JP3838906B2 - High frequency wiring board - Google Patents

High frequency wiring board Download PDF

Info

Publication number
JP3838906B2
JP3838906B2 JP2001362177A JP2001362177A JP3838906B2 JP 3838906 B2 JP3838906 B2 JP 3838906B2 JP 2001362177 A JP2001362177 A JP 2001362177A JP 2001362177 A JP2001362177 A JP 2001362177A JP 3838906 B2 JP3838906 B2 JP 3838906B2
Authority
JP
Japan
Prior art keywords
conductor
ground
line
conductor layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001362177A
Other languages
Japanese (ja)
Other versions
JP2003163309A (en
Inventor
民男 草野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001362177A priority Critical patent/JP3838906B2/en
Publication of JP2003163309A publication Critical patent/JP2003163309A/en
Application granted granted Critical
Publication of JP3838906B2 publication Critical patent/JP3838906B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Structure Of Printed Boards (AREA)
  • Waveguides (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は電気的特性を向上させた高周波入出力部を具備した高周波用配線基板に関する。
【0002】
【従来の技術】
従来の高周波用配線基板(以下、高周波基板という)を図4〜図6に示す。図4は高周波基板の斜視図、図5は図4のA−A’線における断面図、図6は図5のB−B’線における部分拡大平面図である。この高周波基板は、誘電体基板11から成り、高周波回路用基板、高周波用半導体素子収納用パッケージまたは高周波用半導体素子搭載用チップキャリア等に用いられる。また、高周波基板の上面に搭載される高周波用半導体素子等の高周波用部品を電気的に接続するものであり、第1の線路導体12aと第1の同一面接地導体層13aとから成る第1のコプレーナ線路と、高周波基板が実装される外部電気回路基板の回路に電気的に接続されるものであり、第2の線路導体12bと第2の同一面接地導体層13bとから成る第2のコプレーナ線路とが、それぞれ上下面に形成されている。
【0003】
そして、第1の線路導体12aと第2の線路導体12bとを電気的に接続する貫通導体14、および第1の同一面接地導体層13aと第2の同一面接地導体層13bとを電気的に接続する接地貫通導体15から構成される高周波入出力部が設けられている。貫通導体14は、平面視形状が略円形の内層導体層14aの略中心部を貫通するとともに第1の線路導体12aから第2の線路導体12bにかけて形成されている。また、図6に示すように、接地貫通導体15は、内層導体層14aの中心C1を中心とした円周D上に略一定間隔で形成された略円形の内層接地導体層15aの中心C2部を貫通するとともに第1の同一面接地導体層13aから第2の同一面接地導体層13bにかけて形成されている。
【0004】
上記の高周波基板は、第1の線路導体12aと第2の線路導体12bとを電気的に接続する貫通導体14の部位で高周波信号の反射損失を抑制するために、貫通導体14の周囲に内層接地導体層15aが形成されている。また、誘電体基板11の各誘電体層に形成された内層導体層14a,内層接地導体層15aは、積層時に位置ずれが起こったとしても、各誘電体層に形成された貫通導体14,接地貫通導体15を確実に電気的に接続するためのものである。
【0005】
【発明が解決しようとする課題】
しかしながら、上記従来の高周波基板においては、近時の高周波用半導体素子等を作動させる信号の高周波化に伴い、第1の線路導体12aと第2の線路導体12bとにより高周波の高周波信号を伝送させた場合、接地貫通導体15同士の間から高周波信号が漏れ、反射損失が増大して高周波信号の伝送特性が劣化するという問題点を有していた。
【0006】
そこで、それぞれの接地貫通導体15を所謂導波管の如く成るように電気的に接続して高周波信号の伝送特性を向上させることも考えられるが、この場合、貫通導体14と接地貫通導体15との間の誘電体層の強度が低下して脆くなり易い。即ち、高周波基板に熱衝撃等が印加されると、貫通導体14と接地貫通導体15との間の誘電体基板11にクラック等の破損が発生し易い。
【0007】
また、貫通導体14と接地貫通導体15との間の距離を極力短くするとともに、接地貫通導体15同士が電気的に接続されないように形成することも考えられる。しかし、この場合、内層導体層14aと内層接地導体層15aとが電気的に接続される場合がある。即ち、高周波信号が伝送される部位と、接地用の部位が電気的に短絡され伝送特性が劣化するという問題が生じ易い。
【0008】
従って、本発明は上記問題点に鑑み完成されたものであり、その目的は、接地貫通導体と貫通導体との距離を短くするとともに、内層導体層と内層接地導体層との短絡を防止することにより、より高い周波数帯域の高周波信号を伝送できる高周波基板を提供することにある。
【0009】
【課題を解決するための手段】
本発明の高周波基板は、複数の誘電体層が積層されて成る誘電体基板の上面に第1の線路導体および該第1の線路導体の両側にコプレーナ線路の接地導体層として一定間隔をもって形成された第1の同一面接地導体層から成る第1のコプレーナ線路が設けられ、前記誘電体基板の下面の前記第1の線路導体に対向する部位に形成された第2の線路導体および該第2の線路導体の両側にコプレーナ線路の接地導体層として一定間隔をもって形成された第2の同一面接地導体層から成る第2のコプレーナ線路が設けられており、前記第1の線路導体の端部から前記第2の線路導体の端部にかけて形成されるとともに両端部間に設けられた円形の内層導体層の中心部を貫通して形成された貫通導体と、前記内層導体層を中心とした円周上に一定間隔で形成された複数の内層接地導体層の中心部をそれぞれ貫通するとともに前記第1の同一面接地導体層から前記第2の同一面接地導体層にかけて形成された複数の接地貫通導体とを具備した高周波用配線基板において、前記内層接地導体層は、前記接地貫通導体の周囲に環状の導体層が前記貫通導体側の一部を半径に沿って切り取った形状となるように形成されており、かつ前記貫通導体の中心および前記接地貫通導体の中心を通る直線と前記半径とのなす前記導体層側の角度が90〜120°であることを特徴とする。
【0010】
本発明は、上記の構成により、接地貫通導体と貫通導体との距離を非常に短くするとともに内層導体層と内層接地導体層との短絡を防止できるため、より高い周波数帯域の高周波信号を低損失で伝送できる。
【0011】
【発明の実施の形態】
本発明の高周波基板について以下に詳細に説明する。図1は本発明の高周波基板の斜視図、図2は図1のA−A’線における断面図、図3は図2のB−B’線のおける部分拡大平面図である。これらの図において、1は誘電体基板、2a,2bは、誘電体基板1の上下面に形成され、高周波信号が伝送される第1の線路導体,第2の線路導体、3a,3bは、誘電体基板1の上下面に第1の線路導体2aの両側および第2の線路導体2bの両側に略一定間隔をもってそれぞれ形成された第1の同一面接地導体層,第2の同一面接地導体層である。
【0012】
そして、第1の線路導体2aと第1の同一面接地導体層3aとで第1のコプレーナ線路が形成され、第2の線路導体2bと第2の同一面接地導体層3bとで第2のコプレーナ線路が形成される。なお、第1の線路導体2aと第1の同一面接地導体層3aとは電気的に短絡しないように、また、第2の線路導体2bと第2の同一面接地導体層3bも電気的に短絡しないように形成される。
【0013】
また、4は第1の線路導体2aの端部と第2の線路導体2bの端部とを接続する貫通導体、5は第1の同一面接地導体層3aと第2の同一面接地導体層3bとを接続する接地貫通導体、4aは各誘電体層に形成されて各誘電体層の貫通導体4を接続する内層導体層、5aは各誘電体層に形成されて各誘電体層の接地貫通導体5を接続する内層接地導体層である。これら貫通導体4,内層導体層4a,接地貫通導体5,内層接地導体層5aとで、第1のコプレーナ線路と第2のコプレーナ線路とが電気的に接続され、上面に高周波用半導体素子等の高周波用部品が搭載される高周波基板が構成される。
【0014】
貫通導体4は、第1の線路導体2aの端部から第2の線路導体2bの端部にかけて形成されるとともに平面視形状が略円形の内層導体層4aの略中心部を貫通して形成されている。また、複数の接地貫通導体5が、内層導体層4aの周囲に略一定間隔で内層導体層4aを中心とした円周D(図3)上に形成された複数の内層接地導体層5aの略中心部を第1の同一面接地導体層3aから第2の同一面接地導体層3bにかけてそれぞれ貫通するように形成される。内層接地導体層5a同士の間隔は、図3の場合、貫通導体4の中心C1に対する接地貫通導体5の中心C2間の角度でいえば72°であり、接地貫通導体5の中心C2間の円周D上の間隔でいえば0.64mm程度(接地貫通導体5の直径が0.2mm程度)、内層接地導体層5a同士の間の円周D上の間隔でいえば0.25mm程度以上がよい。この場合、誘電体基板1の破損を有効に防止し得る。また、より好ましくは、内層接地導体層5a同士の間の円周D上の間隔は0.5mm程度(接地貫通導体5の直径が0.1mm程度)以下がよく、0.5mmを超えると、接地貫通導体5間の誘電体層にクラックが発生し易くなる。
【0015】
貫通導体4,接地貫通導体5以外の、第1の線路導体2a,第2の線路導体2b,第1の同一面接地導体層3a,第2の同一面接地導体層3b,内層導体層4a,内層接地導体層5aは、タングステン(W),モリブデン(Mo),マンガン(Mn)等の粉末に有機溶剤,溶媒を添加混合して得た金属ペーストを、誘電体基板1となる原料粉末に適当な有機バインダや溶剤等を添加混合しペースト状と成し、このペーストをドクターブレード法やカレンダーロール法によって成されたセラミックグリーンシートに、予め従来周知のスクリーン印刷法により所望の形状に印刷塗布し、約1600℃の高温で焼結することにより製作される。
【0016】
一方、貫通導体4,接地貫通導体5は、各セラミックグリーンシートの所望に位置に貫通導体4,接地貫通導体5となる貫通孔を形成し、この貫通孔に、W,Mo,Mn等の粉末に有機溶剤,溶媒を添加混合して得た金属ペーストを充填し、第1の線路導体2a,第2の線路導体2b,第1の同一面接地導体層3a,第2の同一面接地導体層3b,内層導体層4a,内層接地導体層5aとなる金属ペーストと同時に焼結することにより製作される。
【0017】
また、誘電体基板1は、その誘電率や熱膨張係数等の特性に応じて、アルミナ(Al23)セラミックスや窒化アルミニウム(AlN)セラミックス等が適宜選定される。
【0018】
本発明において、図3に示すように、内層接地導体層5aは、接地貫通導体5の周囲に環状の導体層が貫通導体4側の一部を半径Rに沿って切り取った形状となるように形成されており、かつ貫通導体4の中心C1および接地貫通導体5の中心C2を通る直線Lと上記半径Rとのなす導体層側の角度が90〜120°である。なお、図3でL1は直線Lのうち導体層側の線分であり、本発明では換言すると線分L1と半径Rとの角度が90〜120°である。これにより、接地貫通導体5と貫通導体4との距離を非常に短くし得るとともに、内層導体層4aと内層接地導体層5aとの短絡を防止し得るため、より高い周波数帯域の高周波信号を伝送できる。
【0019】
上記角度が90°未満の場合、内層接地導体層5aの導体層が小さいため、誘電体基板1の各誘電体層に形成されている接地貫通導体5に少しでも位置ずれがあると、接地貫通導体5と内層接地導体層5aとが電気的に接続されず、接地電位が強化されなくなる。120°を超えると、内層導体層4aと内層接地導体層5aとが電気的に短絡する場合があり、高周波信号の伝送特性が劣化する。
【0020】
また、内層接地導体層5a同士は一部が短絡しても高周波信号の伝送特性が劣化することは無いが、貫通導体4と接地貫通導体5との間の強度が低下して脆くなり易い。即ち、この場合に高周波基板1に熱衝撃等が加わると、貫通導体4と接地貫通導体5との間の誘電体基板1にクラック等の破損が発生し易い。
【0021】
また、接地貫通導体5は、内層導体層4aに短絡しないように、かつ貫通導体4の周囲に略一定間隔で円周D上に形成される必要がある。接地貫通導体5間の間隔が略一定でないと、高周波信号の伝送特性が劣化し易くなる。即ち、接地貫通導体5は貫通導体4の周囲に接地電位の壁を強固に形成するものであり、同軸構造に近い擬似同軸構造とすることで、高周波信号の伝送特性を向上させ、伝送損失を小さくできる。
【0022】
そして、本発明の高周波基板1の上面にIC,LSI,半導体レーザ(LD)等の高周波用部品を半田等の接着剤を介して搭載するとともに、高周波用部品の電極パッドと第1の線路導体2aとをボンディングワイヤにより電気的に接続し、さらに高周波基板1の下面の第2の線路導体2b,第2の同一面接地導体層3bを、それぞれ外部電気回路基板の接続用線路導体,接地導体層に半田等の接着剤を介して接続することにより、高周波用部品が高周波基板1を介して外部電気回路基板に接続され、より高周波帯域での高周波信号の入出力を行うことができる。
【0023】
本発明でいう高周波帯域とは1〜100GHz(ギガヘルツ)程度の高周波帯域およびミリ波帯域であり、好ましくは1〜80GHz程度の帯域で使用するのが好ましい。それは、80GHzを超える高周波帯域では高周波信号が外部磁場の影響を受け易くなり、ノイズおよび損失の増大をもたらすからである。より好ましくは1〜40GHz程度が良い。
【0024】
なお、本発明は上記実施の形態に限定されず、本発明の要旨を逸脱しない範囲内で変更や改良を施すことは何等差し支えない。例えば、本発明の高周波基板1を半導体パッケージの一部である高周波信号入出力部として用いても良い。
【0025】
【発明の効果】
本発明は、複数の誘電体層が積層されて成る誘電体基板の上面に第1の線路導体および第1の線路導体の両側に略一定間隔をもって形成された第1の同一面接地導体層から成る第1のコプレーナ線路が設けられ、誘電体基板の下面の第1の線路導体に対向する部位に形成された第2の線路導体および第2の線路導体の両側に略一定間隔をもって形成された第2の同一面接地導体層から成る第2のコプレーナ線路が設けられており、第1の線路導体の端部から第2の線路導体の端部にかけて形成されるとともに両端部間に設けられた略円形の内層導体層の中心部を貫通して形成された貫通導体と、内層導体層を中心とした円周上に略一定間隔で形成された複数の内層接地導体層の中心部をそれぞれ貫通するとともに第1の同一面接地導体層から第2の同一面接地導体層にかけて形成された複数の接地貫通導体とを具備しており、内層接地導体層は、接地貫通導体の周囲に環状の導体層が貫通導体側の一部を半径に沿って切り取った形状となるように形成されており、かつ貫通導体の中心および接地貫通導体の中心を通る直線と上記半径とのなす導体層側の角度が90〜120°であることにより、接地貫通導体と貫通導体との距離を非常に短くするとともに内層導体層と内層接地導体層との短絡を防止できるため、より高い周波数帯域の高周波信号を低損失で伝送できる。
【図面の簡単な説明】
【図1】本発明の高周波基板の斜視図である。
【図2】図1のA−A’線における高周波基板の断面図である。
【図3】図2のB−B’線における高周波基板の部分拡大平面図である。
【図4】従来の高周波基板の斜視図である。
【図5】図4のA−A’線における高周波基板の断面図である。
【図6】図5のB−B’線における高周波基板の部分拡大平面図である。
【符号の説明】
1:誘電体基板
2a:第1の線路導体
2b:第2の線路導体
3a:第1の同一面接地導体層
3b:第2の同一面接地導体層
4:貫通導体
4a:内層導体層
5:接地貫通導体
5a:内層接地導体層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-frequency wiring board having a high-frequency input / output unit with improved electrical characteristics.
[0002]
[Prior art]
A conventional high-frequency wiring board (hereinafter referred to as a high-frequency board) is shown in FIGS. 4 is a perspective view of the high-frequency substrate, FIG. 5 is a cross-sectional view taken along the line AA ′ in FIG. 4, and FIG. 6 is a partially enlarged plan view taken along the line BB ′ in FIG. This high-frequency substrate comprises a dielectric substrate 11 and is used for a high-frequency circuit substrate, a high-frequency semiconductor element storage package, a high-frequency semiconductor element mounting chip carrier, or the like. In addition, a high frequency component such as a high frequency semiconductor element mounted on the upper surface of the high frequency substrate is electrically connected, and a first line conductor 12a and a first coplanar ground conductor layer 13a are included. And a second planar conductor 12b and a second coplanar ground conductor layer 13b. The second planar conductor 12b and the second coplanar ground conductor layer 13b are electrically connected to a circuit of the external planar circuit board on which the high frequency substrate is mounted. Coplanar lines are formed on the upper and lower surfaces, respectively.
[0003]
The through conductor 14 that electrically connects the first line conductor 12a and the second line conductor 12b, and the first coplanar ground conductor layer 13a and the second coplanar ground conductor layer 13b are electrically connected. A high-frequency input / output unit composed of a ground through conductor 15 connected to is provided. The through conductors 14 are formed from the first line conductor 12a to the second line conductor 12b while penetrating through the substantially central portion of the inner conductor layer 14a having a substantially circular shape in plan view. Further, as shown in FIG. 6, the grounding through conductor 15 includes a center C2 portion of a substantially circular inner ground conductor layer 15a formed at a substantially constant interval on a circumference D centered on the center C1 of the inner conductor layer 14a. And is formed from the first coplanar ground conductor layer 13a to the second coplanar ground conductor layer 13b.
[0004]
The above high-frequency substrate has an inner layer around the through-conductor 14 in order to suppress reflection loss of the high-frequency signal at the portion of the through-conductor 14 that electrically connects the first line conductor 12a and the second line conductor 12b. A ground conductor layer 15a is formed. In addition, the inner conductor layer 14a and the inner conductor ground conductor layer 15a formed on each dielectric layer of the dielectric substrate 11 may be connected to the through conductor 14 formed on each dielectric layer and the ground even if misalignment occurs. This is for reliably connecting the through conductor 15 electrically.
[0005]
[Problems to be solved by the invention]
However, in the conventional high-frequency substrate, a high-frequency high-frequency signal is transmitted by the first line conductor 12a and the second line conductor 12b as the signal for operating a recent high-frequency semiconductor element or the like increases. In this case, there is a problem that a high frequency signal leaks from between the ground through conductors 15, reflection loss increases, and transmission characteristics of the high frequency signal deteriorate.
[0006]
Therefore, it is conceivable to improve the transmission characteristics of the high-frequency signal by electrically connecting the respective ground through conductors 15 so as to form a so-called waveguide. In this case, the through conductors 14 and the ground through conductors 15 The strength of the dielectric layer in between is likely to decrease and become brittle. That is, when a thermal shock or the like is applied to the high-frequency substrate, the dielectric substrate 11 between the through conductor 14 and the ground through conductor 15 is likely to be damaged such as a crack.
[0007]
It is also conceivable that the distance between the through conductor 14 and the ground through conductor 15 is made as short as possible and that the ground through conductors 15 are not electrically connected to each other. However, in this case, the inner conductor layer 14a and the inner ground conductor layer 15a may be electrically connected. That is, there is a problem that a transmission characteristic is deteriorated due to an electrical short circuit between a part where a high-frequency signal is transmitted and a part for grounding.
[0008]
Accordingly, the present invention has been completed in view of the above problems, and its purpose is to shorten the distance between the ground through conductor and the through conductor and to prevent a short circuit between the inner conductor layer and the inner ground conductor layer. Accordingly, an object of the present invention is to provide a high-frequency substrate capable of transmitting a high-frequency signal in a higher frequency band.
[0009]
[Means for Solving the Problems]
The high-frequency substrate according to the present invention is formed on the upper surface of a dielectric substrate formed by laminating a plurality of dielectric layers at a constant interval as a ground conductor layer of a coplanar line on both sides of the first line conductor and the first line conductor. A first coplanar line comprising the first coplanar ground conductor layer is provided, and a second line conductor formed on a lower surface of the dielectric substrate facing the first line conductor and the second line conductor A second coplanar line composed of a second coplanar ground conductor layer formed at regular intervals as a ground conductor layer of the coplanar line is provided on both sides of the line conductor of the first line conductor, from the end of the first line conductor. A through conductor formed over an end portion of the second line conductor and penetrating through a central portion of a circular inner layer conductor layer provided between both end portions, and a circumference around the inner layer conductor layer On the top at regular intervals A high-frequency device comprising a plurality of grounding through conductors that respectively penetrate the center portions of the plurality of inner grounding conductor layers formed and are formed from the first same-surface grounding conductor layer to the second same-surface grounding conductor layer. In the wiring board for use, the inner ground conductor layer is formed such that an annular conductor layer is formed around the ground through conductor so that a part of the through conductor side is cut out along a radius , and An angle on the conductor layer side formed by a straight line passing through the center of the through conductor and the center of the ground through conductor and the radius is 90 to 120 °.
[0010]
According to the present invention, the distance between the ground through conductor and the through conductor can be made extremely short and the short circuit between the inner layer conductor layer and the inner layer ground conductor layer can be prevented. Can be transmitted.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The high-frequency substrate of the present invention will be described in detail below. 1 is a perspective view of the high-frequency substrate of the present invention, FIG. 2 is a cross-sectional view taken along the line AA ′ of FIG. 1, and FIG. 3 is a partially enlarged plan view taken along the line BB ′ of FIG. In these drawings, 1 is a dielectric substrate, 2a and 2b are formed on the upper and lower surfaces of the dielectric substrate 1, and a first line conductor, a second line conductor, and 3a and 3b through which a high-frequency signal is transmitted are A first common ground conductor layer and a second common ground conductor formed on the upper and lower surfaces of the dielectric substrate 1 on both sides of the first line conductor 2a and on both sides of the second line conductor 2b at substantially constant intervals, respectively. Is a layer.
[0012]
The first line conductor 2a and the first coplanar ground conductor layer 3a form a first coplanar line, and the second line conductor 2b and the second coplanar ground conductor layer 3b provide the second. A coplanar line is formed. The first line conductor 2a and the first coplanar ground conductor layer 3a are not electrically short-circuited, and the second line conductor 2b and the second coplanar ground conductor layer 3b are also electrically short. It is formed so as not to be short-circuited.
[0013]
Further, 4 is a through conductor connecting the end of the first line conductor 2a and the end of the second line conductor 2b, and 5 is the first same-surface ground conductor layer 3a and the second same-surface ground conductor layer. 3b is connected to the ground through conductor 4a is formed in each dielectric layer, and the inner conductor layer 5a is connected to the through conductor 4 of each dielectric layer, and 5a is formed in each dielectric layer to ground each dielectric layer. This is an inner ground conductor layer that connects the through conductors 5. The first coplanar line and the second coplanar line are electrically connected to each other through the through conductor 4, the inner layer conductor layer 4a, the ground through conductor 5, and the inner layer ground conductor layer 5a. A high-frequency substrate on which high-frequency components are mounted is configured.
[0014]
The through conductor 4 is formed from the end portion of the first line conductor 2a to the end portion of the second line conductor 2b, and is formed so as to penetrate the substantially central portion of the inner conductor layer 4a having a substantially circular shape in plan view. ing. Further, the plurality of ground through conductors 5 are substantially the same as the plurality of inner ground conductor layers 5a formed on the circumference D (FIG. 3) around the inner conductor layer 4a at a substantially constant interval around the inner conductor layer 4a. The central portion is formed so as to penetrate from the first coplanar ground conductor layer 3a to the second coplanar ground conductor layer 3b. In the case of FIG. 3, the interval between the inner ground conductor layers 5a is 72 ° in terms of the angle between the center C2 of the ground through conductor 5 with respect to the center C1 of the through conductor 4, and the circle between the centers C2 of the ground through conductor 5 The distance on the circumference D is about 0.64 mm (the diameter of the grounding through conductor 5 is about 0.2 mm), and the distance on the circumference D between the inner ground conductor layers 5a is about 0.25 mm or more. Good. In this case, damage to the dielectric substrate 1 can be effectively prevented. More preferably, the distance on the circumference D between the inner ground conductor layers 5a is about 0.5 mm or less (the diameter of the ground through conductor 5 is about 0.1 mm) or less. Cracks are likely to occur in the dielectric layer between the ground through conductors 5.
[0015]
Other than the through conductor 4 and the ground through conductor 5, the first line conductor 2a, the second line conductor 2b, the first coplanar ground conductor layer 3a, the second coplanar ground conductor layer 3b, the inner conductor layer 4a, For the inner ground conductor layer 5a, a metal paste obtained by adding and mixing an organic solvent and a solvent to a powder of tungsten (W), molybdenum (Mo), manganese (Mn) or the like is suitable as a raw material powder to be the dielectric substrate 1. An organic binder, solvent, etc. are added and mixed to form a paste, and this paste is printed and applied to a ceramic green sheet formed by a doctor blade method or a calender roll method in a desired shape in advance by a well-known screen printing method. It is manufactured by sintering at a high temperature of about 1600 ° C.
[0016]
On the other hand, the through conductor 4 and the ground through conductor 5 form through holes to be the through conductor 4 and the ground through conductor 5 at desired positions of the respective ceramic green sheets, and powders such as W, Mo, and Mn are formed in the through holes. The first line conductor 2a, the second line conductor 2b, the first coplanar ground conductor layer 3a, the second coplanar ground conductor layer are filled with a metal paste obtained by adding and mixing an organic solvent and a solvent. 3b, the inner conductor layer 4a and the inner ground conductor layer 5a are manufactured by sintering simultaneously with the metal paste.
[0017]
For the dielectric substrate 1, alumina (Al 2 O 3 ) ceramics, aluminum nitride (AlN) ceramics, or the like is appropriately selected according to characteristics such as dielectric constant and thermal expansion coefficient.
[0018]
In the present invention, as shown in FIG. 3, the inner ground conductor layer 5 a has a shape in which an annular conductor layer is cut out along the radius R around the ground through conductor 5. The conductor layer side angle formed by the straight line L formed through the center C1 of the through conductor 4 and the center C2 of the ground through conductor 5 and the radius R is 90 to 120 °. In FIG. 3, L1 is a line segment on the conductor layer side of the straight line L. In other words, in the present invention, the angle between the line segment L1 and the radius R is 90 to 120 °. As a result, the distance between the ground through conductor 5 and the through conductor 4 can be made very short, and a short circuit between the inner layer conductor layer 4a and the inner layer ground conductor layer 5a can be prevented, so that a high frequency signal in a higher frequency band is transmitted. it can.
[0019]
When the angle is less than 90 °, the conductor layer of the inner ground conductor layer 5a is small. Therefore, if the ground through conductor 5 formed in each dielectric layer of the dielectric substrate 1 is slightly misaligned, The conductor 5 and the inner ground conductor layer 5a are not electrically connected, and the ground potential is not strengthened. If the angle exceeds 120 °, the inner conductor layer 4a and the inner ground conductor layer 5a may be electrically short-circuited, and the transmission characteristics of the high-frequency signal are deteriorated.
[0020]
Further, even if a part of the inner ground conductor layers 5a are short-circuited, the high-frequency signal transmission characteristics do not deteriorate, but the strength between the through conductors 4 and the ground through conductors 5 is liable to become fragile. That is, in this case, when a thermal shock or the like is applied to the high-frequency substrate 1, breakage such as cracks is likely to occur in the dielectric substrate 1 between the through conductor 4 and the ground through conductor 5.
[0021]
Further, the grounding through conductor 5 needs to be formed on the circumference D at a substantially constant interval around the through conductor 4 so as not to be short-circuited to the inner layer conductor layer 4a. If the distance between the ground through conductors 5 is not substantially constant, the transmission characteristics of the high frequency signal are likely to deteriorate. In other words, the grounding through conductor 5 has a ground potential wall firmly formed around the through conductor 4, and has a pseudo coaxial structure close to the coaxial structure, thereby improving the transmission characteristics of high frequency signals and reducing transmission loss. Can be small.
