JP3828995B2 - バルブ装置の制御方法および回路 - Google Patents

バルブ装置の制御方法および回路 Download PDF

Info

Publication number
JP3828995B2
JP3828995B2 JP18390597A JP18390597A JP3828995B2 JP 3828995 B2 JP3828995 B2 JP 3828995B2 JP 18390597 A JP18390597 A JP 18390597A JP 18390597 A JP18390597 A JP 18390597A JP 3828995 B2 JP3828995 B2 JP 3828995B2
Authority
JP
Japan
Prior art keywords
circuit
valve device
heating element
signal
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18390597A
Other languages
English (en)
Other versions
JPH1130202A (ja
Inventor
忠男 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SMC Corp
Original Assignee
SMC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SMC Corp filed Critical SMC Corp
Priority to JP18390597A priority Critical patent/JP3828995B2/ja
Priority to US09/109,065 priority patent/US6016824A/en
Publication of JPH1130202A publication Critical patent/JPH1130202A/ja
Application granted granted Critical
Publication of JP3828995B2 publication Critical patent/JP3828995B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/025Actuating devices; Operating means; Releasing devices electric; magnetic actuated by thermo-electric means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0635Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/0318Processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7758Pilot or servo controlled
    • Y10T137/7759Responsive to change in rate of fluid flow

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Supply Devices, Intensifiers, Converters, And Telemotors (AREA)
  • Electrically Driven Valve-Operating Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、室に充填された流体を発熱体によって膨張あるいは収縮させ、前記室を構成する薄膜を変位させることにより圧力流体の流量を制御するバルブ装置の制御方法および回路に関する。
【0002】
【従来の技術】
図4は、電気信号−空気圧変換装置等において、圧縮空気等の圧力流体の流量を制御するために使用されるバルブ装置10を示す。このバルブ装置10は、基板12上に固着されたケーシング14の内部に、単結晶のシリコン、またはこれに類似するガラス等の部材で形成された第1のウエハ16が設けられ、該第1のウエハ16の下部には導入管路20に連通する孔部18が画成される。前記孔部18の上部にはノズル22が形成され、該ノズル22に小径な排気孔24が画成される。このノズル22の周囲には排気室26が画成される。
【0003】
前記第1のウエハ16の上面には第2のウエハ30が固着される。該第2のウエハ30には加熱されることによって膨張する、例えば、シリコン液のような流体32が充填された室34が画成される。前記室34の底部には薄膜36が形成され、この薄膜36は前記ノズル22の先端から所定間隔離間して配置される。
【0004】
前記第2のウエハ30の上面に耐熱ガラスで形成されたガラスウエハ38が固着されることによって前記室34は密封される。前記室34の上面を構成するガラスウエハ38の下部には発熱体であるパターン化されたヒータ40が設けられ、該ヒータ40は図示しない電極およびリード線を介して前記基板12上の回路素子に接続される。前記第2のウエハ30とガラスウエハ38には前記排気室26に連通する通路42が画成され、該通路42の上部は前記ケーシング14に設けられた排気管路44に連通する。
【0005】
このように形成されるバルブ装置10を制御する制御回路46は、基板12上に設けられており、図5に示すように、ヒータ40と抵抗48、50、52とによりブリッジ回路54が形成され、ヒータ40と抵抗48との接続点60、および抵抗50と52の接続点62は図示しない温度補償回路に接続される。前記ブリッジ回路54には駆動用トランジスタ56が接続され、該駆動用トランジスタ56のベースには指令信号発生部58が接続される。
【0006】
このバルブ装置10の制御方法について説明する。指令信号発生部58から指令信号として所望の圧縮空気の流量に対応するアナログ電圧信号が駆動用トランジスタ56のベースに入力されると、該駆動用トランジスタ56のコレクタからバルブ装置10のヒータ40に前記アナログ電圧信号に対応した電流が流れる。このため、ヒータ40によって流体32が加熱されて該流体32が熱膨張し、薄膜36が膨張した流体32によって押圧されてノズル22に接近する。従って、排気孔24から排気室26に導出される圧縮空気の流れが制限され、その流量が減少する。
【0007】
前記アナログ電圧信号が変化して前記ヒータ40に流れる電流が減少すると、流体32の温度が低下して該流体32が収縮し、薄膜36がノズル22から離間する。このため、排気孔24から排気室26に導出される圧縮空気の流量が増加する。
【0008】
ヒータ40の温度が高くなり、流体が過剰に膨張すると、バルブ装置10が破損する懸念がある。そこで、ヒータ40の抵抗値の変化をブリッジ回路54の接続点60と接続点62との電圧差として図示しない温度補償回路に出力する。該温度補償回路では指令信号発生部58から出力される指令信号を制御してヒータ40に通電される電流を制限し、該ヒータ40の温度を下げる。このようにしてバルブ装置10の破損を阻止している。
【0009】
【発明が解決しようとする課題】
しかしながら、上記従来技術に係るバルブ装置の制御方法および回路では、駆動用トランジスタ56をアナログ信号によって駆動させるため、該駆動用トランジスタ56によって消費される電力が大きく、また、駆動用トランジスタ56の発熱が大きいため、この熱がバルブ装置10に伝達されると流体32が加熱されて熱膨張してしまい、圧縮空気の流量特性が変化してしまうという問題があった。
【0010】
本発明は前記の課題を解決すべくなされたものであって、駆動素子の消費電力を小さくしてエネルギー効率を向上させ、バルブ装置の流量特性を安定して制御することのできるバルブ装置の制御方法および回路を提供することを目的とする。
【0011】
【課題を解決するための手段】
前記の目的を達成するために、本発明は、室に充填された流体を発熱体によって膨張あるいは収縮させ、前記室を構成する薄膜を変位させることにより圧力流体の流量を制御するバルブ装置の制御方法であって、
前記発熱体はブリッジ回路に組み込まれ、前記圧力流体の所望の流量に対応する指令信号をPWM信号として駆動素子に供給し、前記駆動素子をオン/オフ制御することにより前記発熱体に駆動電流を通電し、前記発熱体の発熱作用下に前記流体を膨張あるいは収縮させると共に、前記駆動電流を通電することによって前記ブリッジ回路で生じる電圧と所定の基準電圧とを比較し、この比較結果によって前記指令信号の前記駆動素子への供給、遮断を制御することを特徴とする。
【0012】
また、本発明は、室に充填された流体を発熱体によって膨張あるいは収縮させ、前記室を構成する薄膜を変位させることにより圧力流体の流量を制御するバルブ装置の制御回路において、
前記圧力流体の所望の流量に対応する指令信号を発生する指令信号発生部と、
前記指令信号をPWM信号に変換する変換器と、
前記PWM信号に従って駆動電流をオン/オフ制御する駆動素子と、
前記発熱体が組み込まれたブリッジ回路と、
前記ブリッジ回路の出力信号を平滑化する平滑化回路と、
前記平滑化回路の出力信号と所定の基準信号とを比較する比較回路と、
前記比較回路の出力信号によって前記指令信号の前記駆動素子への供給、遮断を制御する遮断回路と、
を備え、前記駆動電流を前記発熱体に通電し、前記発熱体の発熱作用下に前記流体を膨張あるいは収縮させることを特徴とする。
【0013】
本発明によれば、前記駆動素子は前記PWM信号によってオン/オフ制御されるため、駆動素子の消費電力が低減し、該駆動素子の発熱も減少する。
【0014】
この場合、前記発熱体をブリッジ回路に組み込み、該ブリッジ回路に前記駆動電流を通電することによって生じる電圧と所定の基準電圧とを比較し、この比較結果によって前記指令信号の前記駆動素子への供給、遮断を制御することにより、前記発熱体の抵抗値変動による過剰な発熱が阻止され、前記バルブ装置が破損する懸念がなくなり、好適である。
【0015】
【発明の実施の形態】
本発明に係るバルブ装置の制御方法および回路について、好適な実施の形態を挙げ、添付の図面を参照しながら以下詳細に説明する。
【0016】
図1において、参照符号70は、本実施の形態に係るバルブ装置の制御回路を示す。なお、この制御回路70が適用されるバルブ装置10は、図4に示す従来技術と同一であり、その詳細な説明を省略する。
【0017】
バルブ装置10の発熱体であるヒータ40には抵抗72が直列に接続され、前記ヒータ40、抵抗72と並列に抵抗74、76が接続される。このため、ヒータ40、抵抗72、74、76によりブリッジ回路78が形成される。前記ヒータ40と抵抗72のそれぞれの抵抗値の比は、前記抵抗74と76のそれぞれの抵抗値の比と同一に設定される。前記ブリッジ回路78の出力である、ヒータ40と抵抗72との接続点80、および抵抗74と76との接続点82は、抵抗86、88を介してオペアンプ90の反転入力端子90a、および非反転入力端子90bに接続される。該オペアンプ90の出力は抵抗92、コンデンサ94を並列に介して反転入力端子90aにフィードバックされる。一方、非反転入力端子90bには抵抗96、コンデンサ98を並列に介してグランド100に接続される。このため、オペアンプ90はブリッジ回路78を介して出力されるPWM信号波形を平滑化する平滑化回路84として機能する。
【0018】
前記オペアンプ90の出力は抵抗102を介して比較回路104を構成するオペアンプ106の非反転入力端子106bに入力される。該オペアンプ106の反転入力端子106aには基準電圧発生源108が接続され、負の所定値の基準電圧VF が非反転入力端子106bに入力される。前記オペアンプ106の出力は抵抗110を介して遮断回路112を構成するオペアンプ114の非反転入力端子114bに接続される。前記非反転入力端子114bとグランド100との間にはコンデンサ116が接続され、前記抵抗110とコンデンサ116とによりローパスフィルタが構成される。前記オペアンプ114の出力はダイオード118のカソードに接続される。前記ダイオード118のアノードは前記オペアンプ114の反転入力端子114aに接続されるとともに、前記指令信号発生部122から抵抗120を介して出力されたアナログ電圧信号をPWM信号に変換する変換器124に接続される。前記変換器124の出力は駆動素子である駆動用トランジスタ126のベースに接続され、該駆動用トランジスタ126のコレクタは前記ブリッジ回路78のヒータ40と抵抗74に接続される。前記駆動用トランジスタ126のエミッタは電源128に接続される。
【0019】
なお、ヒータ40は負の温度特性を有しており、温度が高くなると、ヒータ40の抵抗値は低下する。
【0020】
本実施の形態に係るバルブ装置の制御回路は、基本的には以上のように構成されるものであり、次にその動作について説明する。
【0021】
図4において、バルブ装置10の導入管路20に圧力流体である圧縮空気が導入されると、該圧縮空気はノズル22の排気孔24、排気室26、通路42を介して排気管路44から排出される。
【0022】
そこで、指令信号発生部122から前記圧縮空気の所望の流量に対応する指令信号であるアナログ電圧信号VA が出力されると、変換器124はアナログ電圧信号VA に対応したPWM信号VB を生成する(図2参照)。このPWM信号VB は0または1を示すデジタル値である。PWM信号VB が駆動用トランジスタ126のベースに入力されると、駆動用トランジスタ126はPWM信号VB が0のときにオンとなり、ブリッジ回路78のヒータ40に電流が通電される。一方、PWM信号VB が1のとき、駆動用トランジスタ126はオフになり、ヒータ40には電流が通電されない。駆動用トランジスタ126は短時間の間にオンとオフを繰り返すため、PWM信号VB が0である期間が長くなるとヒータ40の温度は上昇し、PWM信号VB が0である期間が短くなるとヒータ40の温度は下降する。
【0023】
ヒータ40の温度が上昇すると、図4に示すように、室34に充填された流体32の温度が上昇して熱膨張し、薄膜36は該流体32の圧力によって押圧されて、図4中、2点鎖線で示すように、ノズル22に接近する方向に変位する。このため、排気孔24から排気室26に導出される圧縮空気の流れが制限され、その流量が減少する。
【0024】
このように、指令信号発生部122から出力されるアナログ電圧信号VA が上昇すると圧縮空気の流量が減少し、一方、アナログ電圧信号VA が下降すると圧縮空気の流量が増加する。
【0025】
このとき、駆動用トランジスタ126はオンまたはオフの状態を繰り返すため、該駆動用トランジスタ126によって消費される電力は少なく、このため、駆動用トランジスタ126から発生する熱も極めて小さいものとなる。従って、駆動用トランジスタ126によって発生した熱がヒータ40の温度に影響することがなく、高精度な温度制御が可能となる。
【0026】
一方、ブリッジ回路78の接続点80と82には駆動用トランジスタ126のコレクタ出力に対応する電圧波形が発生する。平滑化回路84は、この接続点80と82とのそれぞれの電圧VC 、VD の差の電圧VE を平滑して出力する。ヒータ40と抵抗72のそれぞれの抵抗値の比は、抵抗74と76のそれぞれの抵抗値の比と同一に設定されているため、ブリッジ回路78の接続点80と82の電圧VC 、VD は、ヒータ40が過熱されていない状態において等しくなり(図3中、領域130a)、このため、平滑化回路84の出力電圧VE は0Vとなる。このとき、この出力電圧VE は基準電圧発生源108からオペアンプ106の反転入力端子106aに入力される基準電圧VF より大きいため、オペアンプ106の出力電圧VG がハイレベルの電圧V1 となり、遮断回路112のオペアンプ114の出力電圧VH もハイレベルの電圧V1 となる。この電圧V1 は指令信号発生部122から出力されるアナログ電圧信号VA より大きいため、ダイオード118はオフとなる。
【0027】
ところが、ヒータ40が所定の温度より高くなると、該ヒータ40は負の温度特性であるため、ヒータ40の抵抗値が減少し、接続点80の電圧VC が接続点82の電圧VD より大きくなる(領域130b)。このため、平滑化回路84の出力電圧VE は減少する。この出力電圧VE が基準電圧発生源108から出力される基準電圧VF より小さくなると(領域130c)、オペアンプ106の出力電圧VG はローレベルの電圧V0 となり、遮断回路112の出力電圧VH もローレベルの電圧V0 となる。この電圧V0 は指令信号発生部122から出力されるアナログ電圧信号VA より小さく、ダイオード118がオンとなって変換器124には出力電圧VH の電圧、すなわち電圧V0 が入力される。従って、指令信号であるアナログ電圧信号VA は遮断される。変換器124から電圧V0 に相当するPWM信号VB 、すなわち、駆動用トランジスタ126をオフにする1の信号が発生し、ヒータ40に通電される電流が遮断される。このため、ヒータ40が過剰に加熱することが防止され、流体32の熱膨張が過大となって薄膜36を損傷する懸念がない。
【0028】
そして、再びヒータ40の温度が低下すると(領域130d)、平滑化回路84の出力電圧VE は基準電圧VF より大きくなり、前述のように、遮断回路112のオペアンプ114の出力電圧が電圧V1 となり、指令信号発生部122から出力されたアナログ電圧信号VA が変換器124に入力される。このため、ヒータ40が加熱されて圧縮空気の流量が制御される。
【0029】
【発明の効果】
本発明に係るバルブ装置の制御方法および回路によれば、以下のような効果ならびに利点が得られる。
【0030】
駆動素子をPWM信号によってオン/オフ制御し、発熱体に電流を通電させるため、駆動素子の消費電力が少なくなり、エネルギー効率が向上する。また、駆動素子から発生する熱も極めて小さいものとなり、駆動素子から発生する熱によってバルブ装置の流体が加熱される懸念がなく、圧縮空気の流量特性が変化することもない。このため、特性の安定したバルブ装置の制御回路を得ることができる。
【0031】
また、ヒータが加熱されて該ヒータが組み込まれるブリッジ回路の出力が所定の電圧となったときに遮断回路によって指令信号を遮断させるため、流体が過剰に熱膨張することが防止され、バルブ装置が損傷する懸念もない。従って、バルブ装置の安全性を向上させることが可能である。
【図面の簡単な説明】
【図1】本発明の実施の形態に係るバルブ装置の制御回路を示す回路図である。
【図2】図1の制御機構の指令信号電圧波形、PWM信号波形およびヒータの温度を示すグラフである。
【図3】図1の制御機構のブリッジ回路の出力信号波形、平滑化回路出力信号波形および遮断回路出力信号波形を示すグラフである。
【図4】図1のバルブ装置を示す概略縦断面図である。
【図5】従来技術に係るバルブ装置の制御回路を示す回路図である。
【符号の説明】
10…バルブ装置 22…ノズル
32…流体 34…室
36…薄膜 40…ヒータ
70…制御回路 78…ブリッジ回路
84…平滑化回路 104…比較回路
112…遮断回路 122…指令信号発生部
126…駆動用トランジスタ

Claims (2)

  1. 室に充填された流体を発熱体によって膨張あるいは収縮させ、前記室を構成する薄膜を変位させることにより圧力流体の流量を制御するバルブ装置の制御方法であって、
    前記発熱体はブリッジ回路に組み込まれ、前記圧力流体の所望の流量に対応する指令信号をPWM信号として駆動素子に供給し、前記駆動素子をオン/オフ制御することにより前記発熱体に駆動電流を通電し、前記発熱体の発熱作用下に前記流体を膨張あるいは収縮させると共に、前記駆動電流を通電することによって前記ブリッジ回路で生じる電圧と所定の基準電圧とを比較し、この比較結果によって前記指令信号の前記駆動素子への供給、遮断を制御することを特徴とするバルブ装置の制御方法。
  2. 室に充填された流体を発熱体によって膨張あるいは収縮させ、前記室を構成する薄膜を変位させることにより圧力流体の流量を制御するバルブ装置の制御回路において、
    前記圧力流体の所望の流量に対応する指令信号を発生する指令信号発生部と、
    前記指令信号をPWM信号に変換する変換器と、
    前記PWM信号に従って駆動電流をオン/オフ制御する駆動素子と、
    前記発熱体が組み込まれたブリッジ回路と、
    前記ブリッジ回路の出力信号を平滑化する平滑化回路と、
    前記平滑化回路の出力信号と所定の基準信号とを比較する比較回路と、
    前記比較回路の出力信号によって前記指令信号の前記駆動素子への供給、遮断を制御する遮断回路と、
    を備え、前記駆動電流を前記発熱体に通電し、前記発熱体の発熱作用下に前記流体を膨張あるいは収縮させることを特徴とするバルブ装置の制御回路。
JP18390597A 1997-07-09 1997-07-09 バルブ装置の制御方法および回路 Expired - Lifetime JP3828995B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP18390597A JP3828995B2 (ja) 1997-07-09 1997-07-09 バルブ装置の制御方法および回路
US09/109,065 US6016824A (en) 1997-07-09 1998-07-02 Control method and circuit for valve device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18390597A JP3828995B2 (ja) 1997-07-09 1997-07-09 バルブ装置の制御方法および回路

Publications (2)

Publication Number Publication Date
JPH1130202A JPH1130202A (ja) 1999-02-02
JP3828995B2 true JP3828995B2 (ja) 2006-10-04

Family

ID=16143875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18390597A Expired - Lifetime JP3828995B2 (ja) 1997-07-09 1997-07-09 バルブ装置の制御方法および回路

Country Status (2)

Country Link
US (1) US6016824A (ja)
JP (1) JP3828995B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004022351C5 (de) * 2004-04-29 2008-12-18 Behr Thermot-Tronik Gmbh Dehnstoffelement
US20170191373A1 (en) 2015-12-30 2017-07-06 General Electric Company Passive flow modulation of cooling flow into a cavity
US10337411B2 (en) * 2015-12-30 2019-07-02 General Electric Company Auto thermal valve (ATV) for dual mode passive cooling flow modulation
US10337739B2 (en) 2016-08-16 2019-07-02 General Electric Company Combustion bypass passive valve system for a gas turbine
US10712007B2 (en) 2017-01-27 2020-07-14 General Electric Company Pneumatically-actuated fuel nozzle air flow modulator
US10738712B2 (en) 2017-01-27 2020-08-11 General Electric Company Pneumatically-actuated bypass valve
US11187345B2 (en) * 2019-02-27 2021-11-30 Hamilton Sundstrand Corporation Paraffin actuated diaphragm valve

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3860169A (en) * 1973-11-07 1975-01-14 Powers Regulators Company Ambient temperature control system
DE2749250C3 (de) * 1977-11-03 1980-09-11 Danfoss A/S, Nordborg (Daenemark) Ventil für die Flüssigkeitseinspritzung in einen Kältemittelverdampfer
DE2749240C3 (de) * 1977-11-03 1980-09-11 Danfoss A/S, Nordborg (Daenemark) Regelvorrichtung für das Ventil einer Kälteanlage
US4821997A (en) * 1986-09-24 1989-04-18 The Board Of Trustees Of The Leland Stanford Junior University Integrated, microminiature electric-to-fluidic valve and pressure/flow regulator
US4877051A (en) * 1988-11-28 1989-10-31 Mks Instruments, Inc. Flow controller
US5190068A (en) * 1992-07-02 1993-03-02 Brian Philbin Control apparatus and method for controlling fluid flows and pressures
US5463876A (en) * 1994-04-04 1995-11-07 General Electric Company Control system for refrigerant metering solenoid valve

Also Published As

Publication number Publication date
US6016824A (en) 2000-01-25
JPH1130202A (ja) 1999-02-02

Similar Documents

Publication Publication Date Title
KR102269440B1 (ko) 열시스템용 전력 변환기
JP3828995B2 (ja) バルブ装置の制御方法および回路
JPH0443284B2 (ja)
JPH09180888A (ja) 放電灯点灯装置
JP2002090196A (ja) 電気負荷のパルス駆動制御装置
JP3415718B2 (ja) ヒータ温度制御方法および装置
KR102238251B1 (ko) 저전력 스팀발생 장치
JPH0854427A (ja) 半導体素子の電流検出装置
JP3381140B2 (ja) ボンディング装置におけるヒータ電力制御装置
JPH10333760A (ja) 電源回路
JPH09180889A (ja) 冷陰極管点灯装置
US5823763A (en) Combustion device and method for use in a thermal oxidation furnace
CN116073819B (zh) 一种快速稳定恒温晶体振荡器温度控制电路及其实现方法
JPH01307652A (ja) 酸素センサ用ヒータの温度制御装置
JPS6194079A (ja) 定着温度制御装置
JPH0456913B2 (ja)
JPS5985516A (ja) 温度制御器
JPS58107098A (ja) 水車発電機の負荷調整装置
JPS6026275Y2 (ja) 石油焚給湯機の制御装置
JPS5566715A (en) Gas flow measuring device
JP3247411B2 (ja) ヒータ制御回路
JP2000252316A (ja) ワイヤボンダ用ボール形成装置及びその方法
KR100291922B1 (ko) 플라즈마 표시 장치 내의 팬-모터 구동기
JPS62156708A (ja) 温度制御装置
JP2002215247A (ja) ヒータ用安定化電源装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060710

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4