JP2010121187A - Three-dimensional shaped article and method for producing the same - Google Patents

Three-dimensional shaped article and method for producing the same Download PDF

Info

Publication number
JP2010121187A
JP2010121187A JP2008297352A JP2008297352A JP2010121187A JP 2010121187 A JP2010121187 A JP 2010121187A JP 2008297352 A JP2008297352 A JP 2008297352A JP 2008297352 A JP2008297352 A JP 2008297352A JP 2010121187 A JP2010121187 A JP 2010121187A
Authority
JP
Japan
Prior art keywords
thermal conductivity
dimensional structure
powder
manufacturing
shaped article
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008297352A
Other languages
Japanese (ja)
Inventor
Tokuo Yoshida
徳雄 吉田
Satoshi Abe
諭 阿部
Toshio Sugita
寿夫 杉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2008297352A priority Critical patent/JP2010121187A/en
Publication of JP2010121187A publication Critical patent/JP2010121187A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

<P>PROBLEM TO BE SOLVED: To provide a three-dimensional shaped article such as a die and a method for producing the three-dimensional shaped article, with which the structure of the shaped article is simple, and temperature control in the cooling process of a melted resin or the like is made possible without depending on heat generation by a heater or the like. <P>SOLUTION: In the method for producing a three-dimensional shaped article, a powder layer forming stage where a powder material 2 is fed so as to form a powder layer 21 and a hardened layer forming stage where the powder layer 21 is sintered or melted so as to form a hardened layer 22 are repeated so as to shape a three-dimensional shaped article 5 in which the hardened layers 22 are laminated and integrated, and distribution is given to thermal conductivity at the inside of the shaped article. In this way, the shaped article (such as die) which can optimize the cooling temperature of a resin by controlling the thermal conductivity at the inside thereof, and can suppress occurrence of the warpage or the like of a molded part can be obtained. Further, regarding the die produced by the method, the temperature control in its inside is made possible by a simple structure without providing a duct, a flow passage or the like in the inside. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、粉末材料に光ビームを照射して焼結又は溶融させて成る金型等の三次元造形物及びこの製造方法に関する。   The present invention relates to a three-dimensional structure such as a mold formed by irradiating a powder material with a light beam to sinter or melt it, and a manufacturing method thereof.

従来から、粉末層を形成する粉末層形成工程と、その粉末層に光ビームを照射して粉末層の所定箇所を焼結させて硬化層を形成する硬化層形成工程とを繰り返し、硬化層を積層させることにより三次元造形物を製造する方法が知られている(例えば、特許文献1参照)。この方法によれば、例えば、従来の切削加工では複数の部品を組み合わせる必要があった射出成形用の金型を一体的に造形することができる。   Conventionally, a powder layer forming step for forming a powder layer and a cured layer forming step for irradiating the powder layer with a light beam to sinter a predetermined portion of the powder layer to form a hardened layer are repeated. A method of manufacturing a three-dimensional structure by laminating is known (for example, see Patent Document 1). According to this method, for example, it is possible to integrally form a mold for injection molding, which requires combining a plurality of parts in conventional cutting.

ところで、金型を用いた射出成形においては、成形品が局所的な厚肉部を有する場合や、反りや光学ひずみが問題となるような成形品を成形する際には、金型内に注入された溶融樹脂等の冷却プロセスが成形品の品質に大きく影響する。例えば、樹脂成形品の射出成形においては、溶融させた樹脂(通常150〜300℃程度)を金型内に射出充填させた後、樹脂の熱が金型へ伝達されることによって樹脂は冷却されて硬化し、成形が完了する。   By the way, in injection molding using a mold, when the molded product has a locally thick part or when molding a molded product that causes warpage or optical distortion, it is injected into the mold. The cooling process of the molten resin and the like greatly affects the quality of the molded product. For example, in the injection molding of a resin molded product, a molten resin (usually about 150 to 300 ° C.) is injected and filled into a mold, and then the resin is cooled by being transferred to the mold. To complete the molding.

しかし、樹脂成形品の厚肉部は、薄肉部に比べて熱がこもり易く樹脂が冷却され難い。そのため、金型自体の温度変化が一定であると、成形品の形状によっては樹脂全体の冷却速度が局所的に変化してしまい、これが成形品の反りやひずみの原因となる。そのため、高品質な成形品を得るためには、樹脂の冷却プロセスにおいて金型内の局所的な温度調節が必要になる。   However, the thick-walled portion of the resin molded product is more likely to accumulate heat than the thin-walled portion, and the resin is less likely to be cooled. Therefore, if the temperature change of the mold itself is constant, the cooling rate of the entire resin locally changes depending on the shape of the molded product, which causes warpage and distortion of the molded product. Therefore, in order to obtain a high-quality molded product, local temperature adjustment in the mold is required in the resin cooling process.

このような金型内の温度調節には、ヒータ発熱による昇温方法や、水や有機水溶液等の温度調節媒体を金型内に流動させる方法が用いられる。例えば、樹脂の熱がこもり易く冷却が遅い厚肉部を成形する金型部分には冷却媒体を流動させ、冷却が早い薄肉部を成形する金型部分にはヒータ加熱等が行われる。これにより、樹脂成形品全体としての冷却速度が均一化され、成形品の反りやひずみの発生を抑制することができる。上述した三次元造形物の製造方法は、ヒータ配設用のダクトや温度調節媒体の流動路を金型内に一体的に成形する上でも好適である。
特許第2620353号公報
For such temperature adjustment in the mold, a method of raising the temperature by heating the heater or a method of flowing a temperature adjustment medium such as water or an organic aqueous solution into the mold is used. For example, a cooling medium is made to flow in a mold part that molds a thick-walled part where the heat of the resin is easily trapped and is slow to cool, and heater heating or the like is performed on a mold part that molds a thin-walled part that is quickly cooled. Thereby, the cooling rate as the whole resin molded product is made uniform, and the generation | occurrence | production of the curvature and distortion of a molded product can be suppressed. The above-described method for manufacturing a three-dimensional structure is also suitable for integrally forming a duct for heater installation and a flow path for a temperature control medium in a mold.
Japanese Patent No. 2620353

しかしながら、金型内にダクトや流動路を設けると、金型内部の構造が複雑化するので、金型設計が容易ではなく、しかも造形できる金型の自由度が制限される。また、金型の設計試作及び成形試作等を繰り返すことによるトライアンドエラーが多くなる。そうなると、要求される品質を満たす成形品を得るまでの成形品開発のリードタイムが長くなる。また、上述した温度調節方法によれば、ヒータ発熱、温度調節媒体の加熱又は冷却や、温度調節媒体の流動のためには電力等の多くのエネルギーを消費するので、省エネの観点からも好ましくない。   However, if a duct or a flow path is provided in the mold, the structure inside the mold becomes complicated, so that the mold design is not easy and the degree of freedom of the mold that can be formed is limited. In addition, trial and error due to repeated design trials and molding trials of the mold increases. If it becomes so, the lead time of molded product development until the molded product which satisfy | fills the required quality will become long. In addition, according to the temperature control method described above, a large amount of energy such as electric power is consumed for heater heating, heating or cooling of the temperature control medium, and flow of the temperature control medium, which is not preferable from the viewpoint of energy saving. .

本発明は、上記課題を解決するものであり、簡易な構造で、しかもヒータ発熱等の方法によらず溶融樹脂等の冷却プロセスにおける温度調節を可能とする金型のような三次元造形物及びその三次元造形物の製造方法を提供することを目的とする。   The present invention solves the above-described problem, and has a simple structure and a three-dimensional structure such as a mold that enables temperature adjustment in a cooling process of a molten resin or the like without depending on a method such as heater heating. It aims at providing the manufacturing method of the three-dimensional structure.

上記課題を解決するため、請求項1の発明は、粉末材料を供給して粉末層を形成する粉末層形成工程と、前記粉末層の所定箇所に光ビームを照射して該粉末層を焼結又は溶融させて硬化層を形成する硬化層形成工程とを繰り返すことにより前記硬化層又は粉末層を積層一体化して三次元造形物を造形する三次元造形物の製造方法において、一体造形された三次元造形物内部の熱伝導率に分布を持たせるものである。   In order to solve the above-mentioned problems, the invention of claim 1 includes a powder layer forming step of supplying a powder material to form a powder layer, and irradiating a predetermined portion of the powder layer with a light beam to sinter the powder layer. Alternatively, in the three-dimensional structure manufacturing method of forming a three-dimensional structure by stacking and integrating the hardened layer or the powder layer by repeating a hardened layer forming step of forming a hardened layer by melting, the three-dimensionally formed tertiary Distribution is given to the thermal conductivity inside the original model.

請求項2の発明は、請求項1に記載の三次元造形物の製造方法であって、前記硬化層形成工程において、前記硬化層の硬化密度を制御することにより三次元造形物内部の熱伝導率に分布を持たせるものである。   Invention of Claim 2 is a manufacturing method of the three-dimensional structure of Claim 1, Comprising: In the said hardening layer formation process, the heat conduction inside a three-dimensional structure by controlling the hardening density of the said hardening layer. A distribution is given to the rate.

請求項3の発明は、請求項1又は請求項2に記載の三次元造形物の製造方法であって、前記硬化層形成工程において、未焼結部分又は未溶融部分を設けることにより三次元造形物内部の熱伝導率に分布を持たせるものである。   Invention of Claim 3 is a manufacturing method of the three-dimensional structure of Claim 1 or Claim 2, Comprising: In the said hardened layer formation process, three-dimensional modeling is provided by providing an unsintered part or an unmelted part. It gives distribution to the thermal conductivity inside the object.

請求項4の発明は、請求項1乃至請求項3のいずれか一項に記載の三次元造形物の製造方法であって、空洞部を設けることにより三次元造形物内部の熱伝導率に分布を持たせるものである。   Invention of Claim 4 is a manufacturing method of the three-dimensional structure as described in any one of Claim 1 thru | or 3, Comprising: It distributes to the thermal conductivity inside a three-dimensional structure by providing a cavity part. It is something to have.

請求項5の発明は、請求項4に記載の三次元造形物の製造方法において、前記空洞部に前記粉末材料とは熱伝導率が異なる材料が充填されるものである。   According to a fifth aspect of the present invention, in the method for manufacturing a three-dimensional structure according to the fourth aspect, the hollow portion is filled with a material having a thermal conductivity different from that of the powder material.

請求項6の発明は、請求項1に記載の三次元造形物の製造方法であって、前記粉末層形成工程において、前記粉末材料の材質及びその配合を制御することにより三次元造形物内部の熱伝導率に分布を持たせるものである。   Invention of Claim 6 is a manufacturing method of the three-dimensional structure of Claim 1, Comprising: In the said powder layer formation process, the inside of a three-dimensional structure is controlled by controlling the material of the said powder material and its mixture. It gives a distribution to the thermal conductivity.

請求項7の発明は、請求項1乃至請求項3又は請求項6のいずれか一項に記載の三次元造形物の製造方法において、熱伝導率が高い高熱伝導率部がセル構造に形成されると共に、該セル構造の高熱伝導率部内に、熱伝導率が低い低熱伝導率部が形成されるものである。   According to a seventh aspect of the present invention, in the method for manufacturing a three-dimensional structure according to any one of the first to third aspects, the high thermal conductivity portion having a high thermal conductivity is formed in the cell structure. In addition, a low thermal conductivity portion having a low thermal conductivity is formed in the high thermal conductivity portion of the cell structure.

請求項8の発明は、請求項6に記載の三次元造形物の製造方法において、熱伝導率が低い低熱伝導率部がセル構造に形成されると共に、該セル構造の低熱伝導率部内に、熱伝導率が高い高熱伝導率部が形成されるものである。   The invention of claim 8 is the method for producing a three-dimensional structure according to claim 6, wherein a low thermal conductivity portion having a low thermal conductivity is formed in the cell structure, and in the low thermal conductivity portion of the cell structure, A high thermal conductivity part with high thermal conductivity is formed.

請求項9の発明は、請求項1乃至請求項3又は請求項6乃至請求項8のいずれか一項に記載の三次元造形物の製造方法において、一体造形された三次元造形物内部の熱伝導率を傾斜的に変化させるものである。   The invention of claim 9 is the method for manufacturing a three-dimensional structure according to any one of claims 1 to 3 or claim 6 to claim 8, wherein the heat inside the three-dimensional structure that is integrally formed. The conductivity is changed in an inclined manner.

請求項10の発明は、請求項1乃至請求項9のいずれか一項に記載の三次元造形物の製造方法により製造される三次元造形物である。   The invention of claim 10 is a three-dimensional structure manufactured by the method for manufacturing a three-dimensional structure according to any one of claims 1 to 9.

本発明によれば、造形物(例えば金型)内部の硬化密度を変化させて熱伝導率を制御することにより、樹脂の冷却温度を最適化することができ、成形品の反り等の発生を抑制できる造形物(金型)が得られる。また、この方法によれば、金型内にダクトや流動路等を設けることなく、簡易な構造により金型内部の温度調節が可能になる。   According to the present invention, the cooling temperature of the resin can be optimized by changing the curing density inside the molded article (for example, a mold) to control the thermal conductivity, and the occurrence of warpage of the molded product is caused. A shaped object (mold) that can be suppressed is obtained. Further, according to this method, the temperature inside the mold can be adjusted with a simple structure without providing a duct or a flow path in the mold.

以下、本発明の第1の実施形態に係る三次元造形物の製造方法(以下、造形物製造方法という)について図面を参照して説明する。図1は本実施形態の製造方法に用いられる金属光造形加工機(以下、光造形機1という)の構成を示し、図2(a)〜(c)は光造型機1の動作を示す。光造形機1は、粉末材料2(例えば、平均粒径20μmの球形の鉄粉等)を供給して粉末層21を形成する粉末層形成部3と、粉末層21の所定箇所に光ビームL1を照射して粉末層21を焼結又は溶融させて硬化層22を形成する硬化層形成部4と、硬化層22が積属されて成る三次元造形物(以下、造形物5という)を切削する切削除去部6とを備える。   Hereinafter, a method for manufacturing a three-dimensional structure according to the first embodiment of the present invention (hereinafter referred to as a method for manufacturing a three-dimensional object) will be described with reference to the drawings. FIG. 1 shows the configuration of a metal stereolithography machine (hereinafter referred to as an optical modeling machine 1) used in the manufacturing method of this embodiment, and FIGS. 2 (a) to 2 (c) show the operation of the optical molding machine 1. FIG. The optical modeling machine 1 supplies a powder material 2 (for example, spherical iron powder having an average particle diameter of 20 μm) to form a powder layer 21 and a light beam L1 at a predetermined position of the powder layer 21. Is applied to the cured layer forming part 4 for forming the cured layer 22 by sintering or melting the powder layer 21 and the three-dimensional structure (hereinafter referred to as the model 5) formed by the accumulation of the cured layer 22. The cutting removal part 6 to be provided is provided.

粉末層形成部3は、粉末材料2の粉末層21が上面に敷かれる造形用プレート(以下、プレート31という(図2参照))と、プレート31を保持し上下に昇降させる昇降テーブル32(基板載置用テーブル(図2参照))と、プレート31と昇降テーブル32とを収容する造形タンク33とを有する。更に、粉末層形成部3は、粉末材料2を貯蔵しておりその粉末材料2をせり上げる粉末タンク34と、そのせり上げられた粉末材料2をプレート31上に敷いて粉末層21を形成する粉末供給プレート35とを有している。プレート31は、例えばS55C等の炭素鋼等で形成される。   The powder layer forming unit 3 includes a modeling plate (hereinafter referred to as a plate 31 (see FIG. 2)) on which the powder layer 21 of the powder material 2 is laid, and a lifting table 32 (substrate) that holds the plate 31 and moves up and down. A mounting table (see FIG. 2)) and a modeling tank 33 that accommodates the plate 31 and the lifting table 32 are provided. Further, the powder layer forming unit 3 stores the powder material 2 and forms a powder layer 21 by laying the powder material 2 that lifts the powder material 2 on the plate 31. A powder supply plate 35. The plate 31 is made of carbon steel such as S55C, for example.

硬化層形成部4は、光ビームL1を出射する光ビーム発振器41と、その出射された光ビームL1を集光する集光レンズ42と、その集光された光ビームL1を粉末層21の上に走査するガルバノミラー43とを備える。光ビームL1には、例えば炭酸ガス光ビーム又はNd−YAG光ビーム等が用いられ、その出力は、例えば略500Wとされる。切削除去部6は、造形物5を切削する切削工具61と、切削工具61を保持するミーリングヘッド62と、ミーリングヘッド62を移動させるXY駆動機構63とを備える。   The hardened layer forming unit 4 includes a light beam oscillator 41 that emits a light beam L1, a condensing lens 42 that condenses the emitted light beam L1, and the condensed light beam L1 on the powder layer 21. And a galvanometer mirror 43 for scanning. As the light beam L1, for example, a carbon dioxide gas beam, an Nd-YAG light beam, or the like is used, and its output is, for example, approximately 500W. The cutting removal unit 6 includes a cutting tool 61 that cuts the shaped article 5, a milling head 62 that holds the cutting tool 61, and an XY drive mechanism 63 that moves the milling head 62.

また、光造形機1は、各部の動作を制御する制御部(図示せず)を備える。この制御部は、造形物5の三次元CADデータに基づき、光ビームL1による照射経路、及び切削工具61の工具経路を制御する。照射経路は、造形物5の三次元CADデータから予め生成されたSTL(Stereo Lithography)を、例えば略0.05mmの等ピッチでスライスして得た各断面の輪郭形状データに基づいて設定される。また、照射経路は、造形物5の最表面が気孔率5%以下の高密度となるように設定されることが望ましい。   The optical modeling machine 1 also includes a control unit (not shown) that controls the operation of each unit. This control unit controls the irradiation path by the light beam L <b> 1 and the tool path of the cutting tool 61 based on the three-dimensional CAD data of the model 5. The irradiation path is set based on the contour shape data of each cross section obtained by slicing STL (Stereo Lithography) generated in advance from the three-dimensional CAD data of the model 5 at an equal pitch of, for example, about 0.05 mm. . The irradiation path is desirably set so that the outermost surface of the shaped article 5 has a high density with a porosity of 5% or less.

次に、光造形機1の造形動作を説明する。まず、図2(a)に示すように、昇降テーブル32が下降した後、粉末供給プレート35はプレート31の面方向に移動して、粉末材料2をプレート31の上に供給してならす。このようにして、粉末層21が形成される。次に、ガルバノミラー43(図1参照)のミラー面の向きが制御され、図2(b)に示すように、光ビームL1が粉末層21の所定の箇所に走査されて粉末材料2が焼結され、これにより硬化層22が形成される。   Next, the modeling operation of the optical modeling machine 1 will be described. First, as shown in FIG. 2A, after the lifting table 32 is lowered, the powder supply plate 35 moves in the surface direction of the plate 31 to supply the powder material 2 onto the plate 31. In this way, the powder layer 21 is formed. Next, the orientation of the mirror surface of the galvanometer mirror 43 (see FIG. 1) is controlled, and as shown in FIG. 2 (b), the light beam L1 is scanned to a predetermined portion of the powder layer 21 to burn the powder material 2. As a result, the cured layer 22 is formed.

そして、上述した図2(a)に示される粉末層形成工程と図2(b)に示される硬化層形成工程とが繰り返され、これにより硬化層22が積層される。硬化層22の積層は、層数が所定回数になるまで繰り返される。硬化層22の層数が所定回数になると、図2(c)に示すように、XY駆動機構63(図1参照)がミーリングヘッド62を移動させ、切削工具61により造形物5の表面の不要部分を除去し、造形物5の表面を滑らかにする。その後、光造形機1の造形動作は図2(a)に示す工程に戻る。こうして、造形が終了するまで硬化層22の形成と造形物5の表面の不要部分の除去とが繰り返される。なお、本実施形態において、図2(c)に示す切削加工は必須の工程ではない。   Then, the above-described powder layer forming step shown in FIG. 2A and the cured layer forming step shown in FIG. 2B are repeated, whereby the cured layer 22 is laminated. The lamination of the hardened layer 22 is repeated until the number of layers reaches a predetermined number. When the number of hardened layers 22 reaches a predetermined number, as shown in FIG. 2C, the XY drive mechanism 63 (see FIG. 1) moves the milling head 62 and the cutting tool 61 eliminates the need for the surface of the model 5. A part is removed and the surface of the molded article 5 is made smooth. Thereafter, the modeling operation of the optical modeling machine 1 returns to the process shown in FIG. In this way, the formation of the cured layer 22 and the removal of unnecessary portions on the surface of the modeled object 5 are repeated until the modeling is completed. In the present embodiment, the cutting shown in FIG. 2C is not an essential process.

ここに一体造形された造形物5は、その内部において熱伝導率に分布を持たせるよう造形される。そして、本実施形態において、造形物内部の熱伝導率に分布を持たせる方法として、造形物内部における硬化密度を変化させる。具体的には、図3に示されるように、造形物5(金型)の内部において硬化密度の高い高密度部22a又は硬化密度の低い低密度部22bが設けられる。なお、「内部」とは、樹脂等が充填される金型等の内部空間ではなく、粉末層21の焼結又は溶融により形成された硬化物自体の内部構造をいう。   The modeling object 5 integrally molded here is modeled so that the thermal conductivity is distributed in the interior. And in this embodiment, the hardening density in a modeled object inside is changed as a method of giving distribution to the thermal conductivity inside a modeled object. Specifically, as shown in FIG. 3, a high density portion 22 a having a high curing density or a low density portion 22 b having a low curing density is provided inside the molded article 5 (mold). “Internal” refers to the internal structure of the cured product itself formed by sintering or melting the powder layer 21, not the internal space of a mold or the like filled with resin or the like.

粉末層21を光ビーム等により焼結又は溶融させた硬化層22を積層して造形された造形物5は、光ビーム等の照射エネルギーを制御することで、造形物内部に硬化密度の異なる(未焼結又は未溶融を含む)構造を造形することができる。例えば、高エネルギーの光ビーム等で焼結又は溶融された硬化層22は、構成材料が十分に固化されて、図4(a)に示されるように、その切断断面はクラックが無い滑らかな状態となる。一方、低エネルギーの光ビーム等で焼結又は溶融された硬化層22は、構成材料が十分に固化されず、図4(b)に示されるように、その切断断面は多数の気孔が生じた状態となる。   The shaped article 5 formed by laminating the hardened layer 22 obtained by sintering or melting the powder layer 21 with a light beam or the like has a different curing density inside the shaped article by controlling the irradiation energy of the light beam or the like ( Structures (including unsintered or unmelted) can be shaped. For example, the hardened layer 22 sintered or melted with a high-energy light beam or the like has the constituent material sufficiently solidified, and as shown in FIG. It becomes. On the other hand, the hardened layer 22 sintered or melted with a low-energy light beam or the like does not sufficiently solidify the constituent material, and as shown in FIG. It becomes a state.

図5は、硬化密度と熱伝導率との関係を示す。高密度部は、構成材料が密に結合しているため熱伝導性が高くなる。一方、低密度部は気孔により構成材料が部分的に分離しているので、熱伝導率が低くなる。すなわち、光ビーム等の照射エネルギーを制御して、造形物内部の硬化密度を局所的に変化させることにより、造形物内部における熱伝導率に任意の分布を持たせることが可能となる。なお、硬化密度が50%以下であるものは、実質的にはほとんど硬化されていない粉末状態である。   FIG. 5 shows the relationship between cure density and thermal conductivity. The high-density portion has high thermal conductivity because the constituent materials are closely bonded. On the other hand, since the constituent material is partially separated by the pores in the low density portion, the thermal conductivity is lowered. That is, by controlling irradiation energy such as a light beam and locally changing the hardening density inside the shaped article, it is possible to have an arbitrary distribution in the thermal conductivity inside the shaped article. In addition, what has a hardening density of 50% or less is a powder state which is substantially hardly hardened | cured.

従来の鋼材等を用いた金型では、金型内部の熱伝導率が一定であるため、樹脂のゲート近傍部と末端部とでは、樹脂の温度が局所的に変化して、これが成形品の反り等の製品不良を生じる原因となっていた。これに対して、図3に示したように、例えば、造形物5の主構造、及び樹脂のゲート近傍5Aの金型内部に冷却効率の高い高密度部22a(高熱伝導率部)を形成し、末端部5Bの金型内部に冷却効率の低い低密度部22b(低熱伝導率部)を形成することにより、成形品を構成する樹脂全体としての温度を均一化することができる。すなわち、本実施形態の製造方法によれば、造形物5(金型)内部の硬化密度を変化させて熱伝導率を制御することにより、樹脂の冷却温度を最適化することができ、成形品の反り等の発生を抑制できる造形物(金型)が得られる。また、この方法によれば、金型内にダクトや流動路等を設けることなく、簡易な構造により金型内部の温度調節が可能になる。   In conventional molds using steel, etc., the thermal conductivity inside the mold is constant, so the resin temperature locally changes in the vicinity of the resin gate and at the end. This was the cause of product defects such as warping. On the other hand, as shown in FIG. 3, for example, a high-density part 22a (high thermal conductivity part) with high cooling efficiency is formed in the mold of the main structure of the model 5 and the vicinity of the resin gate 5A. By forming the low density part 22b (low thermal conductivity part) with low cooling efficiency inside the mold of the terminal part 5B, the temperature of the entire resin constituting the molded product can be made uniform. That is, according to the manufacturing method of this embodiment, the cooling temperature of the resin can be optimized by changing the curing density inside the molded article 5 (mold) to control the thermal conductivity, and the molded product. A shaped object (mold) capable of suppressing the occurrence of warpage or the like is obtained. Further, according to this method, the temperature inside the mold can be adjusted with a simple structure without providing a duct or a flow path in the mold.

ここで、造形物5(金型)内部における高熱伝導率部(高密度部22a)及び低熱伝導率部(低密度部22b)の好適な形成箇所について、図6を参照して説明する。例えば、金型内に樹脂を注入するためのゲート近傍5Aは低熱伝導率部(低密度部22b)とすることが望ましい。通常、この領域の樹脂は、成形品の肉厚と比較して薄くて小さいため、すぐに冷却されて固まる。また、ゲート近傍5Aで樹脂が固まって樹脂の流動性が低下すると、金型末端部5Bの方まで樹脂を充填するために射出圧力を高く設定する必要がある。更に、ゲート近傍5Aで樹脂が固まりきってしまうと、樹脂は流れ込まなくなるので、樹脂の未充填不良や、成形品冷却中に発生する収縮による「ヒケ」等が発生しやすくなる。そのため、ゲート近傍5Aは、樹脂の冷却速度が遅くなるような温度調節が望まれる。   Here, the suitable formation location of the high thermal conductivity part (high density part 22a) and the low thermal conductivity part (low density part 22b) in the molded article 5 (mold) will be described with reference to FIG. For example, the gate vicinity 5A for injecting the resin into the mold is desirably a low thermal conductivity portion (low density portion 22b). Usually, the resin in this region is thin and small compared to the thickness of the molded product, so that it immediately cools and hardens. Further, when the resin is hardened in the vicinity of the gate 5A and the fluidity of the resin is lowered, it is necessary to set the injection pressure high in order to fill the resin to the mold end portion 5B. Furthermore, if the resin is hardened in the vicinity of the gate 5A, the resin does not flow in, so that unfilled resin or “sink” due to shrinkage that occurs during cooling of the molded product is likely to occur. For this reason, the temperature adjustment is desired in the vicinity of the gate 5A so that the cooling rate of the resin is slow.

また、成形品意匠部5Cも低熱伝導率部(低密度部22b)とすることが望ましい。この領域の熱伝導率を低下させると、流入された溶融樹脂が合流して融着した部分にできる線状の不良、いわゆる「ウエルドライン」の発生を抑制することができる。なお、成形品の表裏面において、例えば、ヒケを発生させたくない表面側を早く冷却固化させ、その反対側は熱伝導率を下げて冷却固化を遅らせると、冷却が遅いほうに裏面側にヒケが生じるが、表面側のヒケを抑制することができる。一方、スプル部5Dやランナ部5Eは、樹脂が厚肉となり易いので、冷却され難い。従って、冷却速度を速めて成形サイクルを向上させるため、これらの近傍は高熱伝導率部(高密度部22a)とすることが望ましい。   Moreover, it is desirable that the molded product design portion 5C is also a low thermal conductivity portion (low density portion 22b). When the thermal conductivity of this region is lowered, it is possible to suppress the occurrence of linear defects, that is, so-called “weld lines” that are formed in the melted and fused portions of the molten resin that has flowed in. On the front and back surfaces of the molded product, for example, if the surface side where you do not want to generate sink marks is quickly cooled and solidified, and the opposite side is reduced in thermal conductivity and cooled solidification is delayed, sink marks on the back surface side will be the slower cooling. However, sink marks on the surface side can be suppressed. On the other hand, the sprue portion 5D and the runner portion 5E are difficult to be cooled because the resin tends to be thick. Accordingly, in order to increase the cooling rate and improve the molding cycle, it is desirable that the vicinity thereof be a high thermal conductivity portion (high density portion 22a).

上述した低密度部22bには、造形物内部に未焼結部分又は未溶融部分が設けられる場合も含む。この場合、いわゆる低密度部22bは粉末材料2が粉末のまま存在する。粉末状態の材料は、粉末間の隙間が多くなるので、上記図5に示したように、金属であるにも拘わらず熱伝導率は極めて低い。そのため、造形物内部に未焼結部分又は未溶融部分を設ける方法は、金型内部において特に熱伝導率を低くしたい部分を成形する上で好適である。   The low density portion 22b described above includes a case where an unsintered portion or an unmelted portion is provided inside the molded article. In this case, the so-called low density portion 22b exists in which the powder material 2 remains in powder form. Since the material in the powder state has many gaps between the powders, as shown in FIG. 5 above, the thermal conductivity is extremely low despite being a metal. Therefore, the method of providing an unsintered part or an unmelted part inside the shaped article is suitable for molding a part in which the thermal conductivity is particularly desired to be lowered inside the mold.

また、硬化層5を積層一体化させるときに、硬化層22(高密度部22a)の形成するときに、空洞部23が設けられることにしてもよい。図7(a)〜(d)は空洞部23を形成する動作手順を示す。まず、空洞部23の底面となる硬化層が形成された後に、空洞部23の壁面を構成する層(壁面層)が積層される(図7(a))。壁面層は上層へ向かうほど空洞部23の内方へ張り出すように積層され(図7(b))、空洞部23が閉じられる直前の層で、内部の粉末材料2が吸引ノズル7等により吸引除去される(図7(c))。そして、粉末材料2の除去後、空洞部23を閉じるように上層に硬化層が形成される(図7(d))。ここでいう硬化層は高密度部22aを指す。すなわち、空洞部23は、造形物内部に高密度部22aによって囲まれて成る空間である。   Further, when the hardened layer 5 is laminated and integrated, the cavity 23 may be provided when the hardened layer 22 (high density portion 22a) is formed. FIGS. 7A to 7D show an operation procedure for forming the cavity 23. First, after the hardened layer that forms the bottom surface of the cavity portion 23 is formed, a layer (wall surface layer) that constitutes the wall surface of the cavity portion 23 is laminated (FIG. 7A). The wall surface layer is laminated so as to protrude inward of the cavity 23 as it goes upward (FIG. 7B). The layer just before the cavity 23 is closed. It is removed by suction (FIG. 7C). Then, after removing the powder material 2, a hardened layer is formed on the upper layer so as to close the cavity 23 (FIG. 7D). The hardened layer here refers to the high density portion 22a. That is, the hollow portion 23 is a space that is surrounded by the high-density portion 22a inside the molded article.

これら空洞部23を形成する工程は、好ましくは窒素ガスが充填されたチャンバ内で行われ、上記空洞部23には窒素ガスが充填される。窒素ガスのような気体は、一般に粉末材料を構成する鉄等の金属に比べて熱伝導率が遙かに低い。そのため、硬化層5を積層一体化させるときに、空洞部23を設ければ、未焼結部分又は未溶融部分が設けられるよりも、造形物内部の熱伝導率をより低くすることができる。なお、図7(a)〜(d)に示す工程は、真空チャンバ内で行われることがより好ましい。そうすれば、当該部分の熱伝導率を更に低くすることができる。   The step of forming these cavities 23 is preferably performed in a chamber filled with nitrogen gas, and the cavities 23 are filled with nitrogen gas. A gas such as nitrogen gas generally has a much lower thermal conductivity than a metal such as iron constituting the powder material. Therefore, when the hardened layer 5 is laminated and integrated, if the hollow portion 23 is provided, the thermal conductivity inside the molded article can be further reduced as compared with the case where an unsintered portion or an unmelted portion is provided. Note that the steps shown in FIGS. 7A to 7D are more preferably performed in a vacuum chamber. If it does so, the thermal conductivity of the said part can be made still lower.

また、上記空洞部23には、粉末材料2とは熱伝導率が異なる材料、つまり、粉末材料2よりも熱伝導率が高い高熱伝導率材料又は熱伝導率が低い低熱伝導率材料が充填されてもよい。この充填工程は、例えば、上述した図7(c)及び図7(d)に示した工程の間に行われる。こうすれば、充填される材料を適宜に選択することにより、当該部分の熱伝導率を任意に設定することができる。   The cavity 23 is filled with a material having a thermal conductivity different from that of the powder material 2, that is, a high thermal conductivity material having a higher thermal conductivity than the powder material 2 or a low thermal conductivity material having a lower thermal conductivity. May be. This filling step is performed, for example, between the steps shown in FIGS. 7C and 7D described above. If it carries out like this, the heat conductivity of the said part can be arbitrarily set by selecting the material with which it fills suitably.

更に、図8に示すように、複数の空洞部23が、積層方向又は平面方向にマトリック状に形成されてもよい。この構成は、高密度部22a(高熱伝導率部)がセル構造に形成すると共に、これらセル構造の高密度部22a内に低密度部22b(低熱伝導率部)を形成するものである。なお、ここでいう低密度部22bには、未焼結部分、未溶融部分、低熱伝導率材料が充填された空洞部23を含む。通常、低密度部22bは、高密度部22aに比べて構造的な強度が低い。そのため、造形物内部における低密度部22bが占める体積が大きくなると、造形物自体の強度低下を招く。これに対して、上述したように、高強度の高密度部22aをセル構造に形成しておき、該セル構造の高密度部22a内に低密度部22bを形成すれば、造形物5の強度を確保した上で、造形物内に低熱伝導率部を形成することができる。   Furthermore, as shown in FIG. 8, the plurality of cavities 23 may be formed in a matrix shape in the stacking direction or the planar direction. In this configuration, the high density portion 22a (high thermal conductivity portion) is formed in the cell structure, and the low density portion 22b (low thermal conductivity portion) is formed in the high density portion 22a of the cell structure. The low density portion 22b here includes a hollow portion 23 filled with an unsintered portion, an unmelted portion, and a low thermal conductivity material. Usually, the low-density portion 22b has a lower structural strength than the high-density portion 22a. Therefore, when the volume occupied by the low density portion 22b inside the modeled object increases, the strength of the modeled product itself is reduced. On the other hand, as described above, if the high-strength high-density portion 22a is formed in the cell structure and the low-density portion 22b is formed in the high-density portion 22a of the cell structure, the strength of the shaped article 5 In addition, a low thermal conductivity portion can be formed in the modeled object.

なお、高密度部22a(高熱伝導率部)をセル構造とし、そのセル構造の中に低密度部22b(低熱伝導率部)を形成する場合、図9に示されるように、低密度部22bを高密度部22aの中で小さな球体となるように配置してもよい。こうすれば、各セルの壁面層が内方へ張り出すオーバーハングを小さくすることができるので、低密度部22bが未焼結又は未溶融の粉末状態であっても、内方へ張り出した硬化層が崩れ難く、造形を容易にすることができる。   When the high density portion 22a (high thermal conductivity portion) has a cell structure and the low density portion 22b (low thermal conductivity portion) is formed in the cell structure, as shown in FIG. 9, the low density portion 22b May be arranged so as to form a small sphere in the high-density portion 22a. In this way, since the overhang that the wall surface layer of each cell protrudes inward can be reduced, even if the low density portion 22b is in an unsintered or unmelted powder state, it is hardened that protrudes inward. Layers are not easily collapsed, and modeling can be facilitated.

高密度部22a及び低密度部22bを形成する方法は、上述したような光ビーム等の照射エネルギーを適宜に制御することに限られない。ここでは、その変形例について、図10(a)〜(d)を参照して説明する。この変形例は、まず、プレート31上の1層目の硬化層22全体が高密度部22aに形成される(図10(a))。高密度部22aは、粉末層21に、粉末材料を高密度に焼結する照射条件の光ビームL1を照射して成る。このときの光ビームL1の集光径は、例えば略0.5mmとする。その後、低密度部22bを設けたい所定部分に多数の小孔22cを開ける(図10(b))。つまり、多数の小孔22cが形成された領域が低密度部22bとなる。小孔22cの形成は、高密度部22aの形成時よりも、照射部分の単位面積あたりの照射エネルギーを高める光ビームL2により行われる。照射エネルギーを高めるため、例えば、集光径が絞られて略0.1mm以下とされ、又はパワーが略300W以上とされ、若しくは光ビームがQ−SW光ビーム等の高エネルギーのパルス光ビームとされる。   The method of forming the high density portion 22a and the low density portion 22b is not limited to appropriately controlling the irradiation energy such as the light beam as described above. Here, the modification is demonstrated with reference to Fig.10 (a)-(d). In this modification, first, the entire first hardened layer 22 on the plate 31 is formed in the high-density portion 22a (FIG. 10A). The high density portion 22a is formed by irradiating the powder layer 21 with a light beam L1 under irradiation conditions for sintering the powder material at a high density. The condensing diameter of the light beam L1 at this time is, for example, approximately 0.5 mm. Thereafter, a large number of small holes 22c are formed in a predetermined portion where the low density portion 22b is to be provided (FIG. 10B). That is, a region where a large number of small holes 22c are formed becomes the low density portion 22b. The small holes 22c are formed by the light beam L2 that increases the irradiation energy per unit area of the irradiated portion as compared with the formation of the high-density portion 22a. In order to increase the irradiation energy, for example, the focused diameter is reduced to about 0.1 mm or less, or the power is set to about 300 W or more, or the light beam is a high-energy pulsed light beam such as a Q-SW light beam. Is done.

1層目に高密度部22a及び低密度部22bが形成された後、高密度部22aから成る硬化層22が積層形成される(図10(c))。そして、その硬化層22に、下層の小孔22cの位置に合わせて小孔22cが形成され、その部分が低密度部22bに形成される(図10(d))。上述した高密度部22a及び低密度部22bの形成工程が繰り返されて造形物5が造形される。小孔22cは、光ビームL1により形成するのではなく、微小径ドリル(図示せず)で孔を開けて形成してもよい。この場合、微小径ドリルの直径は0.1mm以下であることが望ましい。また、微小径ドリルとしては、開き角が略120度のものより先端が尖がったドリルを用いることが望ましい。微小径ドリルは、光造形機1の制御部により制御される。微小径ドリルは、切削工具61と同一に構成されていてもよい。   After the high-density part 22a and the low-density part 22b are formed in the first layer, the hardened layer 22 composed of the high-density part 22a is laminated (FIG. 10C). And the small hole 22c is formed in the hardening layer 22 according to the position of the small hole 22c of a lower layer, and the part is formed in the low density part 22b (FIG.10 (d)). The formation process of the high density part 22a and the low density part 22b mentioned above is repeated, and the molded article 5 is modeled. The small hole 22c is not formed by the light beam L1, but may be formed by opening a hole with a minute diameter drill (not shown). In this case, it is desirable that the diameter of the micro drill is 0.1 mm or less. Further, it is desirable to use a drill with a sharper tip than a drill with a small opening angle of about 120 degrees as the minute diameter drill. The micro drill is controlled by the control unit of the optical modeling machine 1. The small diameter drill may be configured in the same manner as the cutting tool 61.

また、切削除去部6は、切削工具61、ミーリングヘッド62、及びXY駆動機構63を備えた汎用の数値制御(NC:numerical Control)工作機械等で構成されることが望ましく、特に、切削工具61を自動交換可能なマシニングセンタであることが望ましい。切削工具61としては、例えば超硬素材で形成された二枚刃ボールエンドミルが主に用いられ、加工形状又は目的に応じてスクェアエンドミル、ラジアスエンドミル又はドリル等が使用される。   Further, the cutting removal unit 6 is preferably composed of a general-purpose numerical control (NC) machine tool including a cutting tool 61, a milling head 62, and an XY drive mechanism 63, and in particular, the cutting tool 61. It is desirable that the machining center can be automatically replaced. As the cutting tool 61, for example, a two-blade ball end mill formed of a carbide material is mainly used, and a square end mill, a radius end mill, a drill, or the like is used according to a processing shape or purpose.

更に別の変形例として、プレート31上の1層日の硬化層22全体を、硬化密度が低い低密度部22bとして形成しておき、低密度部22bの形成後、硬化層22の所定部分に光ビームを再照射して、硬化密度が高い高密度部22aを形成してもよい。このときの光ビームの照射条件は、低密度部22bの形成時と同じであっても、異なっていてもよい。また、光ビームL1の照射回数は、1回であっても、複数回であってもよい。   As yet another modification, the entire cured layer 22 of one layer on the plate 31 is formed as a low density portion 22b having a low cured density, and after the low density portion 22b is formed, a predetermined portion of the cured layer 22 is formed. The light beam may be re-irradiated to form the high density portion 22a having a high curing density. The irradiation conditions of the light beam at this time may be the same as or different from those at the time of forming the low density portion 22b. Further, the number of times of irradiation with the light beam L1 may be one time or a plurality of times.

また、光ビームL1を受けて消失する物質(図示せず)を、低密度部22bを設けたい所定の部位のみに供給しておき、粉末層21全体へ光ビームを照射して、その物質を消失させることにより、高密度部22aと低密度部22bとを選択的に形成することもできる。この光ビームL1を受けて消失する物質は、例えば、カーボンファイバ等、略ファイバー状の物質である。なお、光ビームの照射条件は、例えは、上述した実施形態における高密度部22a形成時と同じでよい。   Further, a substance (not shown) that disappears upon receiving the light beam L1 is supplied only to a predetermined portion where the low density portion 22b is to be provided, and the entire powder layer 21 is irradiated with the light beam, and the substance is By eliminating the high density portion 22a and the low density portion 22b, the high density portion 22a and the low density portion 22b can be selectively formed. The substance that disappears in response to the light beam L1 is a substantially fiber-like substance such as a carbon fiber. Note that the light beam irradiation conditions may be the same as when the high-density portion 22a is formed in the above-described embodiment, for example.

次に、本発明の第2の実施形態に係る三次元造形物の製造方法を説明する。本実施形態の三次元造形物の製造方法は、上述した粉末層形成工程において、粉末材料2の材質及びその配合を制御することにより三次元造形物内部の熱伝導率に分布を持たせるものである。例えば、高熱伝導率としたい部分には、銅、銅合金、アルミ又はカーボン等といった熱伝導率の高い材料を粉末材料2として供給する。これら熱伝導率の低い材料は、通常の造形用の粉末材料である鉄粉に混合されて用いられてもよいし、また、熱伝導率の異なる複数種の材料が混合されてもよい。また、低熱伝導率としたい部分には、セラミック、樹脂粉末又はエポキシ樹脂等といった熱伝導率の低い材料を粉末材料2として供給する。   Next, the manufacturing method of the three-dimensional structure according to the second embodiment of the present invention will be described. The manufacturing method of the three-dimensional structure according to the present embodiment has a distribution in the thermal conductivity inside the three-dimensional structure by controlling the material of the powder material 2 and its blending in the above-described powder layer forming step. is there. For example, a material having a high thermal conductivity such as copper, copper alloy, aluminum, or carbon is supplied as a powder material 2 to a portion where high thermal conductivity is desired. These materials having low thermal conductivity may be used by being mixed with iron powder, which is a normal powder material for modeling, or plural kinds of materials having different thermal conductivities may be mixed. Further, a material having a low thermal conductivity such as ceramic, resin powder, epoxy resin, or the like is supplied as the powder material 2 to a portion where low thermal conductivity is desired.

なお、上述した第1の実施形態においては、粉末層形成工程として、粉末供給プレート35を平面方向に移動させる、いわゆるスキージングによる材料供給方法を示したが、本実施形態の三次元造形物の製造方法においては、プレート31上に直接的に粉末材料2を供給できる個別の材料供給機構を備える。この材料供給機構としては、例えば、粉末材料2が充填されたカートリッジ(図示せず)を、切削除去部6に取付け可能とするものが挙げられる。   In the first embodiment described above, as the powder layer forming step, the material supply method by so-called squeezing in which the powder supply plate 35 is moved in the plane direction is shown. However, the three-dimensional structure of the present embodiment In the manufacturing method, an individual material supply mechanism capable of supplying the powder material 2 directly onto the plate 31 is provided. As this material supply mechanism, for example, a mechanism capable of attaching a cartridge (not shown) filled with the powder material 2 to the cutting removal unit 6 can be cited.

本実施形態の三次元造形物の製造方法によれば、上述した第1の実施形態とは異なる方法で三次元造形物内部の熱伝導率に分布を持たせることができる。また、粉末材料を適宜に選択することにより、高密度部及び低密度部を形成する方法以上に、造形物内部における熱伝導率の分布差を大きくすることができる。   According to the three-dimensional structure manufacturing method of the present embodiment, the thermal conductivity inside the three-dimensional structure can be distributed by a method different from the first embodiment described above. In addition, by appropriately selecting the powder material, it is possible to increase the difference in the thermal conductivity distribution inside the molded article more than the method of forming the high density portion and the low density portion.

本実施形態の製造方法においては、熱伝導率が低い低熱伝導率部をセル構造に形成しておき、該セル構造の低熱伝導率部内に熱伝導率が高い高熱伝導率部を形成することもできる。すなわち、本実施形態においては、低熱伝導率部及び高熱伝導率部のいずれもが、焼結又は溶融によって十分に固化しているので、造形物の強度低下を招くことなく造形物内の熱伝導率に分布を持たせることが可能になる。   In the manufacturing method of the present embodiment, a low thermal conductivity portion having a low thermal conductivity is formed in the cell structure, and a high thermal conductivity portion having a high thermal conductivity is formed in the low thermal conductivity portion of the cell structure. it can. That is, in this embodiment, since both the low thermal conductivity part and the high thermal conductivity part are sufficiently solidified by sintering or melting, the heat conduction in the modeled object is not caused by reducing the strength of the modeled object. It becomes possible to have a distribution in the rate.

また、本実施形態の製造方法において、粉末層形成工程において供給される粉末を、熱伝導率が低い材料から高い材料へ、又は高い材料から低い材料へ漸増又は漸減させることにより、一体造形された造形物内部の熱伝導率を傾斜的に変化させることもできる。造形物内部の熱伝導率を傾斜的に変化させて形成した造形物5(金型)の側断面の構成例を図11(a)(b)に示す。同図の矢印は、低熱伝導率領域から高熱同率領域への熱伝導率の漸増方向を示す。図11(a)の例は、成形品意匠部5Cの近傍が最も熱伝導率が低く、その周囲へ放射状に熱伝導率が漸増するように形成されている。また、図11(b)の例は、樹脂等が流入される上流側から下流側の領域へ、熱伝導率が漸増するように形成されている。   Further, in the manufacturing method of the present embodiment, the powder supplied in the powder layer forming step was integrally formed by gradually increasing or decreasing the material having a low thermal conductivity from a material having a low thermal conductivity or from a material having a high thermal conductivity to a material having a low heat conductivity. It is also possible to change the thermal conductivity inside the modeled object in an inclined manner. FIGS. 11A and 11B show a configuration example of a side cross section of a model 5 (mold) formed by changing the thermal conductivity inside the model in an inclined manner. The arrows in the figure indicate the direction in which the thermal conductivity gradually increases from the low thermal conductivity region to the high thermal conductivity region. In the example of FIG. 11A, the vicinity of the molded product design portion 5C has the lowest thermal conductivity, and the thermal conductivity gradually increases radially around the periphery. Moreover, the example of FIG.11 (b) is formed so that heat conductivity may increase gradually from the upstream area into which resin etc. flow in from the upstream area.

高熱伝導率部と低熱伝導率部との界面は、温度差が大きくなるので、熱応力によるクラック等が生じやすくなる。このようなクラック等は造形物の強度を低下させる原因となりかねない。しかし、造形物内部の熱伝導率を傾斜的に変化させれば、そのような界面における温度差が少なくなるので、クラック等の発生を抑制することができる。なお、一体造形された造形物内部の熱伝導率を傾斜的に変化させることは、上述した第1の実施形態の製造方法でも実現することができる。   The interface between the high thermal conductivity portion and the low thermal conductivity portion has a large temperature difference, so that cracks due to thermal stress are likely to occur. Such cracks or the like can cause the strength of the model to be reduced. However, if the thermal conductivity inside the modeled object is changed in an inclined manner, the temperature difference at such an interface is reduced, so that the occurrence of cracks and the like can be suppressed. In addition, it is also possible to change the thermal conductivity inside the integrally formed model in an inclined manner by the manufacturing method of the first embodiment described above.

本発明は、上述した第1又は第2の実施形態に示す製造方法に限定されるものでなく、様々な変形が可能である。例えば、第1及び第2の実施形態に示す製造方法が組み合わされてもよい。すなわち、造形物内の熱伝導率に分布を持たせる方法として、光ビームの照射エネルギーを制御して、硬化層22の硬化密度を変化させると共に、粉末層21に供給される粉末材料2として、熱伝導率の異なる複数の材料が適宜に供給されるようにしてもよい。また、例えば、セル構造の高密度部22aを形成しておいて、そのセル構造の内部において熱伝導率が漸増又は漸減するように、上記セル内に熱伝導率の異なる所定の材料を充填してもよい。なお、本発明は、上述したように、造形物内の熱伝導率に分布を持たせることにより造形物5の温度調節を可能としたものであるが、例えば、造形物内に冷却管等を形成してもよく、これらが組み合わせて用いられることにより、より効果的な温度調節が実現され得る。   The present invention is not limited to the manufacturing method shown in the first or second embodiment described above, and various modifications are possible. For example, the manufacturing methods shown in the first and second embodiments may be combined. That is, as a method of giving a distribution to the thermal conductivity in the modeled article, the irradiation energy of the light beam is controlled to change the curing density of the cured layer 22, and as the powder material 2 supplied to the powder layer 21, A plurality of materials having different thermal conductivities may be appropriately supplied. In addition, for example, a high density portion 22a of a cell structure is formed, and a predetermined material having a different thermal conductivity is filled in the cell so that the thermal conductivity gradually increases or decreases inside the cell structure. May be. Note that, as described above, the present invention enables the temperature adjustment of the shaped object 5 by providing a distribution of the thermal conductivity in the shaped object. For example, a cooling pipe or the like is provided in the shaped object. It may be formed, and by using these in combination, more effective temperature control can be realized.

本発明の第1の実施形態に係る三次元造形物の製造方法に用いられる金属光造形加工機の斜視図。The perspective view of the metal stereolithography processing machine used for the manufacturing method of the three-dimensional structure based on the 1st Embodiment of this invention. (a)〜(c)は上記加工機による造形物の製造手順を説明する一部側断面図。(A)-(c) is a partial sectional side view explaining the manufacture procedure of the molded article by the said processing machine. 上記加工機によって造形される三次元造形物の一例を示す側断面図。The sectional side view which shows an example of the three-dimensional structure molded by the said processing machine. (a)は高密度部の切断面の写真を示す図、(b)は高密度部の切断面の写真を示す図。(A) is a figure which shows the photograph of the cut surface of a high-density part, (b) is a figure which shows the photograph of the cut surface of a high-density part. 硬化密度と熱伝導率との関係を示す図。The figure which shows the relationship between a cure density and heat conductivity. 上記加工機によって造形される三次元造形物の他の例を示す側断面図。The sectional side view which shows the other example of the three-dimensional structure molded by the said processing machine. (a)〜(d)は三次元造形物内部に空洞部を形成する工程を説明するための側断面図。(A)-(d) is a sectional side view for demonstrating the process of forming a cavity part inside a three-dimensional structure. 高密度部又は低密度部がセル構造に形成された三次元造形物の一部断面斜視図。The partial cross section perspective view of the three-dimensional structure in which the high density part or the low density part was formed in the cell structure. 高密度部内に球体状の低密度部が形成された三次元造形物の側断面図。The sectional side view of the three-dimensional structure in which the spherical low density part was formed in the high density part. (a)〜(d)は本発明の第1の実施形態に係る金属光造形加工機の斜視図。三次元造形物内部に熱伝導率の文武を持たせる他の方法を説明するための側断面図。(A)-(d) is a perspective view of the metal stereolithography processing machine which concerns on the 1st Embodiment of this invention. The sectional side view for demonstrating the other method of giving the literature of thermal conductivity inside a three-dimensional structure. (a)(b)は本発明の第2の実施形態に係る三次元造形物の製造方法より造形された三次元造形物の側断面図。(A) (b) is a sectional side view of the three-dimensional structure formed by the three-dimensional structure manufacturing method according to the second embodiment of the present invention.

符号の説明Explanation of symbols

1 金属光造形加工機
2 粉末材料
21 粉末層
22 硬化層
22a 高密度部(高熱伝導率部)
22b 低密度部(低熱伝導率部)
23 空洞部
3 粉末層形成部
4 硬化層形成部
5 三次元造形物
DESCRIPTION OF SYMBOLS 1 Metal stereolithography machine 2 Powder material 21 Powder layer 22 Hardened layer 22a High-density part (high thermal conductivity part)
22b Low density part (low thermal conductivity part)
23 cavity part 3 powder layer forming part 4 hardened layer forming part 5 three-dimensional structure

Claims (10)

粉末材料を供給して粉末層を形成する粉末層形成工程と、前記粉末層の所定箇所に光ビームを照射して該粉末層を焼結又は溶融させて硬化層を形成する硬化層形成工程とを繰り返すことにより前記硬化層又は粉末層を積層一体化して三次元造形物を造形する三次元造形物の製造方法において、
一体造形された三次元造形物内部の熱伝導率に分布を持たせることを特徴とする三次元造形物の製造方法。
A powder layer forming step of supplying a powder material to form a powder layer; and a cured layer forming step of irradiating a predetermined portion of the powder layer with a light beam to sinter or melt the powder layer to form a cured layer. In the method of manufacturing a three-dimensional structure, the cured layer or the powder layer is laminated and integrated to form a three-dimensional structure.
A method for producing a three-dimensional structure, characterized in that a distribution is given to the thermal conductivity inside the integrally formed three-dimensional structure.
前記硬化層形成工程において、前記硬化層の硬化密度を制御することにより三次元造形物内部の熱伝導率に分布を持たせることを特徴とする請求項1に記載の三次元造形物の製造方法。   The method for producing a three-dimensional structure according to claim 1, wherein, in the hardened layer forming step, the distribution of the thermal conductivity inside the three-dimensional structure is controlled by controlling the curing density of the hardened layer. . 前記硬化層形成工程において、未焼結部分又は未溶融部分を設けることにより三次元造形物内部の熱伝導率に分布を持たせることを特徴とする請求項1又は請求項2に記載の三次元造形物の製造方法。   The three-dimensional according to claim 1 or 2, wherein in the hardened layer forming step, a distribution is given to the thermal conductivity inside the three-dimensional structure by providing an unsintered part or an unmelted part. Manufacturing method of a model. 空洞部を設けることにより三次元造形物内部の熱伝導率に分布を持たせることを特徴とする請求項1乃至請求項3のいずれか一項に記載の三次元造形物の製造方法。   The method for producing a three-dimensional structure according to any one of claims 1 to 3, wherein a distribution is given to the thermal conductivity inside the three-dimensional structure by providing a hollow portion. 前記空洞部に前記粉末材料とは熱伝導率が異なる材料が充填されることを特徴とする請求項4に記載の三次元造形物の製造方法。   The method for producing a three-dimensional structure according to claim 4, wherein the hollow portion is filled with a material having a thermal conductivity different from that of the powder material. 前記粉末層形成工程において、前記粉末材料の材質及びその配合を制御することにより三次元造形物内部の熱伝導率に分布を持たせることを特徴とする請求項1に記載の三次元造形物の製造方法。   2. The three-dimensional structure according to claim 1, wherein, in the powder layer forming step, the distribution of the thermal conductivity inside the three-dimensional structure is controlled by controlling the material of the powder material and the blending thereof. Production method. 熱伝導率が高い高熱伝導率部がセル構造に形成されると共に、該セル構造の高熱伝導率部内に、熱伝導率が低い低熱伝導率部が形成されることを特徴とする請求項1乃至請求項3又は請求項6のいずれか一項に記載の三次元造形物の製造方法。   The high thermal conductivity portion having a high thermal conductivity is formed in the cell structure, and the low thermal conductivity portion having a low thermal conductivity is formed in the high thermal conductivity portion of the cell structure. The manufacturing method of the three-dimensional structure as described in any one of Claim 3 or Claim 6. 熱伝導率が低い低熱伝導率部がセル構造に形成されると共に、該セル構造の低熱伝導率部内に、熱伝導率が高い高熱伝導率部が形成されることを特徴とする請求項6に記載の三次元造形物の製造方法。   The low thermal conductivity portion with low thermal conductivity is formed in the cell structure, and the high thermal conductivity portion with high thermal conductivity is formed in the low thermal conductivity portion of the cell structure. The manufacturing method of the three-dimensional structure described. 一体造形された三次元造形物内部の熱伝導率を傾斜的に変化させることを特徴とする請求項1乃至請求項3又は請求項6乃至請求項8のいずれか一項に記載の三次元造形物の製造方法。   The three-dimensional modeling according to any one of claims 1 to 3 or claim 6 to claim 8, wherein the thermal conductivity inside the three-dimensional modeled object that is integrally molded is changed in an inclined manner. Manufacturing method. 請求項1乃至請求項9のいずれか一項に記載の三次元造形物の製造方法により製造される三次元造形物。   A three-dimensional structure manufactured by the method for manufacturing a three-dimensional structure according to any one of claims 1 to 9.
JP2008297352A 2008-11-20 2008-11-20 Three-dimensional shaped article and method for producing the same Pending JP2010121187A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008297352A JP2010121187A (en) 2008-11-20 2008-11-20 Three-dimensional shaped article and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008297352A JP2010121187A (en) 2008-11-20 2008-11-20 Three-dimensional shaped article and method for producing the same

Publications (1)

Publication Number Publication Date
JP2010121187A true JP2010121187A (en) 2010-06-03

Family

ID=42322770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008297352A Pending JP2010121187A (en) 2008-11-20 2008-11-20 Three-dimensional shaped article and method for producing the same

Country Status (1)

Country Link
JP (1) JP2010121187A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2010098479A1 (en) * 2009-02-24 2012-09-06 パナソニック株式会社 Manufacturing method of three-dimensional shaped object and three-dimensional shaped object obtained therefrom
WO2015182590A1 (en) * 2014-05-27 2015-12-03 株式会社ブリヂストン Mold, tire vulcanization mold, and method for manufacturing mold
JP2015223749A (en) * 2014-05-27 2015-12-14 株式会社ブリヂストン Mold and production method of mold
JP2017100323A (en) * 2015-11-30 2017-06-08 株式会社デンソー Molding die
JP2017150020A (en) * 2016-02-23 2017-08-31 マツダ株式会社 Manufacturing method of structure
JP2019055523A (en) * 2017-09-21 2019-04-11 日本電子株式会社 Method for manufacturing three-dimensional structure and apparatus for manufacturing three-dimensional structure
JP2019078613A (en) * 2017-10-24 2019-05-23 国立大学法人福井大学 Evaluation method of three-dimensional molding
WO2020012615A1 (en) * 2018-07-12 2020-01-16 ヤマハ発動機株式会社 Mold
KR20200130771A (en) * 2019-04-30 2020-11-20 엘아이지넥스원 주식회사 Powder container for reducing thermal strain and metal 3D printer comprising the same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03183517A (en) * 1989-12-14 1991-08-09 Brother Ind Ltd Injection mold for synthetic resin
JPH03505185A (en) * 1988-05-06 1991-11-14 ベアシツチ、フランク ジエイ Plastic molding method and its mold
JP2000190086A (en) * 1998-12-22 2000-07-11 Matsushita Electric Works Ltd Manufacture of three dimensional shaped material, and die
JP2002038201A (en) * 2000-07-24 2002-02-06 Matsushita Electric Works Ltd Method and apparatus for producing three-dimensional shape molded article
JP2002249805A (en) * 2001-02-23 2002-09-06 Matsushita Electric Works Ltd Method for manufacturing molding of three-dimensional product
JP2002327203A (en) * 2001-04-26 2002-11-15 Daihaku Kogyo Kk Sintered compact, sintering method, and sintering device
JP2004168610A (en) * 2002-11-21 2004-06-17 Toyota Motor Corp Manufacturing method of three dimensional sintered body and three dimensional sintered body
JP2005238631A (en) * 2004-02-26 2005-09-08 Pentax Corp Injection molding machine and mold
JP2006310020A (en) * 2005-04-27 2006-11-09 Toyota Motor Corp Manufacturing method and manufacturing device of fuel cell separator
JP2007070655A (en) * 2005-09-05 2007-03-22 Matsushita Electric Ind Co Ltd Three-dimensional structure and production method therefor

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03505185A (en) * 1988-05-06 1991-11-14 ベアシツチ、フランク ジエイ Plastic molding method and its mold
JPH03183517A (en) * 1989-12-14 1991-08-09 Brother Ind Ltd Injection mold for synthetic resin
JP2000190086A (en) * 1998-12-22 2000-07-11 Matsushita Electric Works Ltd Manufacture of three dimensional shaped material, and die
JP2002038201A (en) * 2000-07-24 2002-02-06 Matsushita Electric Works Ltd Method and apparatus for producing three-dimensional shape molded article
JP2002249805A (en) * 2001-02-23 2002-09-06 Matsushita Electric Works Ltd Method for manufacturing molding of three-dimensional product
JP2002327203A (en) * 2001-04-26 2002-11-15 Daihaku Kogyo Kk Sintered compact, sintering method, and sintering device
JP2004168610A (en) * 2002-11-21 2004-06-17 Toyota Motor Corp Manufacturing method of three dimensional sintered body and three dimensional sintered body
JP2005238631A (en) * 2004-02-26 2005-09-08 Pentax Corp Injection molding machine and mold
JP2006310020A (en) * 2005-04-27 2006-11-09 Toyota Motor Corp Manufacturing method and manufacturing device of fuel cell separator
JP2007070655A (en) * 2005-09-05 2007-03-22 Matsushita Electric Ind Co Ltd Three-dimensional structure and production method therefor

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5555222B2 (en) * 2009-02-24 2014-07-23 パナソニック株式会社 Manufacturing method of three-dimensional shaped object and three-dimensional shaped object obtained therefrom
JPWO2010098479A1 (en) * 2009-02-24 2012-09-06 パナソニック株式会社 Manufacturing method of three-dimensional shaped object and three-dimensional shaped object obtained therefrom
US10377060B2 (en) 2014-05-27 2019-08-13 Bridgestone Corporation Mold, tire curing mold, and method for manufacturing mold
WO2015182590A1 (en) * 2014-05-27 2015-12-03 株式会社ブリヂストン Mold, tire vulcanization mold, and method for manufacturing mold
JP2015223749A (en) * 2014-05-27 2015-12-14 株式会社ブリヂストン Mold and production method of mold
EP3150349A4 (en) * 2014-05-27 2017-04-05 Bridgestone Corporation Mold, tire vulcanization mold, and method for manufacturing mold
EP3150349A1 (en) * 2014-05-27 2017-04-05 Bridgestone Corporation Mold, tire vulcanization mold, and method for manufacturing mold
JP2017100323A (en) * 2015-11-30 2017-06-08 株式会社デンソー Molding die
JP2017150020A (en) * 2016-02-23 2017-08-31 マツダ株式会社 Manufacturing method of structure
JP2019055523A (en) * 2017-09-21 2019-04-11 日本電子株式会社 Method for manufacturing three-dimensional structure and apparatus for manufacturing three-dimensional structure
JP2019078613A (en) * 2017-10-24 2019-05-23 国立大学法人福井大学 Evaluation method of three-dimensional molding
JP7007563B2 (en) 2017-10-24 2022-02-10 国立大学法人福井大学 Evaluation method for 3D objects
WO2020012615A1 (en) * 2018-07-12 2020-01-16 ヤマハ発動機株式会社 Mold
JPWO2020012615A1 (en) * 2018-07-12 2020-07-16 ヤマハ発動機株式会社 Mold
US11325181B2 (en) 2018-07-12 2022-05-10 Yamaha Hatsudoki Kabushiki Kaisha Mold
KR20200130771A (en) * 2019-04-30 2020-11-20 엘아이지넥스원 주식회사 Powder container for reducing thermal strain and metal 3D printer comprising the same
KR102183858B1 (en) 2019-04-30 2020-11-27 엘아이지넥스원 주식회사 Powder container for reducing thermal strain and metal 3D printer comprising the same

Similar Documents

Publication Publication Date Title
JP5555222B2 (en) Manufacturing method of three-dimensional shaped object and three-dimensional shaped object obtained therefrom
JP2010121187A (en) Three-dimensional shaped article and method for producing the same
US8974727B2 (en) Method for manufacturing three-dimensionally shaped object and three-dimensionally shaped object
JP5776004B2 (en) Manufacturing method of three-dimensional shaped object and three-dimensional shaped object
JP5653657B2 (en) Method for producing three-dimensional shaped object, three-dimensional shaped object to be obtained, and method for producing molded product
KR101517652B1 (en) Method for producing three-dimensional formed shapes, and three-dimensional formed shapes obtained thereby
CN107848212B (en) Method for manufacturing three-dimensional shaped object
JPWO2013132840A1 (en) Manufacturing method of three-dimensional shaped object
JP2010196099A (en) Apparatus and method of producing three-dimensional shaped article
JP2017030224A (en) Method for manufacturing three-dimensionally shaped object and three-dimensionally shaped object
JP2012224907A (en) Method for manufacturing three-dimensionally shaped article
US20060119017A1 (en) Method for making ceramic work piece and cermet work piece
JP2010065259A (en) Method for producing three-dimensionally shaped object
WO2018003798A1 (en) Method for manufacturing three-dimensionally shaped molding
Villalon Electron beam fabrication of injection mold tooling with conformal cooling channels
JPWO2017221912A1 (en) Manufacturing method of three-dimensional shaped object
JP6688997B2 (en) Method for manufacturing three-dimensional shaped object
JP2017001220A (en) Laminate molding form block and injection molding method using form block
JP7396613B2 (en) Laminated manufacturing equipment, processing method for three-dimensional shaped objects, three-dimensional shaped objects and molds
JP6706803B2 (en) Sprue bush

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110617

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130205