JP3856654B2 - Manufacturing method of three-dimensional shaped object - Google Patents

Manufacturing method of three-dimensional shaped object Download PDF

Info

Publication number
JP3856654B2
JP3856654B2 JP2001048974A JP2001048974A JP3856654B2 JP 3856654 B2 JP3856654 B2 JP 3856654B2 JP 2001048974 A JP2001048974 A JP 2001048974A JP 2001048974 A JP2001048974 A JP 2001048974A JP 3856654 B2 JP3856654 B2 JP 3856654B2
Authority
JP
Japan
Prior art keywords
melting
powder
melted
region
dimensional structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001048974A
Other languages
Japanese (ja)
Other versions
JP2002249805A (en
Inventor
論 阿部
正孝 武南
勲 不破
修士 上永
精造 待田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2001048974A priority Critical patent/JP3856654B2/en
Publication of JP2002249805A publication Critical patent/JP2002249805A/en
Application granted granted Critical
Publication of JP3856654B2 publication Critical patent/JP3856654B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Laser Beam Processing (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Powder Metallurgy (AREA)

Description

【0001】
【発明が属する技術分野】
本発明は、三次元形状造形物の製造方法に関する。具体的には、無機質あるいは有機質の粉末材料に光ビームを照射して溶融層を形成し、この溶融層を積み重ねて所望の三次元形状を有する造形物を製造する方法に関する。
【0002】
【従来の技術】
無機質粉体(金属)や有機質粉末(樹脂)に対して、例えば指向性エネルギービーム、レーザビームなどの光ビームを照射して硬化させ、硬化層を積層して三次元形状造形物を製造する方法が、例えば特許第2620353号公報に開示されている。
【0003】
当該方法では、まず、粉末の堆積層に目標とする造形物の第1の断面に対応する部分に光ビームを照射して焼結する。続いて当該粉末第1層上に粉末第2層を堆積し、目標造形物の第2の断面に対応する部分に再び光ビームを照射して、前記粉末第1層中の焼結した粉末と接合させる。この操作を必要な回数だけ連続して行い目標造形物を製造した後、周囲に存在する非焼結の粉末を除去して造形物を取り出す。
【0004】
しかし、当該方法においては、焼結時粉末の収縮によって各層の変形が起こり、精度よい造形物が得られないという問題点があった。また、対応する収縮予防構造を使用した場合には、造形物表面の品質が悪くなるという問題点があった。
【0005】
係る問題点を解決すべく、特表平8−504139号公報に、それぞれの層において、コア領域とシェル領域とに分離して、両領域の特性を相違させるために、コア領域では凝固時及びその後の物体の変形が最小であるように光ビームを照射し、シェル領域ではできるだけ平坦かつ精密な表面を生成するように光ビームを照射して、造形物を製造する方法が開示されている。
【0006】
当該方法においては、積層されたシェル領域によって比較的安定したシェルを作製でき、造形物の安定性を落とすことなく変形を最低限に押さえることによってコア領域を製造でき、平坦かつ精密な表面を生成できる。
【0007】
【発明が解決しようとする課題】
しかしながら、上記方法においては、堆積した各層において、シェル領域とコア領域とで両特性が異なるように光ビームを制御しなければならず、操作が面倒なものであった。また各層毎に所望の形状の全領域に光ビームを照射して焼結層(溶融層)を積層する必要があり、造形物の完成までに時間を要するものとなっていた。
【0008】
本発明は上記従来技術の問題点に鑑みてなされたものであって、本発明の目的とするところは、金属金型としての三次元形状造形物を短時間で精度よく得るとともに、強度を増し造形物の変形を防ぐことにある。
【0009】
【課題を解決するための手段】
本発明に係る三次元形状造形物の製造方法は、無機質あるいは有機質からなる粉末の層の所定箇所に光ビームを照射して溶融させることによって溶融層を形成し、この溶融層上に前記粉末の層を被覆するとともにこの粉末の所定箇所に光ビームを照射して溶融させることによって下の溶融層と一体になった溶融層を形成し、これを繰り返すことによって複数の溶融層が積層一体化された三次元形状造形物を製造する方法において、前記粉末の層において光ビームを照射して溶融する溶融領域と光ビームを照射しない非溶融領域とを設け、前記粉末が溶融された溶融部と前記粉末が溶融されなかった非溶融部とを形成するとともに、前記非溶融部の上端部における非溶融領域を積層する毎に漸減させて非溶融部上端部を稜線角度が45度よりも大きい略三角錐状又は略半球状に形成し、非溶融部を造形物の底面側に開口する凹所又は造形物内部の空洞として形成することを特徴としている。
【0010】
特に本発明においては、前記非溶融部を、最下層から連続的に設けるようにするのが好ましく、例えば、溶融部を3次元面格子状に配置し、上下に位置する非溶融部同士をその間に位置する溶融部の一部領域に形成された非溶融部において連通させることができる。また、前記非溶融領域を積層する毎に漸減させるのが望ましい。
【0011】
あるいは、前記造形物内部の溶融部をハニカム構造や多数の円筒が並列された構造にすることもできる。
【0012】
さらには、完成後の三次元造形物に応力が掛かる部分に溶融部を多く配置し、応力が掛からない部分に溶融部を少なく配置することもできる。
【0013】
これらの方法においては、造形物の完成後に、造形プレートに開口を設け、当該開口より前記非溶融領域に、異種材料を注入及び/又は含浸する、あるいは、当該開口より前記非溶融領域の粉末を除去した後、異種材料を注入するするのが好ましい。この場合には、前記粉末を吸引除去すればよい。
【0014】
当該注入又は含浸する異種材料には、樹脂材料や造形に用いる粉末よりも低融点の金属材料を用いることができる。
【0015】
また、本発明においては、非開口の成形テーブル上に、第1層の非溶融領域に対応した領域に開口を開設した造形テープルを載置して造形するのが好都合である。
【0016】
本発明の三次元造形物の製造方法は、三次元造形物として金型であることを特徴としている。
【0017】
【発明の実施の形態】
以下、本発明について各図に従って詳細に説明する。まず、図1の参考例に示すごとく、本発明の製造方法により得られた造形物1は、粉末材料5にレーザビーム等の光ビームが照射され粉末5が溶融焼結された溶融部2と光ビームが照射されずに粉末状態のままである非溶融部3とから構成される。本発明の製造方法は、従来の技術に示す三次元造形方法とほぼ同様な方法であって、所定の厚さに積層した粉末5の層に、所望する造形物1の断面形状と対応する領域のうち、必要な領域部分のみに光ビームを照射する。光ビームが照射された領域の粉末5は溶融焼結されて溶融領域となる。光ビームが照射されなかった領域は、そのまま粉末状態として残り非溶融領域となる。次いで、粉末5の層を所定の厚さに積層して、造形物1の断面形状と対応する領域に光ビームを照射して溶融領域を形成する。これを順次繰り返すことによって、溶融領域が連続的に積層されて溶融部2が形成され、非溶融領域が連続的に積層されて非溶融部3が形成される。本発明においては、光ビームを照射する溶融領域は、目的とする造形物1の構造等によって異なるものであり、少なくとも造形物1表面となる領域には光ビームが照射されるが、内部構造を形成する非溶融領域は目的に応じて任意に設定される。
【0018】
より具体的に説明すれば、適当な厚さの金属板からなる造形プレート11上に、例えば金属粉末を約0.05mm程度の厚みで敷き詰め、所望の形状領域に光ビームを全面に照射して金属粉末を溶融させ、造形プレート11上に最下層の溶融層(溶融領域)を形成する。このとき、金属粉末としては、例えば最大粒径が50μm、平均粒径20〜30μmの鉄粉などが用いられ、光ビームにはCO<SUB>2</SUB>レーザやYAGレーザなどが用いられる。
【0019】
引き続いて当該溶融層上に、さらに金属粉末を約0.05mm程度の厚みで敷き詰め、所望の形状領域に光ビームを照射して金属粉末を溶融させ、下層の溶融領域と一体となった溶融領域を形成する。そして非溶融領域が出現するまでこの工程を繰り返し溶融部2の一部を形成する。非溶融領域が出現したならば、所望する領域にのみ光ビームを照射して溶融領域及び非溶融領域を形成する。さらに金属粉末を積層して溶融領域及び非溶融領域を形成し、最上層においては、所望する形状となるように所定領域全面に光ビームを照射して溶融領域を形成する。こうして、図1の参考例に示す如く、内部に溶融されずに粉末状態となった非溶融部3が閉じ込められた造形物1を得ることができる。
【0020】
この様な方法によれば、光ビームを照射する時間が少なくなり、造形時間を短縮できる。また、各層においてその全面が溶融焼結される訳ではないので熱変形を低減でき、しかも得られた造形物1の収縮を抑えることができる。
【0021】
次に、図2の参考例においては、非溶融部3が最下層から連続して形成され、非溶融部3が円柱状に備えられている。この非溶融部3は、各層における非溶融領域を順次積層して得られるものであって、照射層直下の層における溶融領域と重ね合わせるようにして光ビームを照射することによって得られる。また当該造形物1では、図2(b)の参考例に示す如く各層において、各非溶融領域が円を描くように光ビームが照射され溶融領域が形成され、最下層においても非溶融領域が設けられている。この結果、出来上がった造形物1の底面には、図2(b)の参考例と同じ形状の開口6が得られる。従って、当該方法においては、造形後に焼結されていない非溶融部3の粉末材料5を開口6から取り出すことができ、金属金型のような内部に複雑な構造をした空洞、あるいは凹所を有する造形物1を容易にかつ精度よく作製できる。なお、本発明において、粉末が溶融されなかった非溶融部3には、図1の参考例に示す如く粉末5が充填された状態のものや粉末5が除去されて空洞になったものを意味するのはもちろんのこと、さらに以下に述べるように、粉末5の代わりに異種材料7が充填されたものも含む概念である。
【0022】
例えば図3の参考例に示すものでは、溶融部2を3次元面格子状に配置し、上下に位置する非溶融部3同士をその間に位置する溶融部2の一部領域に形成された非溶融部3において連通させたものである。この造形物1の内部はいわゆるセル状に構成されており、周囲を溶融部2である面で囲まれた非溶融部3が立体的に配置された構造であって、上下に位置する非溶融部3が、上下面の溶融部2に開設された筒状部3a(非溶融部3である)によって連通した構造となっている。すなわち、当該造形物1は、第1の層において格子状に溶融領域を形成して一定の厚みとなるまで複数層積層し、第1段めのセル状層を形成する。次いで、第1段めのセル状層の上に、粉末5の層を積層し、第1段めのセル状層の非溶融領域のほぼ中央に、円形状の非溶融領域を形成して、溶融部2が一定の厚みとなるまで複数層積層する。この結果、第1段めの非溶融部3の上面に位置する溶融部2に筒状部3aが形成される。次に、第1段めのセル状層と同様にして、第2段めのセル状層を形成する。そして、第2段めのセル状層の非溶融領域のほぼ中央に対応して、非溶融部3である円筒部3aを形成する。これを繰り返すことによって、溶融部2が3次元面格子状をした構造を形成することができ、上下方向に配置されたセル状の非溶融部3は、その間に位置する溶融部2に開設された非溶融部3(円筒部3a)によって繋がった状態となる。このような3次元の面格子状に溶融部2を形成することにより、積層方向の上側及び側面からの圧力に対して、強固なものにできる。また、この場合にも、得られた造形物1の内部に残った粉末5を、造形物1下面の開口6より取り出すことができる。なお、図3においては粉末5は略されて示されている。
【0023】
次に図4の参考例では、非溶融部3は同図(b)に示す如く円錐台状に形成されており、粉末材料5からなる各層が上層に近づくにつれて非溶融領域が漸減されるようにして作製されている。下層から上層まで非溶融領域を大きくした状態で積層した場合、下層に硬化していない領域が大きい層があれば、上層では照射時の熱影響等で反り変形が生じやすく、また下層の溶融領域が強度的に弱くなり、上層で粉末5を供給した時の応力で破損する恐れがある。そこで、図示する如く上層に連れて溶融領域を大きくすることにより、強度を増し造形物1の変形等を防ぐこととしたものである。
【0024】
この場合、図5(a)(b)の実施形態に示すように、非溶融部3の上端部(オーバーハング部)において、徐々に非溶融領域を小さくすればより造形しやすくなる。同図(a)では、略三角錐状に形成されているが、この場合には稜線の角度を45°以上に設定するのが好ましい。また、同図(b)に示す如く、半球状に形成する場合には、当該領域は少なくとも高さ方向に10mm以上なるように設定するのがよい。
【0025】
これらの造形物1においては、下層から最上層の溶融層直下まで筒状に繋がった非溶融部3が形成されている。従って、造形プレート11から出来上がった造形物1を取り外し、造形物1下面から内部の粉末5を取り出して当該非溶融部3内に異種材料を注入したり、あるいは粉末5を取り出すことなく異種材料を注入含浸させることもできる。
【0026】
図6の参考例に示す方法においては、造形プレート11を造形装置から取り外した後、造形物1を取り外すことなく、異種材料を注入及び/又は含浸させている。すなわち、造形装置から取り外した造形プレート11の下面から、最下層の非溶融領域の位置に合わせてドリルなどで開口12を開設し、非溶融の粉末5を取り出すことなく、異種材料7を注入する。この場合、異種材料7としては、例えばエポキシ樹脂やウレタン樹脂などの樹脂材料、さらにこれらの樹脂材料に金属粉やセラミック粉末を混合した液状系材料が好適に用いられる。一般的に各層における粉末5の充填率は60〜80%であるため、液状系のものであれば十分に注入含浸させることができる。この結果、得られた造形物1の強度が向上される。また、異種材料7によっては熱伝導率を高めたりすることができる。また、樹脂系材料を含浸させた場合には、空洞にして強度を大きく低下させることなく軽量化を図ることができる。
【0027】
さらに、異種材料7としては、粉末材料5よりも融点の低い金属材料、例えば鉄の粉末材料5に対しては銅材、はんだ、ろう材などを用いることができる。この場合には、強度を向上できるだけでなく、熱伝導性や導電性などの電気的性能を向上できる。
【0028】
また、図7(a)の参考例に示す如く非溶融部3の粉末5を除去した後、同図(b)の参考例に示すごとく異種材料7を充填してもよい。この場合には、例えば、図8の参考例に示す如く、例えば漏斗状をした粉末吸引用の吸引具13aを備えた吸引装置13を用い、開口12が開設された造形プレート11の下方から非溶融部3の粉末5を吸引できる。こうすれば、非溶融の粉末5を回収でき、再び粉末5として再利用を図ることができる。
【0029】
これらの実施形態または参考例においては、造形後に造形プレート11に開口12を開設することにしたが、予め最下層の非溶融領域に対応して開口12を設けた造形プレート11を用いることもできる。図9の参考例は当該方法を示す図であるが、この場合には同図9(a)の参考例に示すように造形プレート11に開口12を設けておき、同図(b)の参考例に示す如く、開口が設けられていない成形テーブル14上に造形プレート11を載置することにすればよい。この方法によれば、造形後に造形プレート11ごと造形物1を取り出すことができ、その後の粉末除去作業、異種材料7の注入、含浸作業を至極簡単に行える。
【0030】
上記実施形態または参考例においては、非溶融部3の形状を中心にして説明したが、本発明においては、各層ごとに光ビームの照射領域を調整して造形し、溶融部2及び非溶融部3の構造が定められる。従って、各層ごとに所定形状に溶融領域を設けて積層して、例えば図10の参考例に示す如くハニカム構造の溶融部2を造形物1の内部に構成することもできる。また、図11の参考例に示す如く円筒状の溶融部2を多数造形物1の内部に構成することもできる。このような構造とすることにより、造形物1の強度を向上できるとともに光ビームの照射領域を大きく削減できる。この結果、造形時間を大きく低減できる。
【0031】
また、溶融部2の形状は特定の形状に限定されるものでもなく、図12の参考例に示す如く、最終目標となる造形物1の利用目的によって、予め応力が高く掛かる部分には溶融部2を多く配置し、応力が低く掛かる部分には溶融部2を少なくなるように配置することもできる。例えば、金型のゲート部には特に大きな応力が掛かるため、このようなゲート部に溶融部2を多く配置するように設計するのがよい。
【0032】
このように本発明においては、粉末5の層において光ビームを照射する溶融領域と、光ビームを照射しない非溶融領域とを設けているので、任意の位置に溶融されていない非溶融部3を設けることができる。この結果、例えば造形物1の底面に開口6が形成されるように非溶融部3を設けることによって、金型のような内部に複雑な凹所を有する造形物1も容易に得ることができる。さらに、異種材料7の注入、含浸、溶融部2形成部分の調整等により、造形物1の各部分において強度を種々と変えることもできる。それよりも本発明の製造方法においては、造形時間を非常に短くし、しかも、熱変形や収縮による変形を少なくして、精度よく目的とする造形物1を簡単に製造できる。
【0033】
【発明の効果】
本発明によれば、粉末の層において光ビームを照射する溶融領域と、光ビームを照射しない非溶融領域とを設け、溶融部と非溶融部とを形成しているので、各層において光ビームを照射する面積が少なくなり、造形時間を短くできる。また、非溶融領域が形成されることにより当該層における熱収縮が小さくなり、全体として熱変形を防ぐことができる。また、非溶融部の上端部における非溶融領域を積層する毎に漸減させて非溶融部上端部を稜線角度が45度よりも大きい略三角錐状又は略半球状に形成されているので、徐々に非溶融領域を小さく形成でき、照射時の熱影響等による変形を防止し、造形しやすくなる。また、非溶融部を造形物の底面側に開口する凹所又は造形物内部の空洞として形成しているので、金属金型のような内部に複雑な構造をした空洞、あるいは底面側に開口する凹所を有する造形物を容易にかつ精度よく作製できる。
【0034】
この場合、最下層から連続的に非溶融部を形成することにより、最下層の非溶融領域から、未溶融の粉末を取り出し除去できる。この結果、金型などの内部に複雑な形状をした空洞や凹所を簡単に設けることができる。
【0035】
あるいは、造形プレートに当該領域に対応して開口を設け、開口から前記非溶融部に異種材料、例えば樹脂材料を注入及び/又は含浸させることにより、強度を高めたり、熱伝導率、導電率などの特性を制御することができる。
【0036】
あるいは前記非溶融部の粉末を除去して異種材料を注入することにより、強度を著しく低下させることなく、造形物の軽量化を図ることもできる。
【0037】
本発明においては、非溶融部や溶融部の形状は所望する形状に形成でき、例えば、溶融部を3次元の面格子状に配列された構造やハニカム構造、多数の円筒が並列された構造にすることにより、非溶融部を大きくしてより一層強度を増すことができる。また、非溶融領域を積層するごとに漸減させることにより、造形時における破損を防ぐことができる。さらに、部分的に応力が掛かる金型など、完成後の造形物の目的に応じて、応力が掛かる部分に溶融部を多く配置し、応力が掛からない部分に溶融部を少なく配置することもできる。
【0038】
このように、本発明は、光ビームを照射する照射領域を種々制御することによって、金型など特定の部位に強度が要求されたり、内部に複雑な形状を有する造形物を、精度よく短時間で、しかも至極簡単に製造することができるものである。
【図面の簡単な説明】
【図1】 本発明の参考例に係る製造方法を示す説明図である。
【図2】 同上の他の参考例に係る製造方法を示す説明図であって、同図(a)はその横断面説明図、同図(b)は縦断面説明図である。
【図3】 同上のさらに他の参考例に係る製造方法を示す説明図であって、同図(a)はその一部を破断した説明図、同図(b)は横断面説明図である。
【図4】 同上のさらに他の参考例に係る製造方法を示す説明図である。
【図5】 (a)(b)はそれぞれ、本発明の実施形態に係る製造方法を示す説明図である。
【図6】 同上のさらに他の参考例に係る製造方法を示す説明図である。
【図7】 (a)(b)は同上のさらに他の参考例に係る製造方法を示す説明図である。
【図8】 図7の製造方法に使用される製造装置の概略的構成図である。
【図9】 (a)(b)は同上のさらに他の参考例に係る製造方法を示す説明図であって、同図(a)は造形プレートの斜視図、同図(b)は当該造形プレートを利用した状態を示す図である。
【図10】 同上のさらに他の参考例に係る製造方法を示す説明図である。
【図11】 同上のさらに他の参考例に係る製造方法を示す説明図である。
【図12】 同上のさらに他の参考例に係る製造方法を示す説明図である。
[0001]
[Technical field to which the invention belongs]
The present invention relates to a method for manufacturing a three-dimensional shaped object. Specifically, the present invention relates to a method for producing a shaped article having a desired three-dimensional shape by forming a molten layer by irradiating a light beam onto an inorganic or organic powder material and stacking the molten layers.
[0002]
[Prior art]
A method for producing a three-dimensional shaped object by irradiating an inorganic powder (metal) or organic powder (resin) with a light beam such as a directional energy beam or a laser beam, and then laminating a cured layer. For example, this is disclosed in Japanese Patent No. 2620353.
[0003]
In this method, first, the portion corresponding to the first cross section of the target object is sintered on the powder deposition layer by irradiating with a light beam. Subsequently, a second powder layer is deposited on the first powder layer, and a portion corresponding to the second cross section of the target object is irradiated with a light beam again, and the sintered powder in the first powder layer is obtained. Join. This operation is continuously performed as many times as necessary to produce a target shaped article, and then the non-sintered powder existing around is removed to take out the shaped article.
[0004]
However, in this method, there is a problem that each layer is deformed by the shrinkage of the powder during sintering, and an accurate shaped article cannot be obtained. Further, when the corresponding shrinkage prevention structure is used, there is a problem that the quality of the surface of the molded article is deteriorated.
[0005]
In order to solve such a problem, Japanese Patent Application Laid-Open No. 8-504139 discloses that in each layer, the core region and the shell region are separated and the characteristics of both regions are different. A method of manufacturing a shaped article by irradiating a light beam so that subsequent deformation of the object is minimized and irradiating the light beam so as to generate a surface that is as flat and precise as possible in the shell region is disclosed.
[0006]
In this method, a relatively stable shell can be produced by the laminated shell region, and the core region can be produced by minimizing deformation without degrading the stability of the molded object, and a flat and precise surface is generated. it can.
[0007]
[Problems to be solved by the invention]
However, in the above-described method, the light beam must be controlled so that both characteristics are different between the shell region and the core region in each deposited layer, and the operation is troublesome. Moreover, it is necessary to irradiate the entire region of a desired shape for each layer to laminate a sintered layer (molten layer), and it takes time to complete a molded article.
[0008]
The present invention has been made in view of the above-mentioned problems of the prior art, and an object of the present invention is to obtain a three-dimensional shaped object as a metal mold with high accuracy in a short time and increase the strength. The object is to prevent deformation of the model.
[0009]
[Means for Solving the Problems]
In the method for producing a three-dimensional shaped object according to the present invention, a molten layer is formed by irradiating a predetermined portion of an inorganic or organic powder layer with a light beam and melting it, and the powder is formed on the molten layer. By coating the layer and irradiating a predetermined portion of the powder with a light beam to melt, a molten layer integrated with the lower molten layer is formed, and by repeating this, a plurality of molten layers are laminated and integrated. In the method of manufacturing a three-dimensional shaped object, a melted region that is irradiated with a light beam and melted in the powder layer and a non-melted region that is not irradiated with a light beam are provided, and the melted part in which the powder is melted and the Forming a non-melted portion in which the powder was not melted, and gradually decreasing the non-melted region at the upper end of the non-melted portion every time the non-melted portion is laminated, so that the ridge line angle is more than 45 degrees. Heard approximately formed in a triangular pyramid shape or a substantially hemispherical shape, and characterized by forming a non-molten portion as the cavity of the internal recess or molded article is open to the bottom side of the shaped article.
[0010]
In particular, in the present invention, it is preferable that the non-melting portions are continuously provided from the lowermost layer. For example, the melting portions are arranged in a three-dimensional plane lattice, and the non-melting portions positioned above and below are disposed between them. It can be made to communicate in the non-melting part formed in the partial area | region of the fusion | melting part located in this. In addition, it is desirable to gradually reduce the non-melted region every time it is laminated.
[0011]
Alternatively, the melted portion inside the shaped article can be formed into a honeycomb structure or a structure in which a large number of cylinders are arranged in parallel.
[0012]
Furthermore, it is also possible to arrange a large number of melted portions in the portion where the stress is applied to the completed three-dimensional structure and to arrange a few melted portions in the portion where the stress is not applied.
[0013]
In these methods, after the modeling object is completed, an opening is formed in the modeling plate, and a different material is injected and / or impregnated into the non-melting region from the opening, or the powder in the non-melting region is injected from the opening. After removal, it is preferable to inject a different material. In this case, the powder may be removed by suction.
[0014]
As the different material to be injected or impregnated, a metal material having a melting point lower than that of a resin material or a powder used for modeling can be used.
[0015]
Further, in the present invention, it is advantageous to mount and form a modeling table having an opening in a region corresponding to the non-melting region of the first layer on a non-opening molding table.
[0016]
The manufacturing method of the three-dimensional structure of the present invention is characterized in that the three-dimensional structure is a mold.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the drawings. First, as shown in the reference example of FIG. 1, the shaped article 1 obtained by the manufacturing method of the present invention includes a molten portion 2 in which a powder material 5 is irradiated with a light beam such as a laser beam and the powder 5 is melted and sintered. The non-melting portion 3 remains in a powder state without being irradiated with a light beam. The manufacturing method of the present invention is a method that is substantially the same as the three-dimensional modeling method shown in the prior art, and that corresponds to the desired cross-sectional shape of the modeled object 1 on the layer of the powder 5 laminated to a predetermined thickness. Of these, only a necessary region is irradiated with a light beam. The powder 5 in the region irradiated with the light beam is melted and sintered to become a molten region. The region that has not been irradiated with the light beam remains in the powder state as it is and becomes a non-molten region. Next, a layer of the powder 5 is laminated to a predetermined thickness, and a region corresponding to the cross-sectional shape of the shaped article 1 is irradiated with a light beam to form a molten region. By repeating this in sequence, the melted regions are continuously laminated to form the melted portion 2, and the non-melted regions are continuously laminated to form the non-melted portion 3. In the present invention, the melted region to be irradiated with the light beam varies depending on the structure or the like of the target modeled object 1, and at least the region to be the surface of the modeled object 1 is irradiated with the light beam. The non-melting region to be formed is arbitrarily set according to the purpose.
[0018]
More specifically, for example, metal powder is spread on the modeling plate 11 made of a metal plate having an appropriate thickness to a thickness of about 0.05 mm, and a light beam is irradiated on the entire surface of a desired shape region. The metal powder is melted to form a lowermost molten layer (melting region) on the modeling plate 11. At this time, for example, iron powder having a maximum particle size of 50 μm and an average particle size of 20 to 30 μm is used as the metal powder, and a CO <SUB> 2 </ SUB> laser, a YAG laser, or the like is used as the light beam. .
[0019]
Subsequently, a metal powder is further spread on the molten layer in a thickness of about 0.05 mm, and a desired shape region is irradiated with a light beam to melt the metal powder, and a molten region integrated with the lower molten region. Form. This process is repeated until a non-melting region appears to form a part of the melting part 2. If a non-melting region appears, only the desired region is irradiated with a light beam to form a melting region and a non-melting region. Further, a metal powder is laminated to form a melting region and a non-melting region, and in the uppermost layer, a light beam is irradiated on the entire predetermined region so as to have a desired shape, thereby forming a melting region. In this way, as shown in the reference example of FIG. 1, it is possible to obtain a shaped article 1 in which the non-molten portion 3 that is in a powder state without being melted inside is confined.
[0020]
According to such a method, the time for irradiating the light beam is reduced, and the modeling time can be shortened. In addition, since the entire surface is not melt-sintered in each layer, thermal deformation can be reduced, and shrinkage of the obtained shaped article 1 can be suppressed.
[0021]
Next, Oite the reference example of FIG. 2, the non-fused portion 3 is formed continuously from the bottom layer, the non-fused portion 3 is provided in the cylindrical shape. The non-melting portion 3 is obtained by sequentially stacking non-melting regions in each layer, and is obtained by irradiating a light beam so as to overlap with a melting region in a layer immediately below the irradiation layer. In the model 1, as shown in the reference example of FIG. 2B , in each layer, a light beam is irradiated so that each non-melting region draws a circle, and a melting region is formed. Is provided. As a result, an opening 6 having the same shape as that of the reference example of FIG. Therefore, in this method, the powder material 5 of the non-molten portion 3 that has not been sintered after shaping can be taken out from the opening 6, and a cavity or recess having a complicated structure such as a metal mold is formed inside. It is possible to easily and accurately produce the shaped article 1 that has it. In the present invention, the non-melted portion 3 where the powder was not melted means that the powder 5 is filled as shown in the reference example of FIG. 1 or that the powder 5 is removed to become a cavity. Needless to say, the concept includes a material filled with a different material 7 instead of the powder 5 as described below.
[0022]
For example, in the example shown in the reference example of FIG. 3 , the melting portions 2 are arranged in a three-dimensional plane lattice, and the non-melting portions 3 positioned above and below are formed in a partial region of the melting portion 2 positioned therebetween. It is made to communicate in the melting part 3. The inside of the shaped article 1 is configured in a so-called cell shape, and has a structure in which the non-melting portion 3 surrounded by a surface that is the melting portion 2 is arranged in three dimensions, and is non-melting positioned above and below The part 3 has a structure in which it communicates with a cylindrical part 3a (non-melting part 3) provided in the melting part 2 on the upper and lower surfaces. That is, the shaped object 1 forms a first layer of cellular layers by forming a plurality of layers until a certain thickness is obtained by forming a melting region in a lattice shape in the first layer. Next, a layer of the powder 5 is laminated on the first-stage cellular layer, and a circular non-melting region is formed in the approximate center of the non-melting region of the first-stage cellular layer, A plurality of layers are laminated until the melted portion 2 has a certain thickness. As a result, the cylindrical part 3a is formed in the melting part 2 located on the upper surface of the first-stage non-melting part 3. Next, a second-stage cellular layer is formed in the same manner as the first-stage cellular layer. And the cylindrical part 3a which is the non-melting part 3 is formed corresponding to the approximate center of the non-melting area | region of a 2nd step | paragraph cellular layer. By repeating this, it is possible to form a structure in which the melting part 2 has a three-dimensional plane lattice shape, and the cell-shaped non-melting parts 3 arranged in the vertical direction are opened in the melting part 2 located between them. It will be in the state connected by the non-melting part 3 (cylindrical part 3a). By forming the melted part 2 in such a three-dimensional surface lattice shape, it can be made strong against pressure from the upper side and side surfaces in the stacking direction. Also in this case, the powder 5 remaining inside the obtained shaped object 1 can be taken out from the opening 6 on the lower surface of the shaped object 1. In FIG. 3, the powder 5 is abbreviated.
[0023]
Next, in the reference example of FIG. 4, the non-melting portion 3 is formed in a truncated cone shape as shown in FIG. 4B, and the non-melting region is gradually reduced as each layer made of the powder material 5 approaches the upper layer. It has been made. When laminating from the lower layer to the upper layer with a large non-melting region, if there is a large uncured region in the lower layer, the upper layer is likely to warp and deform due to heat effects during irradiation, etc. Is weak in strength and may be damaged by the stress when the powder 5 is supplied in the upper layer. Therefore, by increasing the melting region with the upper layer as shown in the figure, the strength is increased and deformation of the shaped article 1 is prevented.
[0024]
In this case, as shown in the embodiment of FIGS. 5A and 5B, if the non-melting region is gradually reduced at the upper end portion (overhanging portion) of the non-melting portion 3, the modeling becomes easier. In FIG. 5A, the shape is formed in a substantially triangular pyramid shape, but in this case, the angle of the ridge line is preferably set to 45 ° or more. In addition, as shown in FIG. 5B, when forming a hemispherical shape, the region is preferably set to be at least 10 mm in the height direction.
[0025]
In these shaped objects 1, a non-melting portion 3 connected in a cylindrical shape is formed from the lower layer to immediately below the uppermost molten layer. Therefore, the modeled object 1 completed from the modeled plate 11 is removed, and the internal powder 5 is taken out from the lower surface of the modeled object 1 to inject a different material into the non-melting part 3, or a different material can be obtained without taking out the powder 5. It can also be impregnated by injection.
[0026]
In the method shown in the reference example of FIG. 6, after removing the modeling plate 11 from the modeling apparatus, the dissimilar material is injected and / or impregnated without removing the modeled object 1. That is, from the lower surface of the modeling plate 11 removed from the modeling apparatus, an opening 12 is opened with a drill or the like in accordance with the position of the lowermost non-melting region, and the dissimilar material 7 is injected without taking out the non-melting powder 5. . In this case, as the dissimilar material 7, for example, a resin material such as an epoxy resin or a urethane resin, and a liquid material in which a metal powder or a ceramic powder is mixed with these resin materials are preferably used. Generally, since the filling rate of the powder 5 in each layer is 60 to 80%, a liquid type can be sufficiently impregnated and impregnated. As a result, the strength of the obtained shaped article 1 is improved. Further, depending on the different material 7, the thermal conductivity can be increased. Further, when impregnated with a resin-based material, it is possible to reduce the weight without reducing the strength by forming a cavity.
[0027]
Further, as the dissimilar material 7, a metal material having a melting point lower than that of the powder material 5, for example, a copper material, a solder, or a brazing material can be used for the iron powder material 5. In this case, not only the strength can be improved, but also the electrical performance such as thermal conductivity and conductivity can be improved.
[0028]
Moreover, after removing the powder 5 of the non-melting part 3 as shown in the reference example of FIG. 7A , the different material 7 may be filled as shown in the reference example of FIG. In this case, for example, as shown in the reference example of FIG. 8 , for example, a suction device 13 provided with a funnel-shaped suction tool 13 a for sucking powder is used, and the non-molding plate 11 with the opening 12 is opened from below. The powder 5 in the melting part 3 can be sucked. In this way, the non-molten powder 5 can be recovered and reused as the powder 5 again.
[0029]
In these embodiments or reference examples, it is decided to open the opening 12 in the modeling plate 11 after modeling, but it is also possible to use the modeling plate 11 provided with the opening 12 in advance corresponding to the lowermost non-melting region. . Although reference example of FIG. 9 is a diagram illustrating the method, in this case it may be provided an opening 12 in the shaping plate 11, as shown in reference example of the FIG. 9 (a), the reference for FIG (b) As shown in the example, the modeling plate 11 may be placed on the molding table 14 in which no opening is provided. According to this method, the modeling object 1 can be taken out together with the modeling plate 11 after modeling, and the subsequent powder removal operation, injection of the different material 7 and impregnation operation can be performed extremely easily.
[0030]
In the embodiment or the reference example , the shape of the non-melting portion 3 has been mainly described. However, in the present invention, the light beam irradiation area is adjusted for each layer and shaped, and the melting portion 2 and the non-melting portion are formed. Three structures are defined. Therefore, it is possible to provide a melted region in a predetermined shape for each layer and laminate them so that the melted portion 2 of the honeycomb structure is formed inside the shaped article 1 as shown in the reference example of FIG. Further, as shown in the reference example of FIG. 11, a large number of cylindrical melting portions 2 can be formed inside the molded article 1. By setting it as such a structure, while the intensity | strength of the molded article 1 can be improved, the irradiation area | region of a light beam can be reduced significantly. As a result, modeling time can be greatly reduced.
[0031]
Further, the shape of the melted part 2 is not limited to a specific shape, and as shown in the reference example of FIG. 12, depending on the purpose of use of the shaped object 1 that is the final target, It is also possible to dispose a large number of 2 and arrange the melted portion 2 in a portion where the stress is low. For example, since a particularly large stress is applied to the gate portion of the mold, it is preferable to design such that a large number of melting portions 2 are arranged in such a gate portion.
[0032]
As described above, in the present invention, the layer of the powder 5 is provided with the melting region where the light beam is irradiated and the non-melting region where the light beam is not irradiated. Can be provided. As a result, for example, by providing the non-melting part 3 so that the opening 6 is formed on the bottom surface of the modeled object 1, the modeled object 1 having a complicated recess such as a mold can be easily obtained. . Further, the strength of each part of the shaped article 1 can be changed variously by injection, impregnation of the different material 7, adjustment of the part where the melted part 2 is formed, and the like. In the manufacturing method of the present invention, the modeling object 1 can be easily manufactured with high accuracy by shortening the modeling time very much and reducing the deformation due to thermal deformation or shrinkage.
[0033]
【The invention's effect】
According to the present invention, in the powder layer, the melting region where the light beam is irradiated and the non-melting region where the light beam is not irradiated are provided, and the melting portion and the non-melting portion are formed. The area to be irradiated is reduced, and the modeling time can be shortened. In addition, the formation of the non-melting region reduces the thermal shrinkage in the layer, thereby preventing thermal deformation as a whole. Further, since the non-melting region at the upper end portion of the non-melting portion is gradually reduced every time the non-melting portion is laminated, the non-melting portion upper end portion is formed in a substantially triangular pyramid shape or a substantially hemispherical shape having a ridge line angle larger than 45 degrees. In addition, the non-melting region can be formed small, and deformation due to the thermal effect at the time of irradiation can be prevented, thereby facilitating modeling. In addition, since the non-melting part is formed as a recess opening on the bottom side of the modeled object or a cavity inside the modeled object, it opens to the inside of the cavity such as a metal mold, or to the bottom side. A shaped object having a recess can be easily and accurately produced.
[0034]
In this case, by continuously forming the non-melted portion from the lowermost layer, the unmelted powder can be taken out and removed from the lowermost non-melted region. As a result, a cavity or a recess having a complicated shape can be easily provided inside the mold or the like.
[0035]
Alternatively, an opening is provided in the modeling plate corresponding to the region, and a different material such as a resin material is injected and / or impregnated from the opening into the non-molten portion, thereby increasing strength, thermal conductivity, conductivity, etc. It is possible to control the characteristics.
[0036]
Alternatively, by removing the powder in the non-melted portion and injecting a different material, it is possible to reduce the weight of the molded article without significantly reducing the strength.
[0037]
In the present invention, the shape of the non-melting part and the melting part can be formed in a desired shape, for example, a structure in which the melting parts are arranged in a three-dimensional surface lattice, a honeycomb structure, or a structure in which a large number of cylinders are arranged in parallel. By doing so, a non-melting part can be enlarged and intensity | strength can be increased further. Moreover, the damage at the time of shaping | molding can be prevented by making it reduce gradually whenever a non-melting area | region is laminated | stacked. Furthermore, depending on the purpose of the finished model, such as a mold that is partially stressed, it is possible to arrange a large number of melting parts in the part where the stress is applied and to arrange a few melting parts in the part where the stress is not applied. .
[0038]
As described above, the present invention controls the irradiation region irradiated with the light beam in various ways, so that a specific object such as a mold is required to have high strength, or a modeled object having a complicated shape can be accurately and in a short time. And it can be manufactured extremely easily.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing a manufacturing method according to a reference example of the present invention .
FIGS. 2A and 2B are explanatory views showing a manufacturing method according to another reference example, wherein FIG. 2A is a cross-sectional explanatory view thereof, and FIG. 2B is a vertical cross-sectional explanatory view thereof.
3A and 3B are explanatory views showing a manufacturing method according to still another reference example, wherein FIG. 3A is a partially broken explanatory view, and FIG. 3B is a cross-sectional explanatory view. .
FIG. 4 is an explanatory diagram showing a manufacturing method according to still another reference example .
FIGS. 5A and 5B are explanatory views showing a manufacturing method according to an embodiment of the present invention .
FIG. 6 is an explanatory view showing a manufacturing method according to still another reference example .
FIGS. 7A and 7B are explanatory views showing a manufacturing method according to still another reference example .
8 is a schematic configuration diagram of a manufacturing apparatus used in the manufacturing method of FIG.
FIGS. 9A and 9B are explanatory views showing a manufacturing method according to still another reference example, wherein FIG. 9A is a perspective view of a modeling plate, and FIG. 9B is the modeling It is a figure which shows the state using a plate.
FIG. 10 is an explanatory diagram showing a manufacturing method according to still another reference example .
FIG. 11 is an explanatory diagram showing a manufacturing method according to still another reference example .
FIG. 12 is an explanatory diagram showing a manufacturing method according to still another reference example .

Claims (14)

無機質あるいは有機質からなる粉末の層の所定箇所に光ビームを照射して溶融させることによって溶融層を形成し、この溶融層上に前記粉末の層を被覆するとともにこの粉末の所定箇所に光ビームを照射して溶融させることによって下の溶融層と一体になった溶融層を形成し、これを繰り返すことによって複数の溶融層が積層一体化された三次元形状造形物を製造する方法において、前記粉末の層において光ビームを照射して溶融する溶融領域と光ビームを照射しない非溶融領域とを設け、前記粉末が溶融された溶融部と前記粉末が溶融されなかった非溶融部とを形成するとともに、前記非溶融部の上端部における非溶融領域を積層する毎に漸減させて非溶融部上端部を稜線角度が45度よりも大きい略三角錐状又は略半球状に形成し、非溶融部を造形物の底面側に開口する凹所又は造形物内部の空洞として形成することを特徴とする三次元形状造形物の製造方法。A molten layer is formed by irradiating and melting a predetermined portion of the inorganic or organic powder layer with a light beam, and covering the molten layer on the molten layer and applying a light beam to the predetermined portion of the powder. In the method for producing a three-dimensional shaped object in which a molten layer integrated with a lower molten layer is formed by irradiation and melted, and a plurality of molten layers are laminated and integrated by repeating this, the powder And a non-melting region in which the powder is melted and a non-melting region in which the powder is not melted are formed by providing a melted region in which the light beam is melted and a non-melting region in which the light beam is not irradiated. the unmelted portion of the non-fused portion upper part is gradually decreased every time the laminated non-melting region in the upper portion is formed in a substantially triangular pyramid shape or a substantially hemispherical greater than 45 ° ridge angle, the non-soluble Method for producing a three-dimensionally shaped object, and forming a part as a cavity inside the recess or molded article is open to the bottom side of the shaped article. 前記非溶融部を、最下層から連続的に設けることを特徴とする請求項1記載の三次元形状造形物の製造方法。  The method for producing a three-dimensional shaped article according to claim 1, wherein the non-melting portion is continuously provided from the lowermost layer. 溶融部を3次元面格子状に配置し、上下に位置する非溶融部同士をその間に位置する溶融部の一部領域に形成された非溶融部において連通させることを特徴とする請求項2記載の三次元造形物の製造方法。  3. The melted portions are arranged in a three-dimensional plane lattice, and the non-melted portions located above and below are communicated with each other in a non-melted portion formed in a partial region of the melted portion located therebetween. Manufacturing method of three-dimensional structure. 前記非溶融領域を、積層する毎に漸減させることを特徴とする請求項2記載の三次元造形物の製造方法。  The method for producing a three-dimensional structure according to claim 2, wherein the non-melting region is gradually reduced every time the non-melting region is laminated. 前記造形物内部の溶融部をハニカム構造にすることを特徴とする請求項2記載の三次元形状造形物の製造方法。  The method for manufacturing a three-dimensional shaped article according to claim 2, wherein the melted portion inside the shaped article has a honeycomb structure. 前記造形物内部の溶融部を多数の円筒が並列された構造にすることを特徴とする請求項2記載の三次元形状造形物の製造方法。  3. The method for producing a three-dimensional shaped object according to claim 2, wherein the melted part inside the shaped object has a structure in which a large number of cylinders are arranged in parallel. 完成後の三次元造形物に応力が掛かる部分に溶融部を多く配置し、応力が掛からない部分に溶融部を少なく配置することを特徴とする請求項2記載の三次元造形物の製造方法。  3. The method for producing a three-dimensional structure according to claim 2, wherein a large number of melting portions are arranged in a portion where stress is applied to the three-dimensional structure after completion, and a small number of melting portions are arranged in a portion where stress is not applied. 造形物の完成後に、造形プレートに開口を設け、当該開口より前記非溶融領域に、異種材料を注入及び/又は含浸することを特徴とする請求項2、3、4、5、6又は7のいずれかに記載の三次元造形物の製造方法。  8. The modeling plate according to claim 2, 3, 4, 5, 6 or 7, wherein an opening is provided in the modeling plate after the modeling object is completed, and different materials are injected and / or impregnated into the non-melting region from the opening. The manufacturing method of the three-dimensional structure according to any one of the above. 造形物の完成後に、造形プレートに開口を設け、当該開口より前記非溶融領域の粉末を除去した後、異種材料を注入することを特徴とする請求項2、3、4、5、6又は7のいずれかに記載の三次元造形物の製造方法。  8. The modeling plate is provided with an opening after completion of the modeling object, and after removing the powder in the non-melting region from the opening, a different material is injected. The manufacturing method of the three-dimensional structure according to any one of the above. 前記粉末を吸引除去することを特徴とする請求項9記載の三次元造形物の製造方法。  The method for producing a three-dimensional structure according to claim 9, wherein the powder is removed by suction. 前記異種材料は、樹脂材料であることを特徴とする請求項8、9又は10のいずれかに記載の三次元造形物の製造方法。  The method of manufacturing a three-dimensional structure according to any one of claims 8, 9 and 10, wherein the different material is a resin material. 前記異種材料は、前記粉末よりも低融点の金属材料であることを特徴とする請求項8、9又は10のいずれかに記載の三次元造形物の製造方法。  The method for producing a three-dimensional structure according to claim 8, 9 or 10, wherein the different material is a metal material having a melting point lower than that of the powder. 非開口の成形テーブル上に、最下層の非溶融領域に対応した領域に開口を開設した造形プレートを載置することを特徴とする請求項2のいずれかに記載の三次元造形物の製造方法。  3. The method for producing a three-dimensional structure according to claim 2, wherein a modeling plate having an opening in an area corresponding to the lowermost non-melting area is placed on a non-opening molding table. . 前記三次元造形物は、金型であることを特徴とする請求項1乃至13のいずれかに記載の三次元造形物の製造方法。  The method of manufacturing a three-dimensional structure according to any one of claims 1 to 13, wherein the three-dimensional structure is a mold.
JP2001048974A 2001-02-23 2001-02-23 Manufacturing method of three-dimensional shaped object Expired - Lifetime JP3856654B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001048974A JP3856654B2 (en) 2001-02-23 2001-02-23 Manufacturing method of three-dimensional shaped object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001048974A JP3856654B2 (en) 2001-02-23 2001-02-23 Manufacturing method of three-dimensional shaped object

Publications (2)

Publication Number Publication Date
JP2002249805A JP2002249805A (en) 2002-09-06
JP3856654B2 true JP3856654B2 (en) 2006-12-13

Family

ID=18910150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001048974A Expired - Lifetime JP3856654B2 (en) 2001-02-23 2001-02-23 Manufacturing method of three-dimensional shaped object

Country Status (1)

Country Link
JP (1) JP3856654B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4943937B2 (en) * 2007-05-10 2012-05-30 パナソニック株式会社 Manufacturing method of three-dimensional shaped object
JP2010121187A (en) * 2008-11-20 2010-06-03 Panasonic Electric Works Co Ltd Three-dimensional shaped article and method for producing the same
EP2402097A4 (en) * 2009-02-24 2014-04-09 Panasonic Corp Process for producing three-dimensional shape and three-dimensional shape obtained thereby
JP5884321B2 (en) * 2011-07-08 2016-03-15 ソニー株式会社 Manufacturing method of structure
JP6229155B2 (en) * 2013-10-03 2017-11-15 パナソニックIpマネジメント株式会社 Manufacturing method of three-dimensional shaped object
WO2015137507A1 (en) 2014-03-14 2015-09-17 山陽特殊製鋼株式会社 Precipitation-hardening stainless steel powder and sintered compact thereof
JP6440139B2 (en) * 2014-03-27 2018-12-19 シーメット株式会社 Manufacturing method of three-dimensional structure
JP6070653B2 (en) 2014-07-30 2017-02-01 トヨタ自動車株式会社 Mold and mold manufacturing method
JP6531954B2 (en) 2014-07-30 2019-06-19 パナソニックIpマネジメント株式会社 Method of manufacturing three-dimensional shaped object and three-dimensional shaped object
JP6547262B2 (en) * 2014-09-25 2019-07-24 セイコーエプソン株式会社 Three-dimensional forming apparatus and three-dimensional forming method
BR112017015821A2 (en) 2015-04-30 2018-07-17 Hewlett-Packard Development Company, L.P. printing of a multi-structured 3d object
DE102017201035A1 (en) 2017-01-23 2018-07-26 Bruker Eas Gmbh Method for producing an at least two-part structure, in particular a semifinished product for a superconducting wire
JP6747337B2 (en) * 2017-02-24 2020-08-26 株式会社デンソー Honeycomb structure molding die and method for manufacturing honeycomb structure molding die
JP6827553B2 (en) * 2017-09-28 2021-02-10 大陽日酸株式会社 Metal modeling equipment manufacturing equipment, metal modeling manufacturing method, and metal powder recovery method
KR102037348B1 (en) * 2017-12-19 2019-10-28 재단법인 포항산업과학연구원 Apparatus for Removing Build Plate of Three-Dimensional Printing and Manufacturing Method of Goods Using The Same
JP6532180B1 (en) 2018-08-06 2019-06-19 株式会社ソディック Metal three-dimensional structure and method of manufacturing metal three-dimensional structure
KR102302179B1 (en) * 2020-12-03 2021-09-13 한국항공우주연구원 Manufacturing method for aluminum honeycomb usins 3d printing

Also Published As

Publication number Publication date
JP2002249805A (en) 2002-09-06

Similar Documents

Publication Publication Date Title
JP3856654B2 (en) Manufacturing method of three-dimensional shaped object
US11155071B2 (en) Methods and keyway supports for additive manufacturing
US10357828B2 (en) Methods and leading edge supports for additive manufacturing
EP3205424B1 (en) Method and connecting supports for additive manufacturing
US10549478B2 (en) Methods and surrounding supports for additive manufacturing
JP3584782B2 (en) Three-dimensional model manufacturing method
JP6531954B2 (en) Method of manufacturing three-dimensional shaped object and three-dimensional shaped object
JP3446733B2 (en) Method and apparatus for manufacturing three-dimensional shaped object
US10799951B2 (en) Method and conformal supports for additive manufacturing
US8999222B2 (en) Method for manufacturing three-dimensionally shaped object, three-dimensionally shaped object obtained thereby, and method for manufacturing molded article
JP2005171299A (en) Method for manufacturing three-dimensionally formed article
KR100574268B1 (en) Method of manufacturing a three dimensional object
JP2005507805A (en) Manufacturing method of three-dimensional sintered molded product
US11453054B2 (en) Method for manufacturing three-dimensional shaped object
CN106903775A (en) A kind of many shower nozzle Collaborative Control ceramic powders 3D forming methods
JP3555489B2 (en) 3D shape manufacturing method
JP2008101256A (en) Stack-molded die and producing method therefor
JP6857861B2 (en) Manufacturing method of three-dimensional shaped object
JP2004122490A (en) Method for manufacturing three-dimensionally shaped article
Ang et al. Study of trapped material in rapid prototyping parts
JP2001254107A (en) Three-dimensional model structure and molding structure by photo-molding, and molding method by photo-molding
KR102127648B1 (en) Method of manufacturing salt core
WO2018003798A1 (en) Method for manufacturing three-dimensionally shaped molding
KR102127653B1 (en) Method of manufacturing core for casting
JP3601535B1 (en) Manufacturing method of three-dimensional shaped object

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040531

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040906

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20041102

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20050114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060912

R151 Written notification of patent or utility model registration

Ref document number: 3856654

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

EXPY Cancellation because of completion of term