JP3842660B2 - 光デバイス - Google Patents

光デバイス Download PDF

Info

Publication number
JP3842660B2
JP3842660B2 JP2002027032A JP2002027032A JP3842660B2 JP 3842660 B2 JP3842660 B2 JP 3842660B2 JP 2002027032 A JP2002027032 A JP 2002027032A JP 2002027032 A JP2002027032 A JP 2002027032A JP 3842660 B2 JP3842660 B2 JP 3842660B2
Authority
JP
Japan
Prior art keywords
wave
optical
light
reciprocal lattice
lattice vector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002027032A
Other languages
English (en)
Other versions
JP2002365455A (ja
Inventor
英伸 浜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002027032A priority Critical patent/JP3842660B2/ja
Publication of JP2002365455A publication Critical patent/JP2002365455A/ja
Application granted granted Critical
Publication of JP3842660B2 publication Critical patent/JP3842660B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、光デバイスに関し、特にたとえば、WDM光通信(wavelength division multiplexing optical communication)に使用される光インターリーバや偏波依存型光アイソレータといった光デバイスに関する。
【0002】
【従来の技術】
ルチル等の天然の複屈折材料を利用した従来の光分波器900の一例を、図21に示す。光分波器900は、入射側光ファイバ901、入射側レンズ902、ルチルなどの複屈折材料903、第1の出射側レンズ904、第1の出射側光ファイバ905、第2の出射側レンズ906、第2の出射側光ファイバ907を備える。入射側光ファイバ901から入射側レンズ902を介して複屈折材料903へ結合された入射光は、常光(TE波)909と異常光(TM波)908とに分離する。そして、複屈折材料903の長さに応じた幅だけ分離された常光909と異常光908とは、それぞれ、出射側レンズを介して第1および第2の出射側光ファイバ905および907に結合される。
【0003】
ところで、ルチルなどの天然の複屈折材料は、図22に示すような偏波分散面(屈折率楕円体)を有する。このため、複屈折材料903に入射した光は、運動量保存の法則に従って常光の分散面と異常光の分散面に垂直な方向に伝播する。
【0004】
【発明が解決しようとする課題】
しかしながら、ルチルなどの天然の複屈折材料は常光の分散面と異常光の分散面との相違が小さく、従って常光と異常光との分離角度も小さい。このため、複屈折材料の長さを大きくする必要があり、分波器も大きくなってしまう。
【0005】
一方、屈折率が周期的に変化するフォトニック結晶(Photonic Crystal)を用いた光デバイスも報告されている(特開2000−180789号公報、特開2000−241762号公報、特開2000−241763号公報、特開2000−284225号公報参照)。なお、この明細書において「フォトニック結晶」とは、光の波長程度の周期性を持つ人工的な多次元周期構造を意味する。
【0006】
フォトニック結晶を偏光子として使用する従来の光アイソレータは、TE波またはTM波のいずれかを入射面で反射するフォトニックバンド構造を有するフォトニック結晶を使用している。そのため、フォトニック結晶の反射光(戻光)が光源側に結合されないように、フォトニック結晶を光軸から傾けている。このような光アイソレータにおいて、光源側からの入射光を反射するためには、反射光を光源側と結合させない別の光学系、または、光学的設計を必要とし、構造が複雑となる。
【0007】
上記の状況に鑑み、本発明は、入射光の分波が可能な小型の光デバイスを提供することを目的とする。
【0008】
【課題を解決するための手段】
上記目的を達成するために、本発明の光デバイス(CL1)は、波長λの入射光をTE波とTM波とに分離する第1の光学部材と、前記第1の光学部材に前記入射光を入力する光入力手段とを備える光デバイスであって、前記第1の光学部材は屈折率が周期的に変化する構造を有し、前記波長λにおける前記第1の光学部材の第1の逆格子ベクトルα1と第2の逆格子ベクトルα2とがなす角度が90°以下であり、前記第1の逆格子ベクトルα1の方向において前記TE波の波数が前記TM波の波数よりも大きく、前記第2の逆格子ベクトルα2の方向において前記TE波の波数が前記TM波の波数よりも小さく、前記光入力手段は、前記第1の逆格子ベクトルα1と前記第2の逆格子ベクトルα2とを含む面P12に平行な方向に前記入射光を入力することを特徴とする。この光デバイスでは、分波部におけるTE波とTM波のそれぞれの分散面の相違が大きくなり、TE波とTM波との分離角度を大きくできる。その結果、回折の影響が無視できる伝播距離でTE波とTM波とを十分に分離することが可能となり、レンズなどの光学部品の低減とデバイスの小型化とが可能となる。
【0009】
また、本発明の他の光デバイス(CL16)は、上記光デバイス(CL1)に加えて位相子と光出力手段とをさらに備え、前記第1の光学部材と前記位相子と前記光出力手段とは、前記光入力手段によって入力された光がこの順序で透過するように配置されており、前記光入力手段は、波長がλである波長λ(1)から一定の間隔で波長が増大する複数の波長λ(p)(pは自然数)の光を、前記面P12と平行な方向に入力し、前記位相子は、奇数番目の波長の光と偶数番目の波長の光との間で偏光状態に差を与える位相子である。この光デバイスでは、奇数番目の波長と偶数番目の波長との間で偏光状態に一定の差を与える位相子と第1の光学部材とを一体化している。そのため、2種類の偏光状態と2種類の波長(奇数番の波長と偶数番の波長)とを組合せて各種機能デバイスに適用できる。この光デバイスは、特に、波長間隔が一定の複数の波長の光を扱うWDM光通信などに好適である。
【0010】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照しながら説明する。なお、以下の実施形態の説明において、同一の部分については同一の符号を付して重複する説明を省略する。
【0011】
(実施形態1)
実施形態1では、本発明の光デバイスとして分波器の一例について説明する。実施形態1の光デバイス10の構成を図1に模式的に示す。なお、図面のハッチングは省略する。
【0012】
光デバイス10は、入射側の光ファイバ1(F(0))と、出射側の光ファイバ2および3(F(1)およびF(2))と、分波部4と、ガイド5とを備える。ガイド5は、光ファイバ1〜3と分波部4との相対的な位置を固定する。光ファイバ1〜3は、それぞれ、光が伝播するコア部と、コア部の周囲に配置されたクラッド部とを備える。
【0013】
分波部4(以下の実施形態では第1の分波部4という場合がある)は、入射した波長λの光をTE波(常光)とTM波(異常光)とに分離する光学部材(第1の光学部材)である。分波部4は、互いに平行な入射面と出射面とを有する第1の物質8(基材)と、第1の物質8中に配置された複数の柱状部9とを含む。柱状部9は、第1の物質とは屈折率が異なる第2の物質からなる。柱状部9の中心軸は、お互いに平行で、且つ、入射光の入射方向と垂直である。すなわち、柱状部9のそれぞれは、その中心軸が第1の物質8の入射面に平行になるように配置されている。複数の柱状部9は、一定の周期で配置されており、そのため、分波部4は、屈折率が周期的に変化する。柱状部9が配置される周期は、たとえば、光源波長が1.3μmの場合には、0.2μm〜1.0μm程度である。分波部4の複数の逆格子ベクトルの方向のうち、波長λにおける第1の逆格子ベクトルα1の方向(K)11と第2の逆格子ベクトルα2の方向(M)12とがなす角度は90°以下(好ましくは、45°以上90°以下)である。また、第1の逆格子ベクトルα1の方向(K)11において、TE波の波数がTM波の波数よりも大きい。また、第2の逆格子ベクトルα2の方向(M)12において、TE波の波数がTM波の波数よりも小さい。
【0014】
分波部4のフォトニックバンドの一例として、K方向とM方向とに逆格子ベクトルを有するフォトニックバンドの例を、図2に示す。図2の横軸のブリルアンゾーン内の波数ベクトルは、分波部4中の光の伝搬方向に対応している。また、縦軸の規格化周波数は光源の波長に対応している。図2の例では、周波数fについて、TMモードはA点(K方向)とA’点(M方向)の波数となり、TEモードはB点(K方向)とB’点(M方向)の波数となる。図2に示すように、M方向ではTE波の波数がTM波の波数よりも大きい。また、K方向ではTE波の波数がTM波の波数よりも小さい。従って、周波数fでのTE波とTM波の分散面は、図3に示すように6回対称で、K方向とM方向とではTE波の波数とTM波の波数の大きさが逆転する。その結果、あらゆる方向において分散面に垂直な方向(群速度方向)がTE波とTM波とで大きく異なり、大きな分離角が得られる。TE波とTM波との分離の一例を図3に示す。
【0015】
図3に示すように、分波部4では、境界条件である境界面上における電界成分の運動量保存の法則によって分波部4内でのTE波の波数ベクトルとTM波の波数ベクトルとが決まる。分波部4に入射したTE波とTM波とは、それぞれの波数ベクトル終点での分散面の垂線(グラジエント方向)が伝播方向(群速度方向)となる。TE波とTM波の伝播方向は、それぞれの分散面で決まるため、図3の例では分離角度は90°程度となる。ルチルなどの天然の複屈折材料では、得られる分離角度はせいぜい15°程度であり、その効果は明らかである。また、分波部4におけるTE波とTM波の分離角度は、M方向におけるTE波の波数とTM波の波数との差、およびK方向におけるTE波の波数とTM波の波数との差が大きいほど大きくなる。そして、それらの波数の差は、分波部4を構成する第1および第2の物質の屈折率の差や形状で決まるため、任意に変えることができる。
【0016】
このように、TE波の分散面とTM波の分散面との相違を大きくし、分離角度を巨大にすると、分波部の長さを小さくできるので、回折の影響が小さい伝播距離でTE波とTM波とを大きく分離することが可能となる。その結果、デバイスを小型化できるとともに、レンズなどの部品を低減することが可能となる。たとえば、入射側の光ファイバ1を分波部4の入射面に接するように配置し、出射側の光ファイバ2および3を、分波部4の出射面の接するように配置されている光デバイス10の場合について考える。この場合、外径150μmの隣あう2つのシングルモードファイバのそれぞれにTE波とTM波とを入射させるとすると、分離角度を170°にすれば、分波部4の長さを約6.5μmまで短くできる。
【0017】
また、図3からわかるように、TE波とTM波の分離方向は、入射光の方向によっても変化する。そのため、分波部4の光伝播方向の長さと光ファイバ1から分波部4へ入射する光の方向とを調整することによって、TE波とTM波とを、それぞれ、任意の位置の光ファイバ2と光ファイバ3とに結合させることも可能である。
【0018】
光ファイバ1は、分波部4に少なくとも波長λの入射光を入力する光入力手段として機能する。光ファイバ1は、分波部4に対して、第1の逆格子ベクトルα1の方向(K)11と第2の逆格子ベクトルα2の方向(M)12とを含む面(以下、面P12という場合がある)と平行な方向に光を入力する。また、光ファイバ2および3は、分波部4から出力される光を受光して外部に出力する光出力手段として機能する。分波部4によって分離されたTM波6とTE波7とは、それぞれ、光ファイバ2の端部と光ファイバ3の端部とに入射する。出射側の光ファイバは、面P12に平行に配置される(以下の実施形態においても同様である)。一般的には、入射側の光ファイバと出射側の光ファイバとは、お互いに平行に配置される(以下の実施形態においても同様である)。
【0019】
以下、分波部4について説明する。分波部4の第1の物質8には、たとえばSi、SiO2、GaAs、ポリマーなどを用いることができる。分波部4の柱状部9は、第1の物質8とは屈折率が異なる第2の物質からなり、たとえば、Si、SiO2、GaAs、ポリマーなどを用いることができる。第1の物質8または第2の物質のいずれかは、空気であってもよい。分波部4は、基材となる第1の物質8に、互いに平行な柱状の穴を周期的に形成したり、その柱状の穴を第1の物質8とは屈折率が異なる物質で充填することによって形成できる。また、第1の物質8にレーザビームを照射して第1の物質8の一部の屈折率を変化させる方法を用いてもよい。また、柱状の物体を積層する方法を用いてもよい。
【0020】
なお、分波部4は、以下の(i)〜(iii)の3つの条件を満たすものであれば、どのような構造であってもよい(以下の実施形態で説明する分波部についても同様である)。(i)使用波長における第1の逆格子ベクトルα1と第2の逆格子ベクトルα2とがなす角度が90°以下(好ましくは、45゜以上90゜以下)である。(ii)第1の逆格子ベクトルα1の方向(K方向)においてTE波の波数がTM波の波数よりも大きい。(iii)第2の逆格子ベクトルα2の方向(M方向)においてTE波の波数がTM波の波数よりも小さい。従って、分波部4は図1に示された構造に限定されない。たとえば、柱状部9は、図4(a)、(b)および(c)に示すような配置で平行に配置されてもよい。図4(A)は、隣接する正方格子の格子点に柱状部9が配置されている場合を示す。図4(B)は、隣接する正三角形の格子点に柱状部9が配置されている場合を示す。図4(C)は、隣接する六角形の格子点に柱状部9が配置されている場合を示す。これらの配置はそれぞれ逆格子ベクトルの方向が異なる。
【0021】
上述の分波部4は、屈折率が特定の断面で2次元の方向に周期的に変化している。このほか、分波部4は、屈折率が3次元的に周期的に変化する構造であってもよい。具体的には、第1の物質と、第1の物質の内部に一定の周期で配置された粒子(第1の物質とは屈折率が異なる第2の物質からなる)とを備える分波部を用いることができる。たとえば、球状の物体(たとえば、SiO2の粒子やポリマーの粒子)を3次元的に積み上げて面心立方や体心立方などの構造や最密充填構造を形成すると、この構造には2個以上の逆格子ベクトルが存在する。このうち、適当な2個の逆格子ベクトルを選択して、使用波長において、第1の逆格子ベクトル方向におけるTE波の波数がTM波の波数よりも大きくなるように、且つ、第2の逆格子ベクトル方向におけるTE波の波数がTM波の波数よりも小さくなるようにすればよい。分波部を構成する物質の屈折率の差や構造を変化させることによって、分波部4と同様のメカニズムでTE波とTM波とを分離することができる。また、分波部4は、入射光の入射方向に交互に積層された第1の層と第2の層とによって形成されてもよい。この場合、第1の層は、第1の物質からなり、第2の層は、第1の物質とは異なる第2の物質からなる。この分波部は、スパッタリング法などによって形成できる。
【0022】
(実施形態2)
実施形態2では、本発明の光デバイスとして、分波器の一例について説明する。実施形態2の光デバイス50の構成を図5(A)に模式的に示す。また、各光学部品を出射したときの光の偏光の状態を図5(B)に示す。
【0023】
光デバイス50は、入射側の光ファイバ1と、出射側の光ファイバ51〜54と、第1の分波部4(第1の光学部材)と、第2の分波部56(第2の光学部材)と、ガイド57とを備える。光ファイバ1、第1の分波部4、第2の分波部56、および光ファイバ51〜54は、ガイド57によってそれぞれの相対的な位置が固定されている。第1の分波部4、第2の分波部56および光ファイバ51〜54は、光ファイバ1によって入力された光がこの順序で透過するように配置されている。
【0024】
第1の分波部4および第2の分波部56は、それぞれ、実施形態1の分波部4と同様の構造を有する光学部材である。すなわち、これらの光学部材は、互いに平行な入射面と出射面とを有する第1の物質8と、第1の物質8内に配置された柱状部9とを備える。柱状部9は、第1の物質8とは屈折率が異なる第2の物質からなる。柱状部9の中心軸は、お互いに平行で且つ第1の物質8の入射面に平行である。柱状部9は、2次元方向に対して一定の周期で分布している。
【0025】
第2の分波部56は、第1の分波部4に対して、光軸を中心として45°ずれるように配置されている。すなわち、第1の分波部4の第1の逆格子ベクトルα1と第2の逆格子ベクトルα2と光軸とを含む面と、第2の分波部56の第1の逆格子ベクトルβ1と第2の逆格子ベクトルβ2と光軸とを含む面とが、光軸を中心として45°の角度をなす。なお、この明細書において「光軸」とは、入射光の光軸を意味する。
【0026】
光ファイバ1からの入射光は、第1の分波部4に対して、第1の逆格子ベクトルα1と第2の逆格子ベクトルα2とを含む面と平行な方向に入射する。第1の分波部4および第2の分波部56を通過した光は、TM波(1)、TM波(2)、TE波(1)およびTE波(2)に分離される。TM波(1)、TM波(2)、TE波(1)およびTE波(2)は、それぞれ、出射側の光ファイバ51〜54(F(1)〜F(4))の端部に入射する。
【0027】
第1の分波部4と第2の分波部56のフォトニックバンドは、実施形態1で説明したフォトニックバンドと同様に、第1の逆格子ベクトル方向においてTE波の波数がTM波の波数よりも大きく、第2の逆格子ベクトル方向においてTE波の波数がTM波の波数よりも小さい。このため、どちらの分波部も、TM波の分散面とTE波の分散面とが大きく異なり、TM波とTE波の分離角を大きくできる。
【0028】
光デバイス50では、第1の分波部4と第2の分波部56とが、光軸を中心として45°ずらして配置されている。そのため、第1の分波部4において分離されたTM波とTE波のそれぞれの伝播方向を含む面と、第2の分波部56において分離されたTM波とTE波のそれぞれの伝播方向を含む面とは、45°ずれている。すなわち、図5(B)に示すように、光ファイバ1から入射される無偏波光(TM波6およびTE波7)は、第1の分波部4において、第1の分波部4の第1の逆格子ベクトルα1と第2の逆格子ベクトルα2とを含む面P12上でTM波とTE波とに分離される。そして、そのTM波とTE波とは、第2の分波部56において、それぞれ、TM波(1)とTM波(2)、およびTE波(1)とTE波(2)とに分離される。このとき、TM波6の偏波面と、TM波(1)およびTM波(2)の偏波面とは45°ずれている。また、TE波7の偏波面と、TE波(1)およびTE波(2)の偏波面とは45°ずれている。従って、TM波(1)、TM波(2)、TE波(1)およびTE波(2)の出射位置に対応させた光ファイバ51〜54は、第1の分波部4の第1の逆格子ベクトルα1と第2の逆格子ベクトルα2とを含む面P12に対して垂直方向にジグザグの配置になる。
【0029】
(実施形態3)
実施形態3では、本発明の光デバイスとして、分波器の一例について説明する。実施形態3の光デバイス60の構成を図6(A)に模式的に示す。また、各光学部品を出射した光の偏光状態を図6(B)に示す。
【0030】
光デバイス60は、2n分波器である。光デバイス60は、入射側の光ファイバ1と、出射側の光ファイバ61(1)〜61(2n-1)および62(1)〜62(2n-1)と、n個の分波部63(1)〜63(n)と、ガイド64とを備える。光ファイバ1と、光ファイバ61および62と、分波部63とは、ガイド64によって相対的な位置が固定されている。
【0031】
n個の分波部63(1)〜63(n)は、それぞれ、実施形態1の分波部4と同様の構造を有する光学部材である。すなわち、これらの光学部材は、互いに平行な入射面と出射面とを有する第1の物質8と、第1の物質8の内部に配置された柱状部9とを備える。柱状部9は、第1の物質8とは屈折率が異なる第2の物質からなる。各分波部の柱状部9の中心軸は、互いに平行で、且つ、第1の物質8の入射面に平行である。柱状部9は、2次元方向に対して一定の周期で分布している。
【0032】
第k番目(kは2以上n以下の自然数)の分波部63(k)は、光ファイバ1から入力され分波部63(k−1)から出力された光を受光するように配置されている。分波部63(k)は、分波部63(k−1)に対して光軸を中心として45°ずれるように配置されている。具体的には、分波部63(k)の柱状部の中心軸と、分波部63(k−1)の柱状部の中心軸とは、45゜ずれている。換言すれば、分波部63(k)の第1の逆格子ベクトルk1と第2の逆格子ベクトルk2と光軸とを含む面を面k12とし、分波部63(k−1)の第1の逆格子ベクトル(k−1)1と第2の逆格子ベクトル(k−1)2と光軸とを含む面を面(k−1)12としたときに、面k12と面(k−1)12とが光軸を中心として45°の角度をなす。
【0033】
光ファイバ1は、分波部63(1)の第1の逆格子ベクトルと第2の逆格子ベクトルとを含む面に平行な方向に入射光を入力する。分波部63(1)〜分波部63(n)を通過した光は、TM波65(1)〜65(2n-1)と、TE波66(1)〜66(2n-1)とに分離される。これらの2n個の光は、それぞれ、異なる光ファイバ、すなわち光ファイバ61(1)〜61(2n-1)および光ファイバ62(1)〜62(2n-1)に入射する。
【0034】
分波部63(1)〜63(n)のそれぞれのフォトニックバンドは、実施形態1の分波部4のフォトニックバンドと同様である。すなわち、第1の逆格子ベクトルの方向においてTE波の波数がTM波の波数よりも大きく、第2の逆格子ベクトルの方向においてTE波の波数がTM波の波数よりも小さい。そして、いずれの分波部においても、TM波の分散面とTE波の分散面とが大きく異なるため、TM波とTE波の分離角を大きくできる。
【0035】
分波部63(k−1)と分波部63(k)とは、光軸を中心として45°ずらして配置されている。このため、分波部63(k−1)において分離されたTM波とTE波のそれぞれの伝播方向を含む面と、分波部63(k)において分離されたTM波とTE波のそれぞれの伝播方向を含む面とは、45°ずれている。光ファイバ1から入射された無偏波光は、分波部63(k−1)において、分波部63(k−1)の第1の逆格子ベクトルと第2の逆格子ベクトルとを含む面で、TM波(k−1の1)〜(k−1の2k-2)とTE波(k−1の1)〜(k−1の2k-2)とに分離される。これらの光は、分波部63(k)において、さらに、TM波(kの1)〜(kの2k-1)とTE波(kの1)〜(kの2k-1)とに分離される。このとき、TM波(k−1の1)〜(k−1の2k-2)の偏波面と、TM波(kの1)〜(kの2k-1)の偏波面とは45°ずれている。また、TE波(k−1の1)〜(k−1の2k-2)の偏波面と、TE波(kの1)〜(kの2k-1)の偏波面とは45°ずれている。
【0036】
光ファイバ61(1)〜61(2n-1)は、分波部63(n)から出射される2n-1個のTM波に対応するように配置されている。また、光ファイバ62(1)〜62(2n-1)は、分波部63(n)から出射される2n-1個のTE波に対応するように配置されている。その結果、光ファイバ61(1)〜61(2n-1)および光ファイバ62(1)〜62(2n-1)は、分波部63(1)の第1の逆格子ベクトルと第2の逆格子ベクトルとを含む面に対して、垂直方向にジグザグの配置になる。
【0037】
実施形態2および3では、複数の分波部を連結させた光デバイスについて説明した。しかしながら、分波部の構造はこれに限られない。たとえば、複数の分波部が一体となった構造でもよい(以下の実施形態においても同様である)。この場合には、まず、屈折率の異なる2種類の物質をスパッタリングなどによって交互に積層して第1の分波部を形成する。その後、光の伝播方向を中心軸として第1の分波部を45°回転させ、続けて屈折率の異なる2種類の物質を交互に積層して第2の分波部を形成する。このような工程を何回か繰り返すことによって複数の分波部が一体となった光学部材を形成できる。
【0038】
また、実施形態1〜実施形態3の光デバイスでは、少なくとも1つの光ファイバを位置決めする溝(たとえば断面がV字状の溝やU字状の溝)が付いた基板を用いて光ファイバの位置決めをしてもよい(以下の実施形態においても同様である)。この溝付き基板を、光ファイバに隣接する分波部の前後に一体化することによって、光軸を調整することなく光ファイバと分波部とを結合することができる。また、この溝付き基板上に、屈折率が異なる少なくとも2種類の物質が一定の周期で分布する構造を形成することによって、分波部と溝付き基板とを一体化することもできる。
【0039】
(実施形態4)
実施形態4では、本発明の光デバイスとして、無偏波型光アイソレータの一例を説明する。実施形態4の光デバイス70の構成と進行光の光路とを図7(A)に示す。また、進行光が各光学部品を出射したときの偏波の状態を図7(B)に示す。また、戻光の光路を図8(A)に示し、戻光が各光学部品を出射したときの偏波の状態を図8(B)に示す。
【0040】
光デバイス70は、入射側の光ファイバ1と、入射側のレンズ72と、第1の分波部4と、ファラデー結晶74と、第2の分波部75と、第3の分波部76と、出射側のレンズ77と、出射側の光ファイバ78とを備える。これらの光学部品は、光ファイバ1から入力された光が、レンズ72、第1の分波部4、ファラデー結晶74、第2の分波部75、第3の分波部76、レンズ77および光ファイバ78の順で透過するように、光軸71に沿って一列に配置されている。光デバイス70は、さらに、ファラデー結晶74の回転角を飽和させる磁界79を印加する磁界印加手段85を備える。
【0041】
ファラデー結晶74には、たとえばガーネットや鉛ガラスを用いることができる。磁界印加手段85には、円筒状の磁石または電磁石を用いることができる。なお、以下の実施形態の図面では、磁界印加手段の図示を省略している場合があるが、磁界印加手段85と同様のものを用いることができる。
【0042】
第1の分波部4、第2の分波部75、および第3の分波部76は、それぞれ、実施形態1の分波部4と同様の構造を有する光学部材である。第1の分波部4と第2の分波部75とは、光軸71を中心として45°ずらして配置されている。すなわち、第1の分波部4の第1の逆格子ベクトルと、第2の分波部75の第1の逆格子ベクトルとは45゜の角度をなす。また、第2の分波部75と第3の分波部76とは、光軸を中心として90°ずらして配置されている。すなわち、第2の分波部75の第1の逆格子ベクトルと第3の分波部76の第1の逆格子ベクトルとは90゜の角度をなす。
【0043】
次に、光デバイス70の機能について図を参照しながら説明する。図7(A)および(B)に示すように、光ファイバ1から入射された無偏波光は、第1の分波部4でTE波80とTM波81とに分離される。第1の分波部4から出射されたTE波80およびTM波81は、ファラデー結晶74で45°回転される。次に、第2の分波部75において、TM波81のみが光軸71上に変移し、第3の分波部76においてTE波80が光軸71上に変移する。その結果、TE波80とTM波81の両方が光ファイバ78に結合される。
【0044】
一方、戻光については図8(A)および(B)に示すように、光ファイバ78から出射される無偏波光は、第3の分波部76においてTE波83のみが光軸71から変移する。第2の分波部75においては、TM波84が光軸71から変移する。次に、ファラデー結晶74によってTE波83とTM波84とは、それぞれ45°回転される。次に、第1の分波部4において、TE波83およびTM波84は、光軸71から離れる方向へ変移する。その結果、戻光のTE波83およびTM波84は、入射側の光ファイバ1に結合されない。従って、光デバイス70では、光は一方向にのみ進行する。
【0045】
(実施形態5)
実施形態5では、本発明の光デバイスとして、無偏波型光アイソレータの一例について説明する。実施形態5の光デバイス90の構成と進行光の光路とを図9(A)に示す。また、進行光が各光学部品を出射したときの偏波の状態を図9(B)に示す。また、戻光の光路を図10(A)に示し、戻光が各光学部品を出射したときの偏波の状態を図10(B)に示す。
【0046】
光デバイス90は、入射側の光ファイバ1と、入射側のレンズ72と、第1の分波部4と、ファラデー結晶74と、旋光性結晶91と、第2の分波部92と、出射側のレンズ77と、出射側の光ファイバ78とを備える。これらの光学部品は、光ファイバ1から入力された光が、レンズ72、第1の分波部4、ファラデー結晶74、旋光性結晶91、第2の分波部92、レンズ77および光ファイバ78の順序で透過するように、光軸71に沿って一列に配置されている。さらに、光デバイス90は、ファラデー結晶74の回転角を飽和させる磁界79を印加する磁界印加手段(図示せず)を備える。
【0047】
第1の分波部4および第2の分波部92は、実施形態1の分波部4と同様の構造を有する光学部材である。旋光性結晶91には、たとえば水晶を用いることができる。
【0048】
第1の分波部4と第2の分波部92とは、光軸71に対して光学的に同じ方向に配置される。具体的には、第1の分波部4の第1の逆格子ベクトルと、第2の分波部92の第1の逆格子ベクトルとは平行である。
【0049】
以下に、光デバイス90の機能について図面を参照しながら説明する。図9(A)および9(B)に示すように、光ファイバ1から入射された無偏波光は、第1の分波部4においてTE波93とTM波94とに分離される。次に、TE波93とTM波94とは、それぞれ、ファラデー結晶74において45°回転される。次に、TE波93とTM波94とは、それぞれ、旋光性結晶91において、さらに45°回転される。次に、第2の分波部92において、TE波93とTM波94は共に光軸71上に変移する。このようにして、TE波93とTM波94の両方が出射側の光ファイバ78に結合される。
【0050】
一方、図10(A)および10(B)に示すように、光ファイバ78から出射される無偏波光は、第2の分波部92においてTE波95とTM波96とに分離される。第2の分波部92において、TE波95とTM波96とは光軸71に対して異なる方向に変移する。次に、TE波95とTM波96とは、旋光性結晶91において−45°回転される。次に、TE波95とTM波96とは、ファラデー結晶74において、45°回転され、これらの偏光状態は、第2の分波部92を出射したときと同じになる。次に、TE波95とTM波96とは、それぞれ、第1の分波部4において光軸71からさらに離れる方向へ変移する。その結果、TE波95およびTM波96は光ファイバ1に結合されない。従って、光デバイス90において、光は一方向にのみ進行する。
【0051】
(実施形態6)
実施形態6では、本発明の光デバイスとして、分波器の一例を説明する。実施形態6の光デバイス110の構成を図11(A)に模式的に示す。また、各光学部品を出射したときの光の偏波の状態を図11(B)に示す。
【0052】
光デバイス110は、入射側の光ファイバ1と、第1の分波部4と、位相子112(第2の光学部材)と、出射側の光ファイバ113および114と、ガイド115とを備える。ガイド115は、各光学部品の相対的な位置を固定する。第1の分波部4と、位相子112と、出射側の光ファイバとは、光ファイバ1から入力された光が、この順序で透過するように配置されている。
【0053】
第1の分波部4および位相子112は、それぞれ、実施形態1の分波部4と同じ構造を有する光学部材である。すなわち、第1の分波部4は、互いに平行な入射面と出射面とを有する第1の物質8と、第1の物質8の内部に配置された柱状部9とを備える。柱状部9は、第1の物質8とは屈折率が異なる第2の物質からなる。柱状部9の中心軸は、互いに平行であり、且つ、第1の物質8の入射面に平行である。柱状部9は、一定の周期で配置されている。また、位相子112は、互いに平行な入射面と出射面とを有する第3の物質8aと、第3の物質8aの内部に配置された柱状部9aとを備える。柱状部9aは、第3の物質8aとは屈折率が異なる第4の物質からなる。柱状部9aの中心軸は、互いに平行であり、且つ、第3の物質8aの入射面に平行である。柱状部9aは、一定の周期で配置されている。柱状部9の中心軸の方向と柱状部9aの中心軸の方向とは、45°の角度をなす。
【0054】
光ファイバ1は、第1の分波部4の第1の逆格子ベクトルα1の方向(K)11と、第2の逆格子ベクトルα2の方向(M)12とを含む面に平行な方向に入射光を入力する。光ファイバ1は、波長がλである波長λ(1)から一定の間隔で波長が増大するp個の波長λ(p)(pは、2以上の自然数)の入射光を第1の分波部4に入力する。すなわち、入射光は、λ、λ+C、λ+2C、・・・、λ+pCという波長の光である(C:定数)。以下、奇数番目の波長をλ(2q−1)と表記し、偶数番目の波長をλ(2q)と表記する場合がある。
【0055】
第1の分波部4には、奇数番目の波長λ(2q−1)のTE波(2q−1)およびTM波(2q−1)と、偶数番目の波長λ(2q)のTE波(2q)およびTM波(2q)とが入力される。
【0056】
光ファイバ113は、位相子112から出力されるTM波(2q−1)およびTM波(2q)を受光する。光ファイバ114は、位相子112から出力されるTE波(2q−1)およびTE波(2q)を受光する。光ファイバ113および114は、光出力手段として機能する。
【0057】
第1の分波部4のフォトニックバンドの一例は、図2に示した通りである。また、この光学部材に入射した光の伝播方向は、図3に示した通りである。
【0058】
一方、K方向およびM方向に逆格子ベクトルを有する位相子112のフォトニックバンドの一例を図12に示す。図12の例では、波長λ(2q)に対応する周波数f2qの光について、光軸を中心として柱状部9aの中心軸の方向から−45°回転した方向ではA点(K方向)とA’点(M方向)で示されるように波数が等しくなる。同様に、光軸を中心として柱状部9aの中心軸の方向から+45°回転した方向ではB点(K方向)とB’点(M方向)で示されるように波数が等しくなる。そして、いずれの方向についても−45°の方向の波数が大きい。
【0059】
波長λ(2q)に対応する周波数f2qにおけるTE波の分散面とTM波の分散面とは、それぞれ、図13に示すように中心対称となる。同様に、波長λ(2q−1)に対応する周波数f2q-1におけるTE波およびTM波の分散面を図13に示す。そして、図13に示すような入射光がある場合、境界条件である境界面上での電界成分の運動量保存の法則によって、位相子112内部での+45°方向と−45°方向の波数ベクトルが決まる。また、同一波長における+45°方向と−45°方向の位相差(波数差Δk×伝播距離d)によって、その波長での偏光状態が決まる。第1の分波部4から入射された直線偏光は、上記位相差が2mπ(m:整数)の場合は同一方向の直線偏光になり、(2m−1)πの場合は90°傾いた直線偏光となる。従って、WDMなどのように波長間隔が一定の複数波長を用いる場合において、奇数番目の波長の位相差と偶数番目の波長の位相差との差がmπのときには、奇数番目の波長の直線偏光と偶数番目の波長の直線偏光とが直交する。
【0060】
奇数番目の波長λ(2q−1)における位相子112の第1の逆格子ベクトル方向の波数と第2の逆格子ベクトル方向の波数との差をxとする。また、偶数番目の波長λ(2q)における位相子112の第1の逆格子ベクトル方向の波数と第2の逆格子ベクトル方向の波数との差をyとする。このとき、xとyとの差は一定値である。また、第1の分波部4の第1の逆格子ベクトルと第2の逆格子ベクトルとを含む面と、位相子112の第1の逆格子ベクトルと第2の逆格子ベクトルとを含む面とは、45゜の角度をなす。
【0061】
光デバイス110では、第1の分波部4と位相子112とを組合せることによって、WDMなどで用いられる複数の波長λ(1)〜λ(p)の光を、偏光状態が異なる光に分離するともに、波長毎に偏光状態を操作することができる。
【0062】
なお、位相子112は、実施形態1で説明した分波部4と同様の方法で作製できる。
【0063】
(実施形態7)
実施形態7では、本発明の光デバイスとして、WDM用の光インターリーバの一例について説明する。
【0064】
実施形態7の光デバイス140を図14(A)に示す。また、各光学部品出射時の偏光の状態を図14(B)に示す。
【0065】
光デバイス140は、入射側の光ファイバ1と、入射側のレンズ141と、第1の分波部4と、位相子142と、第2の分波部143と、合波部144と、出射側のレンズ145と、出射側の光ファイバ146および147とを備える。レンズ141、第1の分波部4、位相子142、第2の分波部143、合波部144、レンズ145および出射側の光ファイバは、光ファイバ1から入力された光がこの順序で透過するように配置されている。
【0066】
第1の分波部4および第2の分波部143は、実施形態1で説明した分波部4と同様の構造を有する光学部品である。第2の分波部143の光学的な配置は、第1の分波部4と同じである。すなわち、第2の分波部143の第1の逆格子ベクトルおよび第2の逆格子ベクトルは、それぞれ、第1の分波部4の第1の逆格子ベクトルおよび第2の逆格子ベクトルと平行である。
【0067】
位相子142は、実施形態6で説明した位相子112と同等の光学特性を有し、奇数番目の波長λ(2q−1)の位相差と、偶数番目の波長λ(2q)の位相差との差をmπとする厚さを有する。すなわち、位相子142は、入射した光に対して、奇数番目の波長の光と偶数番目の波長の光とが互いに直交する直線偏光となるように位相変化を与える位相子である。
【0068】
奇数番目の波長λ(2q−1)のTE波とTM波とは、第2の分波部143において合波される。合波部144は、偶数番目の波長λ(2q)のTE波とTM波とを合波する。光ファイバ146には、合波部144で合波された偶数番目の波長λ(2q)の光が入力される。また、光ファイバ147には、第2の分波部143で合波された奇数番目の波長λ(2q−1)の光が入力される。光ファイバ1、146および147とは、第1の分波部4の第1の逆格子ベクトルα1と第2の逆格子ベクトルα2とを含む面P12に平行に配置されている。
【0069】
光デバイス140の機能について、図14(A)および(B)を参照しながら以下に説明する。光ファイバ1から入力された無偏波光は、第1の分波部4において、TM波とTE波とに分離される。このとき、波長λ(2q)のTM波(2q)と波長λ(2q−1)のTM波(2q−1)とは、いずれも図14(A)の上側に変移する。また、波長λ(2q)のTE波(2q)と波長λ(2q−1)のTE波(2q−1)とは、いずれも図14(A)の下側に変移する。
【0070】
次に、位相子142は、TE波およびTM波のそれぞれに対して、波長λ(2q)の光と波長λ(2q−1)の光との間に、mπの位相差を与える。その結果、TE波とTM波のそれぞれについて、波長λ(2q)の光と波長λ(2q−1)の光との間の相対的な偏光方向を90°変化させる。
【0071】
次に、第2の分波部143において、偏光方向が90°異なるTE波(2q)とTE波(2q−1)とは、それぞれ、図14(A)の下側と上側とに分離する。同様に、第2の分波部143において、偏光方向が90°異なるTM波(2q)とTM波(2q−1)とは、それぞれ、図14(A)の上側と下側とに分離する。
【0072】
ここで、TE波(2q−1)の出射位置とTM波(2q−1)の出射位置とを一致させるために、第1の分波部4と第2の分波部143のそれぞれの光軸方向の厚さを調整し、それぞれにおける分離距離が等しくなるようにする。第2の分波部143で結合された波長λ(2q−1)のTE波とTM波とは、そのまま光ファイバ147に結合される。第2の分波部143で結合されない波長λ(2q)のTE波とTM波とは、合波部144で合波され、光ファイバ146に結合される。合波部144は、ミラー144aと合波器144bとを備える。このようにして、波長間隔が一定のスペクトルを有する光信号は、偶数番目の波長の光信号と奇数番目の波長の光信号とに分離される。
【0073】
なお、第1および第2の分波部4および142におけるTE波およびTM波の分離方向は、各分波部の逆格子ベクトルで決まる。このため、各波の分離方向について、および、合波部144で合波する波については、分波部の構成および配置の方向で変更することができる。波の分離方向と合波部144で合波する波とを変更した光デバイス150を図15(A)に示す。また、光デバイス150の各光学部品を出射した光の偏光状態を図15(B)に示す。
【0074】
光デバイス150の第2の分波部151は、配置を変更したことを除いて第2の分波部143と同じである。光デバイス150では、第1の分波部4の第1の逆格子ベクトルα1と第2の分波部151の第1の逆格子ベクトルとがなす角度が、第1の分波部4の第1の逆格子ベクトルα1と第2の逆格子ベクトルα2とがなす角度に等しい。
【0075】
光デバイス150では、図15(A)に示すように、第2の分波部151における光の移動方向が、図14(A)の移動方向とは反対となる。その結果、波長λ(2q)のTE波(2q)とTM波(2q)とは第2の分波部151で合波されて光軸上の光ファイバ146に入力される。一方、第2の分波部151で合波されない波長λ(2q−1)のTE波(2q−1)とTM波(2q−1)とは、合波部144で合波されて光ファイバ147に入力される。
【0076】
(実施形態8)
実施形態8では、本発明の光デバイスとして、偏光子の一例を説明する。実施形態8の光デバイス160の構成を図16に模式的に示す。
【0077】
光デバイス160は、入射側の光ファイバ1と、分波部4と、出射側の光ファイバ161と、ガイド162とを備える。光ファイバ1と分波部4と光ファイバ161とは、ガイド162によって相対的な位置が固定されている。分波部4は、実施形態1で説明した分波部4と同様の構造を有する光学部材である。
【0078】
分波部4は、光ファイバ1から入力されたTE波とTM波とを分離する。光出力手段である光ファイバ161には、分波部4で分離されたTE波とTM波のいずれかが入力される。図16では、TE波が入力される場合を示している。光ファイバ161に入力されないTM波は、図16に示すように前方の方向に分離される。なお、TM波を後方に分離してもよい。
【0079】
(実施形態9)
実施形態9では、本発明の光デバイスとして、偏波依存型光アイソレータの一例について説明する。実施形態9の光デバイス170の構成および進行光の光路を図17(A)に模式的に示す。また、各光学部品を出射した進行光の偏光の状態を図17(B)に示す。また、戻光の光路を図18(A)に示し、戻光の偏光の状態を図18(B)に示す。
【0080】
光デバイス170は、入射側の光ファイバ1と、入射側のレンズ171と、第1の分波部4と、ファラデー結晶172と、第2の分波部173と、出射側のレンズ174と、出射側の光ファイバ175とを備える。さらに光デバイス170は、ファラデー結晶172の回転角を飽和させる磁界H176を印加するための手段(図示せず)を備える。レンズ171、第1の分波部4、ファラデー結晶172、第2の分波部173、レンズ174および光ファイバ175は、光ファイバ1から入力された光がこの順序で透過するように配置されている。
【0081】
第1の分波部4および第2の分波部173は、実施形態1で説明した分波部4と同じ構造を有する光学部材である。この2つの分波部は、相対的に、光軸179を中心として光学的に45°ずらして配置されている。すなわち、第1の分波部4の第1の逆格子ベクトルと第2の逆格子ベクトルと光軸179とを含む面と、第2の分波部173の第1の逆格子ベクトルと第2の逆格子ベクトルと光軸179とを含む面とが、光軸179を中心として45゜の角度をなす。また、これらの2つの分波部は、第1の分波部4の第1の逆格子ベクトルと第2の分波部173の第1の逆格子ベクトルとがなす角度が、第1の分波部4の第1の逆格子ベクトルα1と第2の逆格子ベクトルα2とがなす角度に等しくなるように配置されている。
【0082】
光デバイス170の機能について、図面を参照しながら説明する。光ファイバ1から入力された進行光(無偏波光)は、図17(A)および(B)に示すように、第1の分波部4において、TM波177とTE波178とに分離される。次に、TM波177とTE波178とは、ファラデー結晶172において、45°回転される。TM波177とTE波178とは分離したまま第2の分波部173から出射される。TE波178は、それが出射する位置に配置された光ファイバ175に入力される。TM波177は、光ファイバには入力されない。
【0083】
一方、光ファイバ175から入力される戻光は、図18(A)および(B)に示すように、第2の分波部173でTM波181とTE波182とに分離される。TM波181およびTE波182は、ファラデー結晶172において、それぞれ、45°回転される。次に、TM波181とTE波182とは、第1の分波部4において、光軸179からさらに離れる方向へ変移する。その結果、TM波181とTE波182とは光ファイバ1に結合されない。従って、光デバイス170では、光は一方向にのみ進行する。
【0084】
なお、実施形態9では、光出力手段である光ファイバ175にTE波が入力する場合を示したが、光ファイバ175にTM波を入力してもよい。
【0085】
(実施形態10)
実施形態10では、本発明の光デバイスとして、偏波依存型光アイソレータの一例について説明する。実施形態10の光デバイス190の構成および進行光の光路を図19(A)に模式的に示す。また、各光学部品を出射した進行光の偏波の状態を図19(B)に示す。また、戻光の光路を図20(A)に示し、戻光の偏波の状態を図20(B)に示す。
【0086】
光デバイス190は、入射側の光ファイバ1と、入射側のレンズ171と、第1の分波部4と、ファラデー結晶172と、第2の分波部191と、出射側のレンズ192と、出射側の光ファイバ193とを備える。さらに光デバイス190は、ファラデー結晶172の回転角を飽和させる磁界H176を印加するための手段(図示せず)を備える。光デバイス190は、光デバイス170と比較して、第2の分波部、出射側のレンズ、および出射側の光ファイバの配置のみが異なるため、重複する説明は省略する。
【0087】
第1の分波部4と第2の分波部191とは、光軸199を中心として光学的に45°ずれるように配置されている。すなわち、第1の分波部4の第1の逆格子ベクトルと第2の逆格子ベクトルと光軸199とを含む面と、第2の分波部191の第1の逆格子ベクトルと第2の逆格子ベクトルと光軸199とを含む面とが、45゜の角度をなす。また、これら2つの分波部は、第1の分波部4の第1の逆格子ベクトルと第2の分波部191の第1の逆格子ベクトルとが平行になるように配置される。
【0088】
光デバイス190の機能について、図面を参照しながら説明する。光ファイバ1から入力された進行光(無偏波光)は、図19(A)および(B)に示すように、第1の分波部4で、TM波194とTE波195とに分離される。このTM波194とTE波195とは、ファラデー結晶172で45°回転される。次に、TM波194とTE波195とは、分離したまま第2の分波部191から出射される。TE波195は、それが出射する位置に配置された光ファイバ193に入力される。TM波194は、光ファイバに入力されない。
【0089】
一方、光ファイバ193から入力された戻光(無偏波光)は、図20(A)および(B)に示すように、第2の分波部191でTM波201とTE波202とに分離される。このTM波201とTE波202とは、ファラデー結晶172において45°回転される。次に、TM波201とTE波202とは、光軸199から離れたままの状態で第1の分波部4を通過する。その結果、TM波201とTE波202とは、光ファイバ1に結合されない。従って、光デバイス190では、光は一方向にのみ進行する。
【0090】
なお、光デバイス190では、TM波を光ファイバ193に入力してもよい。その場合は、TM波が出射される位置に光ファイバ193を配置し、TE波を受光しないようにすればよい。
【0091】
また、各光学部品の入射面での反射光の影響を避けるために、前記各光学部品の入射面を傾け、光軸に対して垂直にならないようにすることも可能である。
【0092】
また、上記分波部は、光軸上で隣接する部品の端面上に積層してもよい。この場合には、隣接する部品の端面にくぼみや溝を形成することによって分波部を作製してもよい。
【0093】
以上、本発明の実施の形態について例を挙げて説明したが、本発明は、上記実施の形態に限定されず本発明の技術的思想に基づき他の実施形態に適用することができる。
【0094】
【発明の効果】
以上説明したように、本発明の光デバイスは、TE波とTM波の分離角度を180°程度にすることが可能な分波部を用いている。そのため、回折の影響が無視できるほどの伝播距離で、TE波とTM波とを十分に分離でき、光デバイスを小型化できる。また、波長間隔が一定の複数の波長の光を用いた場合に、隣り合う波長のTE波の波数差とTM波の波数差とをほぼ等しくできるため、分離された隣り合う波長のTE波とTM波との位相差を揃えることができる。そのため、本発明の光デバイスは、各種の機能デバイス応用することができる。
【図面の簡単な説明】
【図1】 本発明の光デバイスについて一例の構成と機能とを模式的に示す図である。
【図2】 本発明の光デバイスに用いられる分波部について一例のフォトニックバンドを示す図である。
【図3】 本発明の光デバイスに用いられる分波部について一例の分散面と光の伝播方向とを示す図である。
【図4】 本発明の光デバイスに用いられる分波部について(A)一例の構成、(B)他の一例の構成、(C)その他の一例の構成を模式的に示す図である。
【図5】 本発明の光デバイスについて(A)他の一例の構成と(B)光の偏光状態とを模式的に示す図である。
【図6】 本発明の光デバイスについて(A)その他の一例の構成と(B)光の偏光状態とを模式的に示す図である。
【図7】 本発明の光デバイスについて(A)その他の一例の構成と(B)進行光の偏光状態とを模式的に示す図である。
【図8】 図7に示した光デバイスについて(A)戻光の光路と(B)戻光の偏光状態とを模式的に示す図である。
【図9】 本発明の光デバイスについて(A)その他の一例の構成と(B)進行光の偏光状態とを模式的に示す図である。
【図10】 図9に示した光デバイスについて(A)戻光の光路と(B)戻光の偏光状態とを模式的に示す図である。
【図11】 本発明の光デバイスについて(A)その他の一例の構成と(B)光の偏光状態とを模式的に示す図である。
【図12】 本発明の光デバイスに用いられる位相子について一例のフォトニックバンドを示す図である。
【図13】 本発明の光デバイスに用いられる位相子について一例の分散面と光の伝播方向とを示す図である。
【図14】 本発明の光デバイスについて(A)その他の一例の構成と(B)光の偏光状態とを模式的に示す図である。
【図15】 本発明の光デバイスについて(A)その他の一例の構成と(B)光の偏光状態とを模式的に示す図である。
【図16】 本発明の光デバイスについてその他の一例の構成と機能とを模式的に示す図である。
【図17】 本発明の光デバイスについて(A)その他の一例の構成と(B)進行光の偏光状態とを模式的に示す図である。
【図18】 図17に示した光デバイスについて(A)戻光の光路と(B)戻光の偏光状態とを模式的に示す図である。
【図19】 本発明の光デバイスについて(A)その他の一例の構成と(B)進行光の偏光状態とを模式的に示す図である。
【図20】 図19に示した光デバイスについて(A)戻光の光路と(B)戻光の偏光状態とを模式的に示す図である。
【図21】 従来の光デバイスについて一例の構成と機能とを模式的に示す図である。
【図22】 従来の光デバイスに用いられる複屈折材料の一例について分散面と光の伝播方向とを示す図である。
【符号の説明】
1 光ファイバ(入射側)
2、3、51〜54、61、62、78、113、114、146、147、161、175、193 光ファイバ(出射側)
4 分波部(第1の分波部:第1の光学部材)
5、57、64、115、162 ガイド
6、65、81、84、94、96、177、181、194、201 TM波
7、66、80、83、93、95、178、182、195、202 TE波
8、8a 第1の物質
9、9a 柱状部
10、50、60、90、110、140、150、160、170、190
光デバイス
11 第1の逆格子ベクトルの方向
12 第2の逆格子ベクトルの方向
56、75、92、143、151、173、191 第2の分波部(第2の光学部材)
71、179、199 光軸
72、77、141、145、171、174、192 レンズ
74、172 ファラデー結晶
76 第3の分波部(第3の光学部材)
79、176 磁界
85 磁界印加手段
91 旋光性結晶
112、142 位相子
144 合波部(合波手段)

Claims (22)

  1. 波長λの入射光をTE波とTM波とに分離する第1の光学部材と、前記第1の光学部材に前記入射光を入力する光入力手段とを備える光デバイスであって、
    前記第1の光学部材は屈折率が周期的に変化する構造を有するフォトニック結晶で構成され、
    前記波長λにおける前記フォトニック結晶の固有の方向の第1の逆格子ベクトルα1と第2の逆格子ベクトルα2とがなす角度が90°以下であり、
    前記第1の逆格子ベクトルα1の方向において前記TE波の波数が前記TM波の波数よりも大きく、
    前記第2の逆格子ベクトルα2の方向において前記TE波の波数が前記TM波の波数よりも小きく、
    前記光入力手段は、前記第1の逆格子ベクトルα1と前記第2の逆格子ベクトルα2とを含む面P12に平行な方向に前記入射光を入力することを特徴とする光デバイス。
  2. 前記第1の光学部材は、屈折率が異なる複数の物質が、2次元方向に一定の周期で配置された構造を有する請求項1に記載の光デバイス。
  3. 前記第1の光学部材は、第1の物質と、前記第1の物質の内部に配置された複数の粒子とを含み、
    前記粒子は、前記第1の物質とは屈折率が異なる第2の物質からなり、
    前記粒子は、一定の周期で前記第1の物質の内部に配置されている請求項1に記載の光デバイス。
  4. 前記第1の光学部材は、第1の物質と、前記第1の物質の内部に配置された複数の柱状部とを含み、
    前記複数の柱状部は前記第1の物質とは屈折率が異なる第2の物質からなり、
    前記柱状部のそれぞれの中心軸は、お互いに平行で且つ前記入射光の入射方向と垂直であり、
    前記複数の柱状部は、一定の周期で配置されている請求項1に記載の光デバイス。
  5. 前記第1の光学部材は、前記入射光の入射方向に交互に積層された複数の第1の層と複数の第2の層とを備え、
    前記第1の層は第1の物質からなり、前記第2の層は、前記第1の物質とは屈折率が異なる第2の物質からなる請求項1に記載の光デバイス。
  6. 前記第1の光学部材から出力される出射光を受光する光出力手段をさらに備え、
    前記光入力手段が光ファイバF(0)を備え、
    前記光出力手段が、光ファイバF(1)およびF(2)を備え、
    前記光ファイバF(0)ならびに前記光ファイバF(1)およびF(2)は、前記面P12と平行に配置されており、
    前記光ファイバF(1)の端部に前記第1の光学部材から出力される前記TE波が入射し、前記光ファイバF(2)の端部に前記第1の光学部材から出力される前記TM波が入射する請求項1に記載の光デバイス。
  7. 第2の光学部材をさらに備え、
    前記第1の光学部材と前記第2の光学部材とは、前記光入力手段によって入力された光がこの順序で透過するように配置されており、
    前記第2の光学部材は屈折率が周期的に変化する構造を有し、
    前記波長λにおける前記第2の光学部材の第1の逆格子ベクトルβ1と第2の逆格子ベクトルβ2とがなす角度が90°以下であり、
    前記第1の逆格子ベクトルβ1の方向において前記TE波の波数が前記TM波の波数よりも大きく、
    前記第2の逆格子ベクトルβ2の方向において前記TE波の波数が前記TM波の波数よりも小さく、
    前記第1の逆格子ベクトルα1と前記第2の逆格子ベクトルα2と前記入射光の光軸とを含む面と、前記第1の逆格子ベクトルβ1と前記第2の逆格子ベクトルβ2と前記光軸とを含む面とが、前記光軸を中心として45°の角度をなす請求項1〜5のいずれかに記載の光デバイス。
  8. 前記第2の光学部材が、前記第1の光学部材と同じ構造を有する請求項7に記載の光デバイス。
  9. 前記第2の光学部材から出力される出射光を受光する光出力手段をさらに備え、
    前記出射光が、第1および第2のTM波と第1および第2のTE波とを含み、 前記光入力手段が光ファイバF(0)を備え、
    前記光出力手段が、光ファイバF(1)、F(2)、F(3)およびF(4)を備え、
    前記光ファイバF(0)ならびに前記光ファイバF(1)、F(2)、F(3)およびF(4)が前記面P12に平行に配置されており、
    前記光ファイバF(1)の端部に前記第1のTM波が入射し、前記光ファイバF(2)の端部に前記第2のTM波が入射し、前記光ファイバF(3)の端部に前記第1のTE波が入射し、前記光ファイバF(4)の端部に前記第2のTE波が入射する請求項7に記載の光デバイス。
  10. 第2〜第n(nは3以上の自然数)の光学部材をさらに備え、
    第k(kは2以上n以下の自然数)の光学部材は、前記光入力手段によって入力され第(k−1)の光学部材から出力された光を受光するように配置されており、
    前記第2〜第nの光学部材は、屈折率が周期的に変化する構造を有し、
    前記波長λにおける前記第kの光学部材の第1の逆格子ベクトルk1と第2の逆格子ベクトルk2とがなす角度が90°以下であり、
    前記第1の逆格子ベクトルk1の方向において前記TE波の波数が前記TM波の波数よりも大きく、
    前記逆格子ベクトルk2の方向において前記TE波の波数が前記TM波の波数よりも小さい請求項1〜5のいずれかに記載の光デバイス。
  11. 前記第2〜第nの光学部材が、前記第1の光学部材と同じ構造を有する請求項10に記載の光デバイス。
  12. 前記第1の逆格子ベクトルk1と前記第2の逆格子ベクトルk2と前記入射光の光軸とを含む面を面k12とし、第(k−1)番目の光学部材の第1の逆格子ベクトル(k−1)1と第(k−1)番目の光学部材の第2の逆格子ベクトル(k−1)2と前記光軸とを含む面を面(k−1)12としたときに、前記面k12と前記面(k−1)12とが、前記光軸を中心として45°の角度をなす請求項10に記載の光デバイス。
  13. 前記第nの光学部材から出力される出射光を受光する2n個の出射側の光ファイバをさらに備え、
    前記出射光が、第1〜第2n-1のTE波と第1〜第2n-1のTM波とを含み、
    前記光入力手段が光ファイバF(0)を備え、
    前記光ファイバF(0)と2n個の前記出射側の光ファイバとが、前記面P12に平行に配置されており、
    前記第1〜第2n-1のTE波と、前記第1〜第2n-1のTM波とは、それぞれ、異なる前記出射側の光ファイバの端部に入射する請求項12に記載の光デバイス。
  14. ファラデー結晶と、出力側の光ファイバF(1)と、前記ファラデー結晶の回転角を飽和させる磁界を印加するための手段とをさらに備え、 前記nが3であって、第2および第3の光学部材を備え、
    前記第1の光学部材と、前記ファラデー結晶と、前記第2の光学部材と、前記第3の光学部材と、前記光ファイバF(1)とは、前記光入力手段によって入力された光がこの順序で透過するように配置されており、
    前記第1の逆格子ベクトルα1と前記第2の光学部材の第1の逆格子ベクトルとがなす角度が45°であり、
    前記第2の光学部材の第1の逆格子ベクトルと前記第3の光学部材の第1の逆格子ベクトルとがなす角度が90°である請求項10に記載の光デバイス。
  15. ファラデー結晶と、旋光性結晶と、第2の光学部材と、出力側の光ファイバF(1)と、前記ファラデー結晶の回転角を飽和させる磁界を印加するための手段とをさらに備え、
    前記第1の光学部材と、前記ファラデー結晶と、前記旋光性結晶と、前記第2の光学部材と、前記光ファイバF(1)とは、前記光入力手段から入力された光がこの順序で透過するように配置されており、
    前記第2の光学部材は屈折率が周期的に変化する構造を有し、
    前記波長λにおける前記第2の光学部材の第1の逆格子ベクトルβ1と第2の逆格子ベクトルβ2とがなす角度が90°以下であり、
    前記第1の逆格子ベクトルβ1の方向において前記TE波の波数が前記TM波の波数よりも大きく、
    前記第2の逆格子ベクトルβ2の方向において前記TE波の波数が前記TM波の波数よりも小さく、
    前記第1の逆格子ベクトルα1と前記第1の逆格子ベクトルβ1とが平行である請求項1〜5のいずれかに記載の光デバイス。
  16. 位相子と光出力手段とをさらに備え、
    前記第1の光学部材と前記位相子と前記光出力手段とは、前記光入力手段によって入力された光がこの順序で透過するように配置されており、
    前記光入力手段は、波長がλである波長λ(1)から一定の間隔で波長が増大する複数の波長λ(p)(pは自然数)の光を、前記面P12と平行な方向に入力し、
    前記位相子は、奇数番目の波長の光と偶数番目の波長の光との間で偏光状態に差を与える位相子である請求項1〜5のいずれかに記載の光デバイス。
  17. 前記位相子は屈折率が周期的に変化する構造を有し、
    前記奇数番目の波長における前記位相子の第1の逆格子ベクトルの波数と第2の逆格子ベクトルの波数との差をxとし、前記偶数番目の波長における前記位相子の第1の逆格子ベクトルの波数と第2の逆格子ベクトルの波数との差をyとしたときに、xとyとの差が一定値であり、
    前記位相子の第1の逆格子ベクトルと第2の逆格子ベクトルとを含む面と前記面P12とがなす角度が45°である請求項16に記載の光デバイス。
  18. 前記第1の光学部材と同じ分散面を有する第2の光学部材と、合波手段とをさらに備え、
    前記第1の光学部材と、前記位相子と、前記第2の光学部材と、前記合波手段と、前記光出力手段とは、前記光入力手段によって入力された光がこの順序で透過するように配置されており、
    前記位相子は、前記奇数番目の波長の光と前記偶数番目の波長の光とが互いに直交する直線偏光となるように位相変化を与える位相子であり、
    前記第2の光学部材の第1および第2の逆格子ベクトルは、それぞれ、前記第1および第2の逆格子ベクトルα1およびα2と平行であり、
    前記合波手段は、前記奇数番目の波長の光または前記偶数番目の波長の光のいずれかのTE波とTM波とを合波するための手段であり、
    前記光入力手段が光ファイバF(0)を備え、
    前記光出力手段は、前記奇数番目の波長の光が入力される光ファイバF(1)と、前記偶数番目の波長の光が入力される光ファイバF(2)とを備え、
    前記光ファイバF(0)と前記光ファイバF(1)と前記光ファイバF(2)とが前記面P12に平行に配置されている請求項16に記載の光デバイス。
  19. 前記第1の光学部材と同じ分散面を有する第2の光学部材と、合波手段とをさらに備え、
    前記第1の光学部材と、前記位相子と、前記第2の光学部材と、前記合波手段と、前記光出力手段とは、前記光入力手段によって入力された光がこの順序で透過するように配置されており、
    前記位相子は、前記奇数番目の波長の光と前記偶数番目の波長の光とが互いに直交する直線偏光となるように位相変化を与える位相子であり、
    前記第2の光学部材の第1の逆格子ベクトルと前記第1の逆格子ベクトルα1とがなす角度は、前記第1の逆格子ベクトルα1と前記第2の逆格子ベクトルα2とがなす角度に等しく、
    前記合波手段は、前記奇数番目の波長の光または前記偶数番目の波長の光のいずれかのTE波とTM波とを合波するための手段であり、
    前記光入力手段が光ファイバF(0)を備え、
    前記光出力手段は、前記奇数番目の波長の光が入力される光ファイバF(1)と、前記偶数番目の波長の光が入力される光ファイバF(2)とを備え、
    前記光ファイバF(0)と前記光ファイバF(1)と前記光ファイバF(2)とが前記面P12に平行に配置されている請求項16に記載の光デバイス。
  20. 前記第1の光学部材から出力される出射光を受光する光出力手段をさらに備え、
    前記光入力手段が光ファイバを備え、
    前記光出力手段が、前記第1の光学部材から出力される前記TE波または前記TM波のいずれかを受光する光ファイバを備える請求項1〜5のいずれかに記載の光デバイス。
  21. ファラデー結晶と、前記第1の光学部材と同じ分散面を有する第2の光学部材と、光出力手段と、前記ファラデー結晶の回転角を飽和させる磁界を印加する手段とをさらに備え、
    前記第1の光学部材と、前記ファラデー結晶と、前記第2の光学部材と、前記光出力手段とが、前記光入力手段によって入力された光がこの順序で透過するように配置されており、
    前記第1の逆格子ベクトルα1と前記第2の逆格子ベクトルα2と前記入射光の光軸とを含む面と、前記第2の光学部材の第1の逆格子ベクトルβ1と第2の逆格子ベクトルβ2と前記光軸とを含む面とが、前記光軸を中心として45°の角度をなし、
    前記第1の逆格子ベクトルα1と前記第1の逆格子ベクトルβ1とがなす角度が、前記第1の逆格子ベクトルα1と前記第2の逆格子ベクトルα2とがなす角度に等しく、
    前記光出力手段は、前記第2の光学部材から出力されるTE波またはTM波のいずれかのみを受光する光ファイバを備える請求項1〜5のいずれかに記載の光デバイス。
  22. ファラデー結晶と、前記第1の光学部材と同じ分散面を有する第2の光学部材と、光出力手段と、前記ファラデー結晶の回転角を飽和させる磁界を印加する手段とをさらに備え、
    前記第1の光学部材と、前記ファラデー結晶と、前記第2の光学部材と、前記光出力手段とが、前記光入力手段によって入力された光がこの順序で透過するように配置されており、
    前記第1の逆格子ベクトルα1と前記第2の逆格子ベクトルα2と前記入射光の光軸とを含む面と、前記第2の光学部材の第1の逆格子ベクトルβ1と第2の逆格子ベクトルβ2と前記光軸とを含む面とが、前記光軸を中心として45°の角度をなし、
    前記第1の逆格子ベクトルα1と前記第1の逆格子ベクトルβ1とが平行であり、
    前記光出力手段は、前記第2の光学部材から出力されるTE波またはTM波のいずれかのみを受光する光ファイバを備える請求項1〜5のいずれかに記載の光デバイス。
JP2002027032A 2001-02-09 2002-02-04 光デバイス Expired - Fee Related JP3842660B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002027032A JP3842660B2 (ja) 2001-02-09 2002-02-04 光デバイス

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2001034088 2001-02-09
JP2001-34088 2001-04-03
JP2001-104122 2001-04-03
JP2001104122 2001-04-03
JP2002027032A JP3842660B2 (ja) 2001-02-09 2002-02-04 光デバイス

Publications (2)

Publication Number Publication Date
JP2002365455A JP2002365455A (ja) 2002-12-18
JP3842660B2 true JP3842660B2 (ja) 2006-11-08

Family

ID=27345957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002027032A Expired - Fee Related JP3842660B2 (ja) 2001-02-09 2002-02-04 光デバイス

Country Status (1)

Country Link
JP (1) JP3842660B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10862610B1 (en) 2019-11-11 2020-12-08 X Development Llc Multi-channel integrated photonic wavelength demultiplexer
US11187854B2 (en) * 2019-11-15 2021-11-30 X Development Llc Two-channel integrated photonic wavelength demultiplexer

Also Published As

Publication number Publication date
JP2002365455A (ja) 2002-12-18

Similar Documents

Publication Publication Date Title
US6813399B2 (en) Optical device
JP3522117B2 (ja) 自己導波光回路
JP3349950B2 (ja) 波長分波回路
JP4923234B2 (ja) 2次元フォトニック結晶及びそれを用いた光デバイス
US20010012149A1 (en) Optical elements comprising photonic crystals and applications thereof
US20010026659A1 (en) Optical functional device and optical integrated device
US7120333B2 (en) Polarization insensitive tunable optical filters
WO2000036446A1 (en) Wavelength selective optical routers
JP3842660B2 (ja) 光デバイス
US6510259B1 (en) Optical switch using an integrated Mach-Zehnder interferometer having a movable phase shifter and asymmetric arms
US20090162008A1 (en) Polarization-independent two-dimensional photonic crystal multiplexer/demultiplexer
US20050174919A1 (en) Optical polarization controller
US8554027B2 (en) Optical switch
JP4042426B2 (ja) 光学素子およびそれを用いた分光装置
JP4052082B2 (ja) 分波器及びそれを用いた光スイッチング装置
JP2002311387A (ja) 多段反射型ファラデー回転子
JP2003057460A (ja) 光デバイス
JP2004212979A (ja) 光波分割プリズム、光波分割プリズムの製造方法、及び光−光スイッチ装置
JP2004045709A (ja) 結合光導波路
JP3555888B2 (ja) 自己導波光回路
JP2003043277A (ja) 波長分波回路
JP5598992B2 (ja) 光回路
JP2002202430A (ja) 分波素子および波長ルータ
JP2005309413A (ja) 光学素子およびそれを用いた分波素子
JP2004226599A (ja) 偏光分離合成装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060810

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3842660

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130818

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees