JP3638479B2 - High frequency wiring board and connection structure thereof - Google Patents

High frequency wiring board and connection structure thereof Download PDF

Info

Publication number
JP3638479B2
JP3638479B2 JP24534599A JP24534599A JP3638479B2 JP 3638479 B2 JP3638479 B2 JP 3638479B2 JP 24534599 A JP24534599 A JP 24534599A JP 24534599 A JP24534599 A JP 24534599A JP 3638479 B2 JP3638479 B2 JP 3638479B2
Authority
JP
Japan
Prior art keywords
dielectric substrate
frequency
line
signal
signal conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24534599A
Other languages
Japanese (ja)
Other versions
JP2001077240A (en
Inventor
英博 南上
慎一 郡山
謙治 北澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP24534599A priority Critical patent/JP3638479B2/en
Priority to DE60035553T priority patent/DE60035553T2/en
Priority to EP00117130A priority patent/EP1081989B1/en
Priority to US09/636,054 priority patent/US6501352B1/en
Publication of JP2001077240A publication Critical patent/JP2001077240A/en
Application granted granted Critical
Publication of JP3638479B2 publication Critical patent/JP3638479B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01039Yttrium [Y]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1515Shape
    • H01L2924/15153Shape the die mounting substrate comprising a recess for hosting the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15172Fan-out arrangement of the internal vias
    • H01L2924/15174Fan-out arrangement of the internal vias in different layers of the multilayer substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16195Flat cap [not enclosing an internal cavity]

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
  • Structure Of Printed Boards (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、信号導体線と、誘電体基板を介してその信号導体線と平行して形成されたグランド層を有する高周波用伝送線路が形成された高周波用配線基板に関するもので、特に、周波数30GHz以上のミリ波帯領域の高周波用半導体素子を備えた半導体素子収納用パッケ−ジあるいは多層配線基板等に好適な高周波用配線基板およびその接続構造に関するものである。
【0002】
【従来技術】
近年、高度情報化時代を迎え、情報伝達に用いられる電波は1〜30GHzのマイクロ波領域から、更に30〜300GHzのミリ波領域の周波数まで活用することが検討されており、例えば、オフィス内高速無線データ通信システム(無線LAN)のようなミリ波の電波を用いた応用システムも提案されるようになっている。
【0003】
かかる応用システム等に用いられる高周波用半導体素子(以下、単に高周波素子という)を収納あるいは搭載するパッケージなどの配線基板には、従来、高周波信号の伝送損失を小さく抑えるために金属製枠体にセラミック製の接続用基板を接合したいわゆるメタルパッケージが用いられている。
【0004】
図8は、従来のメタルパッケージに高周波素子を収納して外部回路基板に実装した実装構造を示す平面図(a)とその断面図(b)である。なお図8(a)では蓋体は省略した。
【0005】
図8によれば、金属製の基板31および蓋体32からなるメタルパッケージ33の一部に、セラミック基板34に信号導体線35を形成した接続用基板36が取り付けられており、信号導体線35は、メタルパッケージ33内に搭載された高周波素子37とリボンなどによって電気的に接続されている。そして、メタルパッケージ33は、ベース基板38の表面にネジ39等によって固定され、ベース基板38の表面において、誘電体基板40の表面に信号導体線41が形成された回路基板42とは、接続用基板36の信号導体線35とリボンやワイヤ等によって電気的に接続されている。
【0006】
このようなメタルパッケージにおいては、その組み立てが複雑であることから、モジュール製造時の量産性及び低コスト化に問題があった。
【0007】
そこで、このような問題を解消するために、誘電体基板内部からスルーホール導体等を用いて信号導体線をパッケージの裏面に引出してその終端部に接続端子部を形成し、半田リフローによって他の誘電体基板の表面に形成された高周波用回路にロウ接して表面実装することが提案されている。
【0008】
図9、図10は、このようなスルーホール導体を用いた高周波用パッケージの概略を説明するための図である。この図9の概略断面図に示すように、この高周波用パッケージ50によれば、誘電体基板51と蓋体52からなるキャビティ内に高周波素子53が収納されており、また、誘電体基板51の表面には一端が高周波素子53とリボンなどにより接続された信号導体線54が形成され、また、誘電体基板51の内部には、図10(a)に示すようなパターンのグランド層55が形成されている。
【0009】
そして、信号導体線54の他端は、誘電体基板51を貫通し、グランド層55に接触することなく形成されたスルーホール導体56によって誘電体基板51の裏面に導出され、誘電体基板51の裏面に形成された信号導体線57と電気的に接続されている。
【0010】
誘電体基板51の裏面においては、図10(b)に示すように、信号導体線57の端部の両側に一対の接続用グランド導体58が設けられており、このグランド導体58は、ビアホール導体59によって誘電体基板51内部のグランド層55と電気的に接続されている。
【0011】
なお、かかる構造において、ビアホール導体59を誘電体基板51の端面a近くに形成すると、ビアホール導体59と誘電体基板51との間にクラック等が発生しやすくなるとの観点から、一般には、このビアホール導体59は、そのマイクロドリルなどによるビアホールの加工性の点から誘電体基板51の端面aから2mm以上離間した位置に形成されている。
【0012】
一方、このパッケージ50を実装する外部回路基板60においては、図9、図10(c)に示すように、その内部にグランド層(図示せず)が形成されており、その表面には、信号導体線62が形成され、パッケージとの接続部においては、信号導体線62の両側に接続用グランド導体63が形成されており、この接続用グランド導体63はグランド層61とビアホール導体64によってそれぞれ電気的に接続されている。
【0013】
そして、上記パッケージ50は、信号導体線57と62、接続用グランド導体58と63同士をそれぞれ半田などのロウ材65によって電気的に接続することにより外部回路基板60の表面に実装される。
【0014】
かかる図9、10におけるパッケージ50は、図8のメタルパッケージ33に比較して外部回路基板との機械的接続と電気的接続をリフロー等で一括して行うことが可能で、モジュール製造時の量産性向上及び低コスト化が可能である点で有利である。
【0015】
【発明が解決しようとする課題】
しかしながら、上記図9のパッケージ構造において誘電体基板51の裏面に形成された信号導体線57とその両側に形成された一対の接続用グランド導体58を具備する接続端子部の構造においては、その接続部の特性は、伝送信号の周波数が30GHz以下の場合には良好な伝送特性を有するものの、伝送信号の周波数が30GHz以上のミリ波帯域と非常に高い場合には、実装構造において高周波信号の伝送損失が大きくなったり、場合によっては、信号の伝送自体が困難になるという場合があった。
【0016】
この原因について種々検討した結果、誘電体基板51表面の接続用グランド導体58と誘電体基板51内部のグランド層55とを電気的に接続するために設けたビアホール導体59と誘電体基板51の端面との間で、共振が発生してしまうために伝送特性が劣化してしまうことがわかった。
【0017】
この共振は、信号周波数が低い場合、信号波長が長いために、上記のようなビアホール導体59と誘電体基板51の端面との間で共振が発生することはほとんどないが、周波数が高く信号波長が短くなるに従い、共振が発生しやすくなってしまうのである。
【0018】
従って、本発明は、誘電体基板に信号導体線とグランド層を具備する高周波伝送線路が設けられた高周波用配線基板を他の高周波回路と接続するに際して、上述したようなビアホール導体による共振の発生を防止し、接続部における高周波信号の伝送損失を低減した高周波用配線基板およびその接続構造を提供することにある。
【0019】
【課題を解決するための手段】
本発明者等は、前記課題に鑑み接続部での高周波信号の特性劣化を発生することなく他の高周波回路との接続が可能な配線基板について検討を重ねた結果、接続用グランド導体と誘電体基板内部のグランド層とを導体ペーストを充填し焼成してなるビアホール導体によって形成するとともに、このビアホール導体の側面を前記誘電体基板の端面から露出せしめることにより、ビアホール導体の加工性とともに、前述したような接続部におけるビアホール導体に起因した共振の発生を防止し、信号の損失を低減し良好な信号の伝達が可能となることを見いだし本発明に至った。
【0020】
即ち、本発明の高周波用配線基板は、セラミック誘電体基板と、該誘電体基板表面に形成されその終端部が誘電体基板の端面近傍まで延設された信号導体線と、前記信号導体線と平行して前記誘電体基板の内部又は裏面に形成されたグランド層とからなる高周波伝送線路と、該高周波伝送線路の終端部に他の高周波回路とロウ材を介して接続するための接続端子部を具備し、前記高周波伝送線路に30GHz以上の高周波信号が伝送される高周波用配線基板であって、前記接続端子部における前記信号導体線の両側に一対の接続用グランド導体を形成し、前記一対の接続用グランド導体と前記グランド層とを前記誘電体基板に設けられたビアホール内に金属ペーストを充填し焼成して形成されたビアホール導体によってそれぞれ接続するとともに、前記ビアホール導体の側面を前記誘電体基板の端面から露出せしめ、前記信号導体線の中心と前記ビアホール導体との距離を0.25λg以下(λg:前記高周波信号の前記誘電体基板中の信号波長)としたことを特徴とする。
【0021】
また、本発明の高周波用配線基板の接続構造は、上記接続端子部の構造を具備する2つの高周波用配線基板における信号導体線同士および一対の接続用グランド導体同士をそれぞれロウ材を介して接続したことを特徴とするものである。なお、前記接続端子部における信号導体線の線幅を前記高周波伝送線路の信号導体線の線幅より小さくすることが望ましく、前記グランド層における少なくとも前記一対のビアホール導体間に位置し、かつ前記信号導体線と対向する領域に非グランド領域を設けることがさらに望ましい。さらには、ビアホール導体の横断面の最大径が0.5mm以下であることがビアホール導体の信頼性を高める上で望ましい。
【0022】
【作用】
本発明によれば、上記のようにセラミック誘電体基板と、その表面に形成された信号導体線と、前記誘電体基板の内部あるいは裏面に前記信号導体線と平行に形成されたグランド層とからなる高周波伝送線路の終端部に形成された接続端子部において、前記信号導体線の端部の両側に一対の接続用グランド導体を形成するとともに、接続用グランド導体を誘電体基板内部のグランド層と前記誘電体基板に設けられたビアホール内に金属ペーストを充填し焼成して形成されたビアホール導体によってそれぞれ接続するとともに、前記ビアホール導体の側面を前記誘電体基板の端面から露出せしめることによって、ビアホール導体と誘電体基板端面との間に誘電体が介在することがないために、ビアホール導体と誘電体基板端面との間での共振の発生を防止することができる結果、他の外部回路との接続部全体における高周波信号の損失が低減され、高周波信号の良好な伝送、伝達が可能となる。
【0023】
また、配線基板の接続端子部を信号導体線の両側に一対の接続用グランド導体を形成したコプレーナ線路によって構成しているために、他の外部回路との接続をコプレーナ線路同士の接続により構成することからも高周波信号の反射を低減することができる。
【0024】
また、前記信号導体線の中心と前記ビアホール導体との距離を0.25λg以下(λg:前記高周波信号の前記誘電体基板中の信号波長)とすることにより、30GHz以上の高周波信号を伝送する場合において、高周波信号の伝送を担う信号導体線直下のグランド層のグランド電流が、信号導体線における電流に対して小さな移送差で接続用グランド導体に伝送されるために、接続端子部における高周波信号の反射が低減され、高周波信号の良好な伝送が可能となる。
【0025】
さらに、接続端子部の信号導体線の線幅を高周波伝送線路の信号導体線の線幅より小さくすることにより、信号導体線とグランド層との結合を小さくして相対的に信号導体線と接続用グランド導体との結合を強め、よりコプレーナ線路の電磁界に近い分布に変換することが可能になり、電磁界分布の変化による信号の反射を低減できる。
【0026】
また、同様の理由により、高周波用配線基板の接続端子部の少なくとも前記一対のビアホール導体間に位置し、かつ信号導体線に対向するグランド層を非グランド領域とすることにより、さらに接続端子部の電磁界分布をコプレーナ線路の電磁界に近い分布に変換することが可能となるために信号の反射を低減し、高周波信号の低損失な伝送を可能にするのに有効である。
【0027】
【発明の実施の形態】
本発明の配線基板を図面に基づき詳述する。
図1は、本発明の高周波用配線基板の一例を説明するためのものであり、(a)は誘電体基板表面の接続端子部付近の平面図、(b)はその概略断面図、(c)はビアホール導体形成部の拡大断面図である。図1の配線基板Aによれば、セラミック誘電体基板1の表面に信号導体線2が形成され、また、誘電体基板1の内部には、信号導体線2と平行にグランド層3が形成されており、かかる信号導体線2およびグランド層3によってマイクロストリップ線路構造の高周波伝送線路部Xが形成されている。そして、高周波伝送線路部Xの終端部には、外部回路と接続するための接続端子部Yが形成されている。
【0028】
本発明によれば、接続端子部Yにおいて、信号導体線2終端部の両側の誘電体基板1表面には一対の接続用グランド導体4が設けられており、接続用グランド導体4は、誘電体基板に設けられたビアホール内に金属ペーストを充填し焼成して形成されたビアホール導体5、5を介してそれぞれグランド層3と電気的に接続されており、ビアホール導体5、5の側面が誘電体基板端面aに露出していることが大きな特徴である。
【0029】
このように、ビアホール導体5、5の側面が誘電体基板端面aに露出している、言い換えれば、ビアホール導体5、5と誘電体基板の端面a間に誘電体が存在しないようにすることにより、誘電体が存在することによる共振の発生や、加工性、長期信頼性の低下を防止することができる。
【0030】
また、図1のビアホール導体5、5の断面形状は、特に限定するものではなく円形、楕円形あるいは多角形などの形状であればよいが、誘電体基板1の端面にビアホール導体5を露出させる場合の加工性を高める上、その断面の最大径Dは0.5mm以下、特に0.3mm以下であることが望ましい。
【0031】
更に、このビアホール導体5、5の露出部分は、特に限定するものではなく、側面が露出していれば良いが、導体としての接続信頼性を高めるために、その露出ビアホール面積はビアホール最大径Dより算出される最大面積の1/5以上、望ましくは1/2以上であればよい。また、外部回路基板とのロウ材との接続とを確実に行うためにビアホール導体5自体がある程度の横断面が存在することが望ましく、かかる点から、図1(c)に示すように、ビアホール導体5の露出端面aからビアホール導体5の反対側端面cまでの長さnのビアホール導体の横断面の最大径Dに対する比率n/Dが0.3以上であることが望ましい。
【0032】
本発明によれば、上記の接続端子部構造において、信号導体線2の中心とビアホール導体5との距離Gを0.25λg以下(λg:高周波信号の誘電体基板中の信号波長)とすることが必要である。これは、配線基板Aを外部回路基板に表面実装した場合に、外部回路基板との接続部における高周波信号の伝送を担う信号導体線直下のグランド層のグランド電流が、ビアホール導体5を経由して小さな位相差でグランド導体に伝送されるため、位相差による信号の反射が低減され、30GHz以上の高周波信号を通過伝送することが可能となる。
【0033】
なお、本明細書中における距離Gとは、信号導体線2の終端部における線路幅の中心とビアホール導体5、5の信号導体線2側端部との距離の意である。従って、言い換えれば、ビアホール導体5,5間の距離は、2G、即ち、0.5λg以下、特に0.3λg以下となることを意味する。
【0034】
また、本発明の配線基板は、他の一例の平面図を示す図2のように、配線基板Bの接続端子部Yの信号導体線2の幅を高周波伝送線路部Xの信号導体線2の幅より小さくする、具体的には高周波伝送線路部Xの信号導体線2の幅をW0 、接続端子部Yの信号導体線2の幅をW1 とした時、0.4W0 ≦W1 ≦0.8W0 とすることが望ましい。
【0035】
これにより、接続端子部Yでのグランド層3内の信号伝送による電磁界の集中領域がビアホール導体5を経由して連続的に外部回路基板に伝送される、すなわち信号導体線2とグランド層3との結合を小さくして、信号の電磁界分布をマイクロストリップ線路の電磁界に近い分布からコプレーナ線路の電磁界に近い分布に変更することが可能になり、接続部での電磁界分布の変化による信号の反射を低減することができる。
【0036】
また、配線基板の接続端子部において、前記グランド層における少なくとも前記一対のビアホール導体5、5間に位置し、かつ信号導体線2に対向する領域Z、言い換えれば、平面的に見て、一対のビアホール導体5、5を結ぶ線分領域と信号導体線2とは重なる領域Zを非グランド領域とすることによっても、上記と同様に信号の反射を低減するのに有効である。
【0037】
この非グランド領域6は、前記領域Zを含んでいればよく、前記領域Zのみを非グランド領域6とすることのみならず、例えば、図3(a)に示すように、前記領域Zに加え、前記領域Zからグランド層3の端面までの領域を非グランド領域6とすることによって、さらに伝送損失を低減することができる。
【0038】
また、図3(b)に示すように、非グランド領域6を、前記領域Zを含み、前記信号導体線2の終端部に向けて、連続的にあるいは段階的に徐々に広がるように形成することが望ましい。このように、非グランド領域6を略V字状に形成することにより、配線基板の高周波伝送線路部から接続端子部までの電磁界分布の変化をスムーズにして、信号の反射を低減できる。
【0039】
さらに、図3(c)に示すように、非グランド領域6をグランド層3のビアホール導体5、5に挟まれた領域のみならず、ビアホール導体5、5の外側の領域を前記信号導体線の終端部に向けて、連続的にあるいは段階的に徐々に広がるように形成し、言わばW状に形成することにより、さらに電磁界分布の変化をスムーズにして、反射を低減できる。
【0040】
次に、本発明の配線基板の接続構造の一例として、高周波素子を搭載したパッケージを外部回路基板に実装した場合の接続構造について説明する。図4の概略断面図に示すように、パッケージ7は、誘電体基板8と蓋体9からなるキャビティ内に高周波素子10が収納されており、また、誘電体基板8の高周波素子10搭載面側の表面には図5の蓋体9を除いた平面図(a)に示すように、一端が高周波素子10とリボンなどにより接続された入力用および出力用の2つの信号導体線11が形成されている。
【0041】
また、誘電体基板8の内部には、図5(b)のパターン図に示すように、図3(c)で説明したのと同様の端部がW状のグランド層12が形成されている。この信号導体線11とグランド層12によってマイクロストリップ線路構造の高周波伝送線路を形成している。そして、信号導体線11の高周波素子10と接続された一端とは反対側の他端は、誘電体基板8を貫通し、グランド層12に接触することなく形成されたビアホール導体13によって誘電体基板8の反対側表面に導出され、誘電体基板8の反対側表面に形成された信号導体線14と電気的に接続されている。また、信号導体線14とグランド層12とはマイクロストリップ線路構造の高周波伝送線路部Xを形成している。
【0042】
誘電体基板8の裏側表面においては、図5(c)の平面図に示すように、入力用および出力用の2つの信号導体線14が形成されており、それぞれの信号導体線14の終端部の両側には一対の接続用グランド導体15が設けられて接続端子部Yが形成されており、接続用グランド導体15はビアホール導体16を介して誘電体基板8内部のグランド層12と電気的に接続されている。また、接続端子部Yにおいて信号導体線14の線幅は高周波伝送線路Xの線幅よりも狭く形成されている。
【0043】
そして、かかるパッケージ7においては、図1、図2および図3で説明したように、高周波用配線基板の接続端子部において、ビアホール導体16の側面が誘電体基板8端面a1 に露出するように配置されている。
【0044】
一方、パッケージ7を実装する外部回路基板18は、入力用、出力用としてそれぞれ個別の外部回路基板18’、18”を有し、外部回路基板18’、18”表面の平面図である図6(a)に示されるように、それらの表面には、前述のパッケージ7に対して入出力するための2つの信号導体線19がそれぞれ形成され、また外部回路基板18’,18”の内部にはそれぞれグランド層20が形成れており、信号導体線19とともにマイクロストリップ線路を形成している。このグランド層20は、図6(b)に示すように、接続端子部において図5(b)と同様の理由から端部がW状に形成されている。
【0045】
そして、入力用および出力用の各信号導体線19の終端部には、それぞれ接続端子部が形成されており、この接続端子部において各信号導体線19の両側には、パッケージ7の接続端子部Yと全く同様に一対の接続用グランド導体21が形成されており、接続用グランド導体21はそれぞれグランド層20とビアホール導体22によって電気的に接続されている。また、接続端子部の信号導体線19の線幅はそれ以外の高周波伝送線路における信号導体線19の線幅よりも狭く形成されている。そして、外部回路基板18においても図1乃至図3で説明したものと同様に、ビアホール導体22は、外部回路基板18’、18”の端面a2 ’、a2 ”に露出するように配置されている。
【0046】
そして、パッケージ7は、図4に示すように、外部回路基板18’、18”に対して、各信号導体線14、19同士、接続用グランド導体15、21同士を当接し、半田リフローなどによって半田等のロウ材24によってパッケージ7の信号導体線14と外部回路基板18’、18”の信号導体線19と、また、パッケージ7の接続用グランド導体15と外部回路基板18’、18”の接続用グランド導体21同士をそれぞれ電気的に接続することにより、パッケージ7を外部回路基板18’、18”に表面実装される。なお、前記信号導体14、19間、接続用グランド導体15、21間は、ロウ材よりも高い融点を有するバンプやボール状の端子を介してロウ材によって接合固定することも可能である。
【0047】
本発明によるかかる実装構造によれば、パッケージ7と外部回路基板18’、18”の互いの接続端子部において、上述したようなビアホール導体16と誘電体基板8の端面a1 間の共振および外部回路基板18’、18”におけるビアホール導体22と基板18’、18”の各端面a2 ’、a2 ”との間での共振を防止し、パッケージAと外部回路基板18’、18”との伝送損失を低減した実装構造を提供できる。
【0048】
上記図6(a)(b)の外部回路基板は、2つの外部回路基板の表面にそれぞれ入力用および出力用の接続端子部が形成されたものであるが、入力用の接続端子部および出力用の接続端子部は、図6(c)に示すように、1つの外部回路基板18にそれぞれ形成されていてもよいが、接続端子部の延長上に凹部bを形成して誘電体基板端面a2 を形成し、上記と同様に、この端面a2 にビアホール導体22が露出するように配置することが伝送特性の改善の点から望ましい。
【0049】
なお、図4のパッケージ7において、高周波素子10搭載側の信号導体線11とその反対側表面の信号導体線14との接続は、ビアホール導体13によるものであるが、信号導体線11と信号導体線14との接続は、これに限定されるものではなく、例えば、グランド層12にスロット孔(スロット線路)を形成し、このスロット孔を介して各信号導体線11、14の端部を対峙させることにより、両導体を電磁的に接続することも可能である。
【0050】
また、本発明における接続端子部の構造は、少なくとも信号導体線とグランド層を具備するものであれば、あらゆる高周波伝送線路に対して適用でき、図1乃至図6に示したようなマイクロストリップ線路のみならず、グランド付きコプレーナ線路に対しても適用することができる。
【0051】
なお、本発明の高周波用配線基板は、周波数30GHz以上の信号を伝送する場合に適用されるものであるが、この信号周波数が40GHz以上、特に50GHz以上の場合に対して特に効果的である。
【0052】
【実施例】
本発明の高周波用配線基板の外部回路基板への表面実装後の伝送特性を測定した。測定に用いた評価用配線基板の構造を図7に示した。この評価用配線基板24によれば、図7(a)に示すように、誘電体基板25の実装面側表面に、2つの終端部を有する線幅(W0 )の信号導体線26を、誘電体基板25内部にグランド層28を形成してマイクロストリップ線路からなる高周波伝送線路を形成した。そして、信号導体線26の各終端部の両側に、それぞれ一対の接続用グランド導体27を形成し、接続用グランド導体27とグランド層28とを直径がDmmφの半円のビアホール導体(VH)29によって電気的に接続し、接続端子部Yを形成した。また、接続端子部Yにおける信号導体線の線幅比(W1 /W0 )を0.5または1.0に変化させた。
【0053】
なお、ビアホール導体29の位置を変えて、誘電体基板25の端面aとビアホール導体29との距離T、図1(c)のビアホール導体29の直径Dと距離nとの関係n/Dが表1のように異なる数種のサンプルを用意した。なお、信号導体線26の中心とビアホール導体29との距離Gは0.23mmに設定した。なお、試料No.4を除き、グランド層28の接続端子部と対向する部分には図3(c)で説明したように略W字状の端部形状を有する非グランド領域30を形成した。
【0054】
この評価用配線基板24を図6(a)(b)に示したような全く同様の接続端子部パターンを表面に有する外部回路基板18に半田を介して接続、実装した。この評価用配線基板24を表面実装した外部回路基板18に対して、外部回路基板の一方の接続端子部から評価用配線基板24を経由して他方の接続端子部までの30GHzにおける伝送特性として信号の挿入損失S21を測定した。
【0055】
なお、評価用配線基板と外部回路基板は、比誘電率9のアルミナ基板を用い、信号導体線、グランド層、接続用グランド導体、ビアホール導体は、タングステンによって、同時焼成により形成し、表面に露出している信号導体線、接続グランド導体の表面には金メッキを施した。
【0056】
【表1】

Figure 0003638479
【0057】
表1の結果から明らかなように、通常の加工によるビアホール導体の誘電体基板の端面からの距離Tが0.8mmの試料No.7では、実装後の挿入損失が大きく、また、前記距離Tが0.4mmの試料No.6では、熱衝撃試験でビアホールとアルミナ基板との端面にクラックが発生し長期信頼性に問題があった。
【0058】
これに対して、本発明に従い、ビアホール導体の側面の一部をアルミナ基板の端面に露出させることにより、ビアホール導体と誘電体基板端面との間の共振を防止し、実装後の挿入損失を低減できることがわかった。また、接続端子部の信号導体線の線幅W1 を高周波伝送線路の線幅W0 よりも小さい試料では、W1 =W0 である試料よりも挿入損失を低減でき、さらに非グランド領域を設けた試料では、非グランド領域を有しない試料No.4に比較してさらに挿入損失を低減できることがわかった。
【0059】
【発明の効果】
以上詳述した通り、本発明によれば、誘電体基板表面に信号導体線と、誘電体基板の内部あるいは裏面にグランド層を具備する高周波用配線基板において、接続端子部の信号導体線の両側に接続用グランド導体を形成し、接続用グランド導体とグランド層をビアホール導体で接続し、ビアホール導体の側面を前記誘電体基板の端面に露出させることにより、接続端子部におけるビアホール導体と誘電体基板端面間の共振を防止し、接続端子部での伝送特性の劣化を防止し、他の高周波回路との接続部における高周波信号の伝送損失を低減できる。
【図面の簡単な説明】
【図1】本発明の高周波用配線基板の一例を説明するためのもので、(a)誘電体基板表面の接続端子部付近の平面図、(b)その概略断面図および(c)ビアホール導体形成部の拡大断面図である。
【図2】本発明の配線基板の他の一例を説明するための誘電体基板表面の接続端子部付近の平面図である。
【図3】(a)(b)(c)は、いずれも本発明の配線基板の好適例におけるグランド層のパターンを示す図である。
【図4】本発明の高周波用配線基板の接続構造の一例を説明するための概略断面図である。
【図5】図4の高周波用配線基板の(a)誘電体基板表面の平面図、(b)グランド層のパターン図、(c)誘電体基板裏側側面の平面図を示す。
【図6】図4のパッケージを実装する外部回路基板の構造を説明するための(a)平面図、(b)グランド層のパターン図および(c)他の外部回路基板の平面図を示す。
【図7】評価用配線基板の構造を説明するための(a)実装面側表面の平面図、(b)グランド層のパターン図を示す。
【図8】従来のメタルパッケージの構造を説明するための(a)平面図、(b)断面図を示す。
【図9】従来の表面実装型高周波用パッケージの構造を説明するための概略断面図である。
【図10】図9のパッケージにおける(a)グランド層のパターン図、(b)誘電体基板実装面側表面の平面図、(c)パッケージを実装する外部回路基板の平面図である。
【符号の説明】
1 誘電体基板
2 信号導体線
3 グランド層
4 グランド導体
5 ビアホール導体(接続導体)
6 非グランド領域
X 高周波伝送線路
Y 接続端子部
a 端面[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-frequency wiring board in which a high-frequency transmission line having a signal conductor line and a ground layer formed in parallel with the signal conductor line via a dielectric substrate is formed, and in particular, a frequency of 30 GHz. The present invention relates to a high-frequency wiring board suitable for a semiconductor element housing package or a multilayer wiring board provided with a high-frequency semiconductor element in the millimeter wave band region and a connection structure thereof.
[0002]
[Prior art]
In recent years, with the advent of advanced information technology, radio waves used for information transmission have been studied to be used from the microwave region of 1-30 GHz to the millimeter wave region of 30-300 GHz. Application systems using millimeter-wave radio waves such as wireless data communication systems (wireless LANs) have also been proposed.
[0003]
In a wiring board such as a package for housing or mounting a high-frequency semiconductor element (hereinafter simply referred to as a high-frequency element) used in such an application system, a metal frame and a ceramic have been conventionally used in order to suppress transmission loss of high-frequency signals. A so-called metal package in which a connection board made of metal is joined is used.
[0004]
FIG. 8 is a plan view (a) and a sectional view (b) showing a mounting structure in which a high-frequency element is housed in a conventional metal package and mounted on an external circuit board. In FIG. 8A, the lid is omitted.
[0005]
According to FIG. 8, a connection substrate 36 in which a signal conductor line 35 is formed on a ceramic substrate 34 is attached to a part of a metal package 33 including a metal substrate 31 and a lid 32. Are electrically connected to the high-frequency element 37 mounted in the metal package 33 by a ribbon or the like. The metal package 33 is fixed to the surface of the base substrate 38 with screws 39 or the like, and the surface of the base substrate 38 is connected to the circuit substrate 42 in which the signal conductor lines 41 are formed on the surface of the dielectric substrate 40. The signal conductor wire 35 of the substrate 36 is electrically connected by a ribbon or a wire.
[0006]
In such a metal package, since the assembly is complicated, there is a problem in mass productivity and cost reduction at the time of module manufacture.
[0007]
Therefore, in order to solve such a problem, a signal conductor wire is drawn out from the inside of the dielectric substrate to the back surface of the package using a through-hole conductor or the like to form a connection terminal portion at the end portion thereof, and other reflow soldering is performed. It has been proposed to perform surface mounting by soldering to a high frequency circuit formed on the surface of a dielectric substrate.
[0008]
9 and 10 are diagrams for explaining an outline of a high-frequency package using such a through-hole conductor. As shown in the schematic cross-sectional view of FIG. 9, according to the high frequency package 50, the high frequency element 53 is accommodated in the cavity formed by the dielectric substrate 51 and the lid 52. A signal conductor line 54 having one end connected to the high-frequency element 53 by a ribbon or the like is formed on the surface, and a ground layer 55 having a pattern as shown in FIG. 10A is formed inside the dielectric substrate 51. Has been.
[0009]
The other end of the signal conductor line 54 penetrates the dielectric substrate 51 and is led out to the back surface of the dielectric substrate 51 by a through-hole conductor 56 formed without contacting the ground layer 55. The signal conductor wire 57 formed on the back surface is electrically connected.
[0010]
On the back surface of the dielectric substrate 51, as shown in FIG. 10B, a pair of connection ground conductors 58 are provided on both sides of the end portion of the signal conductor wire 57. The ground conductor 58 is a via-hole conductor. 59 is electrically connected to the ground layer 55 inside the dielectric substrate 51.
[0011]
In this structure, in general, from the viewpoint that if the via hole conductor 59 is formed near the end surface a of the dielectric substrate 51, cracks or the like are likely to occur between the via hole conductor 59 and the dielectric substrate 51, this via hole is generally used. The conductor 59 is formed at a position 2 mm or more away from the end surface a of the dielectric substrate 51 from the viewpoint of workability of the via hole by the micro drill or the like.
[0012]
On the other hand, in the external circuit board 60 on which the package 50 is mounted, as shown in FIGS. 9 and 10C, a ground layer (not shown) is formed therein, and a signal layer is formed on the surface thereof. Conductor wires 62 are formed, and connection ground conductors 63 are formed on both sides of the signal conductor wires 62 at the connection portion with the package. The connection ground conductors 63 are electrically connected by the ground layer 61 and the via-hole conductors 64, respectively. Connected.
[0013]
The package 50 is mounted on the surface of the external circuit board 60 by electrically connecting the signal conductor lines 57 and 62 and the connection ground conductors 58 and 63 with a brazing material 65 such as solder.
[0014]
The package 50 shown in FIGS. 9 and 10 can perform mechanical connection and electrical connection with an external circuit board collectively by reflow or the like as compared with the metal package 33 shown in FIG. This is advantageous in that it can improve performance and reduce costs.
[0015]
[Problems to be solved by the invention]
However, in the structure of the connection terminal portion including the signal conductor wire 57 formed on the back surface of the dielectric substrate 51 and the pair of connection ground conductors 58 formed on both sides thereof in the package structure of FIG. The characteristics of the part are good when the frequency of the transmission signal is 30 GHz or less, but when the frequency of the transmission signal is very high, such as a millimeter wave band of 30 GHz or more, the high frequency signal is transmitted in the mounting structure. In some cases, the loss increases, and in some cases, signal transmission itself becomes difficult.
[0016]
As a result of various investigations on this cause, a via-hole conductor 59 provided to electrically connect the connection ground conductor 58 on the surface of the dielectric substrate 51 and the ground layer 55 inside the dielectric substrate 51 and the end face of the dielectric substrate 51. It was found that transmission characteristics deteriorated because resonance occurred between the two.
[0017]
Since this resonance has a long signal wavelength when the signal frequency is low, the resonance hardly occurs between the via-hole conductor 59 and the end face of the dielectric substrate 51 as described above, but the frequency is high and the signal wavelength is high. As the value becomes shorter, resonance tends to occur.
[0018]
Therefore, in the present invention, when a high-frequency wiring board in which a high-frequency transmission line having a signal conductor line and a ground layer is provided on a dielectric substrate is connected to another high-frequency circuit, the above-described resonance caused by the via-hole conductor is generated. It is an object of the present invention to provide a high-frequency wiring board and a connection structure for the same, in which a transmission loss of a high-frequency signal in a connection portion is reduced.
[0019]
[Means for Solving the Problems]
In view of the above problems, the present inventors have studied wiring boards that can be connected to other high-frequency circuits without causing deterioration of the characteristics of the high-frequency signal at the connection portion. The ground layer inside the substrate is formed by a via hole conductor formed by filling and firing a conductor paste, and the side surface of the via hole conductor is exposed from the end surface of the dielectric substrate, thereby improving the processability of the via hole conductor as described above. It has been found that the occurrence of resonance due to the via-hole conductor in such a connection portion can be prevented, signal loss can be reduced, and satisfactory signal transmission can be achieved.
[0020]
That is, the high-frequency wiring board of the present invention includes a ceramic dielectric substrate, a signal conductor line formed on the surface of the dielectric substrate and having a terminal portion extending to the vicinity of the end surface of the dielectric substrate, and the signal conductor line. A high-frequency transmission line composed of a ground layer formed in parallel or on the back surface of the dielectric substrate, and a connection terminal portion for connecting to a terminal portion of the high-frequency transmission line with another high-frequency circuit via a brazing material A high- frequency wiring board that transmits a high-frequency signal of 30 GHz or more to the high-frequency transmission line , wherein a pair of connection ground conductors are formed on both sides of the signal conductor line in the connection terminal portion, and the pair When the connection ground conductor and the ground layer are connected by via-hole conductors formed by filling a metal paste into a via-hole provided in the dielectric substrate and firing it, respectively. In a side of the via hole conductors brought exposed from the end surface of the dielectric substrate, the signal conductor line center than 0.25λg the distance between the via hole conductor (lambda] g: signal of said dielectric material substrate of the high-frequency signal Wavelength) .
[0021]
In addition, the high frequency wiring board connection structure of the present invention connects the signal conductor lines and the pair of connection ground conductors in the two high frequency wiring boards having the above-described connection terminal portion structure via brazing materials. It is characterized by that. In addition, it is preferable that the line width of the signal conductor line in the connection terminal portion is smaller than the line width of the signal conductor line of the high-frequency transmission line, and the signal conductor line is located between at least the pair of via-hole conductors in the ground layer, and the signal It is further desirable to provide a non-ground region in a region facing the conductor line. Furthermore, it is not to desirable in increasing the reliability of the via-hole conductors maximum diameter of the cross section of the via-hole conductor is 0.5mm or less.
[0022]
[Action]
According to the present invention, from the ceramic dielectric substrate as described above, the signal conductor wire formed on the surface thereof, and the ground layer formed in parallel with the signal conductor wire inside or on the back surface of the dielectric substrate. In the connection terminal portion formed at the terminal portion of the high-frequency transmission line, a pair of connection ground conductors are formed on both sides of the end portion of the signal conductor line, and the connection ground conductor is connected to the ground layer inside the dielectric substrate. Via hole conductors formed by filling a via hole provided in the dielectric substrate with a metal paste and firing are connected to each other, and side surfaces of the via hole conductor are exposed from an end surface of the dielectric substrate, thereby providing a via hole conductor. Since there is no dielectric between the substrate and the dielectric substrate end surface, resonance between the via-hole conductor and the dielectric substrate end surface Results that can be prevented raw, loss of high-frequency signal is reduced in the entire connection portion between the other external circuitry, good transmission of high frequency signals, it is possible to transmit.
[0023]
In addition, since the connection terminal portion of the wiring board is constituted by a coplanar line in which a pair of connection ground conductors are formed on both sides of the signal conductor line, the connection with other external circuits is constituted by the connection between the coplanar lines. Therefore, reflection of high frequency signals can be reduced.
[0024]
When a high frequency signal of 30 GHz or more is transmitted by setting the distance between the center of the signal conductor line and the via hole conductor to 0.25λg or less (λg: signal wavelength of the high frequency signal in the dielectric substrate). In this case, since the ground current of the ground layer directly under the signal conductor line responsible for the transmission of the high-frequency signal is transmitted to the connection ground conductor with a small transfer difference with respect to the current in the signal conductor line, Reflection is reduced and good transmission of high frequency signals is possible.
[0025]
Furthermore, by making the line width of the signal conductor line of the connection terminal portion smaller than the line width of the signal conductor line of the high frequency transmission line, the coupling between the signal conductor line and the ground layer is reduced and the signal conductor line is relatively connected. It is possible to strengthen the coupling with the ground conductor for use and to convert it to a distribution closer to the electromagnetic field of the coplanar line, and to reduce the reflection of the signal due to the change in the electromagnetic field distribution.
[0026]
For the same reason, a ground layer located between at least the pair of via hole conductors of the connection terminal portion of the high-frequency wiring board and facing the signal conductor line is used as a non-ground region, thereby further reducing the connection terminal portion. Since the electromagnetic field distribution can be converted to a distribution close to the electromagnetic field of the coplanar line, it is effective in reducing signal reflection and enabling low-loss transmission of high-frequency signals.
[0027]
DETAILED DESCRIPTION OF THE INVENTION
The wiring board of the present invention will be described in detail with reference to the drawings.
1A and 1B are diagrams for explaining an example of a high-frequency wiring board according to the present invention. FIG. 1A is a plan view of the vicinity of a connection terminal portion on the surface of a dielectric substrate, FIG. ) Is an enlarged cross-sectional view of a via-hole conductor forming portion. According to the wiring board A of FIG. 1, the signal conductor line 2 is formed on the surface of the ceramic dielectric substrate 1, and the ground layer 3 is formed in the dielectric substrate 1 in parallel with the signal conductor line 2. The signal conductor line 2 and the ground layer 3 form a high frequency transmission line portion X having a microstrip line structure. A connection terminal portion Y for connecting to an external circuit is formed at the terminal portion of the high-frequency transmission line portion X.
[0028]
According to the present invention, in the connection terminal portion Y, the pair of connection ground conductors 4 are provided on the surface of the dielectric substrate 1 on both sides of the terminal portion of the signal conductor line 2, and the connection ground conductor 4 Via holes conductors 5 and 5 formed by filling a metal paste into via holes provided on the substrate and firing are electrically connected to the ground layer 3 respectively, and the side surfaces of the via hole conductors 5 and 5 are dielectrics. The main feature is that it is exposed at the substrate end surface a.
[0029]
As described above, the side surfaces of the via-hole conductors 5 and 5 are exposed at the dielectric substrate end surface a. In other words, by preventing the dielectric from existing between the via-hole conductors 5 and 5 and the end surface a of the dielectric substrate. In addition, it is possible to prevent the occurrence of resonance due to the presence of the dielectric and the deterioration of workability and long-term reliability.
[0030]
The cross-sectional shape of the via-hole conductors 5 and 5 in FIG. 1 is not particularly limited, and may be any shape such as a circle, an ellipse, or a polygon, but the via-hole conductor 5 is exposed on the end face of the dielectric substrate 1. In order to improve the workability in this case, the maximum diameter D of the cross section is desirably 0.5 mm or less, particularly 0.3 mm or less.
[0031]
Further, the exposed portions of the via-hole conductors 5 and 5 are not particularly limited, and the side surfaces may be exposed. However, in order to improve connection reliability as a conductor, the exposed via-hole area has a via-hole maximum diameter D. The maximum area calculated from the above may be 1/5 or more, preferably 1/2 or more. In addition, it is desirable that the via-hole conductor 5 itself has a certain cross section in order to securely connect the brazing material to the external circuit board. From this point, as shown in FIG. The ratio n / D to the maximum diameter D of the cross section of the via hole conductor having a length n from the exposed end surface a of the conductor 5 to the opposite end surface c of the via hole conductor 5 is preferably 0.3 or more.
[0032]
According to the present invention, in the connection terminal structure described above, the distance G between the center of the signal conductor line 2 and the via-hole conductor 5 is 0.25λg or less (λg: signal wavelength of the high-frequency signal in the dielectric substrate). Is necessary . This is because when the wiring board A is surface-mounted on the external circuit board, the ground current in the ground layer directly under the signal conductor line that carries high-frequency signal transmission at the connection portion with the external circuit board passes through the via-hole conductor 5. Since the signal is transmitted to the ground conductor with a small phase difference, reflection of the signal due to the phase difference is reduced, and a high-frequency signal of 30 GHz or more can be transmitted and transmitted.
[0033]
In addition, the distance G in this specification means the distance between the center of the line width at the terminal portion of the signal conductor line 2 and the end portion of the via-hole conductors 5 and 5 on the signal conductor line 2 side. Therefore, in other words, the distance between the via-hole conductors 5, 5 means 2G, that is, 0.5λg or less, particularly 0.3λg or less.
[0034]
Further, the wiring board of the present invention has a width of the signal conductor line 2 of the connection terminal portion Y of the wiring board B of the signal conductor line 2 of the high-frequency transmission line portion X as shown in FIG. 2 showing a plan view of another example. When the width of the signal conductor line 2 of the high-frequency transmission line portion X is set to W 0 and the width of the signal conductor line 2 of the connection terminal portion Y is set to W 1 , 0.4 W 0 ≦ W 1 It is desirable that ≦ 0.8W 0 .
[0035]
Thereby, the concentrated region of the electromagnetic field due to signal transmission in the ground layer 3 at the connection terminal portion Y is continuously transmitted to the external circuit board via the via-hole conductor 5, that is, the signal conductor line 2 and the ground layer 3. It is possible to change the distribution of the electromagnetic field of the signal from the distribution close to the electromagnetic field of the microstrip line to the distribution close to the electromagnetic field of the coplanar line. The reflection of the signal due to can be reduced.
[0036]
Further, in the connection terminal portion of the wiring board, a region Z located between at least the pair of via-hole conductors 5 and 5 in the ground layer and opposed to the signal conductor line 2, in other words, a pair of Even when the region Z where the line segment region connecting the via-hole conductors 5 and 5 and the signal conductor line 2 overlap with each other is set as a non-ground region, it is effective in reducing the signal reflection as described above.
[0037]
The non-ground region 6 only needs to include the region Z, and not only the region Z is set as the non-ground region 6, but, for example, in addition to the region Z, as shown in FIG. By setting the region from the region Z to the end face of the ground layer 3 as the non-ground region 6, transmission loss can be further reduced.
[0038]
Further, as shown in FIG. 3B, the non-ground region 6 is formed so as to expand continuously or stepwise toward the terminal portion of the signal conductor line 2 including the region Z. It is desirable. Thus, by forming the non-ground region 6 in a substantially V shape, the change in the electromagnetic field distribution from the high-frequency transmission line portion to the connection terminal portion of the wiring board can be made smooth, and signal reflection can be reduced.
[0039]
Furthermore, as shown in FIG. 3C, not only the region where the non-ground region 6 is sandwiched between the via-hole conductors 5 and 5 in the ground layer 3 but also the region outside the via-hole conductors 5 and 5 By forming it so as to spread gradually or stepwise toward the end portion, that is, by forming it in a W shape, the change in the electromagnetic field distribution can be further smoothed and reflection can be reduced.
[0040]
Next, as an example of the wiring board connection structure of the present invention, a connection structure in the case where a package having a high-frequency element mounted thereon is mounted on an external circuit board will be described. As shown in the schematic cross-sectional view of FIG. 4, the package 7 has a high-frequency element 10 housed in a cavity formed of a dielectric substrate 8 and a lid 9, and the high-frequency element 10 mounting surface side of the dielectric substrate 8. As shown in a plan view (a) excluding the lid 9 in FIG. 5, two signal conductor lines 11 for input and output, one end of which is connected to the high-frequency element 10 by a ribbon or the like, are formed. ing.
[0041]
In addition, as shown in the pattern diagram of FIG. 5B, a ground layer 12 having a W-shaped end similar to that described in FIG. 3C is formed inside the dielectric substrate 8. . The signal conductor line 11 and the ground layer 12 form a high frequency transmission line having a microstrip line structure. The other end of the signal conductor line 11 opposite to the one connected to the high-frequency element 10 penetrates the dielectric substrate 8 and is formed by the via-hole conductor 13 formed without contacting the ground layer 12. 8 and is electrically connected to a signal conductor line 14 formed on the opposite surface of the dielectric substrate 8. The signal conductor line 14 and the ground layer 12 form a high frequency transmission line portion X having a microstrip line structure.
[0042]
On the back surface of the dielectric substrate 8, as shown in the plan view of FIG. 5C, two signal conductor lines 14 for input and output are formed, and terminal portions of the respective signal conductor lines 14 are formed. A pair of connection ground conductors 15 are provided on both sides of the substrate to form a connection terminal portion Y. The connection ground conductor 15 is electrically connected to the ground layer 12 inside the dielectric substrate 8 via the via-hole conductor 16. It is connected. In the connection terminal portion Y, the signal conductor line 14 is formed so that the line width of the signal conductor line 14 is narrower than the line width of the high-frequency transmission line X.
[0043]
In such a package 7, as described in FIGS. 1, 2, and 3, the side surface of the via-hole conductor 16 is exposed to the end surface a 1 of the dielectric substrate 8 in the connection terminal portion of the high-frequency wiring board. Has been placed.
[0044]
On the other hand, the external circuit board 18 on which the package 7 is mounted has individual external circuit boards 18 ′ and 18 ″ for input and output, respectively, and is a plan view of the surface of the external circuit board 18 ′ and 18 ″ . As shown in (a), two signal conductor lines 19 for inputting / outputting to / from the above-described package 7 are formed on their surfaces, respectively, and inside the external circuit boards 18 ′ and 18 ″. forming a microstrip line is a ground layer 20 respectively formed with the signal conductor line 19. the ground layer 20, as shown in FIG. 6 (b), FIG. 5 (b at the connecting terminal portions ) For the same reason, the end is formed in a W shape.
[0045]
Further, connection terminal portions are formed at the terminal portions of the input and output signal conductor wires 19, and the connection terminal portions of the package 7 are provided on both sides of each signal conductor wire 19 in this connection terminal portion. A pair of connection ground conductors 21 are formed in exactly the same manner as Y, and the connection ground conductors 21 are electrically connected by a ground layer 20 and via-hole conductors 22 respectively. In addition, the line width of the signal conductor line 19 in the connection terminal portion is narrower than the line width of the signal conductor line 19 in the other high-frequency transmission lines. Also in the external circuit board 18, the via-hole conductor 22 is disposed so as to be exposed at the end faces a 2 ′ and a 2 ″ of the external circuit boards 18 ′ and 18 ″, as described with reference to FIGS. 1 to 3. ing.
[0046]
Then, as shown in FIG. 4, the package 7 contacts the external circuit boards 18 ′ and 18 ″ with the signal conductor wires 14 and 19 and the connection ground conductors 15 and 21 by solder reflow or the like. The signal conductor wire 14 of the package 7 and the signal conductor wire 19 of the external circuit board 18 ′, 18 ″, and the connection ground conductor 15 of the package 7 and the external circuit board 18 ′, 18 ″ are soldered by the soldering material 24 such as solder. By electrically connecting the connection ground conductors 21 to each other, the package 7 is surface-mounted on the external circuit boards 18 ′ and 18 ″. The signal conductors 14 and 19 and the connecting ground conductors 15 and 21 can be joined and fixed by a brazing material via bumps or ball-shaped terminals having a melting point higher than that of the brazing material.
[0047]
According to such a mounting structure of the present invention, the resonance between the via-hole conductor 16 and the end face a 1 of the dielectric substrate 8 as described above and the external at the connection terminal portions of the package 7 and the external circuit boards 18 ′ and 18 ″. Resonance between the via-hole conductor 22 in the circuit board 18 ′, 18 ″ and each end face a 2 ′, a 2 ″ of the board 18 ′, 18 ″ is prevented, and the package A and the external circuit boards 18 ′, 18 ″ A mounting structure with reduced transmission loss can be provided.
[0048]
The external circuit boards shown in FIGS. 6A and 6B have input and output connection terminal portions formed on the surfaces of the two external circuit boards, respectively. As shown in FIG. 6 (c), each of the connection terminal portions for use may be formed on one external circuit board 18, but a recess b is formed on the extension of the connection terminal portion to form an end surface of the dielectric substrate. It is desirable from the viewpoint of improving transmission characteristics that a 2 is formed and arranged so that the via-hole conductor 22 is exposed on the end face a 2 in the same manner as described above.
[0049]
In the package 7 of FIG. 4, the connection between the signal conductor wire 11 on the high frequency element 10 mounting side and the signal conductor wire 14 on the surface on the opposite side is through the via-hole conductor 13, but the signal conductor wire 11 and the signal conductor are connected. The connection with the wire 14 is not limited to this. For example, a slot hole (slot line) is formed in the ground layer 12, and the ends of the signal conductor wires 11 and 14 are opposed to each other through the slot hole. By doing so, both conductors can be electromagnetically connected.
[0050]
Further, the structure of the connection terminal portion in the present invention can be applied to any high-frequency transmission line as long as it has at least a signal conductor line and a ground layer, and the microstrip line as shown in FIGS. Not only can this be applied to a grounded coplanar line.
[0051]
The high-frequency wiring board of the present invention is applied when a signal having a frequency of 30 GHz or higher is transmitted, and is particularly effective when the signal frequency is 40 GHz or higher, particularly 50 GHz or higher.
[0052]
【Example】
The transmission characteristics after surface mounting of the high-frequency wiring board of the present invention on an external circuit board were measured. The structure of the evaluation wiring board used for the measurement is shown in FIG. According to this evaluation wiring board 24, as shown in FIG. 7A, the signal conductor line 26 having a line width (W 0 ) having two terminal portions is provided on the mounting surface side surface of the dielectric substrate 25. A ground layer 28 was formed inside the dielectric substrate 25 to form a high-frequency transmission line composed of a microstrip line. Then, a pair of connection ground conductors 27 is formed on both sides of each end portion of the signal conductor line 26, and the connection ground conductor 27 and the ground layer 28 are formed into a semicircular via-hole conductor (VH) 29 having a diameter of Dmmφ. The connection terminal portion Y was formed by electrical connection. In addition, the line width ratio (W 1 / W 0 ) of the signal conductor lines in the connection terminal portion Y was changed to 0.5 or 1.0.
[0053]
In addition, by changing the position of the via hole conductor 29, the distance T between the end surface a of the dielectric substrate 25 and the via hole conductor 29, and the relationship n / D between the diameter D and the distance n of the via hole conductor 29 in FIG. Several different types of samples were prepared as in 1. The distance G between the center of the signal conductor line 26 and the via-hole conductor 29 was set to 0.23 mm. Except for the sample No. 4, a non-ground region 30 having a substantially W-shaped end shape was formed in the portion facing the connection terminal portion of the ground layer 28 as described in FIG.
[0054]
This evaluation wiring board 24 was connected and mounted via solder to an external circuit board 18 having the same connection terminal portion pattern as shown in FIGS. 6 (a) and 6 (b) on the surface. With respect to the external circuit board 18 on which the evaluation wiring board 24 is surface-mounted, a signal as a transmission characteristic at 30 GHz from one connection terminal portion of the external circuit board to the other connection terminal section via the evaluation wiring board 24 The insertion loss S21 was measured.
[0055]
Note that the evaluation wiring board and the external circuit board are alumina substrates having a relative dielectric constant of 9, and the signal conductor wire, the ground layer, the connection ground conductor, and the via hole conductor are formed of tungsten by simultaneous firing and exposed to the surface. The surface of the signal conductor wire and the connecting ground conductor are plated with gold.
[0056]
[Table 1]
Figure 0003638479
[0057]
As is apparent from the results in Table 1, in the sample No. 7 in which the distance T from the end face of the dielectric substrate of the via hole conductor by normal processing is 0.8 mm, the insertion loss after mounting is large, and the distance T In the sample No. 6 having a thickness of 0.4 mm, cracks occurred in the end faces of the via hole and the alumina substrate in the thermal shock test, and there was a problem in long-term reliability.
[0058]
On the other hand, according to the present invention, by exposing a part of the side surface of the via hole conductor to the end surface of the alumina substrate, resonance between the via hole conductor and the end surface of the dielectric substrate is prevented and insertion loss after mounting is reduced. I knew it was possible. Further, in the sample in which the line width W 1 of the signal conductor line of the connection terminal portion is smaller than the line width W 0 of the high-frequency transmission line, the insertion loss can be reduced as compared with the sample in which W 1 = W 0 , and the non-ground region It was found that the insertion loss can be further reduced in the provided sample as compared with the sample No. 4 having no non-ground region.
[0059]
【The invention's effect】
As described above in detail, according to the present invention, in the high-frequency wiring board having a signal conductor wire on the surface of the dielectric substrate and a ground layer inside or on the back surface of the dielectric substrate, both sides of the signal conductor wire of the connection terminal portion. Forming a connection ground conductor, connecting the connection ground conductor and the ground layer with a via-hole conductor, and exposing a side surface of the via-hole conductor to the end face of the dielectric substrate, thereby connecting the via-hole conductor and the dielectric substrate in the connection terminal portion. It is possible to prevent resonance between the end faces, prevent deterioration of transmission characteristics at the connection terminal portion, and reduce transmission loss of the high frequency signal at the connection portion with another high frequency circuit.
[Brief description of the drawings]
FIG. 1 is a diagram for explaining an example of a high-frequency wiring board according to the present invention; (a) a plan view of a vicinity of a connection terminal portion on a surface of a dielectric substrate, (b) a schematic sectional view thereof, and (c) a via-hole conductor. It is an expanded sectional view of a formation part.
FIG. 2 is a plan view of the vicinity of a connection terminal portion on the surface of a dielectric substrate for explaining another example of the wiring board of the present invention.
FIGS. 3A, 3B, and 3C are diagrams showing a pattern of a ground layer in a preferred example of a wiring board according to the present invention.
FIG. 4 is a schematic cross-sectional view for explaining an example of a connection structure of a high-frequency wiring board according to the present invention.
5A is a plan view of a surface of a dielectric substrate, FIG. 5B is a pattern diagram of a ground layer, and FIG. 5C is a plan view of a rear side surface of the dielectric substrate.
6A is a plan view for explaining the structure of an external circuit board on which the package of FIG. 4 is mounted, FIG. 6B is a pattern diagram of a ground layer, and FIG. 6C is a plan view of another external circuit board.
7A is a plan view of a mounting surface side surface for explaining the structure of an evaluation wiring board, and FIG. 7B is a pattern diagram of a ground layer.
8A is a plan view and FIG. 8B is a cross-sectional view for explaining the structure of a conventional metal package.
FIG. 9 is a schematic cross-sectional view for explaining the structure of a conventional surface mount type high frequency package.
10A is a pattern diagram of a ground layer in the package of FIG. 9, FIG. 10B is a plan view of the surface on the dielectric substrate mounting surface side, and FIG. 10C is a plan view of an external circuit substrate on which the package is mounted.
[Explanation of symbols]
1 Dielectric substrate 2 Signal conductor 3 Ground layer 4 Ground conductor 5 Via hole conductor (connection conductor)
6 Non-ground area X High-frequency transmission line Y Connection terminal part a End face

Claims (8)

セラミック誘電体基板と、
該誘電体基板表面に形成されその終端部が誘電体基板の端面近傍まで延設された信号導体線と、前記信号導体線と平行して前記誘電体基板の内部又は裏面に形成されたグランド層とからなる高周波伝送線路と、
該高周波伝送線路の終端部に他の高周波回路とロウ材を介して接続するための接続端子部を具備し、
前記高周波伝送線路に30GHz以上の高周波信号が伝送される高周波用配線基板であって、
前記接続端子部における前記信号導体線の両側に一対の接続用グランド導体を形成し、前記一対の接続用グランド導体と前記グランド層とを前記誘電体基板に設けられたビアホール内に金属ペーストを充填し焼成して形成されたビアホール導体によってそれぞれ接続するとともに、前記ビアホール導体の側面を前記誘電体基板の端面から露出せしめ
前記信号導体線の中心と前記ビアホール導体との距離を0.25λg以下(λg:前記高周波信号の前記誘電体基板中の信号波長)としたことを特徴とする高周波用配線基板。
A ceramic dielectric substrate;
A signal conductor line formed on the surface of the dielectric substrate and having a terminal portion extending to the vicinity of the end surface of the dielectric substrate, and a ground layer formed on the inside or the back surface of the dielectric substrate in parallel with the signal conductor line A high-frequency transmission line consisting of
A connection terminal portion for connecting to the other end portion of the high-frequency transmission line via a brazing material is provided ,
A high- frequency wiring board in which a high- frequency signal of 30 GHz or more is transmitted to the high-frequency transmission line ,
A pair of connection ground conductors are formed on both sides of the signal conductor line in the connection terminal portion, and the pair of connection ground conductors and the ground layer are filled with a metal paste in a via hole provided in the dielectric substrate. And connecting each via via hole conductors formed by firing and exposing the side surface of the via hole conductor from the end face of the dielectric substrate ,
A high-frequency wiring board , wherein a distance between the center of the signal conductor line and the via-hole conductor is 0.25λg or less (λg: a signal wavelength of the high-frequency signal in the dielectric substrate) .
前記接続端子部における信号導体線の線幅を前記高周波伝送線路の信号導体線の線幅より小さくしたことを特徴とする請求項1記載の高周波用配線基板。2. The high frequency wiring board according to claim 1, wherein a line width of the signal conductor line in the connection terminal portion is smaller than a line width of the signal conductor line of the high frequency transmission line. 前記グランド層における少なくとも前記一対のビアホール導体間に位置し、かつ前記信号導体線と対向する領域に非グランド領域を設けたことを特徴とする請求項1または2記載の高周波用配線基板。The high-frequency wiring board according to claim 1, wherein a non-ground region is provided in a region located at least between the pair of via-hole conductors in the ground layer and facing the signal conductor line. 前記ビアホール導体の横断面の最大径が0.5mm以下であることを特徴とする請求項1乃至3のいずれか記載の高周波用配線基板。4. The high-frequency wiring board according to claim 1, wherein the via hole conductor has a maximum cross-sectional diameter of 0.5 mm or less. セラミック誘電体基板と、
該誘電体基板表面に形成されその終端部が誘電体基板の端面近傍まで延設された信号導体線と、前記信号導体線と平行して前記誘電体基板の内部又は裏面に形成されたグランド層とからなる高周波伝送線路と、
該高周波伝送線路の終端部に他の高周波回路を接続するための接続端子部とを具備し、
前記高周波伝送線路に30GHz以上の高周波信号が伝送される2つの高周波用配線基板を互いに接続するための構造であって、
前記2つの高周波用配線基板の前記接続端子部における前記信号導体線両側の前記誘電体基板表面にそれぞれ一対の接続用グランド導体を形成し、前記一対の接続用グランド導体と前記グランド層とを前記誘電体基板に設けられたビアホール内に金属ペーストを充填し焼成して形成されたビアホール導体によってそれぞれ接続するとともに、
前記ビアホール導体の側面を前記誘電体基板の端部に露出せしめ、
前記信号導体線の中心と前記ビアホール導体との距離を0.25λg以下(λg:前記高周波信号の前記誘電体基板中の信号波長)とし、
前記2つの高周波用配線基板の接続端子部における信号導体線同士および一対の接続用グランド導体同士をそれぞれロウ材を介して接続したことを特徴とする高周波用配線基板の接続構造。
A ceramic dielectric substrate;
A signal conductor line formed on the surface of the dielectric substrate and having a terminal portion extending to the vicinity of the end surface of the dielectric substrate, and a ground layer formed on the inside or the back surface of the dielectric substrate in parallel with the signal conductor line A high-frequency transmission line consisting of
Comprising a connection terminal part for connecting another high-frequency circuit to the terminal part of the high-frequency transmission line;
A structure for connecting two high-frequency wiring boards that transmit a high-frequency signal of 30 GHz or more to the high-frequency transmission line,
A pair of connection ground conductors are respectively formed on the surface of the dielectric substrate on both sides of the signal conductor line in the connection terminal portion of the two high frequency wiring boards, and the pair of connection ground conductors and the ground layer are The via holes provided in the dielectric substrate are respectively connected by via hole conductors formed by filling and baking a metal paste, and
Exposing the side surface of the via-hole conductor to the end of the dielectric substrate;
The distance between the center of the signal conductor line and the via-hole conductor is 0.25λg or less (λg: signal wavelength in the dielectric substrate of the high-frequency signal),
A connection structure for a high-frequency wiring board, wherein the signal conductor lines and the pair of connection ground conductors in the connection terminal portions of the two high-frequency wiring boards are connected to each other via a brazing material.
前記2つの高周波用配線基板の接続端子部における信号導体線の線幅を、前記高周波伝送線路の信号導体線の線幅より小さくしたことを特徴とする請求項5記載の高周波用配線基板の接続構造。6. The connection of the high frequency wiring board according to claim 5, wherein the line width of the signal conductor line at the connection terminal portion of the two high frequency wiring boards is smaller than the line width of the signal conductor line of the high frequency transmission line. Construction. 前記2つの高周波用配線基板における前記接続端子部の前記グランド層において、少なくとも前記一対のビアホール導体間に位置し、かつ前記信号導体線と対向する領域を非グランド領域としたことを特徴とする請求項5または6記載の高周波用配線基板の接続構造。The ground layer of the connection terminal portion in the two high-frequency wiring boards is characterized in that a region located at least between the pair of via-hole conductors and facing the signal conductor line is a non-ground region. Item 7. The connection structure for a high-frequency wiring board according to Item 5 or 6. 前記2つの高周波用配線基板における前記ビアホール導体の横断面の最大径が0.5mm以下であることを特徴とする請求項5乃至7のいずれか記載の高周波用配線基板。8. The high frequency wiring board according to claim 5, wherein a maximum diameter of a cross section of the via-hole conductor in the two high frequency wiring boards is 0.5 mm or less.
JP24534599A 1999-08-11 1999-08-31 High frequency wiring board and connection structure thereof Expired - Fee Related JP3638479B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP24534599A JP3638479B2 (en) 1999-08-31 1999-08-31 High frequency wiring board and connection structure thereof
DE60035553T DE60035553T2 (en) 1999-08-11 2000-08-10 High frequency circuit board and its connection structure
EP00117130A EP1081989B1 (en) 1999-08-11 2000-08-10 High frequency wiring board and its connecting structure
US09/636,054 US6501352B1 (en) 1999-08-11 2000-08-10 High frequency wiring board and its connecting structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24534599A JP3638479B2 (en) 1999-08-31 1999-08-31 High frequency wiring board and connection structure thereof

Publications (2)

Publication Number Publication Date
JP2001077240A JP2001077240A (en) 2001-03-23
JP3638479B2 true JP3638479B2 (en) 2005-04-13

Family

ID=17132301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24534599A Expired - Fee Related JP3638479B2 (en) 1999-08-11 1999-08-31 High frequency wiring board and connection structure thereof

Country Status (1)

Country Link
JP (1) JP3638479B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003264348A (en) 2002-03-07 2003-09-19 Sony Corp High frequency module
JP5115253B2 (en) * 2008-03-10 2013-01-09 富士通株式会社 Coaxial connector mounted circuit board and method for manufacturing coaxial connector mounted circuit board
JP7215249B2 (en) * 2019-03-11 2023-01-31 住友大阪セメント株式会社 OPTICAL MODULATOR AND OPTICAL TRANSMITTER USING THE SAME
CN117133721B (en) * 2023-10-26 2024-02-23 苏州博海创业微系统有限公司 Multilayer ceramic packaging tube shell structure with heat conducting cavity and assembly

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6253509A (en) * 1985-09-03 1987-03-09 Fujitsu Ltd Multi-stage amplifier
JPH0371703A (en) * 1989-08-11 1991-03-27 Hitachi Ltd Connection method for multi-layer substrate
JPH06350312A (en) * 1993-06-04 1994-12-22 Nec Corp Connection structure between coaxial connector and multi-layer printed circuit board
JPH07221512A (en) * 1994-02-04 1995-08-18 Sony Corp High frequency connection line
JP3537626B2 (en) * 1997-04-22 2004-06-14 京セラ株式会社 High frequency package
JP3580667B2 (en) * 1997-05-28 2004-10-27 京セラ株式会社 Conversion line
JP3145670B2 (en) * 1997-11-27 2001-03-12 京セラ株式会社 Mounting structure of high frequency semiconductor package

Also Published As

Publication number Publication date
JP2001077240A (en) 2001-03-23

Similar Documents

Publication Publication Date Title
US6057600A (en) Structure for mounting a high-frequency package
US5952709A (en) High-frequency semiconductor device and mounted structure thereof
JPH10242716A (en) High frequency input and output terminal and package for containing high frequency semiconductor device using it
US6501352B1 (en) High frequency wiring board and its connecting structure
JP2002289737A (en) Wiring board and wiring board module using the same
JP3619396B2 (en) High frequency wiring board and connection structure
JP3638479B2 (en) High frequency wiring board and connection structure thereof
JP3619398B2 (en) High frequency wiring board and connection structure
JP3631667B2 (en) Wiring board and its connection structure with waveguide
JP3217677B2 (en) High frequency semiconductor device
JP3305589B2 (en) Mounting structure of high frequency semiconductor device
JP3619397B2 (en) High frequency wiring board and connection structure
JP3347640B2 (en) Transmission line for high frequency
JP3140385B2 (en) High frequency semiconductor device
JP3462062B2 (en) Connection structure of high-frequency transmission line and wiring board
JP3181036B2 (en) Mounting structure of high frequency package
JPH10256801A (en) Microwave circuit
JP3046287B1 (en) Connection terminal structure
JP2000164764A (en) Mounting structure for high-frequency wiring board
JP3827485B2 (en) Transmission line substrate for measurement
JP3681950B2 (en) Wiring board and its connection structure with waveguide
JP2003198213A (en) Wiring board for high frequency
JP3145670B2 (en) Mounting structure of high frequency semiconductor package
JP3261094B2 (en) Mounting structure of high frequency wiring board
JPH11260948A (en) Mounting structure of semiconductor package for high frequency

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050111

R150 Certificate of patent or registration of utility model

Ref document number: 3638479

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120121

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120121

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130121

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees