す)、シアン(以下、Cと記す)、ブラック(以下、Kと記す)で構成される信号のいずれかに変換する際に適用される色データ変換装置に関するものである。
【0002】
【従来の技術】
画像などのデジタル信号に対する非線型変換には、一般にルック・アップ・テーブルを用いた変換を行うことが多い。ルック・アップ・テーブルとは、入力信号に対応する出力値を予め算出しておき、その値をテーブルとして保持し、入力値に対応した出力値を演算なしで得る方法である。この方式を適用することで複雑な演算回路を削除することが可能となる。
【0003】
最近のプリンタ等の出力機器では、カラー画像信号が扱われることが多くなった。これら出力機器は、多くの場合Y、M、C、Kなどの色の色材を用いて紙面等の上に画像を形成する。従ってY、M、C、Kから構成される色空間を有している場合が多い。一方、カラー画像の入力機器として想定されるものとしてスキャナ、デジタル・スチル・カメラ等があるが、これらはそれぞれ固有の色空間を有している。一般にはR、G、Bで構成される色空間を有していることが多い。また、グラフィックソフトウェアなどで画像が生成されることもあるが、この場合も一般にはR、G、Bで構成される色空間におけるデータであることが多い。従って、これらの入力機器を用いて入力されたりグラフィックソフトウェアなどで生成された画像を、プリンタ等の出力機器で出力する際には、これら色空間の変換が必要となる。
【0004】
R、G、Bの信号がそれぞれ8bit信号であり、出力も8bit信号である場合、入力値の組み合わせは16,777,216通り(28 ×28 ×28 通り)であり、R、G、Bの入力に対してY、M、C、Kのうちの一色に変換するのに16Mbyteのメモリが必要となる。よって、Y、M、C、Kの4色に変換するには64Mbyteものメモリが必要となる。このメモリ容量はコスト的な観点でみた場合にシステムに対するインパクトが大きく、現実的ではない。
【0005】
そこで、ルック・アップ・テーブルと補間処理の組み合わせによるデータ変換機構が提案されている。これは、入力信号の上位複数ビット分にのみに対応した出力値をルック・アップ・テーブルとして構成することによって、ルック・アップ・テーブルの容量を削減するものである。入力信号に該当する出力値が存在しない場合は、その入力値が示す空間位置の近傍データを用いて補間処理を施し、出力値を算出する。補間処理には立方体補間(8点補間)、Tetra−Hydra補間(4点補間)など、様々な手法が提案されている。
【0006】
補間処理においては、近傍の何点のデータを演算対象とするかによって出力値の補間精度が異なる。より多くのデータを補間演算の対象にすれば、補間精度は向上する。但し、多くのデータを用いる場合は補間回路の規模が大きくなり、回路削減の効果が小さくなってしまう。そのため、ルック・アップ・テーブルに保持するデータ量と補間に用いるデータの個数とを効率的に規定することが必要となる。そのための技術として、例えば特開平8−181874号公報に示される方法などが挙げられる。
【0007】
この文献に記載されている方法について、例えば入力信号がR、G、Bそれぞれ8bit信号である場合を想定して説明する。図16は、ルック・アップ・テーブルの3次元色空間上での概念図である。図16に示すように、R、G、Bの各軸における取り得る値の範囲を複数に分割する。ここでは各軸を16に分割した例を示している。このような分割によって得られる格子点をアドレスとし、その格子点における変換後の値(代表値)を対応づけることによってルック・アップ・テーブルを構成する。従って、この例では17データ×17データ×17データ=4,913個の格子点について、それぞれ対応する変換後のデータを代表値として格納した三次元ルック・アップ・テーブルを作成することができる。
【0008】
図16に示すように各軸を16分割した場合、それぞれの格子点はR、G、Bの上位4bitによってアクセス可能である。従って、入力されたR、G、Bの信号値を、それぞれ、上位4bitのRH、GH、BHと下位4bitのRL、GL、BLに分割する。そして、RH、GH、BHを用いてルック・アップ・テーブルをアクセスする。
【0009】
図17は、入力された信号値とルック・アップ・テーブルにおける格子点との位置関係の説明図である。上述のように点(RH、GH、BH)は色空間を分割した格子点上に存在しており、図17において黒丸で示している。また、入力された信号値(R、G、B)の空間位置は、点(RH、GH、BH)を基点とした単位立方体に包含される。これは、RH≦R<RH+1、GH≦G<GH+1、BH≦B<BH+1であることから容易に理解できるであろう。
【0010】
この単位立方体を構成する各頂点は、格子点(RH、GH、BH)を基準に生成可能である。すなわち、(RH、GH、BH)を基点に(RH+1、GH、BH)、(RH+1、GH+1、BH)、(RH、GH+1、BH)、(RH、GH、BH+1)、(RH+1、GH、BH+1)、(RH、GH+1、BH+1)、(RH+1、GH+1、BH+1)が、この単位立方体の頂点の座標となる。8点補間を行う場合には、これらの単位立方体を構成する頂点の座標における代表値を用いて補間演算を行い、入力された信号値に対応する出力値を演算することになる。
【0011】
4点補間を行う場合には、さらに、単位立方体中に存在する6つの単位四面体のいずれに存在するかを判定する。図18は、単位立方体中の単位四面体の一例の説明図、図19は、同じく入力された信号値がいずれの単位四面体に含まれるかを判定する際の判定条件の一例の説明図である。単位立方体は、格子点(RH、GH、BH)を基準にしたとき、図18(A)〜(F)に示す同体積の6つの単位四面体(四面体1〜6)に分割可能である。
【0012】
入力された信号値(R、G、B)がいずれの四面体に包含されるかは、それぞれの信号値の下位bitであるRL、GL、BLの大小関係から、図19に示すような判定条件によって特定することが可能である。すなわち、RL、GL、BLがRL≧GL≧BLの関係である時、入力された信号値(R、G、B)は(RH、GH、BH)、(RH+1、GH、BH)、(RH+1、GH+1、BH)、(RH+1、GH+1、BH+1)を頂点とした四面体1(図18(A))に属する。RL>BL>GLの関係である時、入力された信号値(R、G、B)は(RH、GH、BH)、(RH+1、GH、BH)、(RH+1、GH、BH+1)、(RH+1、GH+1、BH+1)を頂点とした四面体2(図18(B))に属する。BL≧RL>GLの関係である時は、入力された信号値(R、G、B)は(RH、GH、BH)、(RH+1、GH、BH+1)、(RH、GH、BH+1)、(RH+1、GH+1、BH+1)を頂点とした四面体3(図18(C))に属する。BL>GL≧RLの関係である時は、入力された信号値(R、G、B)は(RH、GH、BH)、(RH、GH、BH+1)、(RH、GH+1、BH+1)、(RH+1、GH+1、BH+1)を頂点とした四面体4(図18(D))に属する。GL≧BL>RLの関係である時は、入力された信号値(R、G、B)は(RH、GH、BH)、(RH、GH+1、BH)、(RH、GH+1、BH+1)、(RH+1、GH+1、BH+1)を頂点とした四面体5(図18(E))に属する。GL>RL≧BLの関係である時は、入力された信号値(R、G、B)は(RH、GH、BH)、(RH、GH+1、BH)、(RH+1、GH+1、BH)、(RH+1、GH+1、BH+1)を頂点とした四面体6(図18(F))に属する。
【0013】
このような判定を行うことにより、入力R、G、Bの三次元ルック・アップ・テーブル上における近傍4格子点が特定される。そして、この4格子点とRL、GL、BLから生成さる係数値を用いてTetra−Hydra補間という補間処理を行えばよい。
【0014】
上述のようなルック・アップ・テーブルと補間処理の組み合わせによるデータ変換機構によって、例えば図16に示したように各軸を16分割した場合の例では、R、G、Bからある1色への変換に際し、ルック・アップ・テーブルの容量は49kbyteで実現可能となる。これは、補間処理を用いない方式における16Mbyteと比較すると大幅なメモリ容量の削減が可能である。
【0015】
しかしながら、ルック・アップ・テーブルとして用いられるメモリから複数のデータを同時に取得することができない。そのため、1つの画素に対する色空間変換の処理時間として割り当てられている時間が非常に短時間である場合は、出力色毎に同様のルック・アップ・テーブルを補間処理対象データ数分(8点補間では8個、4点補間では4個)だけ備える必要がある。すなわち、4点補間(Tetra−Hydra補間)の場合においてRGBからYMCKへの変換を想定すると、Yへの変換に4つの格子点抽出用として4個、同様にMへの変換用に4個、Cへの変換用に4個、Kへの変換用に4個、合計16個の同容量のメモリが必要となる。ルック・アップ・テーブルへの格納データ数を上述のように17データ×17データ×17データと規定した場合、全メモリ容量は786kbyteになる。補間精度を重視し、8点補間を想定すると、32個ものメモリが必要となり、全メモリ容量は1,568kbyteにもなる。
【0016】
【発明が解決しようとする課題】
本発明は、上述した事情に鑑みてなされたもので、1つの画素に対する色空間変換の処理時間として割り当てられている時間が非常に短時間である場合においても、少ないメモリ容量によってルック・アップ・テーブルを構成して色データの変換が可能な色データ変換装置を提供することを目的とするものである。
【0017】
【課題を解決するための手段】
本発明は、3つの構成要素からなるデジタル色分解データを入力し、該3つのデジタル色分解データに対応する新たな色分解データを出力する色データ変換装置であって、ルック・アップ・テーブルとして、3つの構成要素の値のそれぞれが取り得る値の範囲を複数に分割したときの格子点に対応づけられた変換後の出力値を代表値とし、特定の2つの構成要素の値によって決まる複数の代表値を1つのデータ群にまとめ、そのデータ群を特定の2つの構成要素の値に対応づけて格納しておく。そして、入力されたデジタル色分解データのうち、特定の2つの構成要素の上位複数ビット信号からルック・アップ・テーブルへのアドレスを生成して、ルック・アップ・テーブルをアクセスする。ルック・アップ・テーブルからはデータ群が出力されるので、このデータ群から、特定の2つの構成要素以外の構成要素の上位複数ビット信号を用いて、補間演算の対象となる代表値を絞り込む。一方、入力されたデジタル色分解データの下位複数ビット信号を用いて補間演算用の係数値を算出しておき、絞り込まれた代表値から補間演算処理を行って新たな色分解データを出力する。このようにデータ群を単位としてルック・アップ・テーブルから代表値を取り出すことができ、取り出したデータ群中には補間演算に必要な代表値が1ないし複数含まれているため、従来に比べて少量のメモリ容量によってルック・アップ・テーブルを構成することが可能である。例えば8点補間を実施する場合でも4個のルック・アップ・テーブルを設けるだけで済み、格段にメモリ容量を削減することができる。この場合、得られる代表点は従来と同様であるので、従来と同等の精度で補間演算を行うことができる。
【0018】
特にルック・アップ・テーブルとして、特定の2つの構成要素の上位複数ビット信号から生成されたアドレスが奇数の場合に対応するデータ群が格納された奇数ルックアップテーブルと、アドレスが偶数の場合に対応するデータ群が格納された偶数ルックアップテーブルに分けて構成することができる。この場合、奇数ルックアップテーブル及び偶数ルックアップテーブルは、ほぼ半分のメモリ容量によって実現できる。従って、これらを2つずつ設け、4つのデータ群を並列して出力させた場合でも、ほぼ半分のメモリ容量によって構成することができる。あるいは、奇数ルックアップテーブル及び偶数ルックアップテーブルをそれぞれ1つずつ設け、2回のアクセスによって4つのデータ群を得ることもでき、その場合には1/4程度のメモリ容量で実現することが可能である。
【0019】
さらにはルック・アップ・テーブルとして、特定の2つの構成要素のそれぞれについて上位複数ビット信号か奇数か偶数かの組み合わせに対応する4つのルックアップテーブルに分けて構成し、並列的に4つのデータ群を得るように構成することもできる。この場合、全体のメモリ容量を1/4程度に削減することができる。もちろん、ルック・アップ・テーブルを1つとし、例えば4点補間の場合には3回、8点補間の場合には4回のアクセスを行ってもよい。この場合、従来に比べてアクセス回数を削減することができ、変換処理の高速化を図ることができる。
【0020】
【発明の実施の形態】
図1は、本発明の色データ変換装置の実施の一形態を示す概略構成図である。図中、1はY生成部、2はM生成部、3はC生成部、4はK生成部、11はアドレス生成部、12〜15はメモリ、16は四面体判定部、17はデータ選択部、18は補間係数生成部、19は補間処理部である。ここでは入力デジタル色分解信号の構成要素がR、G、Bであり、それぞれ8bitのデータであると想定する。また、補間処理は近傍4つのデータを用いるTetra−Hydra補間であるとする。さらに、出力デジタル色分解信号の構成要素はY、M、C、Kであるものとする。なお、M生成部2,C生成部3,K生成部4は、いずれもY生成部1と同様の構成を有しているので、ここではY生成部1についてのみ、内部の構成を示すとともに説明を加えてゆく。
【0021】
アドレス生成部11は、入力されたデジタル色分解信号における構成要素を、それぞれ、上位複数ビット信号と下位複数ビット信号に分割し、下位複数ビット信号を四面体判定部16及び補間係数生成部18に入力する。また、特定の2つの構成要素の上位複数ビット信号からメモリ12〜15(ルック・アップ・テーブル)をアクセスするアドレスを生成する。ここでは特定の2つの構成要素がR、Gであるものとし、Rの上位4bitとGの上位4bitからアドレスを生成する。Bの上位4bitはデータ選択部17に渡される。
【0022】
メモリ12〜15は、ルック・アップ・テーブルを格納している。ルック・アップ・テーブルの構成については後述するが、3つの構成要素の値のそれぞれが取り得る値の範囲を複数に分割したときの格子点に対応づけられた変換後の出力値を代表値とし、特定の2つの構成要素の値によって決まる複数の代表値を1つのデータ群にまとめて前記特定の2つの構成要素の値に対応づけて格納している。ここでは特定の2つの構成要素としてR、Gとしているので、RとGの値によって決まる複数の代表値を1つのデータ群として格納している。すなわち、データ群には複数のBの値のそれぞれに対応した代表値が含まれている。それぞれのメモリ12〜15は、アドレス生成部11で生成されたアドレスによってアクセスされ、それぞれ、データ群を出力する。そのため、4つのデータ群を並列して出力することができる。
【0023】
ルック・アップ・テーブルを構成する代表値は、例えば各軸を16分割するものとし、上述の図16に示すような17データ×17データ×17データ、計4,913個のデータであるとする。任意の入力デジタル色分解信号R、G、Bの8bitデータの組み合わせ値の空間位置とその上位4bitデータの組み合わせ値の空間位置の関係は、上述の図17に示すようになる。つまり、上位の4bitデータで入力8bitデータを包含する立方体(単位立方体)を特定することが可能となる。従って、後段の補間演算のために、上位4bitデータの組み合わせ値の空間位置を基点にして、該当する単位立方体の各頂点のデータを抽出することができる。このとき、上述のようにメモリ12〜15にはRとGの値の組み合わせに応じて複数の代表値を含むデータ群がメモリ12〜15に格納されているので、単位立方体の各頂点のデータを含む4つのデータ群をメモリ12〜15から抽出することになる。
【0024】
四面体判定部16は、入力されたデジタル色分解信号R、G、Bが、上述の図18に示した4点補間を行う際の四面体のうち、どの四面体に含まれるかを判定する。どの四面体に含まれるかは、アドレス生成部11から渡される入力デジタル色分解信号の下位ビット信号RL、GL、BLをもとに、例えば図19に示した判定条件を調べればよい。
【0025】
データ選択部17は、メモリ12〜15から出力されるデータ群から、特定の2つの構成要素以外の構成要素(ここではB)の上位複数ビット信号(BH)を用いて、補間演算の対象となる代表値を絞り込む。このとき、四面体判定部16における判定結果を用い、4点補間において使用する4つの代表値を絞り込んで補間処理部19に出力する。
【0026】
補間係数生成部18は、入力されたデジタル色分解データの下位複数ビット信号RL、GL、BLを用いて、補間演算用の係数値を算出する。
【0027】
補間処理部19は、補間係数生成部18で算出された係数値を用いて、データ選択部17によって絞り込まれた4つの代表値からTetra−Hydra補間処理を行ってY成分の色分解データを出力する。
【0028】
次に、メモリ12〜15に格納されるルック・アップ・テーブルの構成について一例を説明する。図2は、ルック・アップ・テーブル内の単位立方体の左側面の説明図、図3は、単位立方体の左側面参照用であり、かつ、GHの値が偶数値である場合のデータ群の説明図、図4は、同様にGHの値が奇数値である場合のデータ群の説明図である。また、図5は、ルック・アップ・テーブル内の単位立方体の右側面の説明図、図6は、単位立方体の右側面参照用であり、かつ、GHの値が偶数値である場合のデータ群の説明図、図7は、同様にGHの値が奇数値である場合のデータ群の説明図である。図中、21は左側面、22,23は基点アドレス位置、24〜26はデータ群、31は右側面、32,33は基点アドレス位置、34〜36はデータ群である。
【0029】
ここでは、入力されたデジタル色分解信号R、G、Bが含まれる単位立方体の左右の側面単位で対象データを特定する。図2及び図5には単位立方体を示しており、図2に示す単位立方体の左側面21を構成する4つのデータと、図5に示す右側面31を構成する4つのデータを特定する場合を考える。それぞれのメモリ12〜15には、図3,図4,図6,図7において円筒形で示すように、B軸方向に17個のデータをひとかたまりとしたデータ群を格納する。さらに、それらのデータ群は、図3、図6に示すようにG軸の値が偶数値のデータ群(データ群24,25あるいはデータ群34,35)と、図4、図7に示すようにG軸の値が奇数値のデータ群(データ群26あるいはデータ群36)とに分割して、別々のメモリに格納する。
【0030】
このようにG軸の値が偶数値か奇数値かによって格納するデータ群を分けることによって、データ容量としては図3、図4に示すデータ群の和が17データ×17データ×17データ、つまり、4,913kbyteの容量と同等となる。図6、図7についても同様である。よって従来のルック・アップ・テーブルが2つ分のメモリ容量(すなわち9,826kbyte)で1色の色変換の際に必要となる補間演算対象のデータが揃うことになる。従来の4点補間の場合には、同時に4格子点のデータを抽出するために、17データ×17データ×17データの4倍、つまり、4,913kbyte×4=19,652kbyteを必要とした。しかし、この実施の形態では、従来の半分の9,826kbyteのメモリ容量で同時に4格子点のデータを抽出することが可能である。
【0031】
なお、図3に示す単位立方体の左側面参照用でありGHの値が偶数値である場合のデータ群がメモリ12に、図4に示す単位立方体の左側面参照用でありGHの値が奇数値である場合のデータ群がメモリ13に、図6に示す単位立方体の右側面参照用でありGHの値が偶数値である場合のデータ群がメモリ14に、図7に示す単位立方体の右側面参照用でありGHの値が奇数値である場合のデータ群がメモリ15に、それぞれ格納されているものとする。
【0032】
各々のメモリ12〜15には、R入力値の上位4bit値RHと、G入力値の上位4bit値GHからアドレス生成部11で生成されたアドレスでアクセスされる。例えばアクセスされたアドレスの空間位置が図3の基点アドレス位置22である場合、メモリ12からデータ群24が抽出される。メモリ13に対しては、アドレス生成部11で(RH、GH+1)からアドレスが生成され、メモリ13から基点アドレス位置23を含むデータ群26が抽出される。同様にして、メモリ14に対してはアドレス生成部11で(RH+1、GH)からアドレスが生成され、メモリ14から基点アドレス位置32を含むデータ群34が抽出され、メモリ15に対してはアドレス生成部11で(RH+1、GH+1)からアドレスが生成され、メモリ15から基点アドレス位置33を含むデータ群36が抽出されることになる。
【0033】
図8は、データ群の一例の説明図である。図中、41はデータ群、42,43は代表値である。上述のようにしてそれぞれのメモリ12〜15から抽出されたデータ群は、図8に示すようにB軸方向にかたまりになったデータ群にすぎない。これらの中から、補間演算に必要は代表値を選択する必要がある。データ選択部17では、抽出された複数のデータ群から、それぞれ2つの代表値に絞り込む。
【0034】
図8に示すデータ群41において、例えばB入力値の上位4bit値(BH)で各データ群内の所望の1つの代表値42が参照できる。また、代表値42が参照される時、所望の単位立方体の頂点データは必ずBH+1の位置のデータ43も必要とする。このようにして、各メモリ12〜15から抽出された各データ群から、それぞれ2つの代表値が抽出可能である。従って、合計8つの単位立方体の頂点データを取得することができる。
【0035】
上述の説明ではGHの値が偶数値であり、基点となる(RH、GH、BH)位置のデータ群が図3のデータ群24である場合を示した。GHの値が奇数値の場合は、基点となるデータの位置を(RH、GH+1、BH)と表した場合、(RH、GH+1)からアドレスが生成され、図4におけるデータ群26が抽出され、図3においては(RH、GH+1+1)からアドレスが生成されてデータ群25が抽出される。同様に図7においては(RH+1、GH+1)からアドレスが生成され、データ群36が抽出される。また、図6においては(RH+1、GH+1+1)からアドレスが生成され、データ群35が抽出される。これらの抽出されたデータ群からBHの値に応じてそれぞれ2つずつの代表値がデータ選択部17で選択されることになる。
【0036】
図9は、本発明の色データ変換装置の第1の実施の形態における動作の一例の説明図である。入力されたR、G、Bデジタル色分解信号は、アドレス生成部11で上位4bitのRH、GH、BHと、下位4bitのRL、GL、BLに分割される。さらにアドレス生成部11において、上位4bitデータのうちRH、GHから、それぞれのメモリ12〜15に対するアドレスが生成され、各メモリ12〜15がアクセスされる。これによって上述のように各メモリ12〜15からデータ群が抽出される。図9に示すように、各メモリ12〜15からは、17個の8bitデータがかたまりになったデータ群が同時に抽出される。図9ではメモリ12〜15に格納される各格子点のデータサイズを8bit幅と記したが、データ幅はそれに限るものではない。
【0037】
実際のルック・アップ・テーブルを格納するメモリへのアクセス・アドレスは以下の数式で生成される。メモリ12へのアドレスは
メモリ12へのアドレス=RfixA1+(17×(GfixA1/2))
で定まり、メモリ13へのアドレスは
メモリ13へのアドレス=RfixA2+(17×((GfixA2+1)/2))−17
で定まる。それぞれの式におけるRfixA1、RfixA2、GfixA1、GfixA2は、入力8bit信号のG値の上位4bit値GHが偶数値の場合はRfixA1=RH、RfixA2=RH、GfixA1=GH、GfixA2=GH+1が代入され、GHが奇数値の場合はRfixA1=RH、RfixA2=RH、GfixA1=GH+1、GfixA2=GHが代入される。
【0038】
メモリ14へのアドレスは
メモリ14へのアドレス=RfixB1+(17×(GfixB1/2))
で定まり、メモリ15へのアドレスは
メモリ15へのアドレス=RfixB2+(17×((GfixB2+1)/2))−17
で定まる。それぞれの式のおけるRfixB1、RfixB2、GfixB1、GfixB2は、入力8bit信号のG値の上位4bit値GHが偶数値の場合はRfixB1=RH+1、RfixB2=RH+1、GfixB1=GH、GfixB2=GH+1であり、GHが奇数値の場合はRfixB1=RH+1、RfixB2=RH+1、GfixB1=GH+1、GfixB2=GHである。
【0039】
このようにして算出されたアドレスによって各メモリ12〜15をアクセスすることによって、それぞれのメモリ12〜15からデータ群が抽出される。上述のように、これらのデータ群からB入力値の上位4bitであるBHによって、各データ群から2つずつ(BH及びBH+1)の代表値を選択する。これによって、入力されたR、G、Bの8bitデータを包含する単位立方体の8頂点の代表値が得られる。
【0040】
ここでは補間処理方法としてTetra−Hydra補間を想定しているので、上述のようにして特定された8点のデータをさらに4点まで絞り込む必要がある。補間演算時に必要となる代表値は、入力R、G、Bの8bitデータの組み合わせ値の空間位置が、上述の図18に示すいずれの四面体に包含されるかによって異なる。いずれの四面体に包含されるかは、四面体判定部16で判定する。判定は、入力8bitR、G、Bの下位4bit値(RL、GL、BL)の大小関係により行われる。この判定は、上述の図19に示した判定条件に従って行うことができる。すなわち、RL≧GL≧BLの関係である時は、入力R、G、Bは(RH、GH、BH)、(RH+1、GH、BH)、(RH+1、GH+1、BH)、(RH+1、GH+1、BH+1)を頂点とした図18(A)に示す四面体1に属する。RL>BL>BLの関係である時は、入力R、G、Bは(RH、GH、BH)、(RH+1、GH、BH)、(RH+1、GH、BH+1)、(RH+1、GH+1、BH+1)を頂点とした図18(B)に示す四面体2に属する。BL≧RL>GLの関係である時は、入力R、G、Bは(RH、GH、BH)、(RH+1、GH、BH+1)、(RH、GH、BH+1)、(RH+1、GH+1、BH+1)を頂点とした図18(C)に示す四面体3に属する。BL>GL≧RLの関係である時は、入力R、G、Bは(RH、GH、BH)、(RH、GH、BH+1)、(RH、GH+1、BH+1)、(RH+1、GH+1、BH+1)を頂点とした図18(D)に示す四面体4に属する。GL≧BL>RLの関係である時は、入力R、G、Bは(RH、GH、BH)、(RH、GH+1、BH)、(RH、GH+1、BH+1)、(RH+1、GH+1、BH+1)を頂点とした図18(E)に示す四面体5に属する。GL>RL≧BLの関係である時は、入力R、G、Bは(RH、GH、BH)、(RH、GH+1、BH)、(RH+1、GH+1、BH)、(RH+1、GH+1、BH+1)を頂点とした図18(F)に示す四面体6に属すると判定することができる。
【0041】
また、補間係数生成部18にてRL、GL、BLから補間処理に必要な係数値が算出される。図10は、入力されたデジタル色分解信号が含まれる四面体と生成される補間係数の一例の説明図である。四面体の4つの頂点を頂点1〜4とし、頂点1に適用される補間係数をW1、頂点2に適用される補間係数をW2、頂点3に適用される補間係数をW3、頂点4に適用される補間係数をW4とするとき、各四面体におけるW1,W2,W3,W4は図10に示すように定まる。ここではRL、GL、BLを少数点以下の数値と見なして記述している。入力R、G、Bが包含される四面体が四面体1の場合は、それぞれW1=1−RL、W2=RL−GL、W3=GL−BL、W4=BLとなる。入力R、G、Bが包含される四面体が四面体2の場合は、W1=1−RL、W2=RL−BL、W3=BL−GL、W4=GLとなる。入力R、G、Bが包含される四面体が四面体3の場合は、W1=1−BL、W2=BL−RL、W3=RL−GL、W4=GLとなる。入力R、G、Bが包含される四面体が四面体4の場合は、W1=1−BL、W2=BL−GL、W3=GL−RL、W4=RLとなる。入力R、G、Bが包含される四面体が四面体5の場合は、W1=1−GL、W2=GL−BL、W3=BL−RL、W4=RLとなる。入力R、G、Bが包含される四面体が四面体6の場合は、W1=1−GL、W2=GL−RL、W3=RL−BL、W4=BLとなる。
【0042】
補間演算の対象となる4つの代表点は、前述したように4つのメモリから抽出された4つデータ群からBHの値を基に8つの代表点のうちから選択される。このとき、上述のように四面体判定部16によって、いずれの四面体を用いて補間演算を行うかが判定されているので、この四面体判定部16による判定結果を用い、8つの代表点のうちから4つの代表点を選択する。
【0043】
図11は、GHが偶数値の場合に四面体の4頂点として選択する代表値の説明図、図12は、GHが奇数値の場合に四面体の4頂点として選択する代表値の説明図である。ここでは、メモリ12から抽出されるデータ群から選択された2つの格子点データをMA11、MA12、メモリ13から抽出されるデータ群から選択された2つの格子点データをMA21、MA22、メモリ14から抽出されるデータ群から選択された2つの格子点データをMB11、MB12、メモリ15から抽出されるデータ群から選択された2つの格子点データをMB21、MB22とする。四面体判定部16によって判定された四面体の各頂点の代表値は、図11,図12に示すような対応になる。ここで、入力のGHの値が偶数である場合と奇数である場合で、その対応は異なる。図11はGHが偶数値の場合であり、図12はGHが奇数値の場合である。
【0044】
例えば、入力のGHの値が偶数であり、入力R、G、Bが図18(A)に示す四面体1に包含される場合は、頂点1のデータD1はMA11であり、頂点2のデータD2にはMB11であり、頂点3のデータD3はMB21であり、頂点4のデータD4はMB22である。また、入力のGHの値が奇数であり、入力R、G、Bが図18(A)に示す四面体1に包含される場合は、頂点1のデータD1はMA21であり、頂点2のデータD2にはMB21であり、頂点3のデータD3はMB11であり、頂点4のデータD4はMB12である。
【0045】
このようにして確定した補間処理対象のデータD1、D2、D3、D4と補間係数W1、W2、W3、W4より、補間処理部19は次の式によって補間処理演算を施し、最終出力値Doutを算出する。
Dout=D1×W1+D2×W2+D3×W3+D4×W4
【0046】
上述の説明では4点補間を行う場合について述べたが、例えば8点補間を行う場合には、データ選択部17で選択された8個の格子点データを用いて補間処理部19で補間演算を行えばよい。もちろん、他の補間方法を用いるのであれば、その補間方法に応じて格子点データを選択すればよい。
【0047】
図13は、本発明の色データ変換装置の第2の実施の形態を示す概略構成図である。図中の符号は図1と同様であり、重複する説明を省略する。上述の第1の実施の形態では、それぞれ8bitの入力R、G、Bデータの組み合わせに対応する空間位置が包含される単位立方体の8つの頂点のデータを抽出する際に、4つのメモリから同時にデータ群を抽出していた。4つのメモリを用意することで一つの画素に対する色空間変換の処理時間として割り当てられている短い単位時間内に処理が可能となる。しかし、処理に割り当てられる単位時間が多少長い場合は、複数回のメモリへのアクセスが可能となる。この第2の実施の形態では、1回のアクセスで2つのデータ群を抽出し、2回のメモリへのアクセスを行って計4つのデータ群を抽出する例を示している。
【0048】
上述の第1の実施の形態において、4つのメモリ12〜15は、図3に示すように単位立方体左側面のデータ参照用でありGHが偶数値の場合に参照されるメモリ12と、図4に示すように単位立方体左面のデータ参照用でありGHが奇数値の場合に参照されるメモリ13と、図6に示すように単位立方体右面のデータ参照用でありGHが偶数値の場合に参照されるメモリ14と、図7に示すように単位立方体右側面のデータ参照用でありGHが奇数値の場合に参照されるメモリ15とから構成されていた。ここで、メモリ12とメモリ14、メモリ13とメモリ15は、それぞれ同内容、同容量のメモリである。従って、例えば単位時間内に2回のルック・アップ・テーブルへのアクセスが許されるのあれば、メモリとしては第1の実施の形態の半分のメモリ容量であるメモリ12とメモリ13だけでよいことになる。
【0049】
図14は、本発明の色データ変換装置の第2の実施の形態における動作の一例の説明図である。入力R、G、Bの上位4bitのRH、GHからメモリ12,13に対するアドレスをアドレス生成部11において生成するが、このとき、2回に分けてアドレスを生成し、メモリ12,13をアクセスする。この2回のアクセスによって、例えば1度目のメモリ・アクセス・サイクルでは、単位立方体の左側面の4つの格子点データを含むデータ群(例えば図3のデータ群24と図4のデータ群26)をそれぞれメモリ12とメモリ13から抽出し、2度目のメモリ・アクセス・サイクルで単位立方体の右側側面の四つの格子点データを含むデータ群(例えば図6のデータ群34と図4のデータ群36)を抽出する。
【0050】
これら2回のメモリアクセスで抽出された4つのデータ群は、上述の第1の実施の形態と同様に、入力B値の上位4bit値BHにより単位立方体の8つの頂点データが選択される。後段の補間演算が8点補間方式である場合はこれら8つの頂点データがそのまま補間演算の対象データとなる。後段の補間演算が4点補間方式である場合は、これら8つの頂点データは入力8bitのR、G、B信号の下位4bit信号RL、GL、BLの大小関係から定まる四面体構成に基づき、4つの頂点データが選択される。但し、前述したように一画素あたりの色変換処理を行う単位処理時間は、補間演算対象となる格子点データとして所望の8点もしくは4点が揃うまでに2回のメモリ・アクセスを要するため長くなる。
【0051】
上述の第2の実施の形態では、2回のメモリアクセスによって格子点データを取得する例を示したが、例えばさらに処理時間に余裕がある場合には、メモリ12とメモリ13の内容を統合して1つのメモリに格納し、4回のメモリアクセスによって4つのデータ群を取得するように構成してもよい。例えば8点補間を行う場合、1つのメモリでありながら従来のように8回のアクセスを行わずに、4回のアクセスで済み、メモリ容量の削減とアクセス回数の削減(従って処理時間の削減)を実現することができる。
【0052】
次に、本発明の色データ変換装置の第3の実施の形態を説明する。この第3の実施の形態における構成は、図1と同様である。ただし、メモリ12〜15に格納するルック・アップ・テーブルのデータが異なる。図15は、本発明の色データ変換装置の第3の実施の形態においてメモリに格納されるデータ群の一例の説明図である。この第3の実施の形態においても、図15において円筒形で示すように、B軸方向の代表値をひとかたまりとしたデータ群としてメモリ12〜15に格納する。このとき、この第3の実施の形態では、R軸及びG軸の値が偶数か奇数かの組み合わせにより、4つに分割して別々のメモリに格納する。
【0053】
図15(A)には、R軸及びG軸がともに偶数の場合を示している。また図15(B)には、R軸が偶数、G軸が奇数の場合を示している。さらに図15(C)には、R軸が奇数、G軸が偶数の場合を示している。さらにまた、図15(D)には、R軸、G軸ともに奇数の場合を示している。例えば図15(A)に示したデータ群をメモリ12に、図15(B)に示したデータ群をメモリ13に、図15(C)に示したデータ群をメモリ14に、図15(D)に示したデータ群をメモリ15に、それぞれ格納しておく。この場合、4個のメモリ12〜15には、重複したデータ群が格納されないので、1つのルック・アップ・テーブル分のメモリ容量で済ますことができる。
【0054】
そして、入力R、G、Bのうち、R、Gの上位4bitであるRH、GHからアドレス生成部11でそれぞれのメモリ12〜15に対するアドレスを生成し、アクセスを行えばよい。それぞれのメモリ12〜15からデータ群が得られるので、データ選択部17によって入力Bの上位4bitであるBHから8個の代表点を選択することができる。あるいは4点補間であれば、さらに四面体判定部16の判定結果を用いることによって、4個の代表点を選択することができる。この4点補間の場合、補間で用いる4点をそれぞれのメモリから取り出すことも考えられるが、図17に示したように入力R、G、Bがいずれの四面体に含まれるかを判定しないと、補間で用いる4点を決定することができない。本発明ではデータ群として取り出すので、いずれの四面体に決定されてもよく、また、四面体の判定とデータの取り出しを並行して実行することが可能である。
【0055】
なお、上述の各実施の形態においては、入力されるデジタル色分解信号としてR、G、Bとし、出力されるデジタル色分解信号としてY、M、C、Kである場合を例にして説明したが、本発明はこれに限られるものではなく、入力側及び出力側とも、任意の色分解信号について対応することが可能である。また、色分解信号の各構成要素を8bitとし、上位bitと下位bitに分割する際に4bitずつに分解するものとして説明したが、これも任意であり、本発明を適用する際にそれぞれのbit数を決定すればよい。もちろん、それぞれの色分解信号の構成要素について同じbit数、同じ分割bit数でなくてもよい。なお、分割bit数は、入力側の色空間における各構成要素毎の分割数によって決定することができる。
【0056】
【発明の効果】
以上の説明から明らかなように、本発明によれば、ルック・アップ・テーブルと補間演算を用いたデジタル色分解信号から他の色成分のデジタル色分解信号への変換を行う際に、変換処理に割り当てられた処理時間が短い場合でも、より少ないメモリ資源で構成することが可能となる。また、処理に割り当てられる単位時間がより長い場合には、更に少ないメモリ資源で色データ変換装置を構成することができるという効果がある。
【図面の簡単な説明】
【図1】 本発明の色データ変換装置の実施の一形態を示す概略構成図である。
【図2】 ルック・アップ・テーブル内の単位立方体の左側面の説明図である。
【図3】 単位立方体の左側面参照用であり、かつ、GHの値が偶数値である場合のデータ群の説明図である。
【図4】 単位立方体の左側面参照用であり、かつ、GHの値が奇数値である場合のデータ群の説明図である。
【図5】 ルック・アップ・テーブル内の単位立方体の右側面の説明図である。
【図6】 単位立方体の右側面参照用であり、かつ、GHの値が偶数値である場合のデータ群の説明図。
【図7】 単位立方体の右側面参照用であり、かつ、GHの値が奇数値である場合のデータ群の説明図である。
【図8】 データ群の一例の説明図である。
【図9】 本発明の色データ変換装置の第1の実施の形態における動作の一例の説明図である。
【図10】 入力されたデジタル色分解信号が含まれる四面体と生成される補間係数の一例の説明図である。
【図11】 GHが偶数値の場合に四面体の4頂点として選択する代表値の説明図である。
【図12】 GHが奇数値の場合に四面体の4頂点として選択する代表値の説明図である。
【図13】 本発明の色データ変換装置の第2の実施の形態を示す概略構成図である。
【図14】 本発明の色データ変換装置の第2の実施の形態における動作の一例の説明図である。
【図15】 本発明の色データ変換装置の第3の実施の形態においてメモリに格納されるデータ群の一例の説明図である。
【図16】 ルック・アップ・テーブルの3次元色空間上での概念図である。
【図17】 入力された信号値とルック・アップ・テーブルにおける格子点との位置関係の説明図である。
【図18】 単位立方体中の単位四面体の一例の説明図である。
【図19】 入力された信号値がいずれの単位四面体に含まれるかを判定する際の判定条件の一例の説明図である。
【符号の説明】
1…Y生成部、2…M生成部、3…C生成部、4…K生成部、11…アドレス生成部、12〜15…メモリ、16…四面体判定部、17…データ選択部、18…補間係数生成部、19…補間処理部、21…左側面、22,23…基点アドレス位置、24〜26…データ群、31…右側面、32,33…基点アドレス位置、34〜36…データ群、41…データ群、42,43…代表値。

Claims (8)

  1. 3つの構成要素からなるデジタル色分解データを入力し、該3つのデジタル色分解データに対応する新たな色分解データを出力する色データ変換装置において、3つの構成要素の値のそれぞれが取り得る値の範囲を複数に分割したときの格子点に対応づけられた変換後の出力値を代表値とし特定の2つの構成要素の値によって決まる複数の代表値を1つのデータ群にまとめて前記特定の2つの構成要素の値に対応づけて格納する1ないし複数のルック・アップ・テーブルと、入力されたデジタル色分解データのうち前記特定の2つの構成要素の上位複数ビット信号から前記ルック・アップ・テーブルへのアドレスを生成して1ないし複数の前記ルック・アップ・テーブルをアクセスするアドレス生成手段と、1ないし複数の前記ルック・アップ・テーブルから出力される前記データ群から前記特定の2つの構成要素以外の構成要素の上位複数ビット信号を用いて補間演算の対象となる代表値を絞り込む選択手段と、入力されたデジタル色分解データの下位複数ビット信号を用いて補間演算用の係数値を算出する補間係数生成手段と、前記補間係数生成手段で算出された係数値を用いて前記選択手段によって絞り込まれた代表値から補間演算処理を行って前記新たな色分解データを出力する補間演算手段を備えたことを特徴とする色データ変換装置。
  2. 前記ルック・アップ・テーブルは、入力されたデジタル色分解データの前記特定の2つの構成要素の上位複数ビット信号から前記アドレス生成手段によって生成されたアドレスが奇数の場合に対応するデータ群が格納された奇数ルックアップテーブルと、前記アドレスが偶数の場合に対応するデータ群が格納された偶数ルックアップテーブルからなることを特徴とする請求項1に記載の色データ変換装置。
  3. 前記奇数ルックアップテーブル及び前記偶数ルックアップテーブルはそれぞれ2つずつ設けられており、4つのデータ群を並列して出力することを特徴とする請求項2に記載の色データ変換装置。
  4. 前記奇数ルックアップテーブル及び前記偶数ルックアップテーブルはそれぞれ1つずつ設けられており、前記アドレス生成手段は、異なる2つのアドレスを生成してそれぞれのアドレスにより前記ルック・アップ・テーブルを1回ずつアクセスして2つずつのデータ群を出力させることを特徴とする請求項2に記載の色データ変換装置。
  5. 前記ルック・アップ・テーブルは、入力されたデジタル色分解データの前記特定の2つの構成要素のそれぞれについて上位複数ビット信号が奇数か偶数かの組み合わせに対応する4つのルックアップテーブルを有しており、前記アドレス生成手段からのアクセスに応じて4つのデータ群を並列して出力することを特徴とする請求項1に記載の色データ変換装置。
  6. 前記ルック・アップ・テーブルは1つであり、前記アドレス生成手段は、異なる4つのアドレスを生成してそれぞれのアドレスにより前記ルック・アップ・テーブルを1回ずつアクセスし、4つのデータ群を順次出力させることを特徴とする請求項1に記載の色データ変換装置。
  7. 前記補間演算手段は、4点補間演算処理を行うことを特徴とする請求項1ないし請求項6のいずれか1項に記載の色データ変換装置。
  8. 前記補間演算手段は、8点補間演算処理を行うことを特徴とする請求項1ないし請求項6のいずれか1項に記載の色データ変換装置。
JP2001308843A 2001-10-04 2001-10-04 色データ変換装置 Expired - Fee Related JP3871027B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001308843A JP3871027B2 (ja) 2001-10-04 2001-10-04 色データ変換装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001308843A JP3871027B2 (ja) 2001-10-04 2001-10-04 色データ変換装置

Publications (2)

Publication Number Publication Date
JP2003116013A JP2003116013A (ja) 2003-04-18
JP3871027B2 true JP3871027B2 (ja) 2007-01-24

Family

ID=19128086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001308843A Expired - Fee Related JP3871027B2 (ja) 2001-10-04 2001-10-04 色データ変換装置

Country Status (1)

Country Link
JP (1) JP3871027B2 (ja)

Also Published As

Publication number Publication date
JP2003116013A (ja) 2003-04-18

Similar Documents

Publication Publication Date Title
KR100364942B1 (ko) 다차원데이타변환장치및방법
US4603348A (en) Method for composing addresses of a memory
JP3359134B2 (ja) 色信号処理装置
EP0822708B1 (en) Apparatus for generating interpolator input data
US6389161B1 (en) Method of interpolation in an n-dimensional color space
JP2000165691A (ja) 色変換方法および装置
JP4724413B2 (ja) データ分類方法
US5666437A (en) Apparatus for routing interpolator input data by performing a selective two's complement based on sets of lower and higher order bits of input data
JP3871027B2 (ja) 色データ変換装置
JP3153002B2 (ja) 色変換方法、色変換テーブル作成方法、色変換装置および色変換テーブル作成装置
JP4431953B2 (ja) データ変換装置、データ変換方法およびデータ変換プログラム
JP6501561B2 (ja) データ処理装置およびその制御方法、プログラム
JPH0799586A (ja) 色変換装置
JP4096672B2 (ja) データ変換方法およびデータ変換装置
JPH0946542A (ja) 補間演算方法およびデータ変換装置
JPH05284346A (ja) 色変換装置
JPH11238127A (ja) 刈り込み放射状補間および刈り込み四面体補間の共用補間回路
JP2627824B2 (ja) 画像処理装置
US5860077A (en) Three-dimensional data storing method for parallel access of vertex data
Vondran Radial and Pruned Tetrahedral Interpolation Techniques
JP2007174392A (ja) データ変換装置、データ変換装置の制御方法およびプログラム
EP0896297A2 (en) Ram address generation for tetrahedral interpolation
JPH07230539A (ja) データ変換装置、画像形成装置およびテーブルデータ格納方法
JP2895935B2 (ja) アクロマチック製版用色変換装置
JPH09172554A (ja) カラールックアップテーブル

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061010

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131027

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees