JP4943937B2 - Manufacturing method of three-dimensional shaped object - Google Patents

Manufacturing method of three-dimensional shaped object Download PDF

Info

Publication number
JP4943937B2
JP4943937B2 JP2007126138A JP2007126138A JP4943937B2 JP 4943937 B2 JP4943937 B2 JP 4943937B2 JP 2007126138 A JP2007126138 A JP 2007126138A JP 2007126138 A JP2007126138 A JP 2007126138A JP 4943937 B2 JP4943937 B2 JP 4943937B2
Authority
JP
Japan
Prior art keywords
modeling
light beam
shaped object
dimensional shaped
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007126138A
Other languages
Japanese (ja)
Other versions
JP2008280582A (en
Inventor
勲 不破
諭 阿部
正孝 武南
俊 清水
喜万 東
昇 草野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2007126138A priority Critical patent/JP4943937B2/en
Publication of JP2008280582A publication Critical patent/JP2008280582A/en
Application granted granted Critical
Publication of JP4943937B2 publication Critical patent/JP4943937B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)

Description

本発明は、金属粉末に光ビームの照射を行なう三次元形状造形物の製造方法に関する。   The present invention relates to a method for manufacturing a three-dimensional shaped object that irradiates a metal powder with a light beam.

従来から、金属粉末で形成した粉末層に光ビームを照射し、粉末層を溶融して焼結硬化層を形成し、その焼結硬化層の上に新たな粉末層を形成して光ビームを照射し、焼結硬化層を形成することを繰り返して、三次元形状造形物を製造する方法が知られている(例えば、特許文献1参照)。   Conventionally, a light beam is irradiated onto a powder layer formed of metal powder, the powder layer is melted to form a sintered hardened layer, a new powder layer is formed on the sintered hardened layer, and the light beam is irradiated. A method of manufacturing a three-dimensional shaped object by repeating irradiation and forming a sintered hardened layer is known (for example, see Patent Document 1).

このように光ビームの照射とその積層によって金属粉末から三次元形状造形物を得る製造方法は、迅速に複雑な三次元形状造形物を得ることができる。   Thus, the manufacturing method for obtaining a three-dimensional shaped object from metal powder by irradiation with a light beam and its lamination can quickly obtain a complicated three-dimensional shaped object.

しかしながら、この製造方法によって得られた三次元形状造形物を、例えばプラスチック金型として使用する場合には、造形完了後にエジェクタピン用の貫通穴を加工する等、各種機械加工を加える。この製造方法では、基台となる造形用プレートの上に金属粉末から成る粉末層を敷き、その粉末層に光ビームを照射して焼結硬化層を形成し、その焼結硬化層を積層して三次元形状造形物を造形するが、造形プレートと三次元形状造形物との密着性を高めるために、1層目の造形は高エネルギーの光ビーム条件で行う。高エネルギーの光ビームを受けると、鋼材からなる造形プレート表面は、光ビーム照射を受けた箇所の近傍が急熱急冷によって焼入れられた組織となって硬化し、造形プレート内で硬度差が生じる。そのため、造形完了後に高硬度化された箇所にドリルによる穴開け加工や旋盤による旋削加工等を行なうと、ドリル刃先の欠損やドリルシャンクの折れやバイト刃先の欠損等が発生し易く、機械加工が困難である。
特表平1−502890号公報
However, when the three-dimensional modeled object obtained by this manufacturing method is used as, for example, a plastic mold, various machining processes such as processing a through hole for an ejector pin are added after the modeling is completed. In this manufacturing method, a powder layer made of a metal powder is laid on a modeling plate as a base, a sintered hardened layer is formed by irradiating the powder layer with a light beam, and the sintered hardened layer is laminated. In order to improve the adhesion between the modeling plate and the three-dimensional modeled object, the first layer is modeled under a high-energy light beam condition. When receiving a high energy light beam, the surface of the modeling plate made of a steel material is hardened as a structure quenched by rapid heating and quenching in the vicinity of the portion irradiated with the light beam, resulting in a hardness difference in the modeling plate. Therefore, if drilling or turning with a lathe is performed on a hardened part after modeling is complete, drill tip breakage, drill shank breakage, bite tip breakage, etc. are likely to occur. Have difficulty.
JP-T-1-502890

本発明は、上記従来の問題を解決するためになされたものであり、三次元形状造形物の造形後に機械加工を容易に行なうことができる三次元形状造形物の製造方法を提供することを目的とする。   The present invention has been made to solve the above-described conventional problems, and an object of the present invention is to provide a method for manufacturing a three-dimensional shaped object that can be easily machined after the three-dimensional shaped object is formed. And

上記目的を達成するために請求項1の発明は、三次元形状造形物が造形される造形用プレートに金属粉末を供給して粉末層を形成する粉末形成工程と、前記粉末層に光ビームを照射して該粉末層を溶融させ焼結硬化層を形成する照射工程とを備え、前記粉末層形成工程とを照射工程とを繰り返すことにより前記焼結硬化層を積層して三次元形状物を造形する三次元形状造形物の製造方法において、前記照射工程時に、前記造形用プレートのうち三次元形状造形後に所定の機械加工が予定されている領域近傍に形成されている粉末層に対して照射する光ビームのエネルギーを、機械加工が予定されていない領域の粉末層に対して照射する光ビームよりも小さくして低密度の焼結硬化層を形成することを特徴とする。 In order to achieve the above object, the invention of claim 1 includes a powder forming step of forming a powder layer by supplying a metal powder to a modeling plate on which a three-dimensional shaped object is formed, and a light beam is applied to the powder layer. An irradiation step of irradiating and melting the powder layer to form a sintered hardened layer, and repeating the irradiation step with the powder layer forming step to laminate the sintered hardened layer to form a three-dimensional shape product. In the manufacturing method of a three-dimensional shaped object to be shaped, during the irradiation step, irradiation is performed on a powder layer formed in the vicinity of a region where predetermined machining is planned after three-dimensional shape shaping in the shaping plate. The low-density sintered hardened layer is formed by making the energy of the light beam to be smaller than that of the light beam applied to the powder layer in the region where machining is not planned.

請求項2の発明は、請求項1に記載の三次元形状造形物の製造方法において、前記造形用プレートのうち、少なくとも、三次元形状造形後に所定の機械加工が予定されている領域は、予め熱処理を行うことにより硬化され、光ビームの照射による硬度変化が起きにくい材料によって構成されていることを特徴とする。 According to a second aspect of the present invention, in the method for manufacturing a three-dimensional shaped article according to the first aspect , at least a region where predetermined machining is planned after the three-dimensional shape shaping of the shaping plate is performed in advance. It is characterized by being made of a material that is hardened by heat treatment and hardly changes in hardness due to light beam irradiation .

請求項3の発明は、請求項1に記載の三次元形状造形物の製造方法において、前記三次元形状造形物が射出成型金型であり、前記所定の機械加工が金型のエジェクタピン用の穴加工である場合、射出成形における離型時のエジェクタピン摺動時に前記加工された穴にガスを吹き込むための経路を三次元形状造形物に造形するステップを前記射出工程に有し、前記経路の造形は、前記射出工程において光ビームの照射エネルギーを小さくして低密度の焼結硬化層を形成することにより行われることを特徴とする。 The invention of claim 3 is the method for manufacturing a three-dimensional shaped article according to claim 1, wherein the three-dimensional shaped article is an injection mold, and the predetermined machining is for an ejector pin of the mold. In the case of hole processing, the injection process includes a step of forming a path for blowing gas into the processed hole when the ejector pin slides at the time of mold release in injection molding into a three-dimensional shaped object. Is formed by forming a low-density sintered hardened layer by reducing the irradiation energy of the light beam in the injection step.

請求項1の発明によれば、三次元形状造形後に造形用プレートの機械加工が予定されている領域の近傍には、光ビームが低エネルギーで照射されており、焼入れによる硬度変化が少なく、また、焼入れ深さも浅い。従って、造形用プレートの機械加工される領域内では、光ビームが照射された箇所と照射されなかった箇所との硬度差が小さいので、造形後の機械加工を容易に行なうことができる。 According to the invention of claim 1 , the light beam is irradiated with low energy in the vicinity of the area where the machining of the modeling plate is scheduled after the three-dimensional shape modeling, and the hardness change due to quenching is small, The quenching depth is also shallow. Therefore, since the hardness difference between the portion irradiated with the light beam and the portion not irradiated is small in the machined region of the modeling plate, machining after modeling can be easily performed.

請求項2の発明によれば、造形用プレートは、予め熱処理を行うことにより硬化されているので光ビームを照射されても硬度が少ししか変化しない。従って、造形用プレートの機械加工される領域内で、光ビームが照射された箇所と照射されなかった箇所との硬度差が小さいので、造形後の機械加工を容易に行なうことができる。 According to the second aspect of the present invention, the modeling plate is cured by performing heat treatment in advance, so that the hardness changes only slightly even when irradiated with the light beam. Therefore, since the difference in hardness between the portion irradiated with the light beam and the portion not irradiated within the region where the modeling plate is machined is small, machining after modeling can be easily performed.

請求項3の発明によれば、この三次元形状造形物の射出成形金型の使用時において、成形品の離型時におけるエジェクタピン摺動時に、三次元形状造形物の外部から、低密度の焼結硬化層により造形した経路を通してガスを吹き込むことにより、エジェクタピンの摺動性が向上して、成形品の離型がスムーズになり、成形サイクルタイムの短縮及び成形品質の向上を図ることができる。 According to the invention of claim 3 , when using the injection molding die of the three-dimensional shaped object, when the ejector pin slides at the time of releasing the molded product, the low-density from the outside of the three-dimensional shaped object. By blowing gas through the path formed by the sintered hardened layer, the slidability of the ejector pin is improved, the mold release becomes smooth, the molding cycle time is shortened, and the molding quality is improved. it can.

(第1の実施形態)
本発明の第1の実施形態に係る三次元形状造形物の製造方法について図面を参照して説明する。図1は、同製造方法に用いられる金属光造形加工機の構成を示す。金属光造形加工機1は、金属粉末2の粉末層21が敷かれる造形用プレート3と、造形用プレート3を保持し、上下に昇降する造形用テーブル31と、粉末層21の厚さの基準となる基準テーブル32と、金属粉末2を供給する供給槽4と、供給槽4の金属粉末2を上昇させる材料用テーブル41と、粉末層21を形成するスキージ5と、光ビームLを発するビーム発信器6と、光ビームLを集光する集光レンズ61と、光ビームLを粉末層21の上にスキャニングするガルバノミラー62と、を備えている。
(First embodiment)
A method for manufacturing a three-dimensional shaped object according to the first embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows the configuration of a metal stereolithography machine used in the manufacturing method. The metal stereolithography machine 1 includes a modeling plate 3 on which a powder layer 21 of a metal powder 2 is laid, a modeling table 31 that holds the modeling plate 3 and moves up and down, and a reference for the thickness of the powder layer 21. The reference table 32, the supply tank 4 for supplying the metal powder 2, the material table 41 for raising the metal powder 2 in the supply tank 4, the squeegee 5 for forming the powder layer 21, and the beam for emitting the light beam L A transmitter 6, a condensing lens 61 that condenses the light beam L, and a galvanometer mirror 62 that scans the light beam L onto the powder layer 21 are provided.

金属粉末2の組成は、例えば、クロムモリブデン鋼(JIS−SCM440)粉末、ニッケル(Ni)粉末、銅マンガン合金(CuMn)粉末、及び黒鉛(C)粉末であり、配合割合は、例えば、70重量%SCM440、20重量%Ni、10重量%CuMnの粉末に黒鉛(C)粉末を0.3重量%加えている。造形用プレート3の材質は、例えば、S50C鋼であり、硬さはHRC20である。スキージ5は、方向Aに移動して材料用テーブル41上の金属粉末2を造形用プレート3上に供給する。ビーム発信器6は、例えば、炭酸ガスレーザやファイバーレーザの発信器である。   The composition of the metal powder 2 is, for example, chromium molybdenum steel (JIS-SCM440) powder, nickel (Ni) powder, copper manganese alloy (CuMn) powder, and graphite (C) powder, and the blending ratio is, for example, 70 wt. 0.3% by weight of graphite (C) powder is added to the powder of% SCM440, 20% by weight Ni, and 10% by weight CuMn. The material of the modeling plate 3 is, for example, S50C steel, and the hardness is HRC20. The squeegee 5 moves in the direction A and supplies the metal powder 2 on the material table 41 onto the modeling plate 3. The beam transmitter 6 is, for example, a carbon dioxide laser or fiber laser transmitter.

図2は、同製造方法のフローを、図3は、同製造方法の動作を示す。最初に、造形用プレート3を造形用テーブル31の上に載置する(ステップS1)。次に、造形用プレート3の上面と基準テーブル32の上面との段差が長さΔtになるように、造形用テーブル31を下降させる(ステップS2)。次に、スキージ5によって材料用テーブル41上の金属粉末2を造形用プレート3上に供給する。スキージ5は、基準テーブル32の上面と同じ高さで水平方向に移動し、造形用プレート3の上に厚みΔtの粉末層21を形成する(ステップS3)(図3(a)参照)。このステップS2及びS3は粉末層形成工程を構成する。   FIG. 2 shows a flow of the manufacturing method, and FIG. 3 shows an operation of the manufacturing method. First, the modeling plate 3 is placed on the modeling table 31 (step S1). Next, the modeling table 31 is lowered so that the step between the upper surface of the modeling plate 3 and the upper surface of the reference table 32 has a length Δt (step S2). Next, the metal powder 2 on the material table 41 is supplied onto the modeling plate 3 by the squeegee 5. The squeegee 5 moves in the horizontal direction at the same height as the upper surface of the reference table 32, and forms a powder layer 21 having a thickness Δt on the modeling plate 3 (step S3) (see FIG. 3A). Steps S2 and S3 constitute a powder layer forming process.

次に、集光レンズ61によって集光した光ビームLをガルバノミラー62によって任意の位置に走査させ(ステップS4)、粉末層21を溶融し造形用プレート3と一体化した厚みΔtの焼結硬化層8aを形成する(ステップS5)(図3(b)参照)。このステップS4及びS5は照射工程を構成する。   Next, the light beam L condensed by the condenser lens 61 is scanned to an arbitrary position by the galvanometer mirror 62 (step S4), and the powder layer 21 is melted and integrated with the modeling plate 3 to be sintered and hardened with a thickness Δt. The layer 8a is formed (step S5) (see FIG. 3B). Steps S4 and S5 constitute an irradiation process.

次に、造形が終了したかを判断し(ステップS6)、終了していないときは、ステップS2へ戻り、ステップS3、S4、S5を繰り返し実行し、焼結硬化層8aの上に焼結硬化層8bを積層する(図3(c)、(d)参照)。   Next, it is determined whether or not the shaping has been completed (step S6). If it has not been completed, the process returns to step S2, and steps S3, S4, and S5 are repeatedly executed to sinter harden on the sintered hardened layer 8a. The layer 8b is stacked (see FIGS. 3C and 3D).

こうして造形が終了するまでステップS2乃至S6を繰り返して、焼結層8a乃至8fを積層する(図3(e)参照)。このようにして、造形用プレート3の上に造形された三次元形状造形物8の一例を図4に示している。   Thus, steps S2 to S6 are repeated until the modeling is completed, and the sintered layers 8a to 8f are stacked (see FIG. 3E). FIG. 4 shows an example of the three-dimensional shaped object 8 that is formed on the modeling plate 3 in this way.

次に、光ビームLを走査させる経路データについて説明する。図5(a)は、三次元形状造形によって製造しようとする製品モデルの外観を、図5(b)は、製品モデルの水平方向でのスライス面の形状を示す。三次元形状造形物を製造するにあたっては、製品モデル81を設計した際の三次元CADデータに基づいて、製品モデル81を所定の間隔Δtで水平にスライスしたときの各層81a乃至81fのスライス面の断面データを作成し、この断面データを基にして粉末層21に照射する光ビームLの走査経路を決定する。決定した走査経路に従って光ビームLを粉末層21に走査させることにより、三次元形状造形物8を造形することができる。   Next, path data for scanning the light beam L will be described. FIG. 5A shows the appearance of the product model to be manufactured by three-dimensional shape modeling, and FIG. 5B shows the shape of the slice plane in the horizontal direction of the product model. In manufacturing a three-dimensional shaped object, based on the three-dimensional CAD data when the product model 81 is designed, the slice surface of each layer 81a to 81f when the product model 81 is horizontally sliced at a predetermined interval Δt. Cross-sectional data is created, and the scanning path of the light beam L that irradiates the powder layer 21 is determined based on the cross-sectional data. By scanning the powder layer 21 with the light beam L according to the determined scanning path, the three-dimensional shaped object 8 can be formed.

上述した方法により、三次元形状造形物の造形を行なうが、従来の製造方法では、造形後に造形用プレートに機械加工を行なう場合にも、機械加工を行なう領域に光ビーム照射を行なっており、そのため、造形用プレートが硬化し、造形後の機械加工が行ないにくくなる。造形後に、三次元形状造形物に機械加工を行なう動作の一例について説明する。図6(a)は、従来の製造方法によって、造形用プレートの上に造形された三次元形状造形物の断面を示す。この例では三次元形状造形物8は、エジェクタピン用の穴82を中央に形成されており、この穴82に繋がる穴を造形用プレート3に形成する。この造形用プレート3が三次元形状造形物8と接合している領域は、照射工程において三次元形状造形物8との密着性を高めるために、高エネルギーの光ビームが照射され、急熱急冷されて焼入組織となり硬化した硬化領域E1となっている。   According to the above-described method, modeling of a three-dimensional shaped object is performed, but in the conventional manufacturing method, even when machining is performed on the modeling plate after modeling, light beam irradiation is performed on the area to be machined, Therefore, the modeling plate is hardened and it is difficult to perform machining after the modeling. An example of an operation for machining a three-dimensional shaped object after modeling will be described. Fig.6 (a) shows the cross section of the three-dimensional shape molded article shape | molded on the plate for modeling by the conventional manufacturing method. In this example, the three-dimensional shaped article 8 has an ejector pin hole 82 formed in the center, and a hole connected to the hole 82 is formed in the modeling plate 3. The region where the modeling plate 3 is joined to the three-dimensional modeled object 8 is irradiated with a high-energy light beam in order to improve the adhesion to the three-dimensional modeled object 8 in the irradiation process, and is rapidly quenched. Thus, a hardened structure E1 is formed and hardened.

この三次元形状造形物8の造形用プレート3に穴開け加工を行なうときの断面を図6(b)に示す。造形用プレート3に三次元形状造形物8の穴82に繋がる穴開け加工をドリルFによって行なうときに、ドリルFの先端が造形用プレート3の硬化領域E1に達すると、硬化領域E1と他の領域とで硬度差があるために、ドリルFの刃先が欠損したり、ドリルシャンクが折れる虞がある。   FIG. 6B shows a cross section of the three-dimensional modeled article 8 when the modeling plate 3 is drilled. When drilling is performed on the modeling plate 3 with the drill F to connect to the holes 82 of the three-dimensional modeled article 8, when the tip of the drill F reaches the curing region E1 of the modeling plate 3, the curing region E1 and the other Since there is a hardness difference between the regions, the cutting edge of the drill F may be lost or the drill shank may be broken.

そこで、本実施形態では、造形後の穴開け加工を容易に行なえるようにするために、造形用プレート3の穴開け加工が予定されている領域の近傍に形成されている粉末層には、光ビーム照射を行なわない。図6(c)は、穴開け加工が予定されている領域の近傍の粉末層に光ビーム照射を行なわなかった三次元形状造形物の断面を示す。この図において、穴開け加工が予定されている箇所を一点鎖線Gで示す。穴開け加工が予定されている領域の近傍には三次元形状造形物8が造形されておらず、造形用プレート3も穴開け加工が予定されている領域の近傍は焼入れされた硬化領域E1になっていない。その三次元形状造形物8における造形後の穴開け加工時の断面を図6(d)に示す。穴開け加工される領域には、光ビームが照射されず、硬度差が生じていない。従って、造形用プレート3に穴開け加工を行なってもドリルFの刃先が欠損したり、ドリルシャンクが折れる虞が少なく、穴開け加工を容易に行なうことができる。また、光ビーム照射を行なわない領域は、三次元形状造形後に穴開け加工が行なわれる領域の近傍の粉末層だけでなく、例えば旋削や切断等の機械加工が行なわれる領域の近傍の粉末層としてもよい。   Therefore, in the present embodiment, in order to facilitate the drilling after modeling, the powder layer formed in the vicinity of the region where the drilling of the modeling plate 3 is scheduled is Do not perform light beam irradiation. FIG.6 (c) shows the cross section of the three-dimensional shaped molded object which did not perform light beam irradiation to the powder layer of the vicinity of the area | region where a punching process is planned. In this figure, a portion where a drilling process is scheduled is indicated by a one-dot chain line G. The three-dimensional shaped object 8 is not formed in the vicinity of the area where the drilling process is planned, and the area near the area where the modeling plate 3 is scheduled to be drilled is a hardened hardening area E1. is not. FIG. 6D shows a cross section of the three-dimensional model 8 at the time of drilling after modeling. The region to be drilled is not irradiated with a light beam, and no difference in hardness occurs. Therefore, even if the shaping plate 3 is drilled, there is little possibility that the cutting edge of the drill F is lost or the drill shank is broken, and the drilling can be easily performed. In addition, the region where the light beam irradiation is not performed is not only a powder layer in the vicinity of the region where drilling is performed after the three-dimensional shape modeling, but also as a powder layer in the vicinity of a region where machining such as turning or cutting is performed. Also good.

(第2の実施形態)
本発明の第2の実施形態に係る三次元形状造形物の製造方法について図面を参照して説明する。本実施形態における製造方法においては、第1の実施形態と異なり、造形後に造形用プレートの穴開け加工が予定されている領域の近傍に形成されている粉末層には、光ビームのエネルギーを小さくして照射を行い、低密度の焼結硬化層を形成する。図7(a)は、本実施形態における製造方法によって造形した三次元形状造形物の断面を示す。造形用プレート3と三次元形状造形物8との接合部のうち、造形後の穴開け加工が予定された領域の近傍は、低エネルギーの光ビームが照射されているので、硬度変化が小さい低硬化領域E2となっている。三次元形状造形物8も硬化領域E1に接合している領域は、高エネルギーの光ビームが照射されているので、高密度造形領域83aとなっているが、低硬化領域E2に接合している領域は、低密度造形領域83bとなっている。
(Second Embodiment)
The manufacturing method of the three-dimensional shape molded article which concerns on the 2nd Embodiment of this invention is demonstrated with reference to drawings. In the manufacturing method according to the present embodiment, unlike the first embodiment, the energy of the light beam is reduced in the powder layer formed in the vicinity of the region where the drilling of the modeling plate is scheduled after modeling. Then, irradiation is performed to form a low-density sintered hardened layer. Fig.7 (a) shows the cross section of the three-dimensional shaped molded object shape | molded by the manufacturing method in this embodiment. Of the joint between the modeling plate 3 and the three-dimensional modeled article 8, the vicinity of the area where the drilling process after modeling is planned is irradiated with a low-energy light beam, so the hardness change is small. It becomes the hardening area E2. Since the region where the three-dimensional shaped object 8 is also bonded to the cured region E1 is irradiated with a high-energy light beam, it is a high-density shaped region 83a, but is bonded to the low-cured region E2. The region is a low density modeling region 83b.

この光ビームを高エネルギーと低エネルギーで行なうときの、エネルギー条件と、造形物の密度と、造形用プレート3の硬化領域の硬度と、硬化領域の深さを表1に示す。   Table 1 shows the energy conditions, the density of the modeled object, the hardness of the cured region of the modeling plate 3, and the depth of the cured region when this light beam is performed with high energy and low energy.

Figure 0004943937
Figure 0004943937

エネルギー条件は、高エネルギー条件が20J/mmに対し低エネルギー条件は5J/mmで行なっている。その結果、低エネルギー条件では高エネルギー条件よりも造形物の密度は小さく、造形用プレート3の硬化領域の硬度は低く、硬化領域の深さは浅い。特に、硬化領域の硬度が低エネルギー条件では、HRC25乃至30であり、光ビームの照射が行なわれていない元の硬度のHRC20とあまり変わらない。このような条件で造形された三次元形状造形物に穴開け加工を行なうときの断面を図7(b)に示す。低硬化領域E2と、光ビームの照射が行なわれていない他の領域との硬度差が小さいので、ドリルFの刃先が欠損したり、ドリルシャンクが折れる虞が少なく、穴開け加工を容易に行なうことができる。 Energy conditions, low energy condition the high-energy conditions to 20 J / mm 2 is carried out at 5 J / mm 2. As a result, the density of the modeled object is lower in the low energy condition than in the high energy condition, the hardness of the cured region of the modeling plate 3 is low, and the depth of the cured region is shallow. In particular, when the hardness of the hardened region is low energy, the hardness is HRC 25 to 30, which is not much different from the original hardness HRC 20 not irradiated with the light beam. FIG. 7B shows a cross section of the three-dimensional modeled object that has been modeled under such conditions when drilling is performed. Since the difference in hardness between the low-curing region E2 and other regions that are not irradiated with the light beam is small, there is little possibility that the tip of the drill F will be lost or the drill shank will be broken, and drilling can be performed easily. be able to.

また、本実施形態における製造方法では、三次元形状造形物8の中で、強度が必要とされない箇所については、低エネルギー条件で光ビームの照射を行なっている。低エネルギー条件で照射を行なうことにより、製造コストを下げると共に、三次元形状造形物8の軽量化を図ることができる。   Moreover, in the manufacturing method in this embodiment, the light beam irradiation is performed on the low energy conditions about the location where intensity | strength is not required in the three-dimensional molded article 8. FIG. By irradiating under low energy conditions, the manufacturing cost can be reduced and the three-dimensional shaped article 8 can be reduced in weight.

次に、上記第2の実施形態における製造方法の変形例について図8を参照して説明する。図8は、本変形例の製造方法によって造形した三次元形状造形物の使用時の断面を示す。この三次元形状造形物8は、射出成形金型であり、中央にエジェクタピン用の穴82が形成されており、その穴にエジェクタピンHが貫通している。この製造方法では、第2の実施形態において、三次元形状造形物8が、射出成形金型であり、穴82がエジェクタピン用の穴である場合に、穴開け加工が予定されている領域の近傍の低密度造形領域83bを形成した後、低密度造形領域83bによって穴82と三次元形状造形物8の外部とを繋ぐ経路84を造形するステップを有している。この低密度造形領域83bは、低密度であるのでガスを通すことができる。   Next, a modification of the manufacturing method in the second embodiment will be described with reference to FIG. FIG. 8 shows a cross section during use of a three-dimensional shaped object formed by the manufacturing method of the present modification. This three-dimensional shaped article 8 is an injection mold, and an ejector pin hole 82 is formed at the center, and the ejector pin H passes through the hole. In this manufacturing method, in the second embodiment, when the three-dimensional shaped article 8 is an injection mold, and the hole 82 is a hole for an ejector pin, an area in which the drilling process is scheduled is performed. After forming the low density modeling region 83b in the vicinity, there is a step of modeling the path 84 that connects the hole 82 and the outside of the three-dimensional modeled article 8 by the low density modeling region 83b. Since the low density modeling region 83b has a low density, gas can pass therethrough.

この三次元形状造形物8の射出成形金型の使用時において、成形品の離型時のエジェクタピンH摺動時に、三次元形状造形物8の外部から経路84を通してガスを吹き込むことにより、エジェクタピンHの摺動性が向上して、離型がスムーズになり、成形サイクルタイムの短縮及び成形品質の向上を図ることができる。また、この経路84は、造形用プレート3に連続して成形せずに、造形用プレート3と離れた位置に成形してもよい。経路84の位置を自由に設計することができる。   When using the injection molding die of the three-dimensional shaped object 8, when ejecting the ejector pin H at the time of releasing the molded article, gas is blown from the outside of the three-dimensional shaped object 8 through the path 84 to thereby eject the ejector. The slidability of the pin H is improved, the mold release becomes smooth, the molding cycle time can be shortened, and the molding quality can be improved. Further, the path 84 may be formed at a position away from the modeling plate 3 without being continuously formed on the modeling plate 3. The position of the path 84 can be freely designed.

(第3の実施形態)
本発明の第3の実施形態に係る三次元形状造形物の製造方法について説明する。本実施形態における製造方法においては、第1の実施形態と造形用プレートの材質が異なっており、また、造形用プレートの穴開け加工が予定されている領域にも光ビームを照射する。造形用プレートのうち、少なくとも、三次元形状造形後に穴開け加工が予定されている領域は、光ビームの照射による硬度変化が起きにくい材料によって構成されている。
(Third embodiment)
A method for manufacturing a three-dimensional shaped object according to the third embodiment of the present invention will be described. In the manufacturing method according to the present embodiment, the material of the modeling plate is different from that of the first embodiment, and a light beam is also applied to a region where a drilling process of the modeling plate is scheduled. Of the plate for modeling, at least a region where drilling is scheduled after the three-dimensional shape modeling is made of a material that hardly undergoes a change in hardness due to light beam irradiation.

上述した光ビームの照射による硬度変化が起きにくい材料とは、硬度変化が起きにくければどんな材料でもよいわけではなく、特に、造形物が射出成形金型で、造形用プレートもその金型の一部として使用する場合、造形プレートそのものが高強度であるということに加え、造形物との密着性、溶接性及び機械特性や熱的特性が近いということが重要となる。特に、接合面は造形物と造形用プレートとが合金化された溶接組織となるため、造形物が鉄系ならば造形用プレートも鉄系とする等、同種の材料とすることが望ましい。そして、本実施形態の場合では、例えば、鋼材メーカーで予め熱処理を施したプレハードン鋼や、例えば、熱処理を行い硬度HRC40程度に調質されたJIS−SKD61鋼のような熱間工具鋼やJIS−SKH51鋼のような高速度工具鋼等のようなものが望ましい。   The material that does not easily change in hardness due to light beam irradiation described above is not limited to any material as long as the change in hardness is not likely to occur. In particular, the molded object is an injection mold, and the modeling plate is also a part of the mold. When used as a part, in addition to the modeling plate itself having high strength, it is important that the adhesion with the modeled object, weldability, mechanical characteristics, and thermal characteristics are close. In particular, since the joint surface is a welded structure in which the modeled object and the modeling plate are alloyed, if the modeled object is iron-based, it is desirable to use the same kind of material, for example, the modeling plate is also iron-based. In the case of this embodiment, for example, pre-hardened steel that has been heat-treated in advance by a steel manufacturer, or hot tool steel such as JIS-SKD61 steel that has been heat-treated and tempered to a hardness of about HRC 40, or JIS- A high speed tool steel such as SKH51 steel is desirable.

これらの材料は、予め熱処理が行なわれて硬化しているので、光ビームを照射されても硬度が少ししか変化しない。従って、造形用プレートの穴開け加工がされる領域内において、光ビームを照射された領域と照射されていない領域とで硬度差が小さいので、ドリルFの刃先が欠損したり、ドリルシャンクが折れる虞が少なく、造形後の穴開け加工を容易に行なうことができる。また、造形用プレートのうちで、光ビームの照射による硬度変化が起きにくい材料によって構成する領域は、造形後に穴開け加工が行なわれる領域だけでなく、例えば旋削や切断等の機械加工が行なわれる領域としてもよい。   Since these materials are cured by heat treatment in advance, their hardness changes only slightly even when irradiated with a light beam. Accordingly, the hardness difference between the region irradiated with the light beam and the region not irradiated is small in the region where the forming plate is drilled, so that the cutting edge of the drill F is lost or the drill shank is broken. There is little fear, and drilling after modeling can be easily performed. Further, in the modeling plate, an area formed of a material that hardly undergoes a change in hardness due to light beam irradiation is not limited to an area in which drilling is performed after modeling, for example, machining such as turning or cutting is performed. It may be an area.

また、造形用プレートの穴開け加工が予定されている領域への光ビームの照射は、エネルギーを小さくして行なってもよいし、照射を行なわなくてもよい。造形用プレート内の硬度差がさらに小さくなるので、穴開け加工を容易に行なうことができる。   In addition, the irradiation of the light beam to the region where the modeling plate is scheduled to be punched may be performed with reduced energy or may not be performed. Since the hardness difference in the modeling plate is further reduced, drilling can be easily performed.

なお、本発明は、上記各種実施形態の構成に限られず、発明の趣旨を変更しない範囲で種々の変形が可能である。例えば、金属粉末の組成や造形用プレートの材質も、上記各種実施形態の構成に限られない。   In addition, this invention is not restricted to the structure of the said various embodiment, A various deformation | transformation is possible in the range which does not change the meaning of invention. For example, the composition of the metal powder and the material of the modeling plate are not limited to the configurations of the various embodiments.

本発明の第1の実施形態に係る製造方法に用いる金属光造形加工機の斜視図。The perspective view of the metal stereolithography processing machine used for the manufacturing method which concerns on the 1st Embodiment of this invention. 同製造方法のフロー図。The flowchart of the manufacturing method. (a)乃至(e)は、同製造方法を時系列に説明する図。(A) thru | or (e) is a figure explaining the manufacturing method in time series. 同製造方法によって造形された三次元形状造形物の斜視図。The perspective view of the three-dimensional shape modeling thing modeled by the manufacturing method. (a)は同製造方法によって製造しようとする製品モデルの斜視図、(b)は製品モデルの水平方向のスライス面を示す図。(A) is a perspective view of a product model to be manufactured by the manufacturing method, (b) is a diagram showing a horizontal slice surface of the product model. (a)は従来の製造方法による三次元形状造形物の断面図、(b)は同製造方法による三次元形状造形物に穴開け加工を行なうときの断面図、(c)は第1の実施形態に係る製造方法による三次元形状造形物の断面図、(d)は同製造方法による三次元形状造形物に穴開け加工を行なうときの断面図。(A) is a cross-sectional view of a three-dimensional shaped object by a conventional manufacturing method, (b) is a cross-sectional view when drilling a three-dimensional shaped object by the same manufacturing method, and (c) is a first embodiment. Sectional drawing of the three-dimensional shape molded article by the manufacturing method which concerns on a form, (d) is sectional drawing when performing a punching process to the three-dimensional shape molded article by the manufacturing method. (a)は本発明の第2の実施形態に係る製造方法による三次元形状造形物の断面図、(b)は同製造方法による三次元形状造形物に穴開け加工を行なうときの断面図。(A) is sectional drawing of the three-dimensional shape molded article by the manufacturing method which concerns on the 2nd Embodiment of this invention, (b) is sectional drawing when drilling to the three-dimensional shape molded article by the manufacturing method. 第2の実施形態の変形例に係る製造方法による三次元形状造形物の使用時の断面図。Sectional drawing at the time of use of the three-dimensional shape molded article by the manufacturing method which concerns on the modification of 2nd Embodiment.

符号の説明Explanation of symbols

2 金属粉末
21 粉末層
3 造形用プレート
8 三次元形状造形物
8a乃至8f 焼結硬化層
84 経路
L 光ビーム
H エジェクタピン
2 Metal powder 21 Powder layer 3 Modeling plate 8 Three-dimensional modeled object 8a to 8f Sintered hardened layer 84 Path L Light beam H Ejector pin

Claims (3)

三次元形状造形物が造形される造形用プレートに金属粉末を供給して粉末層を形成する粉末形成工程と、前記粉末層に光ビームを照射して該粉末層を溶融させ焼結硬化層を形成する照射工程とを備え、前記粉末層形成工程とを照射工程とを繰り返すことにより前記焼結硬化層を積層して三次元形状物を造形する三次元形状造形物の製造方法において、
前記照射工程時に、前記造形用プレートのうち三次元形状造形後に所定の機械加工が予定されている領域近傍に形成されている粉末層に対して照射する光ビームのエネルギーを、機械加工が予定されていない領域の粉末層に対して照射する光ビームよりも小さくして低密度の焼結硬化層を形成することを特徴とする三次元形状造形物の製造方法。
A powder forming step of forming a powder layer by supplying metal powder to a modeling plate on which a three-dimensional shaped object is modeled, and irradiating the powder layer with a light beam to melt the powder layer to form a sintered hardened layer In the manufacturing method of a three-dimensional shaped object, comprising the irradiation step to form, and laminating the sintered hardened layer by repeating the irradiation step and the powder layer forming step, to form a three-dimensional shape object,
During the irradiation step, machining is scheduled for the energy of the light beam to be irradiated to the powder layer formed in the vicinity of the region where predetermined machining is scheduled after the three-dimensional shape modeling of the modeling plate. A method for producing a three-dimensional shaped article characterized by forming a low-density sintered hardened layer with a smaller density than the light beam applied to the powder layer in the unoccupied region.
前記造形用プレートのうち、少なくとも、三次元形状造形後に所定の機械加工が予定されている領域は、予め熱処理を行うことにより硬化され、光ビームの照射による硬度変化が起きにくい材料によって構成されていることを特徴とする請求項1に記載の三次元形状造形物の製造方法。 Of the plate for modeling, at least a region where predetermined machining is scheduled after three-dimensional shape modeling is made of a material that is hardened by heat treatment in advance and hardly changes in hardness due to light beam irradiation. The method for producing a three-dimensional shaped object according to claim 1 , wherein: 前記三次元形状造形物が射出成型金型であり、
前記所定の機械加工が金型のエジェクタピン用の穴加工である場合、射出成形における離型時のエジェクタピン摺動時に前記加工された穴にガスを吹き込むための経路を三次元形状造形物に造形するステップを前記射出工程に有し、
前記経路の造形は、前記射出工程において光ビームの照射エネルギーを小さくして低密度の焼結硬化層を形成することにより行われることを特徴とする請求項1に記載の三次元形状造形物の製造方法。
The three-dimensional shaped object is an injection mold,
If the predetermined machining is a hole for an ejector pin of a mold, a path for blowing gas into the processed hole when the ejector pin slides at the time of mold release in injection molding is formed in a three-dimensional shaped object. Having the step of shaping in the injection process,
Shaping of the path, the three-dimensionally shaped object according to claim 1, characterized in that it is performed by by reducing the irradiation energy of the light beam in said injection step to form a sintered cured layer of low density Production method.
JP2007126138A 2007-05-10 2007-05-10 Manufacturing method of three-dimensional shaped object Active JP4943937B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007126138A JP4943937B2 (en) 2007-05-10 2007-05-10 Manufacturing method of three-dimensional shaped object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007126138A JP4943937B2 (en) 2007-05-10 2007-05-10 Manufacturing method of three-dimensional shaped object

Publications (2)

Publication Number Publication Date
JP2008280582A JP2008280582A (en) 2008-11-20
JP4943937B2 true JP4943937B2 (en) 2012-05-30

Family

ID=40141651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007126138A Active JP4943937B2 (en) 2007-05-10 2007-05-10 Manufacturing method of three-dimensional shaped object

Country Status (1)

Country Link
JP (1) JP4943937B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2402097A4 (en) * 2009-02-24 2014-04-09 Panasonic Corp Process for producing three-dimensional shape and three-dimensional shape obtained thereby
CN102248164A (en) * 2011-05-23 2011-11-23 丹阳惠达模具材料科技有限公司 Method for remanufacturing die with gradient function by repairing micro zone through laser
JP5745154B1 (en) * 2014-11-10 2015-07-08 株式会社ブリヂストン Manufacturing method of three-dimensional object and tire mold

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3856654B2 (en) * 2001-02-23 2006-12-13 松下電工株式会社 Manufacturing method of three-dimensional shaped object

Also Published As

Publication number Publication date
JP2008280582A (en) 2008-11-20

Similar Documents

Publication Publication Date Title
KR101666102B1 (en) Method for manufacturing three-dimensional molding
JP5602913B2 (en) Manufacturing method of three-dimensional shaped object and three-dimensional shaped object obtained therefrom
JP5061062B2 (en) Manufacturing method of three-dimensional shaped object
JP5584019B2 (en) Manufacturing method of three-dimensional shaped object and three-dimensional shaped object obtained therefrom
JP5579839B2 (en) Metal powder for powder sintering lamination, manufacturing method of three-dimensional shaped article using the same, and three-dimensional shaped article obtained
JP5337545B2 (en) Manufacturing method of three-dimensional shaped object and three-dimensional shaped object obtained therefrom
JP5213006B2 (en) Manufacturing method of three-dimensional shaped object
KR101648442B1 (en) Method of manufacturing three-dimensional sculpture
KR101517652B1 (en) Method for producing three-dimensional formed shapes, and three-dimensional formed shapes obtained thereby
WO2010098479A1 (en) Process for producing three-dimensional shape and three-dimensional shape obtained thereby
US10821663B2 (en) Method for manufacturing three-dimensional shaped object
JP2008184622A (en) Method for producing three-dimensional molding
CN102985199A (en) Method for producing three-dimensionally shaped structure, three-dimensionally shaped structure obtained by same, and method for producing molded article
US20180200795A1 (en) Method for manufacturing three-dimensional shaped object and three-dimensional shaped object
JP4943937B2 (en) Manufacturing method of three-dimensional shaped object
JP4867790B2 (en) Manufacturing method of three-dimensional shaped object
JP2008184623A (en) Method for producing three-dimensional molding, and material
JP4888220B2 (en) Manufacturing method of three-dimensional shaped object
JP6643643B2 (en) Manufacturing method of three-dimensional shaped object
WO2017221712A1 (en) Method for manufacturing three-dimensionally shaped object
JP5016300B2 (en) Manufacturing method of three-dimensional shaped object
JP6736611B2 (en) Additive manufacturing method and related parts
US10898953B2 (en) Method for manufacturing three-dimensional shaped object
JP2011026675A (en) Method for producing three-dimensionally shaped article and three-dimensionally shaped article obtained by the same
Humphreys et al. Comparison of laser-based rapid prototyping techniques

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111219

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120301

R150 Certificate of patent or registration of utility model

Ref document number: 4943937

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3