JP3847913B2 - 結晶方位決定装置 - Google Patents

結晶方位決定装置 Download PDF

Info

Publication number
JP3847913B2
JP3847913B2 JP23141397A JP23141397A JP3847913B2 JP 3847913 B2 JP3847913 B2 JP 3847913B2 JP 23141397 A JP23141397 A JP 23141397A JP 23141397 A JP23141397 A JP 23141397A JP 3847913 B2 JP3847913 B2 JP 3847913B2
Authority
JP
Japan
Prior art keywords
rotation
degrees
ray
crystal
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23141397A
Other languages
English (en)
Other versions
JPH1164252A (ja
Inventor
喜一郎 宇山
央 松下
弘 水口
雅美 富澤
宏治 比永
健治 新井
正明 園田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba IT and Control Systems Corp
Original Assignee
Toshiba IT and Control Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba IT and Control Systems Corp filed Critical Toshiba IT and Control Systems Corp
Priority to JP23141397A priority Critical patent/JP3847913B2/ja
Publication of JPH1164252A publication Critical patent/JPH1164252A/ja
Application granted granted Critical
Publication of JP3847913B2 publication Critical patent/JP3847913B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、例えばシリコンや水晶等の単結晶試料の結晶方位をX線回折を利用して決定する結晶方位決定装置に関する。
【0002】
【従来の技術】
シリコンや水晶等の単結晶を半導体や発振体等の工業製品として使用するためには、その表面が結晶格子面に対して特定の角度になるように切断する必要がある。そのために、試料の結晶格子面を知る必要があるが、最も一般的に用いられている結晶の格子面決定方法は、X線回折を利用するものである。図11は、このX線回折を利用した試料の格子面決定方法を示している。つまり、試料50に対して単一波長のX線を入射させるとき、X線の入射角がθ0 になると、そのX線が原子Aにより回折される。この時の角度を回折角度(ブラッグ角)と称し、その角度θ0 は、次の式(1)で求められる。
【0003】
θ0 =arcsin(nλ/2d) …(1)
n;1,2,3,…の自然数
λ;X線の波長(既知)
d;格子面間隔(既知)
このように、θ0 が計算できるので、X線の入射角方向を変えながら回折X線を測定することで結晶の方位を測定することができる。
【0004】
具体的な第1の従来技術として、例えば特開昭57−136151号公報に開示されている「単結晶の切断面偏差角測定方法」がある。この第1の従来技術を図12を用いて説明する。点状のX線源Sから放射されてコリメータ52を経た細いX線ビーム55aが結晶51の表面C点に入射され、そのC点から角度2θ0 の方向にはX線検出器53が配置されている。X線検出器53の前面には、所定の格子面以外からの回折X線がX線検出器53の有感面に入射しないようにスリット板54が配置されている。結晶51をC点を中心として紙面に沿ってω回転させると結晶格子面への入射角がθ0 になったとき、回折されたX線はX線ビーム55bとなってX線検出器53で検出される。ここで結晶表面の法線bあるいは紙面内でそれと直交する線aのX線ビーム55bとの角度から結晶格子面の結晶表面との偏差角が計算できる。ここで問題となるのはスキャン角ωの読み値の較正である。この第1の従来技術には、スキャン角ωの較正法が記載されている。まず、第1の較正法では、図12で法線bの周りに結晶51を方位角χ回転をできるようにし、χについて90度おきに4方位でそれぞれω回転しX線検出器53の出力がピークとなるωの読み値を求める。これをそれぞれω0 ,ω90,ω180 ,ω270 とする。この値より、次の式(2)、式(3)で、それぞれ方位角0度、180度に沿った結晶格子面の結晶51表面との偏差角δ0 ,δ90を求める(δ0 ,δ90は、原文ではそれぞれδ2 ,δ1 に相当する)。
【0005】
δ0 =(ω0 −ω180 )/2 …(2)
δ90=(ω90−ω270 )/2 …(3)
これにより、ωの原点合わせをすることなく、正確に偏差角δ0 ,δ90を求めることができる。また、第2の較正法では、χについて0度及び180度の方位でそれぞれωの読み値ω0 ,ω180 を求める。この値より、次の式(4)、式(5)でδ0 ,δ90を求める。
【0006】
【数1】
Figure 0003847913
ここで問題は、δ90に符号の不定性があることで±のどちらを選択するかは測定の時、結晶によって回折されたX線がX線検出器53のどの位置に入射するかによって決まる。入射位置を知るため、スリット板54の開口のxy平面より上あるいは下をシャッターで遮り、測定を行う。入射位置が上なら+、下なら−を選ぶ。
【0007】
また、具体的な第2の従来技術として、例えば特開平7−146257号公報に開示されている「単結晶インゴットの端面測定装置」がある。この第2の従来技術を図13を用いて説明する。X線源回転板67がC点を中心として紙面に沿ってω回転できるように設置されている。X線源回転板67上にコリメータ63を備えたX線源61とX線カウンタ65が配置され、C点に対して(180゜−2θ0 )光学系が形成されている。C点を通るω回転軸に沿った基準平面を持つ試料ガイド板66が非回転側より支持され、円柱形の単結晶インゴット64がその端面をこの基準平面に押しつけるように2つの支持ローラ68に支持されている。このような構成により、ω回転を光学系側で行い、重い単結晶インゴット64のω回転を不要としているとともに試料ガイド板66で単結晶インゴット64の設置精度を上げている。他方、方位角回転は単結晶インゴット64を支持ローラ68の上で回転させて行っている。
【0008】
【発明が解決しようとする課題】
第1の従来技術は、4方位測定では測定に時間がかかる問題があり、2方位測定では符号の決定のための測定が別に必要になるという問題がある。また、2方位測定の場合、偏差角δ90は方位0度方向の測定データのみを用いて計算されるので精度が上がらないという問題がある。
【0009】
第2の従来技術は、試料ガイド板66を用いているので試料の設置精度は上がるが、重い単結晶インゴット64を突き当てるためハンドリングに注意を要し、設置に時間がかかる。単結晶インゴット64に傷をつけるおそれがある、等の問題がある。また、単結晶インゴット64の円柱側面を2つの支持ローラ68で支持して方位角回転を行っているため、側面にオリエンテーションフラット面を加工した後では測定できず、側面と端面の直交度が悪いと回転したとき端面が試料ガイド板66に合わなくなるという問題がある。
【0010】
本発明は、上記に鑑みてなされたもので、2方位のみの測定で結晶格子面傾斜角を精度よく測定することができ、試料のハンドリングを良好にして能率よく結晶格子面傾斜角を測定することができ、また、試料の位置設定に起因する誤差をなくして結晶格子面傾斜角を精度よく測定することができる結晶方位決定装置を提供することを目的とする。
【0011】
【課題を解決するための手段】
上記課題を解決するために、請求項1記載の発明は、被検体である結晶の被検査面にペンシル状X線ビームを放射するX線源と、前記ペンシル状X線ビームにより前記結晶の格子面で回折された回折X線を検出するX線検出器と、前記ペンシル状X線ビームを含む面であるδ回転面に沿って前記回折点を通るδ回転軸回りに前記X線源及び前記X線検出器を一体でδ回転させるδ駆動部と、前記δ回転軸に直交するφ回転軸回りに前記X線源、前記X線検出器及び前記δ駆動部を一体でφ回転させるφ駆動部と、前記φ回転によって前記δ回転面を0度、90度、180度及び270度に固定し該0度、90度、180度及び270度のそれぞれで前記δ回転を行ったときの前記X線検出器のピーク出力を与えるδ回転量の読み値、δ 0 + ,δ 90 + ,δ 180 + 及びδ 270 + より前記δ回転量の較正量δ * 計算し記憶するデータ処理部とを有することを要旨とする。この構成により、後記請求項2記載の発明で用いるδ回転量読み値の較正量δ * が自動的に求められる。即ち、まず、各δ回転量の読み値、δ 0 + ,δ 90 + ,δ 180 + 及びδ 270 + より、公知の方法で結晶格子面法線方向δ 0 ,δ 90 が求められる。次に、方向を表す球面上で、この法線方向を中心に半径α(=(180°−2×ブラッグ角)/2)の小円を引き、φ=0度、90度、180度及び270度を示す大円との交点を球面幾何で求めることができる。この交点がそれぞれ各φ位置でのピーク出力を与えるペンシル状X線ビーム入射方向を表す点S 0 ,S 90 ,S 180 ,S 270 である。それぞれφ回転軸との角度δ s0 ,δ s90 ,δ s180 ,δ s270 が求まり、後記請求項2記載の発明の作用で各δ回転量の読み値、δ 0 + ,δ 90 + ,δ回転量読み値の較正量δ * 及びα値からφ回転軸との各角度を求めた計算と逆の計算で、各φ位置でのδ回転量読み値の較正量δ * 1 ,δ * 2 ,δ * 3 ,δ * 4 が求まる。これらの較正量を平均することで、精度のよいδ回転量読み値の較正量δ * が求められる。
【0012】
請求項2記載の発明は、上記請求項1記載の結晶方位決定装置において、前記データ処理部は、前記φ回転によって前記δ回転面を0度及び90度に固定し該0度及び90度のそれぞれで前記δ回転を行ったときの前記X線検出器のピーク出力を与えるδ回転量の読み値、δ 0 + 及びδ 90 + と記憶してある前記較正量δ * より前記結晶の格子面法線の前記φ回転軸に対する前記0度及び90度方向の傾斜角δ 0 及びδ 90 又は最大傾斜の方位角φ max とその方位での傾斜角δ max を計算することを要旨とする。この構成により、ペンシル状X線ビームの入射方向と結晶格子面法線の角度がα(=(180゜−2×ブラッグ角)/2)になったとき、回折が起こり、X線検出器の出力にピークが生じる。δ回転面を0度及び90度の2方位に設定してそれぞれδ回転を行ったときのピーク出力を与えるδ回転量の読み値からδ 0 + 及びδ 90 + が求められる。データ処理部では、このδ 0 + ,δ 90 + を基に次のような計算が行われる。ペンシル状X線ビームの入射方向とφ回転軸(z軸)の間の角度がαになったときのδ回転量読み値の較正量をδ * とすると、δ 0 + ,δ 90 + からそれぞれδ * を引き、これにαを加えることでペンシル状X線ビーム入射方向が求まる。即ち、方向を表す球面上で、φ=0度でδ回転量読み値、δ 0 + 時のペンシル状X線ビーム入射方向を表す点S 0 とφ=90度でδ回転量読み値、δ 90 + 時のペンシル状X線ビーム入射方向を表す点S 90 が求まる。次に、この球面上で点S 0 を中心とする半径αの小円と点S 90 を中心とする半径αの小円との交点が結晶格子面法線方向δ 0 ,δ 90 (又はφ max ,δ max )として求まる。この交点は2つ生じるが、一方はφ回転軸の近傍であり、他方は大きくずれるので容易に片方だけを選びだせる。そして2つの小円は略直角に交わるので精度のよい結晶格子面法線方向が求められる。
【0013】
請求項3記載の発明は、上記請求項記載の結晶方位決定装置において、前記データ処理部は、前記φ回転による前記δ回転面の0度及び90度のそれぞれの位置への設定誤差を補正して前記傾斜角δ0 及びδ90又は前記方位角φmax とその方位での前記傾斜角δmax を計算することを要旨とする。この構成により、φ駆動部は可動部の重量が比較的大きくなるのでφ回転によるδ回転面の角度に設定誤差が生じることがある。この設定誤差が生じてもφの値が十分な精度で読み取れているとき(このときのφの読み値をそれぞれφ0 ,φ90とする)、これの補正が可能である。即ち、δ0 + ,δ90 + からそれぞれδ* を引き、これにαを加えることでペンシル状X線ビーム入射方向のφ回転軸との角度が求まる。即ち、方向を表す球面上で、φ=φ0 ,δ=δ0 + 時のペンシル状X線ビーム入射方向を表す点S0 とφ=φ90,δ=δ90 + 時のペンシル状X線ビーム入射方向を表す点S90が求まる。次に、この球面上で点S0 を中心とする半径αの小円と点S90を中心とする半径αの小円との交点が結晶格子面法線方向δ0 ,δ90(又はφmax ,δmax )として求まる。この交点は2つ生じるが、一方はφ回転軸の近傍であり、他方は大きくずれるので容易に片方だけを選びだせる。そして2つの小円は略直角に交わる。このような補正計算により、δ回転面の角度に設定誤差があっても精度のよい結晶格子面法線方向が求められる。
【0014】
請求項4記載の発明は、上記請求項1記載の結晶方位決定装置において、前記データ処理部は、前記φ回転による前記δ回転面の0度、90度、180度及び270度のそれぞれの位置への設定誤差を補正して前記δ回転量の読み値の較正量δ* を計算することを要旨とする。この構成により、前記のように、φ駆動部は可動部の重量が比較的大きくなるのでφ回転によるδ回転面の角度に設定誤差が生じることがある。この設定誤差が生じてもφの値が十分な精度で読み取れているとき(このときのφの読み値をそれぞれφ0 ,φ90,φ180 ,φ270 とする)、これの補正が可能である。この補正計算の厳密解は複雑になり過ぎるので逐次近似を用いる。まず、δ0 + ,δ90 + ,δ180 + ,δ270 + より、φの誤差がない場合の方法(前記請求項2記載の発明に記載した計算方法)によりδ* を求める。次に、以下のステップ[1][2]をN回繰り返し、δ* (N回目近似)を求める。[1](n回目);δ0 + ,δ90 + ,δ180 + ,δ270 + よりそれぞれδ* (n−1回目近似)を引いてαを加えることでペンシル状X線ビーム入射方向S0 ,S90,S180 ,S270 のφ回転軸との角度δs0,δs90 ,δs180,δs270を逆算する。この点S0 ,S90,S180 ,S270 のうち、90度方向が異なる2つの点の組が4組できる。まず、(S0 ,S90)の組について、方向を表す球面上でS0 を中心とする半径αの小円と、S90を中心とする半径αの小円の交点が結晶格子面の法線方向δ0 ,δ90(又はφmax ,δmax )となる。この交点は球面幾何により求めることができる。この交点は2つ生じるが一方はz軸の近傍で他方は大きくずれるので容易に片方だけ選び出せる。さらにこの2つの円は略直角に交わるので精度よく法線方向が求まる。他の組、(S90,S180 ),(S180 ,S270 ),(S270 ,S0 )それぞれについても、同様に法線方向が求まる。これらを平均して法線方向δ0 ,δ90(又はφmax ,δmax )(n回目近似)が求まる。[2](n回目);次に方向を表す球面上でこの法線方向(n回目近似)を中心に半径αの小円を引き、φ=φ0 ,φ90,φ180 ,φ270 を示す大円との交点をそれぞれ球面幾何で求めることができる。この交点がそれぞれ修正されたX線入射方向S0 ,S90,S180 ,S270 (n回目近似)である。それぞれφ回転軸との角度δs0,δs90 ,δs180,δs270(n回目近似)が求まる。これから、前記請求項1記載の発明の計算方法で記載した逆計算でδ* (N回目近似)を求める。
【0018】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。
【0019】
図1乃至図8は、本発明の第1の実施の形態を示す図である。まず、図1を用いて、本実施の形態である結晶方位決定装置の機構部の構成を説明する。円柱形の結晶インゴットであるワーク4が、その軸を水平なz軸に合うようワーク支持台25に固定されている。ワーク支持台25はz駆動部(ワーク搬送部)9により支持され、z方向に駆動される。z駆動部9はフロアに支持されたワーク支持フレーム26に固定されている。ワーク支持フレーム26にはz軸に直交する基準面28bを持つワーク部基準板27が固定されている。測定部支持フレーム23の上には、φ軸受22、これに支持されれたφ軸シャフト21、モータ20、ウォームギヤ19及びギヤ18を備えたφ駆動部8が固定されており、φフレーム17をφ回転させる。φフレーム17上には、アーム12、モータ16、ボールネジ14及びボールナット15を備えたδ駆動部7が固定されており、δフレーム(レール)11をφ軸と直交するδ軸に対してδ回転させる。δフレーム11にはX線源としてのX線管1とX線検出器3が固定されている。X線管1には線源コリメータ5が付いており、ペンシル状のX線ビーム2aがφ軸とδ軸の交点であるC点に向けて放射される。X線検出器3には検出器スリット板6が付いており、回折されたX線ビーム2bが入射する。X線ビーム2a,2b間の角度は測定しようとする結晶の格子間隔によって決まる角度2α(=180゜−2×ブラッグ角θ0 )に設定されている。X線管1は管電圧40kVの銅をターゲットとするもので、約8keVの銅の特性X線を使用する。X線検出器3はガスを用いた比例計数管であり、X線のフォトンカウントを行うものである。δフレーム11はC点を通るδ軸を中心とする円弧状のレールを兼ね、3つのガイドローラ13a,13b,13cで支えられている。δフレーム11は、モータ16の駆動により回転するボールネジ14でボールナット15を移動させ、この移動でアーム12を動かすことでδ回転する。φフレーム17は、φ軸シャフト21に取り付けられたギヤ18とこれに噛み合ったウォームギヤ19を介してモータ20出力によりφ回転する。測定部支持フレーム23にはφ軸に直交する基準面28aを持つ測定部基準板24が固定されており、基準面28a,28bを合わせるように測定部支持フレーム23とワーク支持フレーム26を結合することでφ軸とz軸が合わせられる。φフレーム17のワーク側のφ軸近傍には光学式の距離センサ(結晶位置センサ)10が取り付けられ、ワーク4のz軸位置を検出して後述の機構制御部に信号を送る。距離センサ10は投光部から出て対象物で反射した光を受光部で測定し対象物が一定距離にあるときピーク出力を出すよう光学設定することで非接触で位置検出するセンサである。φ駆動部8にはφエンコーダ29がありφ軸の回転位置信号を機構制御部に送る。
【0020】
図2は、システム構成を示している。δ駆動部7、φ駆動部8、z駆動部9の各機構部及び距離センサ10等は、機構制御部42を介してデータ処理部43に接続されている。機構制御部42はデータ処理部43からの駆動タイミングや駆動量の指令を受け、それに従って各機構部を制御するとともに各機構部のステータス情報をデータ処理部43に送る。X線管1はX線制御部40を介してデータ処理部43に接続されている。X線制御部40はX線管1に電力を供給するとともに管電圧、管電流の制御及びデータ処理部43からの指令でX線管1のON・OFFを制御する。X線検出器3はデータ収集部41を介してデータ処理部43に接続されている。データ収集部41はデータ処理部43からの測定開始信号によりX線検出器3の出力パルスをカウントしてデジタルデータとしてデータ処理部43に送る。データ処理部43は通常のパソコンであり、マンマシンインタフェースとしてのキーボート44と表示器45とが接続されている。ここで、メニュー、ステータス、結果等の表示や、メニュー選択、測定開始、測定中断などの操作者による入力が行われる。データ処理部43は記憶されているシーケンスに従って各部を制御し測定を行い、記憶されている計算プログラムに従って結果を計算する。
【0021】
次に、上述のように構成された結晶方位決定装置の作用を、まず測定時について説明する。操作者は測定前にワーク支持台25を試料取り付け位置に設定(z軸移動)して結晶インゴットであるワーク4を乗せる。測定開始が入力されるとデータ処理部43は次のようにして測定を自動的に行う。z駆動部9を駆動しワーク4を測定位置まで移動させる。このとき距離センサ10の出力によりz駆動部9を制御する。次にφ軸を0度に設定する。ここでX線をONし、δ軸のスキャンを開始し、スキャンの間のX線検出器3の出力を収集する。X線入射方向(X線ビーム2a)と結晶格子面法線hの角度がα(=(180゜−2×ブラッグ角θ0 )/2)になったとき、回折が起こりX線検出器3の出力にピークが生じる。収集したデータよりこのピークに対応するδ値、δ0 + を求める。次に、φ軸を90度に設定し、上記と同様にピークに対応するδ値、δ90 + を求める。X線をOFFし、δ0 + ,δ90 + からδ0 ,δ90を以下に示すように計算する。
【0022】
<δ0 ,δ90の計算について>;計算説明のため、φ,δの動きとxyz座標系の関係を図3に示す。φ軸はz軸と一致しδ回転面とx軸の角度をφとする。δ回転の始点はδ駆動部7の原点スイッチの設定で決まる。δ回転の始点時のδ回転面内でX線ビーム2aからz軸側へ角度αをなす方向をStとする。
【0023】
次に、方向を表す球面を図4に示す。X線ビーム2aの入射方向S0 とz軸の間の角度がαになったときのδの読み値をδ* で定義すると、図のSt,z軸間距離(大円に沿った角度)がδ* となる。まず、δ0 + ,δ90 + からδ* を引き、これにαを加えることでX線入射方向のz軸との角度δs0,δs90 が求まる。但し、ここでδ* は、後述するように予め求めて記憶しておくものとする。
【0024】
δs0=δ0 + −δ* +α …(6)
δs90 =δ90 + −δ* +α …(7)
これにより球面上のφ=0゜,δ=δ0 + 時及びφ=90゜,δ=δ90 + 時のX線入射方向S0 ,S90が確定する。したがって、この球面上でS0 を中心とする半径αの小円C0 と、S90を中心とする半径αの小円C90の交点、即ち結晶格子面の法線方向h(δ0 ,δ90)もまた確定し、球面幾何により求めることができる。この交点は2つ生じるが一方はz軸の近傍であり、他方は大きくずれるので容易に片方だけ選び出せる。さらにこの2つの円は略直角に交わるので精度よく法線方向が求まる。
【0025】
図5を参照してδ0 ,δ90を求める。この図は、図4の球面を平面に展開したものである。ここで、L,k,β1 ,β2 ,s1 ,s2 を補助変数として用いる。球面幾何の公式を適用して以下の解を求めることができるが導出の中間ステップは省略する。
【0026】
【数2】
L=arccos{cos δs0・cos δs90 } …(8)
k=arccos{(1−cos L)/(tan α・sin L)} …(9)
β1 =arcsin{sin δs0/sin L}−k …(10)
β2 =arcsin{sin δs90 /sin L}−k …(11)
1 =arccos{cos α・sin δs90 −sin α・cos δs90 ・cos β1 }…(12)
2 =arccos{cos α・sin δs0−sin α・cos δs0・cos β2 }…(13)
δ0 =arcsin{sin α・sin β1 /sin s1 } …(14)
δ90=arcsin{sin α・sin β2 /sin s2 } …(15)
ここで、逆三角関数は全て主値を用いる。式(8)より順次代入しながら式(15)までを計算し、δ0 ,δ90が求まる。δ0 ,δ90は、図4に示すように、それぞれ結晶格子面法線hのx方向、y方向への傾斜角である。
【0027】
δ0 ,δ90は、また最大傾斜方位φmax と最大傾斜δmax で表現することもできる。この変換は次の各式のようにしてできる。導出は省略する。
【0028】
【数3】
X=cos δ90・tan δ0 ・√{1/(1+ cos2 δ90・ tan2 δ0 )}…(16)
Y=cos δ0 ・tan δ90・√{1/(1+ cos2 δ0 ・ tan2 δ90)}…(17)
δmax =arcsin{√(X2 +Y2 )} …(18)
X=Y=0(<ε)の場合
φmax =不定
|X|>|Y|かつX>0の場合
φmax =arctan(Y/X)
|X|>|Y|かつX<0の場合
φmax =arctan(Y/X)+180゜
|Y|≧|X|かつY>0の場合
φmax =90゜−arctan(X/Y)
|Y|≧|X|かつY<0の場合
φmax =90゜−arctan(X/Y)+180゜ …(19)
ここでは先にδ0 ,δ90を求めたが、先にφmax ,δmax を求め、それを変換してδ0 ,δ90を求めてもよい。以上は数式として厳密解である。補助変数の取り方などで異なる数式で表現できるが厳密解である限り数学的に等価である。
【0029】
<φに設定誤差がある場合のδ0 ,δ90の計算について>;φ軸は比較的可動部の重量が大きいため、停止精度が不十分になる場合がある。φ軸の停止精度が悪くてもφエンコーダ29でφの値を十分な精度で読み取っておき(それぞれφ0 ,φ90とする)、補正することができる。まず、式(6),(7)によりδ0 + ,δ90 + からX線入射方向のz軸との角度δs0,δs90 が求まり、方向を表す球面上でφ=φ0 ,δ=δ0 + 時のX線入射方向を表す点S0 とφ=φ90,δ=δ90 + 時のX線入射方向を表す点S90が確定する。この球面上でS0 を中心とする半径αの小円C0 と、S90を中心とする半径αの小円C90の交点が結晶格子面の法線方向δ0 ,δ90(又はφmax ,δmax )となる。この交点は球面幾何により求めることができる。この交点は2つ生じるが一方はz軸の近傍であり、他方は大きくずれるので容易に片方だけ選び出せる。さらにこの2つの円は略直角に交わるので精度よく法線方向が求まる。
【0030】
図6を参照して、φmax ,δmax を求める(δ0 ,δ90が先でもよい)。ここで、L,k,β1 ,β2 ,φ1 ,φ2 を補助変数として用いる。球面幾何の公式を適用して以下の解を求めることができるが導出の中間ステップは省略する。
【0031】
【数4】
L=arccos{cos δs0・cos δs90
+sin δs0・sin δs90 ・cos (φ90−φ0 )} …(20)
k=arccos{(1−cos L)/(tan α・sin L)} …(21)
β1 =arcsin{sin δs0・sin (φ90−φ0 )/sin L}−k …(22)
β2 =arcsin{sin δs90 ・sin (φ90−φ0 )/sin L}−k…(23)
δmax =arcsin[sin α・√{sin2 β1 + sin2 β2 +2sin β1 ・sin β2 ・cos (φ90−φ0 )}/sin (φ90−φ0 )]…(24)
φ1 =arcsin(sin α・sin β1 /sin δmax ) …(25)
(但しδmax =0(<ε)の場合不定)
φ2 =arcsin(sin α・sin β2 /sin δmax ) …(26)
(但しδmax =0(<ε)の場合不定)
次に統計精度を上げるため平均してφmax を求める。
【0032】
【数5】
φmax =(φ0 +φ2 +φ90−φ1 )/2 …(27)
ここで、逆三角関数は全て主値を用いる。式(20)より順次代入しながら式(27)までを計算し、φmax ,δmax が求まる。
【0033】
次に、φmax ,δmax からδ0 ,δ90を求める。この変換は次の各式のようにしてできる。導出は省略する。
【0034】
【数6】
δ0 =arctan(tan δmax ・cos φmax ) …(28)
δ90=arctan(tan δmax ・sin φmax ) …(29)
ここでは先にφmax ,δmax を求めたが、先にδ0 ,δ90を求め、それを変換してφmax ,δmax を求めてもよい。以上の計算は数式として厳密解である。補助変数の取り方などで異なる数式で表現できるが厳密解である限り数学的に等価である。
【0035】
次に、δ* を求める較正時の作用について説明する。操作者は測定前にワーク支持台25を試料取付け位置に設定(z軸移動)して結晶インゴットであるワーク4を乗せる。測定開始が入力されるとデータ処理部43は次のようにして較正を自動的に行う。z駆動部9を駆動しワーク4を測定位置まで移動させる。このとき距離センサ10の出力によりz駆動部9を制御する。次にφ軸を0度に設定する。ここでX線をONし、δ軸のスキャンを開始し、スキャンの間のX線検出器3の出力を収集する。X線入射方向(X線ビーム2a)と結晶格子面法線hの角度がα(=(180゜−2×ブラッグ角θ0 )/2)になったとき、回折が起こりX線検出器3の出力にピークが生じる。収集したデータよりこのピークに対応するδ値、δ0 + を求める。次に、φ軸を90度に設定し、同様にピークに対応するδ値、δ90 + を求める。同様にφ軸を180度及び270度に順次設定し、それぞれピークに対応するδ値、δ180 + ,δ270 + を求める。X線をOFFし、δ0 + ,δ90 + ,δ180 + ,δ270 + からδ* を以下に示すように計算する。
【0036】
<較正量δ* 計算について>;まずδ0 + ,δ90 + ,δ180 + ,δ270 + より結晶格子面の法線方向δ0 ,δ90を下式により求める(これは公知である)。
【0037】
δ0 =(δ0 + −δ180 + )/2 …(30)
δ90=(δ90 + −δ270 + )/2 …(31)
次に図7を参照して説明する。方向を表す球面上でこの法線方向を表す点hを中心に半径αの小円Chを引くと、φ=0゜,90゜,180゜及び270゜を示す大円との交点が確定し、この交点がそれぞれ各φ位置でのピーク出力を与えるX線入射方向S0 ,S90,S180 ,S270 である。それぞれのX線入射方向のz軸との角度δs0,δs90 ,δs180,δs270は球面幾何で求めることができる。
【0038】
図8を参照してδs0,δs90 ,δs180,δs270を導出する。この図は、図7の球面を平面に展開したものである。ここで、L2 ,P2 ,ξ0 ,ξ90,ε0 ,ε90を補助変数として用いる。球面幾何の公式を適用して以下の解を求めることができるが導出の中間ステップは省略する。
【0039】
【数7】
Figure 0003847913
ここで、逆三角関数は全て主値を用いる。式(32)より順次代入しながら式(41)までを計算し、δs0,δs90 ,δs180,δs270が求まる。次に、式(6),(7)と逆に、下式でδs0,δs90 からそれぞれδ* を求める。
【0040】
【数8】
δ* 1 =δ0 + +α−δs0(=δ0 + +ε0 −δ0 ) …(42)
δ* 2 =δ90 + +α−δs90 (=δ90 + +ε90−δ90) …(43)
同様に、下式でδs180,δs270からそれぞれδ* を求める。
【0041】
【数9】
δ* 3 =δ180 + +α−δs180(=δ180 + +ε0 +δ0 ) …(44)
δ* 4 =δ270 + +α−δs270(=δ270 + +ε90+δ90) …(45)
下式でそれぞれのδ* を平均して統計精度を上げたδ* が求まる。
【0042】
【数10】
δ* =(δ* 1 +δ* 2 +δ* 3 +δ* 4 )/4 …(46)
以上でδ* が計算されるが、数式として厳密解である。補助変数の取り方などで異なる数式で表現できるが厳密解である限り数学的に等価である。
【0043】
<φに設定誤差がある場合のδ* の計算について>;φ軸は比較的可動部の重量が大きいため、停止精度が不十分になる場合がある。φ軸の停止精度が悪くてもφエンコーダ29でφの値を十分な精度で読み取っておき(それぞれφ0 ,φ90,φ180 ,φ270 とする)、補正することができる。まずδ0 + ,δ90 + ,δ180 + ,δ270 + より、上述したφの誤差がない場合の方法によりδ* (0回目近似)を求める。次に、以下のステップ[1][2]をN回繰り返し、δ* (N回目近似)を求める。
【0044】
[1](n回目);δ0 + ,δ90 + ,δ180 + ,δ270 + よりそれぞれδ* (n−1回目近似)を引いてαを加えることでX線入射方向S0 ,S90,S180 ,S270 のz軸との角度δs0,δs90 ,δs180,δs270を逆算する。この点S0 ,S90,S180 ,S270 のうち、90度方向が異なる2つの点の組が4組できる。まず、(S0 ,S90)の組について、球面上でS0 を中心とする半径αの小円C0 と、S90を中心とする半径αの小円C90の交点が結晶格子面の法線方向δ0 ,δ90(又はφmax ,δmax )となる。この交点は球面幾何により求めることができる。この交点は2つ生じるが一方はz軸の近傍であり、他方は大きくずれるので容易に片方だけ選び出せる。さらにこの2つの円は略直角に交わるので精度よく法線方向が求まる。他の組、(S90,S180 ),(S180 ,S270 ),(S270 ,S0 )それぞれについても、同様に法線方向が求まる。これらを平均して法線方向δ0 ,δ90(又はφmax ,δmax )(n回目近似)が求まる。
【0045】
具体的には、まず(S0 ,S90)の組についてφ0 ,φ90,δs0,δs90 を用いて式(20)〜(29)でφmax ,δmax を求める(δ0 ,δ90でもよい)。そして
φmax (1) =φmax …(47)
δmax (1) =δmax …(48)
とする。次に(S90,S180 )の組についてφ90,φ180 ,δs90 ,δs180をそれぞれφ0 ,φ90,δs0,δs90 に代入し、式(20)〜(29)でφmax ,δmax を求める。そして
φmax (2) =φmax +90゜ …(49)
δmax (2) =δmax …(50)
とする。次に(S180 ,S270 )の組についてφ180 ,φ270 ,δs180,δs270をそれぞれφ0 ,φ90,δs0,δs90 に代入し、式(20)〜(29)でφmax ,δmax を求める。そして
φmax (3) =φmax +180゜ …(51)
δmax (3) =δmax …(52)
とする。次に(S270 ,S0 )の組についてφ270 ,φ0 ,δs270,δs0をそれぞれφ0 ,φ90,δs0,δs90 に代入し、式(20)〜(29)でφmax ,δmax を求める。そして
φmax (4) =φmax +270゜ …(53)
δmax (4) =δmax …(54)
とする。次に下式で平均してφmax ,δmax を求める。
【0046】
数11
φmax =(φmax (1) +φmax (2) +φmax (3) +φmax (4) )/4
…(55)
δmax =(δmax (1) +δmax (2) +δmax (3) +δmax (4) )/4
…(56)
[2](n回目);次に方向を表す球面上でこの法線方向h(n回目近似)を中心に半径αの小円を引き、φ=φ0 ,φ90,φ180 ,φ270 を示す大円との交点をそれぞれ球面幾何で求めることができる。この交点がそれぞれ修正されたX線入射方向S0 ,S90,S180 ,S270 (n回目近似)である。それぞれz軸との角度δs0,δs90 ,δs180,δs270(n回目近似)が求まる。
【0047】
具体的には、図6を参照して下記の式で求める(導出省略)。
【0048】
【数12】
Figure 0003847913
となる。ここで、逆三角関数は全て主値を用いる。次に、δs0,δs90 ,δs180,δs270(n回目近似)から式(42)〜(46)でδ* (n回目近似)を求める。
【0049】
上述したように、本実施の形態によれば、φの直交する2方向についてのみの測定で結晶格子面の法線方向が符号の不定性なく精度よく求まる。δ軸の較正を自動的に精度よく行うことができる。φ軸の停止精度が悪くてもこれを計算で補正して法線方向が精度よく求まる。重くて大きい結晶を回転させることなく測定ができるので精度よく短時間で測定できる。z方向の位置決めが自動的に行われるのでワークの取付けが容易となり測定の能率がよくなる。即ち、ワーク自体を位置検出して位置決めしているのでワークの取付けのz軸位置は精度を必要としない。光学式の距離センサ10でワーク位置を非接触で検出するのでワークを傷めることがない。光学式の距離センサ10がφフレーム17に付いているのでワークの測定位置への設定精度がよい。測定部支持フレーム23とワーク支持フレーム26が基準面28a,28bを合わせるように結合されるのでz軸とφ軸を精度よく合わせられ測定精度が上がる。また測定部とワークを搬送する部分を分離しても容易に再結合でき、メンテナンス性がよい。
【0050】
図9及び図10には、本発明の第2の実施の形態を示す。φ軸とz軸は正確に合わせなくても、その誤差を測定してφ軸に対して求めた結晶方位をz軸基準に出力させることができる。図9は、この誤差を測定できるようにした治具を示している。治具33は、その上に試験用結晶片31をλ軸回転部32によりλ回転可能に保持する。治具33はワーク支持台25に嵌まり合うように取り付けられ、λ回転軸とz軸が平行になるように作られている。
【0051】
図10を用いて作用を説明する。試験用結晶片31を測定対象として結晶方位を測定するが、まずλ=0゜で結晶格子面の法線方向h0 を求め、次にλ=180゜で法線方向h180 を求める。この2つの方向の中点方向がz軸の実際の方向z′である。z′はh0 ,h180 より簡単に求められる。z′のx,y方向の傾斜角をそれぞれδz0,δz90 とすると、結晶方位(δ0 ,δ90)のz′軸基準への変換も簡単にできる。z′の傾斜は通常1゜を超えないので次の概略式で変換できる。
【0052】
δ0 ′=δ0 −δz0 …(62)
δ90′=δ90−δz90 …(63)
これにより、試料支持部と測定部間の配置精度が悪くても精度よく結晶方位を測定することができる。Z′の傾斜が大きい場合は厳密解で変換するが導出は省略する。
【0053】
なお、上述した各実施の形態において、ワークは円柱形の結晶インゴットのみでなく他の形状のものへも適用できる。また測定する面も平面だけでなく例えば円筒面等にも適用できる。φの方位は90度おきの2方位あるいは4方位(較正時)で測定すればよく任意のオフセット角を加えられることは明らかなことである。測定時、較正時でオフセットが異なってもよい。またX線検出器3のδフレーム11への取付け位置を切換えて2αの角度を切換えることで異なる結晶格子面に適用できる。
【0054】
【発明の効果】
以上説明したように、請求項1記載の発明によれば、被検体である結晶の被検査面にペンシル状X線ビームを放射するX線源と、前記ペンシル状X線ビームにより前記結晶の格子面で回折された回折X線を検出するX線検出器と、前記ペンシル状X線ビームを含む面であるδ回転面に沿って前記回折点を通るδ回転軸回りに前記X線源及び前記X線検出器を一体でδ回転させるδ駆動部と、前記δ回転軸に直交するφ回転軸回りに前記X線源、前記X線検出器及び前記δ駆動部を一体でφ回転させるφ駆動部と、前記φ回転によって前記δ回転面を0度、90度、180度及び270度に固定し該0度、90度、180度及び270度のそれぞれで前記δ回転を行ったときの前記X線検出器のピーク出力を与えるδ回転量の読み値、δ 0 + ,δ 90 + ,δ 180 + 及びδ 270 + より前記δ回転量の読み値の較正量δ * を計算するデータ処理部とを具備させたため、各δ回転量の読み値、δ 0 + ,δ 90 + ,δ 180 + 及びδ 270 + を基に、各φ位置でのδ回転量読み値の較正量δ * 1 ,δ * 2 ,δ * 3 ,δ * 4 を求め、これらの較正量を平均することで、後記請求項2記載の発明で用いるδ回転量読み値の較正量δ * を自動的に精度よく求めることができる。
【0055】
請求項2記載の発明によれば、前記φ回転によって前記δ回転面を0度及び90度に固定し該0度及び90度のそれぞれで前記δ回転を行ったときの前記X線検出器のピーク出力を与えるδ回転量の読み値、δ 0 + 及びδ 90 + と記憶してある前記較正量δ * より前記結晶の格子面法線の前記φ回転軸に対する前記0度及び90度方向の傾斜角δ 0 及びδ 90 又は最大傾斜の方位角φ max とその方位での傾斜角δ max を計算するデータ処理部を具備させたため、δ回転面を0度及び90度の2方位に設定してそれぞれδ回転を行ったときのピーク出力を与えるδ回転量の読み値、δ 0 + 及びδ 90 + を基に結晶格子面法線方向を精度よく求めることができる。
【0056】
請求項3記載の発明によれば、前記データ処理部は、前記φ回転による前記δ回転面の0度及び90度のそれぞれの位置への設定誤差を補正して前記傾斜角δ0 及びδ90又は前記方位角φmax とその方位での前記傾斜角δmax を計算するようにしたため、δ回転面の角度に設定誤差があっても、補正計算により結晶格子面法線方向を精度よく求めることができる。
【0057】
請求項4記載の発明によれば、前記データ処理部は、前記φ回転による前記δ回転面の0度、90度、180度及び270度のそれぞれの位置への設定誤差を補正して前記δ回転量の読み値の較正量δ* を計算するようにしたため、δ回転面の角度に設定誤差があっても、補正計算によりδ回転量読み値の較正量δ* を精度よく求めることができる。
【図面の簡単な説明】
【図1】本発明に係る結晶方位測定装置の第1の実施の形態の機構部の構成図である。
【図2】上記第1の実施の形態のシステム構成を示すブロック図である。
【図3】上記第1の実施の形態におけるφ駆動部及びδ駆動部の動きとxyz座標系との関係を説明するための図である。
【図4】上記第1の実施の形態においてδ0 ,δ90の計算を説明するための図である。
【図5】上記図4を平面に展開した状態を示す図である。
【図6】上記第1の実施の形態においてφ回転量に設定誤差がある場合のδ0 ,δ90の計算を説明するための図である。
【図7】上記第1の実施の形態において較正量δ* の計算を説明するための図である。
【図8】上記図7を平面に展開した状態を示す図である。
【図9】本発明の第2の実施の形態の要部構成図である。
【図10】上記第2の実施の形態の作用を説明するための図である。
【図11】X線回折を一般的に説明するための図である。
【図12】結晶方位測定装置の第1の従来技術の構成図である。
【図13】結晶方位測定装置の第2の従来技術の構成図である。
【符号の説明】
1 X線管(X線源)
3 X線検出器
4 ワーク(結晶インゴット)
7 δ駆動部
8 φ駆動部
9 z駆動部
10 距離センサ(結晶位置センサ)
25 ワーク支持台
28a,28b 基準面
33 治具
43 データ処理部

Claims (4)

  1. 被検体である結晶の被検査面にペンシル状X線ビームを放射するX線源と、前記ペンシル状X線ビームにより前記結晶の格子面で回折された回折X線を検出するX線検出器と、前記ペンシル状X線ビームを含む面であるδ回転面に沿って前記回折点を通るδ回転軸回りに前記X線源及び前記X線検出器を一体でδ回転させるδ駆動部と、前記δ回転軸に直交するφ回転軸回りに前記X線源、前記X線検出器及び前記δ駆動部を一体でφ回転させるφ駆動部と、前記φ回転によって前記δ回転面を0度、90度、180度及び270度に固定し該0度、90度、180度及び270度のそれぞれで前記δ回転を行ったときの前記X線検出器のピーク出力を与えるδ回転量の読み値、δ 0 + ,δ 90 + ,δ 180 + 及びδ 270 + より前記δ回転量の較正量δ * を計算し記憶するデータ処理部とを有することを特徴とする結晶方位決定装置。
  2. 前記データ処理部は、前記φ回転によって前記δ回転面を0度及び90度に固定し該0度及び90度のそれぞれで前記δ回転を行ったときの前記X線検出器のピーク出力を与えるδ回転量の読み値、δ 0 + 及びδ 90 + と記憶してある前記較正量δ * より前記結晶の格子面法線の前記φ回転軸に対する前記0度及び90度方向の傾斜角δ 0 及びδ 90 又は最大傾斜の方位角φ max とその方位での傾斜角δ max を計算することを特徴とする請求項1記載の結晶方位決定装置。
  3. 前記データ処理部は、前記φ回転による前記δ回転面の0度及び90度のそれぞれの位置への設定誤差を補正して前記傾斜角δ0 及びδ90又は前記方位角φmax とその方位での前記傾斜角δmax を計算することを特徴とする請求項記載の結晶方位決定装置。
  4. 前記データ処理部は、前記φ回転による前記δ回転面の0度、90度、180度及び270度のそれぞれの位置への設定誤差を補正して前記δ回転量の読み値の較正量δ* を計算することを特徴とする請求項記載の結晶方位決定装置。
JP23141397A 1997-08-27 1997-08-27 結晶方位決定装置 Expired - Lifetime JP3847913B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23141397A JP3847913B2 (ja) 1997-08-27 1997-08-27 結晶方位決定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23141397A JP3847913B2 (ja) 1997-08-27 1997-08-27 結晶方位決定装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006168867A Division JP4188983B2 (ja) 2006-06-19 2006-06-19 結晶方位決定装置

Publications (2)

Publication Number Publication Date
JPH1164252A JPH1164252A (ja) 1999-03-05
JP3847913B2 true JP3847913B2 (ja) 2006-11-22

Family

ID=16923214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23141397A Expired - Lifetime JP3847913B2 (ja) 1997-08-27 1997-08-27 結晶方位決定装置

Country Status (1)

Country Link
JP (1) JP3847913B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10128630A1 (de) * 2001-06-13 2003-01-02 Freiberger Compound Mat Gmbh Vorrichtung und Verfahren zur Bestimmung der Orientierung einer kristallografischen Ebene relativ zu einer Kristalloberfläche sowie Vorrichtung und Verfahren zum Trennen eines Einkristalls in einer Trennmaschine
JP2005077271A (ja) * 2003-09-01 2005-03-24 Toshiba It & Control Systems Corp 結晶表裏判定装置及び結晶傾斜方位判定装置
JP4619282B2 (ja) * 2005-12-13 2011-01-26 理研計器株式会社 エックス線分析装置
KR101360906B1 (ko) * 2012-11-16 2014-02-11 한국표준과학연구원 고분해능 x-선 로킹 커브 측정을 이용한 단결정 웨이퍼의 면방위 측정 방법

Also Published As

Publication number Publication date
JPH1164252A (ja) 1999-03-05

Similar Documents

Publication Publication Date Title
EP1978328B1 (en) Oscillating scanning probe with constant contact force
JP2764103B2 (ja) アナログ測定プローブの使用方法および位置決め装置
JP4992078B2 (ja) 傾斜角測定装置、これを搭載した工作機械および工作機械の傾斜角校正方法
JPS63292005A (ja) 走り誤差補正をなした移動量検出装置
JP4188983B2 (ja) 結晶方位決定装置
JP3847913B2 (ja) 結晶方位決定装置
EP1681561A1 (en) Positioning Apparatus
JP2003161615A (ja) 表面形状測定装置
JP2005121636A (ja) X線回折分析器およびこのx線回折分析器の測定位置補正方法
JP2746511B2 (ja) 単結晶インゴットのオリエンテーションフラット幅測定方法
JPS60205311A (ja) 三次元座標測定法
JP2000009663A (ja) 結晶方位測定装置
JP4227706B2 (ja) 結晶方位測定装置および結晶方位測定方法
JP2000114327A (ja) 半導体ウェーハ抵抗率測定器
TWI569917B (zh) 角度誤差修正裝置
JP3512440B2 (ja) 変位センサ
JP3805869B2 (ja) 結晶加工装置、結晶方位決定装置及び結晶方位決定方法
JP2000213999A (ja) X線応力測定方法
Berger et al. Application of the/spl Omega/scan to the sorting of doubly rotated quartz blanks
JPH05288616A (ja) X線残留応力測定方法
JP3716310B2 (ja) 検査対象物の形状測定装置及び検査対象物の形状測定方法
JPH09264725A (ja) 刃角測定方法とその装置
JPH10103937A (ja) レーザー光の光軸傾斜測定方法及びその装置
KR20070002726A (ko) 피측정물의 결정방향 측정장치 및 그 측정방법
JPH05283963A (ja) 水晶片のカット面検査方法および検査装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060824

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term