JP4888220B2 - Manufacturing method of three-dimensional shaped object - Google Patents

Manufacturing method of three-dimensional shaped object Download PDF

Info

Publication number
JP4888220B2
JP4888220B2 JP2007126136A JP2007126136A JP4888220B2 JP 4888220 B2 JP4888220 B2 JP 4888220B2 JP 2007126136 A JP2007126136 A JP 2007126136A JP 2007126136 A JP2007126136 A JP 2007126136A JP 4888220 B2 JP4888220 B2 JP 4888220B2
Authority
JP
Japan
Prior art keywords
region
modeling
manufacturing
dimensional shaped
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007126136A
Other languages
Japanese (ja)
Other versions
JP2008280581A (en
Inventor
勲 不破
諭 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Corp
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Works Ltd filed Critical Panasonic Corp
Priority to JP2007126136A priority Critical patent/JP4888220B2/en
Publication of JP2008280581A publication Critical patent/JP2008280581A/en
Application granted granted Critical
Publication of JP4888220B2 publication Critical patent/JP4888220B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、金属粉末に光ビームの照射を行なう三次元形状造形物の製造方法に関する。   The present invention relates to a method for manufacturing a three-dimensional shaped object that irradiates a metal powder with a light beam.

従来から、金属粉末で形成した粉末層に光ビームを照射し、粉末層を溶融して焼結硬化層を形成し、その焼結硬化層の上に新たな粉末層を形成して光ビームを照射し、焼結硬化層を形成することを繰り返して、三次元形状造形物を製造する方法が知られている(例えば、特許文献1参照)。   Conventionally, a light beam is irradiated onto a powder layer formed of metal powder, the powder layer is melted to form a sintered hardened layer, a new powder layer is formed on the sintered hardened layer, and the light beam is irradiated. A method of manufacturing a three-dimensional shaped object by repeating irradiation and forming a sintered hardened layer is known (for example, see Patent Document 1).

このように光ビームの照射とその積層によって金属粉末から三次元形状造形物を得る製造方法は、迅速に複雑な三次元形状造形物を得ることができる。   Thus, the manufacturing method for obtaining a three-dimensional shaped object from metal powder by irradiation with a light beam and its lamination can quickly obtain a complicated three-dimensional shaped object.

しかしながら、この製造方法によって得られた三次元形状造形物を、例えばプラスチック金型として使用する場合には、造形完了後にエジェクタピン用の貫通穴を加工する等、各種機械加工を加える。この製造方法では、基台となる造形用プレートの上に金属粉末から成る粉末層を敷き、その粉末層に光ビームを照射して焼結硬化層を形成し、その焼結硬化層を積層して三次元形状造形物を造形するが、造形プレートと三次元形状造形物との密着性を高めるために、1層目の造形は高エネルギーの光ビーム条件で行う。高エネルギーの光ビームを受けると、鋼材からなる造形プレート表面は、光ビーム照射を受けた箇所の近傍が急熱急冷によって焼入れられた組織となって硬化し、造形プレート内で硬度差が生じる。そのため、造形完了後に高硬度化された箇所にドリルによる穴開け加工や旋盤による旋削加工等を行なうと、ドリル刃先の欠損やドリルシャンクの折れやバイト刃先の欠損等が発生し易く、機械加工が困難である。
特表平1−502890号公報
However, when the three-dimensional modeled object obtained by this manufacturing method is used as, for example, a plastic mold, various machining processes such as processing a through hole for an ejector pin are added after the modeling is completed. In this manufacturing method, a powder layer made of a metal powder is laid on a modeling plate as a base, a sintered hardened layer is formed by irradiating the powder layer with a light beam, and the sintered hardened layer is laminated. In order to improve the adhesion between the modeling plate and the three-dimensional modeled object, the first layer is modeled under a high-energy light beam condition. When receiving a high energy light beam, the surface of the modeling plate made of a steel material is hardened as a structure quenched by rapid heating and quenching in the vicinity of the portion irradiated with the light beam, resulting in a hardness difference in the modeling plate. Therefore, if drilling or turning with a lathe is performed on a hardened part after modeling is complete, drill tip breakage, drill shank breakage, bite tip breakage, etc. are likely to occur. Have difficulty.
JP-T-1-502890

本発明は、上記従来の問題を解決するためになされたものであり、三次元形状造形物の造形後に機械加工を容易に行なうことができる三次元形状造形物の製造方法を提供することを目的とする。   The present invention has been made to solve the above-described conventional problems, and an object of the present invention is to provide a method for manufacturing a three-dimensional shaped object that can be easily machined after the three-dimensional shaped object is formed. And

上記目的を達成するために請求項1の発明は、三次元形状造形物が造形される造形用プレートに金属粉末を供給して粉末層を形成する粉末層形成工程と、前記粉末層に光ビームを照射して該粉末層を溶融させ焼結硬化層を形成する照射工程とを備え、前記粉末層形成工程と照射工程とを繰り返すことにより前記焼結硬化層を積層して三次元形状造形物を造形する三次元形状造形物の製造方法において、前記照射工程の実施によって硬化されるであろう前記造形用プレートの硬化層に相当する第1の領域のうち、三次元形状造形後に所定の機械加工が予定されている領域に相当する第2の領域を、三次元形状造形前に予め除去加工しておく除去加工ステップと、三次元形状造形後に、前記造形用プレートにおける前記第2の領域の反対側から前記除去加工ステップで除去した領域に達するまで、所定の機械加工を行なう機械加工ステップと、を含むものである。
In order to achieve the above object, the invention of claim 1 includes a powder layer forming step of forming a powder layer by supplying metal powder to a modeling plate on which a three-dimensional shaped object is modeled, and a light beam on the powder layer. Irradiation step of melting the powder layer to form a sintered hardened layer, and repeating the powder layer forming step and the irradiation step to laminate the sintered hardened layer to form a three-dimensional shaped object. In the manufacturing method of a three-dimensional shaped object for modeling a predetermined machine after three-dimensional shape modeling in a first region corresponding to a cured layer of the modeling plate that will be cured by performing the irradiation step A removal process step in which a second region corresponding to a region scheduled for processing is removed in advance before the three-dimensional shape modeling, and after the three-dimensional shape modeling, the second region in the modeling plate Front from the other side Until a removal by removing processing step regions, it is intended to include, and machining steps of performing a predetermined machining.

請求項2の発明は、請求項1に記載の三次元形状造形物の製造方法において、前記除去加工ステップは、前記第2の領域を除去した後に、さらに前記第1の領域のエッジ部に対して面取り加工するステップを含むものである。   According to a second aspect of the present invention, in the method for manufacturing a three-dimensional shaped article according to the first aspect, after the removal processing step removes the second region, the edge portion of the first region is further removed. And chamfering.

請求項1の発明によれば、造形用プレートにおいて硬化する第1の領域のうち、三次元形状造形後に機械加工される第2の領域を造形前に予め除去するので、造形後に造形用プレートの機械加工が行なわれる領域に硬化した箇所が無く、従って、造形後の機械加工を容易に行なうことができる。   According to the first aspect of the present invention, the second region that is machined after the three-dimensional shape modeling is removed in advance before modeling out of the first region that is cured in the modeling plate. There is no cured portion in the area where machining is performed, and therefore machining after shaping can be performed easily.

請求項2の発明によれば、第1の領域のエッジ部が除去されるので、光ビーム照射時の熱が逃げ易く造形用プレートが異常加熱しなくなり、造形用プレートにクラックが発生しない。   According to the invention of claim 2, since the edge portion of the first region is removed, the heat at the time of irradiation with the light beam easily escapes, and the modeling plate is not abnormally heated, and the modeling plate is not cracked.

(第1の実施形態)
本発明の第1の実施形態に係る三次元形状造形物の製造方法について図面を参照して説明する。図1は、同製造方法に用いられる金属光造形加工機の構成を示す。金属光造形加工機1は、金属粉末2の粉末層21が敷かれる造形用プレート3と、造形用プレート3を保持し、上下に昇降する造形用テーブル31と、粉末層21の厚さの基準となる基準テーブル32と、金属粉末2を供給する供給槽4と、供給槽4の金属粉末2を上昇させる材料用テーブル41と、粉末層21を形成するスキージ5と、光ビームLを発するビーム発信器6と、光ビームLを集光する集光レンズ61と、光ビームLを粉末層21の上にスキャニングするガルバノミラー62と、を備えている。
(First embodiment)
A method for manufacturing a three-dimensional shaped object according to the first embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows the configuration of a metal stereolithography machine used in the manufacturing method. The metal stereolithography machine 1 includes a modeling plate 3 on which a powder layer 21 of a metal powder 2 is laid, a modeling table 31 that holds the modeling plate 3 and moves up and down, and a reference for the thickness of the powder layer 21. The reference table 32, the supply tank 4 for supplying the metal powder 2, the material table 41 for raising the metal powder 2 in the supply tank 4, the squeegee 5 for forming the powder layer 21, and the beam for emitting the light beam L A transmitter 6, a condensing lens 61 that condenses the light beam L, and a galvanometer mirror 62 that scans the light beam L onto the powder layer 21 are provided.

金属粉末2の組成は、例えば、クロムモリブデン鋼(JIS−SCM440)粉末、ニッケル(Ni)粉末、銅マンガン合金(CuMn)粉末、及び黒鉛(C)粉末であり、配合割合は、例えば、70重量%SCM440、20重量%Ni、10重量%CuMnの粉末に黒鉛(C)粉末を0.3重量%加えている。造形用プレート3の材質は、例えば、S50C鋼であり、硬さはHRC20である。スキージ5は、方向Aに移動して材料用テーブル41上の金属粉末2を造形用プレート3上に供給する。ビーム発信器6は、例えば、炭酸ガスレーザやファイバーレーザの発信器である。   The composition of the metal powder 2 is, for example, chromium molybdenum steel (JIS-SCM440) powder, nickel (Ni) powder, copper manganese alloy (CuMn) powder, and graphite (C) powder, and the blending ratio is, for example, 70 wt. 0.3% by weight of graphite (C) powder is added to the powder of% SCM440, 20% by weight Ni, and 10% by weight CuMn. The material of the modeling plate 3 is, for example, S50C steel, and the hardness is HRC20. The squeegee 5 moves in the direction A and supplies the metal powder 2 on the material table 41 onto the modeling plate 3. The beam transmitter 6 is, for example, a carbon dioxide laser or fiber laser transmitter.

図2は、同製造方法のフローを、図3は、同製造方法の動作を示す。最初に、造形用プレート3中で光ビームが照射される箇所の一部を除去する(ステップS1)。この除去する部分は、後の照射工程において光ビームが照射されて硬化されるであろう造形用プレート3の硬化層の領域の内で、三次元形状造形後に所定の機械加工が予定されている領域に相当する領域である。このステップS1は除去工程を構成する。この除去工程の詳細は後述する。除去工程の次に、造形用プレート3を造形用テーブル31の上に載置する(ステップS2)。次に、造形用プレート3の上面と基準テーブル32の上面との段差が長さΔtになるように、造形用テーブル31を下降させる(ステップS3)。次に、スキージ5によって材料用テーブル41上の金属粉末2を造形用プレート3上に供給する。スキージ5は、基準テーブル32の上面と同じ高さで水平方向に移動し、造形用プレート3の上に厚みΔtの粉末層21を形成する(ステップS4)(図3(a)参照)。このステップS3及びS4は粉末層形成工程を構成する。   FIG. 2 shows a flow of the manufacturing method, and FIG. 3 shows an operation of the manufacturing method. First, a part of the portion irradiated with the light beam in the modeling plate 3 is removed (step S1). The part to be removed is scheduled to be subjected to predetermined machining after three-dimensional shape modeling within the region of the cured layer of the modeling plate 3 that will be cured by irradiation with a light beam in a later irradiation step. This is an area corresponding to the area. This step S1 constitutes a removal process. Details of this removal step will be described later. Following the removing step, the modeling plate 3 is placed on the modeling table 31 (step S2). Next, the modeling table 31 is lowered so that the level difference between the upper surface of the modeling plate 3 and the upper surface of the reference table 32 becomes the length Δt (step S3). Next, the metal powder 2 on the material table 41 is supplied onto the modeling plate 3 by the squeegee 5. The squeegee 5 moves in the horizontal direction at the same height as the upper surface of the reference table 32, and forms a powder layer 21 having a thickness Δt on the modeling plate 3 (step S4) (see FIG. 3A). Steps S3 and S4 constitute a powder layer forming process.

次に、集光レンズ61によって集光した光ビームLをガルバノミラー62によって任意の位置に走査させ(ステップS5)、粉末層21を溶融し造形用プレート3と一体化した厚みΔtの焼結硬化層8aを形成する(ステップS6)(図3(b)参照)。このステップS5及びS6は照射工程を構成する。   Next, the light beam L condensed by the condenser lens 61 is scanned to an arbitrary position by the galvanometer mirror 62 (step S5), and the powder layer 21 is melted and integrated with the modeling plate 3 to be sintered and cured with a thickness Δt. The layer 8a is formed (step S6) (see FIG. 3B). Steps S5 and S6 constitute an irradiation process.

次に、造形が終了したかを判断し(ステップS7)、終了していないときは、ステップS3へ戻り、ステップS4、S5、S6を繰り返し実行し、焼結硬化層8aの上に焼結硬化層8bを積層する(図3(c)、(d)参照)。   Next, it is determined whether or not the shaping has been completed (step S7). If it has not been completed, the process returns to step S3, and steps S4, S5, and S6 are repeatedly executed to sinter harden on the sintered hardened layer 8a. The layer 8b is stacked (see FIGS. 3C and 3D).

こうして造形が終了するまでステップS3乃至S7を繰り返して、焼結硬化層8a乃至8fを積層する(図3(e)参照)。このようにして、造形用プレート3の上に造形された三次元形状造形物8の一例を図4に示している。   Steps S3 to S7 are repeated until the modeling is completed in this manner, thereby stacking the sintered hardened layers 8a to 8f (see FIG. 3E). FIG. 4 shows an example of the three-dimensional shaped object 8 that is formed on the modeling plate 3 in this way.

次に、光ビームLを走査させる経路データについて説明する。図5(a)は、三次元形状造形によって製造しようとする製品モデルの外観を、図5(b)は、製品モデルの水平方向でのスライス面の形状を示す。三次元形状造形物を製造するにあたっては、製品モデル81を設計した際の三次元CADデータに基づいて、製品モデル81を所定の間隔Δtで水平にスライスしたときの各層81a乃至81fのスライス面の断面データを作成し、この断面データを基にして粉末層21に照射する光ビームLの走査経路を決定する。決定した走査経路に従って光ビームLを粉末層21に走査させることにより、三次元形状造形物8を造形することができる。   Next, path data for scanning the light beam L will be described. FIG. 5A shows the appearance of the product model to be manufactured by three-dimensional shape modeling, and FIG. 5B shows the shape of the slice plane in the horizontal direction of the product model. In manufacturing a three-dimensional shaped object, based on the three-dimensional CAD data when the product model 81 is designed, the slice surface of each layer 81a to 81f when the product model 81 is horizontally sliced at a predetermined interval Δt. Cross-sectional data is created, and the scanning path of the light beam L that irradiates the powder layer 21 is determined based on the cross-sectional data. By scanning the powder layer 21 with the light beam L according to the determined scanning path, the three-dimensional shaped object 8 can be formed.

次に、本実施形態における除去工程について説明する前に、除去工程を有さない従来の製造方法によって造形した三次元形状造形物に機械加工を行なう動作の一例について説明する。図6(a)は、造形用プレート3の上に造形された三次元形状造形物の断面を示す。この例では三次元形状造形物8は、エジェクタピン用の穴82を中央に形成されており、この穴82に繋がる穴を造形用プレート3に形成する。造形用プレート3が三次元形状造形物8と接合している領域は、照射工程において三次元形状造形物8との密着性を高めるために、高エネルギーの光ビームLが照射され、急熱急冷されて焼入組織となり硬化した領域となっている。この領域を第1の領域E1とする。この第1の領域E1の内で、三次元形状造形後に穴開け加工が予定されている領域に相当する領域を第2の領域E2とする。   Next, before explaining the removal process in the present embodiment, an example of an operation for performing machining on a three-dimensionally shaped object formed by a conventional manufacturing method that does not have a removal process will be described. FIG. 6A shows a cross section of a three-dimensional shaped object that is formed on the modeling plate 3. In this example, the three-dimensional shaped article 8 has an ejector pin hole 82 formed in the center, and a hole connected to the hole 82 is formed in the modeling plate 3. The region where the modeling plate 3 is joined to the three-dimensional modeled object 8 is irradiated with a high-energy light beam L in order to improve the adhesion to the three-dimensional modeled object 8 in the irradiation process, and is rapidly quenched. It becomes a hardened structure and is a hardened region. This area is referred to as a first area E1. Within this first region E1, a region corresponding to a region where drilling is scheduled after the three-dimensional shape formation is defined as a second region E2.

この三次元形状造形物8の造形用プレート3に穴開け加工を行なうときの断面を図6(b)に示す。造形用プレート3に三次元形状造形物8の穴82に繋がる穴開け加工をドリルFによって行なうときに、ドリルFの先端が造形用プレート3の第2の領域E2に達すると、第2の領域E2と他の領域とで硬度差があるために、ドリルFの刃先が欠損したり、ドリルシャンクが折れる虞がある。   FIG. 6B shows a cross section of the three-dimensional modeled article 8 when the modeling plate 3 is drilled. When the drill F is used to drill a hole in the modeling plate 3 that is connected to the hole 82 of the three-dimensional modeled article 8, the second area is reached when the tip of the drill F reaches the second area E <b> 2 of the modeling plate 3. Since there is a difference in hardness between E2 and other regions, the cutting edge of the drill F may be lost or the drill shank may be broken.

そこで、本実施形態では、三次元形状造形後の穴開け加工の機械加工を容易に行なえるようにするために、第2の領域E2を造形前に予め除去する。本実施形態における除去工程によって第2の領域E2を除去した造形用プレート3の断面を、図6(c)に示す。除去は、例えば、切削加工によって行なう。図6(d)は、第2の領域E2を除去された造形用プレート3を用いた三次元形状造形物8において、造形後に造形用プレート3に穴開け加工を行なうときの断面を示す。この図において、穴開け加工が行なわれる領域を一点鎖線Gで示す。造形用プレート3は、第2の領域E2が除去されており、造形後に穴開け加工を行なう領域には硬化した箇所が無い。従って、造形用プレート3に穴開け加工を行なっても、ドリルFの刃先が硬化した部分に当たることがなく、刃先が欠損したり、ドリルシャンクが折れる虞が少ないので、穴開け加工を容易に行なうことができる。このように除去される第2の領域E2は、三次元形状造形後に穴開け加工が行なわれる領域だけでなく、例えば旋削や切断等の機械加工が行なわれる領域としてもよい。   Therefore, in the present embodiment, the second region E2 is removed in advance before modeling in order to facilitate the drilling process after the three-dimensional shape modeling. FIG. 6C shows a cross section of the modeling plate 3 from which the second region E2 has been removed by the removing step in the present embodiment. The removal is performed by cutting, for example. FIG. 6D shows a cross section of the three-dimensional shaped article 8 using the modeling plate 3 from which the second region E2 has been removed when the modeling plate 3 is punched after modeling. In this figure, the region where the drilling process is performed is indicated by a one-dot chain line G. In the modeling plate 3, the second region E2 is removed, and there is no hardened portion in the region where the drilling process is performed after the modeling. Accordingly, even if the hole forming process is performed on the modeling plate 3, the cutting edge of the drill F does not hit the hardened portion, and the cutting edge is less likely to break or the drill shank is broken. be able to. The second region E2 removed in this way is not limited to a region where drilling is performed after the three-dimensional shape modeling, but may be a region where machining such as turning or cutting is performed.

(第2の実施形態)
本発明の第2の実施形態に係る三次元形状造形物の製造方法について説明する。本実施形態に係る製造方法においては、第1の実施形態の製造方法における第2の領域E2を除去した後に、除去した領域の周囲の面取りを行なう(図6(c)参照)。図7(a)は、
第1の実施形態の製造方法により製造した三次元形状造形物の断面を示す。第2の領域E2を除去した周囲の造形用プレート3のエッジ部E3は、エッジ部の先端が直角形状に突出しているので、光ビーム照射時の熱が逃げ難いために異常加熱し、金属組織の変化により靭性が低下してクラックが発生し易い。そこで、本実施形態においては、図7(b)に示すように、第2の領域E2の除去の後に、周囲のエッジ部E3の面取り加工を行なう。エッジ部E3が面取り加工され、光ビーム照射時に異常加熱する箇所が無くなる。そして、第2の領域E2を除去した周囲は、突出した領域がなく、光ビーム照射時の熱が逃げ易く異常加熱しなくなり、従って、金属組織の変化による靭性低下が生じずクラックが発生し難くなる。
(Second Embodiment)
A method for manufacturing a three-dimensional shaped object according to the second embodiment of the present invention will be described. In the manufacturing method according to the present embodiment, after removing the second region E2 in the manufacturing method of the first embodiment, chamfering around the removed region is performed (see FIG. 6C). FIG. 7 (a)
The cross section of the three-dimensional shape molded article manufactured by the manufacturing method of 1st Embodiment is shown. The edge portion E3 of the surrounding modeling plate 3 from which the second region E2 has been removed has a tip that protrudes in a right-angled shape. Due to the change in toughness, the toughness is lowered and cracks are likely to occur. Therefore, in the present embodiment, as shown in FIG. 7B, after the second region E2 is removed, the peripheral edge portion E3 is chamfered. The edge portion E3 is chamfered, and there is no portion that is abnormally heated when the light beam is irradiated. The periphery where the second region E2 is removed does not have a protruding region, and heat at the time of irradiation with the light beam easily escapes and does not abnormally heat. Therefore, the toughness is not lowered due to the change of the metal structure, and cracks are hardly generated. Become.

なお、本発明は、上記各種実施形態の構成に限られず、発明の趣旨を変更しない範囲で種々の変形が可能である。例えば、第2の領域E2の除去は、エッチング加工によって行なってもよい。また、金属粉末の組成や造形用プレートの材質も、上記各種実施形態の構成に限られない。   In addition, this invention is not restricted to the structure of the said various embodiment, A various deformation | transformation is possible in the range which does not change the meaning of invention. For example, the removal of the second region E2 may be performed by etching. Further, the composition of the metal powder and the material of the modeling plate are not limited to the configurations of the various embodiments.

本発明の第1の実施形態に係る製造方法に用いる金属光造形加工機の斜視図。The perspective view of the metal stereolithography processing machine used for the manufacturing method which concerns on the 1st Embodiment of this invention. 同製造方法のフロー図。The flowchart of the manufacturing method. (a)乃至(e)は、同製造方法を時系列に説明する図。(A) thru | or (e) is a figure explaining the manufacturing method in time series. 同製造方法によって造形された三次元形状造形物の斜視図。The perspective view of the three-dimensional shape modeling thing modeled by the manufacturing method. (a)は同製造方法によって製造しようとする製品モデルの斜視図、(b)は製品モデルの水平方向のスライス面を示す図。(A) is a perspective view of a product model to be manufactured by the manufacturing method, (b) is a diagram showing a horizontal slice surface of the product model. (a)は従来の製造方法による三次元形状造形物の断面図、(b)は同製造方法による三次元形状造形物に穴開け加工を行なうときの断面図、(c)は第1の実施形態に係る製造方法における造形用プレートの断面図、(d)は同製造方法による三次元形状造形物の断面図。(A) is a cross-sectional view of a three-dimensional shaped object by a conventional manufacturing method, (b) is a cross-sectional view when drilling a three-dimensional shaped object by the same manufacturing method, and (c) is a first embodiment. Sectional drawing of the plate for modeling in the manufacturing method which concerns on a form, (d) is sectional drawing of the three-dimensional shaped molded object by the manufacturing method. (a)は第1の実施形態に係る製造方法による三次元形状造形物の断面図、(b)は第2の実施形態に係る製造方法における造形用プレートの断面図。(A) is sectional drawing of the three-dimensional molded object by the manufacturing method which concerns on 1st Embodiment, (b) is sectional drawing of the plate for modeling in the manufacturing method which concerns on 2nd Embodiment.

符号の説明Explanation of symbols

2 金属粉末
21 粉末層
3 造形用プレート
8 三次元形状造形物
8a乃至8f 焼結硬化層
E1 第1の領域
E2 第2の領域
E3 エッジ部
L 光ビーム
2 Metal powder 21 Powder layer 3 Modeling plate 8 Three-dimensional modeled object 8a to 8f Sintered hardened layer E1 1st area | region E2 2nd area | region E3 Edge part L Light beam

Claims (2)

三次元形状造形物が造形される造形用プレートに金属粉末を供給して粉末層を形成する粉末層形成工程と、前記粉末層に光ビームを照射して該粉末層を溶融させ焼結硬化層を形成する照射工程とを備え、前記粉末層形成工程と照射工程とを繰り返すことにより前記焼結硬化層を積層して三次元形状造形物を造形する三次元形状造形物の製造方法において、
前記照射工程の実施によって硬化されるであろう前記造形用プレートの硬化層に相当する第1の領域のうち、三次元形状造形後に所定の機械加工が予定されている領域に相当する第2の領域を、三次元形状造形前に予め除去加工しておく除去加工ステップと、
三次元形状造形後に、前記造形用プレートにおける前記第2の領域の反対側から前記除去加工ステップで除去した領域に達するまで、所定の機械加工を行なう機械加工ステップと、を含むことを特徴とする三次元形状造形物の製造方法。
A powder layer forming step of forming a powder layer by supplying metal powder to a modeling plate on which a three-dimensional shaped object is formed, and a sintered hardened layer by irradiating the powder layer with a light beam to melt the powder layer In the manufacturing method of a three-dimensional shaped article, the three-dimensional shaped article is formed by laminating the sintered hardened layer by repeating the powder layer forming step and the irradiation step.
Of the first region corresponding to the cured layer of the modeling plate that will be cured by performing the irradiation step, the second region corresponding to the region where predetermined machining is scheduled after the three-dimensional shape modeling The removal processing step of removing the region in advance before the three-dimensional shape modeling ,
And a machining step for performing predetermined machining until reaching the area removed in the removing process step from the opposite side of the second area in the modeling plate after the three-dimensional shape modeling. A manufacturing method of a three-dimensional shaped object.
前記除去加工ステップは、前記第2の領域を除去した後に、さらに前記第1の領域のエッジ部に対して面取り加工するステップを含むことを特徴とする請求項1に記載の三次元形状造形物の製造方法。   The three-dimensional shaped object according to claim 1, wherein the removing step includes a step of chamfering the edge portion of the first region after removing the second region. Manufacturing method.
JP2007126136A 2007-05-10 2007-05-10 Manufacturing method of three-dimensional shaped object Active JP4888220B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007126136A JP4888220B2 (en) 2007-05-10 2007-05-10 Manufacturing method of three-dimensional shaped object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007126136A JP4888220B2 (en) 2007-05-10 2007-05-10 Manufacturing method of three-dimensional shaped object

Publications (2)

Publication Number Publication Date
JP2008280581A JP2008280581A (en) 2008-11-20
JP4888220B2 true JP4888220B2 (en) 2012-02-29

Family

ID=40141650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007126136A Active JP4888220B2 (en) 2007-05-10 2007-05-10 Manufacturing method of three-dimensional shaped object

Country Status (1)

Country Link
JP (1) JP4888220B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104399978B (en) * 2014-11-27 2017-02-08 华南理工大学 3D (Three Dimensional) forming method for large-sized porous amorphous alloy part of complex shape

Also Published As

Publication number Publication date
JP2008280581A (en) 2008-11-20

Similar Documents

Publication Publication Date Title
JP5061062B2 (en) Manufacturing method of three-dimensional shaped object
JP5584019B2 (en) Manufacturing method of three-dimensional shaped object and three-dimensional shaped object obtained therefrom
JP5877471B2 (en) Manufacturing method of three-dimensional shaped object
JP5602913B2 (en) Manufacturing method of three-dimensional shaped object and three-dimensional shaped object obtained therefrom
KR101666102B1 (en) Method for manufacturing three-dimensional molding
JP5519766B2 (en) Manufacturing method of three-dimensional shaped object and three-dimensional shaped object
KR101517652B1 (en) Method for producing three-dimensional formed shapes, and three-dimensional formed shapes obtained thereby
JP5555222B2 (en) Manufacturing method of three-dimensional shaped object and three-dimensional shaped object obtained therefrom
JP5337545B2 (en) Manufacturing method of three-dimensional shaped object and three-dimensional shaped object obtained therefrom
US10821663B2 (en) Method for manufacturing three-dimensional shaped object
JP2008156701A (en) Method for manufacturing three-dimensionally shaped object
JP5612530B2 (en) Manufacturing method of three-dimensional shaped object
JP4867790B2 (en) Manufacturing method of three-dimensional shaped object
CN106392071A (en) Method used for improving manufacturing efficiency and precision of additive formed through powder bed fusion
JP4943937B2 (en) Manufacturing method of three-dimensional shaped object
JP4888220B2 (en) Manufacturing method of three-dimensional shaped object
JP3687672B2 (en) Surface finishing method for powder sintered parts
EP3323530A1 (en) 3d printed watch dial
JP6726858B2 (en) Method for manufacturing three-dimensional shaped object
JP2004211162A (en) Method for producing die for press
JP2005059574A (en) Method for producing three-dimensional shaped article
JP2011026675A (en) Method for producing three-dimensionally shaped article and three-dimensionally shaped article obtained by the same
JP2004002957A (en) Method for finishing surface of powder-sintered part

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111128

R150 Certificate of patent or registration of utility model

Ref document number: 4888220

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3