[0022]
A high-frequency component such as an IC, LSI, or semiconductor laser (LD) is mounted on the upper surface of the high-frequency substrate 1 of the present invention via an adhesive such as solder, and the electrode pad of the high-frequency component and the first line conductor 2a is electrically connected by a bonding wire, and the second line conductor 2b and the second coplanar ground conductor layer 3b on the lower surface of the high-frequency substrate 1 are connected to the connection line conductor and ground conductor of the external electric circuit board, respectively. By connecting to the layer via an adhesive such as solder, the high-frequency component is connected to the external electric circuit board via the high-frequency board 1, and high-frequency signals can be input and output in a higher frequency band.
[0023]
The high frequency band referred to in the present invention is a high frequency band of about 1 to 100 GHz (gigahertz) and a millimeter wave band, and is preferably used in a band of about 1 to 80 GHz. This is because a high-frequency signal is easily affected by an external magnetic field in a high-frequency band exceeding 80 GHz, resulting in an increase in noise and loss. More preferably, about 1 to 40 GHz is preferable.
[0024]
It should be noted that the present invention is not limited to the above-described embodiment, and any changes or improvements may be made without departing from the scope of the present invention. For example, the high-frequency substrate 1 of the present invention may be used as a high-frequency signal input / output unit that is a part of a semiconductor package.
[0025]
【The invention's effect】
The present invention includes a first line conductor formed on a top surface of a dielectric substrate formed by laminating a plurality of dielectric layers, and a first coplanar ground conductor layer formed on both sides of the first line conductor at substantially constant intervals. The first coplanar line is provided, and is formed at a substantially constant interval on both sides of the second line conductor and the second line conductor formed at a portion facing the first line conductor on the lower surface of the dielectric substrate. A second coplanar line comprising a second coplanar ground conductor layer is provided, formed from the end of the first line conductor to the end of the second line conductor, and provided between both ends. A through conductor formed through the central part of the substantially circular inner conductor layer and a central part of a plurality of inner ground conductor layers formed at substantially constant intervals on the circumference centering on the inner conductor layer, respectively. And from the first coplanar ground conductor layer A plurality of ground penetrating conductors formed on the same plane ground conductor layer, and the inner ground conductor layer includes a ring-shaped conductor layer around a portion of the penetrating conductor side along the radius around the ground penetrating conductor. The angle on the conductor layer side formed by the straight line passing through the center of the through conductor and the center of the ground through conductor and the radius is 90 to 120 °. Since the distance between the conductor and the through conductor can be made very short and a short circuit between the inner conductor layer and the inner ground conductor layer can be prevented, a high frequency signal in a higher frequency band can be transmitted with low loss.
[Brief description of the drawings]
FIG. 1 is a perspective view of a high-frequency substrate according to the present invention.
2 is a cross-sectional view of the high-frequency substrate taken along the line AA ′ in FIG. 1. FIG.
3 is a partially enlarged plan view of the high-frequency substrate taken along the line BB ′ of FIG.
FIG. 4 is a perspective view of a conventional high-frequency substrate.
5 is a cross-sectional view of the high-frequency substrate taken along the line AA ′ of FIG.
6 is a partially enlarged plan view of the high-frequency substrate taken along the line BB ′ of FIG.
[Explanation of symbols]
1: Dielectric substrate 2a: First line conductor 2b: Second line conductor 3a: First coplanar ground conductor layer 3b: Second coplanar ground conductor layer 4: Through conductor 4a: Inner conductor layer 5: Grounding through conductor 5a: inner grounding conductor layer

Claims (1)

複数の誘電体層が積層されて成る誘電体基板の上面に第1の線路導体および該第1の線路導体の両側にコプレーナ線路の接地導体層として一定間隔をもって形成された第1の同一面接地導体層から成る第1のコプレーナ線路が設けられ、前記誘電体基板の下面の前記第1の線路導体に対向する部位に形成された第2の線路導体および該第2の線路導体の両側にコプレーナ線路の接地導体層として一定間隔をもって形成された第2の同一面接地導体層から成る第2のコプレーナ線路が設けられており、前記第1の線路導体の端部から前記第2の線路導体の端部にかけて形成されるとともに両端部間に設けられた円形の内層導体層の中心部を貫通して形成された貫通導体と、前記内層導体層を中心とした円周上に一定間隔で形成された複数の内層接地導体層の中心部をそれぞれ貫通するとともに前記第1の同一面接地導体層から前記第2の同一面接地導体層にかけて形成された複数の接地貫通導体とを具備した高周波用配線基板において、前記内層接地導体層は、前記接地貫通導体の周囲に環状の導体層が前記貫通導体側の一部を半径に沿って切り取った形状となるように形成されており、かつ前記貫通導体の中心および前記接地貫通導体の中心を通る直線と前記半径とのなす前記導体層側の角度が90〜120°であることを特徴とする高周波用配線基板。 A first coplanar ground formed as a ground conductor layer of a first line conductor on both sides of the first line conductor and a coplanar line on a top surface of a dielectric substrate formed by laminating a plurality of dielectric layers. A first coplanar line made of a conductor layer is provided, and a second line conductor formed on a lower surface of the dielectric substrate facing the first line conductor and coplanar on both sides of the second line conductor. A second coplanar line composed of a second coplanar ground conductor layer formed at regular intervals as a ground conductor layer of the line is provided, and an end of the first line conductor is connected to the second line conductor. A through-conductor formed through the center of the circular inner layer conductor layer provided between the two ends and the circumference around the inner layer conductor layer. Multiple inner layers A high-frequency wiring board comprising a plurality of grounding through conductors each penetrating through a center portion of the ground conductor layer and formed from the first same-surface ground conductor layer to the second same-surface ground conductor layer; The inner ground conductor layer is formed such that an annular conductor layer is formed around the ground through conductor so as to have a shape obtained by cutting a part of the through conductor along the radius, and the center of the through conductor and the high-frequency wiring board you wherein the angle of forming the conductive layer side of the straight line and the radius passing through the center of the ground through conductors are 90 to 120 °.
JP2001362177A 2001-11-28 2001-11-28 High frequency wiring board Expired - Fee Related JP3838906B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001362177A JP3838906B2 (en) 2001-11-28 2001-11-28 High frequency wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001362177A JP3838906B2 (en) 2001-11-28 2001-11-28 High frequency wiring board

Publications (2)

Publication Number Publication Date
JP2003163309A JP2003163309A (en) 2003-06-06
JP3838906B2 true JP3838906B2 (en) 2006-10-25

Family

ID=19172719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001362177A Expired - Fee Related JP3838906B2 (en) 2001-11-28 2001-11-28 High frequency wiring board

Country Status (1)

Country Link
JP (1) JP3838906B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10113912B4 (en) * 2001-03-21 2006-09-28 Siemens Ag Electronic device

Also Published As

Publication number Publication date
JP2003163309A (en) 2003-06-06

Similar Documents

Publication Publication Date Title
US10790245B2 (en) High-frequency ceramic board and high-frequency semiconductor element package
JP5765174B2 (en) Electronic equipment
JP4450079B2 (en) High frequency module
JPH10270976A (en) Branching filter package
JP7358371B2 (en) Thin film surface mountable high frequency coupler
JP3838906B2 (en) High frequency wiring board
JP4587625B2 (en) Wiring board and its mounting structure
JP2003198213A (en) Wiring board for high frequency
JP3981645B2 (en) I / O terminal and semiconductor element storage package and semiconductor device
JP3309056B2 (en) Package for storing high-frequency elements
JP2002190540A (en) Storage package for semiconductor element
JP2004221944A (en) High frequency wiring board
JP4522010B2 (en) I / O terminal and semiconductor element storage package and semiconductor device
JP3619398B2 (en) High frequency wiring board and connection structure
JP3181036B2 (en) Mounting structure of high frequency package
JP3638479B2 (en) High frequency wiring board and connection structure thereof
JP2004214584A (en) Package for high frequency
JP3921079B2 (en) Wiring board
JP2004134413A (en) Package for housing semiconductor device and semiconductor device
JP4206185B2 (en) High frequency semiconductor device
JP2001230342A (en) Mounting structure of high frequency circuit component mounting board
JP3610238B2 (en) High frequency package
JP4502019B2 (en) High frequency module
JPH07283340A (en) Package for mounting semiconductor chip and semiconductor device with package
JP2000049509A (en) Wiring board and its connection structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060801

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees