JP3827610B2 - 多層撚りワイヤロープ - Google Patents
多層撚りワイヤロープ Download PDFInfo
- Publication number
- JP3827610B2 JP3827610B2 JP2002146812A JP2002146812A JP3827610B2 JP 3827610 B2 JP3827610 B2 JP 3827610B2 JP 2002146812 A JP2002146812 A JP 2002146812A JP 2002146812 A JP2002146812 A JP 2002146812A JP 3827610 B2 JP3827610 B2 JP 3827610B2
- Authority
- JP
- Japan
- Prior art keywords
- strand
- layer
- strands
- core
- twisted
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B1/00—Constructional features of ropes or cables
- D07B1/16—Ropes or cables with an enveloping sheathing or inlays of rubber or plastics
- D07B1/165—Ropes or cables with an enveloping sheathing or inlays of rubber or plastics characterised by a plastic or rubber inlay
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B1/00—Constructional features of ropes or cables
- D07B1/06—Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
- D07B1/0673—Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core having a rope configuration
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B1/00—Constructional features of ropes or cables
- D07B1/16—Ropes or cables with an enveloping sheathing or inlays of rubber or plastics
- D07B1/162—Ropes or cables with an enveloping sheathing or inlays of rubber or plastics characterised by a plastic or rubber enveloping sheathing
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2201/00—Ropes or cables
- D07B2201/10—Rope or cable structures
- D07B2201/1028—Rope or cable structures characterised by the number of strands
- D07B2201/1036—Rope or cable structures characterised by the number of strands nine or more strands respectively forming multiple layers
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2201/00—Ropes or cables
- D07B2201/20—Rope or cable components
- D07B2201/2047—Cores
- D07B2201/2052—Cores characterised by their structure
- D07B2201/2059—Cores characterised by their structure comprising wires
- D07B2201/2061—Cores characterised by their structure comprising wires resulting in a twisted structure
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2201/00—Ropes or cables
- D07B2201/20—Rope or cable components
- D07B2201/2047—Cores
- D07B2201/2052—Cores characterised by their structure
- D07B2201/2065—Cores characterised by their structure comprising a coating
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2501/00—Application field
- D07B2501/20—Application field related to ropes or cables
- D07B2501/2007—Elevators
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2501/00—Application field
- D07B2501/20—Application field related to ropes or cables
- D07B2501/2015—Construction industries
Landscapes
- Ropes Or Cables (AREA)
- Load-Engaging Elements For Cranes (AREA)
- Lift-Guide Devices, And Elevator Ropes And Cables (AREA)
Description
【発明の属する技術分野】
本発明はエレベータ用あるいはクレーン用で代表される荷役機械用の動索として好適な多層撚りワイヤロープに関するものである。
【0002】
【従来の技術】
ワイヤロープは静索のほか動索として汎用されている。かかる動索の代表的なものとしてエレベータ用ロープやクレーン用ロープがある。
エレベータは一般にロープとシーブとの摩擦力を利用してロープに連結したかごを上下に動かすシステムであり、エレベータかごとカウンターウェイトがシーブを経由して結合されている。こうした吊り上げ及び駆動を行なうメインロープとして、従来のエレベータ用ロープは、一般に中心に繊維芯を配した6×S(19)、8×S(19)、6×W(19)、8×W(19)、6×Fi(25)、8×Fi(25)の構造を持ち、直径約12mm、破断荷重64.4kNクラスのワイヤロープが用いられていた。また、ロープを構成する素線材質に関し、シーブが高価で交換に多大な手間と時間がかかることを考慮してシーブの摩耗を防止すべく低炭素鋼を使用していた。
【0003】
また、クレーン用ロープとしては、古くから6×37、6×19の構造のものが用いられ、これに代って、6×Fi(22+7)や6×Fi(19+6)のロープが多く採用されていた。
【0004】
【発明が解決しようとする課題】
しかし、従来のエベータ用ロープは、ロープの素線径が太いために図20(b)のようにシーブ400の径SDが500mm程度と大きなものになり、これに関連してモータなどの駆動機械類も大型化していた。このため、屋上に設置される機械室の小型化を図ることができず、ことにビルが高層化すると、ロープの自重増加により設備がさらに大型化することを避けられなかった。
【0005】
さらに、従来のエレベータ用ロープでは、シーブの摩耗を防止するために低炭素鋼を使用して硬さを意図的に抑えていたため、ロープの強度の向上が制約を受け、これがまた高層ビルへの適用上問題となっていた。
【0006】
また、従来のエレベータ用ロープは、錆の発生や疲労性向上のために塗油が必要であり、その結果摩擦係数が小さくなり、シーブとロープの間に滑りが生じやすい。この滑りによりモータの回転によるシーブの回転運動がロープに正確に伝わらず、シーブの回転運動とかごの上下運動が連動しなくなり、かごの正確な位置制御ができなくなる。そこで、従来では、シーブ400の溝401にアンダーカット402を形成する特別な加工を施したり、ダブルラップ方式でロープを巻回したりしており、このため、設備コストが高価になったり、ロープの取り付け及び交換作業に非常に手間がかかるという問題があった。
【0007】
一方、従来のクレーン用ロープについても、同様な理由からシーブ径やドラム径が大きくなって大型化を避けられず、金属同士の接触であるため摩耗が多く、シーブ、ドラムおよびロープの寿命が短くなり、またさびの発生が起りやすく、これを低減するため塗油を必要とするので、油がシーブやドラムに多量に付着したり周囲に飛散し、クレーンボデイや周辺を汚すなどの問題があった。
【0008】
本発明は前記のような問題点を解決するためになされたもので、その目的とするところは、柔軟でロープ径が細く、軽量で、油の塗布や補給を要さず、シーブ径を小さくしても必要な疲労性を維持しつつシーブとの良好な摩擦接触を実現することができ、しかもロープ径や強度の選択自由度が高いとともに寿命を永くすることができ、エレベータ用およびクレーン用で代表される荷役機械用の動索として好適な多層撚りワイヤロープを提供することにある。
【0009】
また、本発明の他の目的は、上記に加え、疲労性が特に良好な多層撚りワイヤロープを提供することにある。
【0010】
【課題を解決するための手段】
上記目的を達成するため本発明は、外装被覆前のロープ径(DR)との関係で素線径(WR)を15≦DR/WR≦100とした高強度鋼素線を使用したワイヤロープにして、素線を撚り合わせて構成した撚り芯体に高分子化合物被覆を施した被覆撚り芯体の周りに、素線または7本以下の素線を撚り合せたストランドを配して複数の層状に撚り合わせてなり、しかも中間の各層がそれぞれ高分子化合物被覆を有するとともに、最外層が高分子化合物により被覆されていることを特徴としている。
【0011】
前記撚り芯体は、素線を撚り合わせて構成した芯ストランドの周りに複数本の側ストランドを配して撚り合わせた芯シェンケルと、素線を撚り合わせて構成したストランドのいずれをも含む。
【0012】
また、他の目的を達成するため本発明は、被覆撚り芯体の外周層の各ストランドが層心円周長さに対し3〜40%の隙間を有し、各隙間に高分子化合物が充填されている構成としている。
【0013】
被覆撚り芯体の周りの層は、すべてがストランドから構成されていてもよいし、1層以上が素線の撚り合わせ構造からなり、この外周の1層以上がストランドから構成されていてもよい。
【0014】
本発明ワイヤロープは、シーブと良好な摩擦係数が得られるので、動力を伝達するエレベーター用たとえば吊り上げ及び駆動を行なうメインロープ、異常速度検出用のガバナロープなどに好適である。また、エレベータ用のほかクレーンで代表される荷役設備や機械の動索としても好適である。
【0015】
【発明の実施の形態】
以下本発明の実施例を添付図面を参照して説明する。
図1(a)は本発明による多層撚りワイヤロープを適用したトラクション式エレベータを模式的に示しており、1は本発明によるワイヤロープ、aは前記ワイヤロープ1の端末に固定されたかご、bはワイヤロープ1の他端末に固定されたカウンターウエイト、cはワイヤロープ1の移動を制御する駆動シーブ、dは駆動シーブcを駆動するモータ、eはそらせ用のガイドシーブである。
【0016】
図1(b)は本発明による多層撚りワイヤロープを適用したクレーンを示しており、fは走行体、gはブーム、hは巻き上げドラム、iはブーム伏仰ドラムであり、本発明ロープ1は巻き上げドラムからブーム頂のシーブjを経由して導かれており、また別の本発明ロープ1はブーム伏仰ドラムiからブームgに連結されている。
図示するものはジブクレーンであるが、クレーンとしては、天井クレーンジブクレーン、橋形クレーン、アンローダ、さらにトラッククレン、ホイストクレーン、クローラクレーンなどの各種移動式クレーンが対象とされる。
【0017】
図2と図3は前記ワイヤロープ1の第1態様を拡大して示しており、全体として(7×7)+13×7+20×7+27×7の構造、詳しくは、{(1+6)+6×(1+6)}+13×(1+6)+20×(1+6)27×(1+6)の構造式の層状ロープからなっている。
ワイヤロープ1は全体の断面が円形形状をなし、撚り芯体としての被覆芯シェンケル2と、これを側として囲む複数のストランド層(図面では3層)3A,3B,3Cとを有し、しかも各ストランド層3A,3B,3Cにはそれぞれ高分子化合物からなる被覆6,6,6が施されている。そしてさらに最外層には高分子化合物からなる外装被覆6’が施されている。
【0018】
前記被覆芯シェンケル2は、図3のように、中心の芯ストランド2aのまわりに複数本(図面では6本)の側ストランド2bを配して撚合してなり、この状態で全体に高分子化合物被覆4が施されている。
側の各ストランド層3A,3B,3Cは、それぞれ2本以上の鋼素線を撚り合わせたストランド3a,3b,3cを複数本(この例では13本と、20本と、27本)を配列して撚り合わせてなる。
【0019】
各部の構成を、製作工程を加味して詳細に説明すると、芯シェンケル2の芯ストランド2aと側ストランド2bは、それぞれ所要本数たとえばこの例では7本の鋼素線を撚り合わせて構成されている。
【0020】
被覆芯シェンケル2および各ストランド層3A,3B,3Cにおける素線の径(WR)は、最外層ストランド層3Cの外装高分子化合物被覆6を施す前のロープ径(DR)との関係で、15≦DR/WR≦100の範囲のものが使用される。
これは、15<DR/WRではシーブとの繰り返し曲げにより比較的早期に疲労限に達して安全性に問題が生ずるとともに短寿命になるためであり、DR/WR>100ではコスト高になるためである。さらに好適には、33≦DR/WR≦75である。
【0021】
素線は引張り強度280kg/mm2以上の特性を有することが好適である。その理由は細径化によっても十分な破断荷重を実現するためであり、引張り強度280kg/mm2未満ではこの目的を達成しがたいからである。
かかる鋼素線は、一般的に、炭素含有量が0.80wt%以上の炭素鋼線材を伸線することによって作られる。そして、鋼素線の表面には耐食性被覆層たとえば、亜鉛、あるいは亜鉛・アルミニウム合金めっき、黄銅めっきなどのいずれかが施されている。
【0022】
被覆芯シェンケル2の芯ストランド2aは、図4(a)のように中心の芯素線200と、これと同等かあるいは相対的に径の細い多数の側素線200’から構成されている。同じく芯シェンケル2の側ストランド2bは、図4(b)のように、中心の芯素線201と、これと同等かあるいは相対的に径の細い多数の側素線201’から構成されている。かかる構成は、中心の芯素線200,201と側素線200’,201’を一括して撚り合わせることにより得られる。
前記芯ストランド2aの撚り方向と側ストランド2bの撚り方向は逆方向たとえば芯ストランド2aがZ方向であれば、側ストランド2bはS方向となっている。
【0023】
側ストランド2bの芯素線201の直径は、好ましくは芯ストランド2aの芯素線200の直径よりも相対的に小さく、それにより、芯ストランド2aの直径d1を側ストランド2bの直径d2よりも適度に大きくしている。なお、「ストランドの直径」とはストランドを構成する外層の素線群の外接円を意味する。
【0024】
上記のように芯ストランド2aの直径d1を側ストランド2bの直径d2よりも大きくするのは、芯シェンケルの各側ストランド2b間に合成高分子化合物の浸透を許容する隙間を形成するためであり、その(d1−d2)/d2×100は、通常、約1.4〜6.8%程度が好ましい。
【0025】
上記のようにして得た1本の芯ストランド2aの周りに複数本(図面では6本)の側ストランド2bを配して撚り合わせる。この場合の撚りピッチは一般に仕上げシェンケル径の6〜9倍程度とし、撚り方向は芯ストランド2aの撚り方向と同じ方向すなわちこの例ではZ方向とする。これは製造が容易であり、工程の変動に対して型崩れが少ないからである。
以上により図5(a)のような素芯シュンケル2’が作られる。そして、本発明は、この素芯シュンケル2’を高分子化合物4にて被覆し、図5(b)のように高分子化合物より被覆された被覆芯シェンケル2を形成する。
【0026】
この高分子化合物は、特性として、鉄鋼との接着性がよく、耐摩耗性、耐油性、耐水性、温度特性、耐侯性、柔軟性(耐ストレスクラック性)を有していることが好ましく、代表的な高分子化合物としては、ポリエチレン系、ポリプロピレン系、弗素樹脂系などの汎用合成樹脂が挙げられるが、そのほかエンジニアリングプラスチックを使用してもよい。あるいは、ジエン系、オレフイン系、ウレタン系などのゴムであってもよい。
【0027】
前記高分子化合物4の被覆方法は任意であり、溶解物中に素芯シュンケル2’を連続的に通過させてもよいが、通常は素芯シュンケル2’の周りに押出し機により溶融した高分子化合物を押し出して行なう。高分子化合物4は、素芯シュンケル2’と第1ストランド層3Aとのフレッティングを防止するのに十分なスペースを確保することができるように被覆厚さtを設定する。このとき、第1ストランド層3Aの各ストランド3a間のスペースは、0.3〜1.5mm程度が望ましい。
高分子化合物は各側ストランド2b,2b間の隙間を通して芯ストランド2aの表面に達することにより、緩衝性能のある膜を形成する。高分子化合物の一部40は側ストランド2bの素線間にも浸透し、また芯ストランド2aの素線間にも浸透する。
【0028】
次に、側のストランド層3A,3B,3Cについて説明すると、図6ないし図8はかかるストランド層3A,3B,3Cの製作工程を例示しており、第1ストランド層3Aの各ストランド3aは、径が同等の複数本(図面では7本)の素線301,301’から構成されており、それら素線径は芯シュンケル2の側ストランド2bの素線と同等かまたは適度に小さい。
第1工程として、図4(b)と同じように、芯に1本の素線301を配し、その周りに複数本(図面では6本)の素線301’を配し、所定の撚りピッチで撚り合わせる。撚り方向は芯シェンケル2の側ストランド2bとは逆方向(たとえばZ方向)である。
【0029】
次いで、第2工程として、前記各ストランド3aを前記被覆芯シェンケル2の周りに配し、素芯シェンケル2’の撚り方向と逆方向(たとえばS方向)に撚り合わせる。この状態が図6(a)である。これで素第1ストランド層3A’が得られる。次いで、この素第1ストランド層3A’に高分子化合物を被覆し、第1ストランド層3Aを得る。これが図6(b)の状態である。
高分子化合物6は芯シェンケル2に使用したものと同じものが接着性の面から好ましい。被覆厚さは任意であるが、芯シェンケル2と同程度であることが好ましい。高分子化合物6は素第1ストランド層3A’の外周を覆うほか、各ストランド3a,3aのすき間を埋め、さらに各ストランド3a,3aのすき間から内部に浸透し、芯シェンケル2の被覆と接合し、一体化する。
【0030】
次いで、第2ストランド層3Bを形成する。この工程は、第1ストランド層3Aの場合と同じように、第1工程として所要数(この例では20本)のストランド3bを作る。
このストランド3bは径が同等の複数本(図面では7本)の素線301,301’から構成されており、それら素線径は芯シュンケル2の側ストランド2bの素線と同等かまたは適度に小さい。撚り方向はストランド層3Aのストランド3aと逆、したがって、第1芯シェンケル2の側ストランド2bと同じ方向(S方向)とする。
【0031】
次いで、得られた所要本数のストランド3bを第1ストランド層3Aの外周に配して撚合する。このときの撚り方向は第1ストランド層3Aの撚り方向と逆方向(Z方向)とする。これで素第2ストランド層が得られるので、次いでこの素第2ストランド層に高分子化合物を被覆し、第2ストランド層3Bを得る。これが図7の状態である。
使用する高分子化合物と厚さは第1ストランド層3Aと同程度とする。これにより高分子化合物は素第2ストランド層の外周を覆うほか、各ストランド3b,3bのすき間を埋め、さらに各ストランド3b,3bのすき間から内部に浸透し、第1ストランド層3Aの被覆6と接合し、一体化する。
【0032】
次いで、第3ストランド層3C(実施例では最外層)を形成する。この工程は、第1工程として所要数(この例では27本)のストランド3cを作る。このストランド3cは径が同等の複数本(図面では7本)の素線301,301’から構成されており、それら素線径は芯シュンケル2の側ストランド2bの素線と同等かまたは適度に小さい。撚り方向は第2ストランド層3Bのストランド3bと逆、したがって、第1ストランド層3Aのストランド3aと同じ方向(Z方向)とする。
【0033】
前記所要数のストランド3cを第2ストランド層3Bの外周に配し、撚合する。このときの撚り方向は第2ストランド層3Bの撚り方向と逆方向(S方向)とする。これで素第3ストランド層が得られる。このときの撚りピッチは撚り構造と素線径に応じて適宜選択するが、通常、仕上げロープ径の6〜9倍程度とする。次いで、この素第3ストランド層に高分子化合物を被覆し、第3ストランド層3Cを得る。これが図8の状態であり、素ロープ1’が完成する。
【0034】
使用する高分子化合物と厚さは第2ストランド層3Bと同程度とする。これにより高分子化合物は素第3ストランド層の外周を覆うほか、各ストランド3c,3cのすき間を埋め、さらに各ストランド3c,3cのすき間から内部に浸透し、第2ストランド層3Bの被覆6と接合し、一体化する。
【0035】
素ロープ1’は最終的に全体を高分子化合物によって被覆し、外装被覆層6’を形成する。この外装被覆層6’は、シーブやドラムとの摩擦係数の調整を図るためのもので、高分子化合物は前記したものでもよいし、耐摩耗性、耐侯性がよく、適度の弾性を持ち摩擦係数が比較的高い特性を有し、かつ加水分解しない特性のもの、たとえば、ポリウレタン系、エーテル系のポリウレタンエラストマーなどの合成樹脂、あるいはゴムなどを選択使用できる。
【0036】
高分子化合物は第3ストランド層3Cの被覆6と接着され、厚さTの外層被覆層6’を形成する。外装被覆層6’の被覆厚さTは、これがあまり薄いと耐久性に乏しくまた摩耗寿命も低下する。厚すぎるとロープの柔軟性が損なわれるばかりかロープ径が大きくなり、強度効率が低下するので、通常0.3〜1.0mmとすることが好ましい。外装被覆層6’の形成方法はたとえば押出し機を使用するなど任意である。
【0037】
前記第1ストランド層3A〜第2ストランド層3Cの各層の撚り工程(ストランドを内層の周りで撚る工程)は、チャーブラー撚線機を使用して行なえばよく、その場合、千鳥状に配置した3本程度のロール間にストランド3a,3b,3cを通過させて螺旋状の型付けを行い、ボイス通過後、ならしロールを通すことによって行われる。型付率は0.60〜0.90程度より好ましくは、0.65〜0.85で行なえばよい。ここで、型付率とは、ロープ径とロープからストランドを取り出したときの、ストランドの高さの比をいう。この工程により、ロープの回転性を防止するとともにばらけを防止し、かつストランド間の隙間を均等で最適なものに調整することができる。
【0038】
第1態様はあくまでも一例であり、これに限定されるものではない。
すなわち、第1ストランド層3A〜第2ストランド層3Cの3層である場合のほか、2層あるいは4層以上としてもよく、各ストランド層を構成するストランドの素線数も7本に限らず、3本,4本などとしてもよい。
また、最外層ストランド3Cの被覆を個別被覆6と外装被覆6’の二重としているが、後述する第2実施例と同様に一重の全体被覆としてもよい。
【0039】
図9〜図16は本発明の第2態様を示している。
この第2態様は、(1×37)+26+32+40+46+(4×24)+(4×30)+(4×38)とした本発明ロープであり、詳しくは、構造式は、{(1+6+12+18)+1×26+1×32+1×40+1×46+24×(1×4)+30×(1×4)+38×(1×4)としている。
ワイヤロープ1は全体の断面が円形形状をなし、撚り芯体としての被覆芯ストランド20と、これの外周を囲む一層以上(図面では2層)の素線層30A,30Bと、最外層の素線層30Bの外周に層状に設けられた1以上のストランド層(図面では3層)30C,30D,30Eとを有している。
【0040】
前記被覆芯ストランド20は高分子化合物4を有し、素線層30A,30Bにもそれぞれ高分子化合物からなる被覆6が施され、ストランド層30C,30Dにもそれぞれ高分子化合物からなる被覆6が施され、最外層(ストランド層)30Eには高分子化合物からなる外装被覆6’が施されている。
【0041】
各部の構成を製作工程を加味して詳細に説明すると、被覆芯ストランド20は、複数本の素線を撚り合わせた芯部20aと、これを取り囲んで撚り合わされた第1側層20bと、この第1側層20bを取り囲んで撚り合わされた第2側層20cとを有している。芯ストランド20の製作に使用する鋼素線は第1態様と同様であるから、説明は援用する。
【0042】
図11は被覆芯ストランド20の詳細を示しており、芯部20aは、図11(a)のように1本の素線200の周りに複数本(図面では6本)の素線200’を配して撚合したもので、各素線200,200’は同径のものからなる。
第1側層20bは、図11(b)のように、前記素線200,200’と同等か好ましくは適度に径の細い複数本(図面では12本)の素線201を芯部20aの周りに配し、芯部20aと同じ撚り方向(たとえばS方向)に撚り合わせたものである。
【0043】
第2側層20cは、図11(c)のように、前記第1側層20bと同等の線径の複数本(図面では18本)の素線202を第1側層20bの周りに配し、第1側層20bと同じ撚り方向(たとえばS方向)に撚り合わせたものであり、これによりタイトな撚り構造の素芯ストランド20’が得られる。なお、この例では芯部20aと第1側層20bと第2側層20cを同じ撚りピッチで3工程で撚り合わせているが、撚り方向が同じなので、場合によっては、一括撚りによって得てもよい。
【0044】
次いで、前記素芯ストランド20’に高分子化合物による被覆4を施し、被覆芯ストランド20を得る。使用する高分子化合物と被覆方法は第1態様と同様であるから、説明は援用する。
高分子化合物の被覆層4は、素芯ストランド20’とその外周の後述する第1素線層30Aとのフレッティングを防止するのに十分なスペースを確保することができるよう、被覆厚さtを設定する。
高分子化合物は第2側層20cの表面を覆うとともに第2側層20cの素線202の谷間を埋め、全体として円形状の緩衝性能のある膜を形成している。
【0045】
次に、第1素線層30Aは、この例では被覆2層構造からなっている。
図12(a)(b)はこの第1素線層30Aを得る工程を示しており、まず、前記被覆芯ストランド20の周りに所要本数(図面では26本)の素線300を配し、被覆芯ストランド20の撚り方向と逆方向(たとえばZ方向)に撚り合わせて第1層30aを得る。図12(a)はこの段階を示している。
【0046】
次いで、前記第1層30aの周りに所要本数(図面では32本)の素線301を配し、第1層30aと同じ撚り方向したがって、被覆芯ストランド20の撚り方向と逆方向(たとえばZ方向)に撚り合わせて第2層30a’とする。これで素第1素線層30A’が得られる。。
素線300,301の径はいずれも同等で、たとえば、素芯ストランド20’の第1側層20bや第2側層20cの素線径と同等とする。第1層30aと第2層30a’の撚りピッチは同じで、かつ素芯ストランド20’の撚りピッチよりも大きい。
【0047】
そして最後に素第1素線層30A’に高分子化合物によりフレッティング防止用の被覆層6を形成し、第1素線層30Aが完成する。高分子化合物は被覆芯ストランド20に用いたものと同じものが好ましく、高分子化合物は第2層30a’の外周を覆うとともに、第2層30a’の各素線301の谷間を埋め、素線の線径と本数によっては第1層30aあるいはさらに被覆芯ストランド20にも達してこれの被覆4と接合する。
【0048】
次いで、第2素線層30Bを施す。この第2素線層30Bも第1層30bと第2層30b’および高分子化合物被覆6を有する被覆2層構造からなっている。図13はこの第2素線層30Bを得た状態を示しており、基本的な工程は前記第1素線層30Aの場合と同じである。まず、前記第1素線層30Aの周りに所要本数(図面では40本)の素線300を配し、第1素線層30Aの撚り方向と逆方向(たとえばS方向)に撚り合わせて第1層30bを得る。
【0049】
次いで、前記第1層30bの周りに所要本数(図面では46本)の素線301を配し、第1層30bと同じ撚り方向に撚り合わせて第2層30b’とし、素第2素線層30B’を得る。
素線300,301の径はいずれも同等でよく、第1層30bと第2層30b’の撚りピッチは同じで、かつ第1素線層30Aの撚りピッチよりも大きい。
【0050】
そして素第2素線層30B’を高分子化合物で被覆してフレッティング防止用の被覆層6を形成し、第2素線層30Bが完成する。高分子化合物は第1素線層30Aに用いたものと同じものが好ましく、高分子化合物は第2層30b’の外周を覆うとともに、第2層30b’の各素線301の谷間を埋め、素線の線径と本数によっては第1素線層30Aにも達してこれの被覆と接合する。
【0051】
次に、前記第2素線層30Bの外周に第1ストランド層30C、第2ストランド層30Dおよび第3ストランド層30Eを形成する。第1ストランド層30Cと第2ストランド層30Dはそれぞれ高分子化合物の被覆層6を有している。
【0052】
第1ストランド層30Cは、2本以上の比較的少ない本数(たとえばn≦7)の素線302を撚り合わせた所要本数(図面では24本)のストランド30cからなっており、ストランド30cは、この例では4本の素線302を芯ストランド20の芯部20aなどと同じピッチで撚り合わせて構成している。
各ストランド30cの素線径は前記第,第2素線層30A,30Bにおける素線と同径または適度に細いのものが用いられ、第2素線層30Bの第1層30bや第2層30b’と同じ撚り方向(たとえばS方向)に撚り合わされている。
前記ストランド30cは第2素線層30Bの外周に配され、撚り方向を第2素線層30Bの撚り方向と逆方向(たとえばZ方向)にして撚り合わされ、これで素第1ストランド層が作られる。
【0053】
そして、この状態で高分子化合物で被覆してフレッティング防止用の被覆層6を形成する。高分子化合物は第2素線層30Bに用いたものと同じものが好ましく、高分子化合物は素第1ストランド層の外周を覆うとともに、各ストランド30cの谷間を埋め、さらにストランド30c間のすき間を通して第2素線層30Bにも達してこれの被覆と接合する。図14はこの状態を示している。
【0054】
図15は第2ストランド層30Dを示している。該第2ストランド層30Dは、前記第1ストランド層30Cの素線302と同じ直径の素線303を撚り合わせた所要本数(図面では30本)のストランド30dからなっており、ストランド30dは、この例では4本の素線303を第1ストランド層30Cのストランド30cと同じピッチでかつ撚り方向は逆方向(たとえばZ方向)にして撚り合わせて構成している。
【0055】
前記ストランド30dは第1ストランド層30Cの外周に配され、撚り方向を第1ストランド層30Cのそれと逆方向(たとえばS方向)にして撚り合わされ、これで素第2ストランド層が作られる。この状態で高分子化合物で被覆してフレッティング防止用の被覆層6を形成する。高分子化合物は素第2ストランド層の外周を覆うとともに、各ストランド30dの谷間を埋め、さらにストランド30d間のすき間を通して第1ストランド層30Cにも達してこれの被覆6と接合している。
【0056】
図16は第3ストランド層(最終層)30Eを示している。この第3ストランド層30Eは、前記第2ストランド層30Dの素線303と同じ直径の素線304を撚り合わせた所要本数(図面では38本)のストランド30eからなっている。ストランド30eは、この例では4本の素線304を第2ストランド層30Dのストランド30dと同じピッチでかつ撚り方向は逆方向(たとえばS方向)にして撚り合わせて構成している。
【0057】
各ストランド30eは第2ストランド層30Dの外周に配され、撚り方向を第1ストランド層30Dのそれと逆方向(たとえばZ方向)にして撚り合わされ、これで素第3ストランド層が作られ、同時に素ロープ1’が完成する。
素ロープ1’は全体を高分子化合物によって被覆され、外装被覆層6’を形成する。この外装被覆層6’は、シーブやドラムとの摩擦係数の調整を図るためのもので、適した高分子化合物は第1態様に述べたとおりである。
【0058】
高分子化合物は第3ストランド層30Dを覆い、厚さTの外層被覆層6’を形成するが、それとともに各ストランド30eの谷間を埋め、さらにストランド30e間のすき間を通して第2ストランド層30Cにも達してこれの被覆6と接合する。外装被覆層6’の被覆厚さTは、これがあまり薄いと耐久性に乏しくまた摩耗寿命も低下する。厚すぎるとロープの柔軟性が損なわれるばかりかロープ径が大きくなり、強度効率が低下するので、通常0.3〜1.0mmとすることが好ましい。外装被覆層6’の形成方法はたとえば押出し機を使用するなど任意である。
【0059】
前記第1ストランド層30C〜第3ストランド層30Eの各層の撚り工程は、チャーブラー撚線機を使用して行なえばよく、その場合、千鳥状に配置した3本程度のロール間にストランド3a,3b,3cを通過させて螺旋状の型付けを行い、ボイス通過後、ならしロールを通すことによって行われる。型付率は0.60〜0.90程度より好ましくは、0.65〜0.85で行なえばよい。この工程により、ロープの回転性を防止するとともにばらけを防止し、かつストランド間の隙間を均等で最適なものに調整することができる。
【0060】
なお、第2態様はあくまでも一つの例であり、これに限定されるものではない。すなわち、第1態様と第2態様において、撚り方向を実施例の場合と逆方向にしてもよい。また、被覆芯ストランド20の構成は任意である。さらに、素線層30A,30Bを2層としているが、1層でもよいし、3層以上であってもよい。さらに第1ストランド層30C〜第3ストランド層30Eの3層としているが、第1と第2の2層としてもよいし、4層以上としてもよい。
また、最終ストランド層30Eに個別的な高分子化合物被覆を施さず、全体被覆としているが、第2ストランド層30Dなどと同じように個別的な高分子化合物被覆を施し、その上に外装被覆を施してもよい。
【0061】
また、本発明は、第1態様と第2態様とを組み合わせた構造、すなわち、撚り芯体をストランド構造とし、これの周りに第1態様と同じような複数のストランド層を設けた構成を採用したロープ、撚り芯体をシェンケル構造とし、これの周りに第2態様のような素線層とストランド層を層状に設けたロープを含んでいる。
【0062】
図17は前者の例(これを第3態様と称す)を示しており、(1×37)+13×7+20×7+27×7の構造からなっている。20は高分子化合物4の被覆を有する被覆芯ストランド、3Aないし3Cは第1ストランド層〜第3ストランド層である。各ストランド層3A,3B,3Cにはそれぞれ高分子化合物からなる被覆6,6,6が施されている。なお、最外層には高分子化合物からなる外装被覆6’が施されているが、これは省略されていてもよい。各部分の詳細については、記述した説明を援用する。
【0063】
図18は本発明の他の好適な態様(以下第4態様という)を示しており、第1態様と同じように、撚り芯体としての芯シェンケル2と、これを囲む複数のストランド層(図面では3層)3A,3B,3Cとを有し、しかも各ストランド層3A,3B,3Cにはそれぞれ高分子化合物からなる被覆6,6,6が施されている。そしてさらに最外層には高分子化合物からなる外装被覆6’が施されている。
【0064】
前記被覆芯シェンケル2は、中心の芯ストランド2aのまわりに複数本の側ストランド2bを配して撚合してなり、この状態で全体に高分子化合物被覆4が施されているが、この実施例では、側ストランド2bの数を減らし、隣接する側ストランド2b、2b間にそれぞれ積極的に隙間Sを設け、それら隙間Sに高分子化合物40を充填して間隔を固定している。
【0065】
また、側の各ストランド層3A,3B,3Cは、それぞれ2本以上の鋼素線を撚り合わせたストランド3a,3b,3cを複数本配列して撚り合わせてなるが、使用するストランド3a,3b,3cの数を第1態様の場合よりも減らすことにより、それら各層の隣接するストランド3a,3a、3b,3b、3c,3c間にもそれぞれ積極的に隙間Sを設け、それら隙間Sに高分子化合物60を充填して間隔を固定している。
【0066】
前記ストランド間の隙間Sは、その層心円周長さに対して3〜40%の範囲とすることが好ましい。その限定理由は、3%未満では高分子化合物40,60を十分に充填できず、充填されたとしても肉薄であるため、緩衝材として十分に機能せず、ロープが曲げられたときに破損されてしまい、層内でのストランド同士の接触を確実に防止できないからである。40%以上では、層内でのストランド同士の接触は防止されるが、断面積あたりの鋼材量が減少し、ロープ強度が低下するからである。より好適な範囲は、10〜30%であるといえよう。なお、各層でのストランド間の隙間Sは、同じでも、同じでなくてもよい。
その他の構成は第1態様と同様であるから、説明は援用する。
【0067】
図19は本発明の他の好適な態様(以下、第5態様という)を示している。
この実施例は、第3態様と同じように、撚り芯体としての被覆芯ストランド20と、これの外周を囲む一層以上(図面では2層)のストランド層30C,30Dとを有している。
【0068】
前記被覆芯ストランド20は高分子化合物4を有し、側のストランド層30C,30Dにもそれぞれ高分子化合物からなる被覆6、6が施されている。なお、適宜最外層(ストランド層)30Dにはさらに高分子化合物からなる外装被覆が施される。
そして、第1ストランド層30Cを構成するストランド30cは通常よりも本数が減らされ、隣接する各ストランド30c、30c間には積極的に隙間Sを設けており、それら隙間Sに高分子化合物60を充填して間隔を固定している。
【0069】
同様に、第2ストランド層30Dを構成するストランド30dは通常よりも本数が減らされ、隣接する各ストランド30d、30d間には積極的に隙間Sを設けており、それら隙間Sに高分子化合物60を充填して間隔を固定している。
前記ストランド間の隙間Sは、その層心円周長さに対して3〜40%の範囲とすることが好ましい。その理由は、前述したとおりである。なお、各層でのストランド間の隙間Sは、同じでも、同じでなくてもよい。
この例では、ストランド層は2層であるが、図18と同じように3層以上であってもよい。
なお、被覆撚り芯体2,20を囲む層は、ストランドでなく素線の場合を含み、その場合も各層の各素線間には隙間Sが設けられ、それら隙間に層を被覆する高分子化合物が充填される。
【0070】
本発明のロープは前記態様のもののほか、種々の構造のものを含む。その例を挙げると次のとおりである。
▲1▼(7×12)+13×12+20×12+27×12
▲2▼{7×(3+9)}+13×(3+9)+20×(3+9)+27×(3+9)
▲3▼(7×19)+13×19+20×19+27×19
▲4▼(7×27)+13×27
▲5▼{7×(3+9+15)}+13×(3+9+15)
▲6▼(7×27)+13×27+20×27
▲7▼{7×(3+9+15)}+13×(3+9+15)+20×(3+9+15)
【0071】
【実施例の作用】
本発明によるワイヤロープの特性を述べると、伸びが4〜6%と少ないためエレベータ用や、クレーン用などの荷役機械用として適切である。可撓性は従来の繊維芯タイプが600〜700であるのに対して、800〜1800であるため曲げやすい。弾性係数は従来の繊維芯タイプが40000〜60000N/mm2であるのに対して、74000N/mm2以上であり、これもエレベータ用や荷役用のロープとして好適な特性である。S曲げ疲労試験においては、D/d=20、SF=10すなわち計算破断荷重の1/10の荷重でのテストの条件で従来の繊維芯タイプが20000〜40000回であるが、本発明ロープは400000回を越えるきわめて高い耐疲労性を示す。
【0072】
本発明によるロープは、直径が小さな高強度鋼線材からなる素線を多数本撚り込むことにより撚り芯体2,20と、これを囲む多層の素線層あるいはストランド層を構成しているので、要求強度を実現しつつロープの径を細くして軽量化することができ、さらに良好な疲労性を実現し得るため、ドラムやシーブ4の径を小さくすることができる。
【0073】
すなわち、たとえば被覆も含めてロープ重量を従来比で20%以上軽くすることができるため、図21(a)のようにシーブcの径SDを従来比の50%以下とすることができる。また、ドラムやシーブcの小型化によりこれを駆動するモーター類のトルクを小さくすることができるので、寸法を小さくすることができる。また、ロープを軽量化することができるので、モーター類の容量も小さいものにすることができ、クレーンに適用した場合には、クレーン本体を小型化することができる。ドラムやシーブの径を極限まで小さくしなければ、ロープの長寿命化を図ることができる。
【0074】
また、第1態様においては、撚り芯体としての芯シュンケル2に高分子化合物被覆4を施して外径を増径することにより、外層のストランド相互間に隙間を形成することができ、また、全体被覆をするときに前記ストランド相互間の隙間から高分子化合物が内部に入りやすくなる。そして、芯シュンケル2の径を変えることなく被覆径すなわち高分子化合物被覆4の厚さを変えてやるだけで、ストランド相互間の隙間寸法を容易にコントロールすることができる。
【0075】
このように芯シュンケル2が高分子化合物被覆4を有し、その高分子化合物被覆4の周りに高分子化合物の被覆6を有する第1ストランド層3Aを配し、この第1ストランド層3Aの外周に同じく高分子化合物の被覆6を有する第2ストランド層3Bを配し、その外周に同じく高分子化合物の被覆6を有する第3ストランド層3Cを配して各層ごとがメタルタッチせず、フレッティングが防止されるので、ロープ寿命を向上させることができる。また、外装被覆層6’によりロープ表面を被覆しているので、ロープがシーブやドラムと金属接触せず、両者の摩耗が低減され、これによってもロープやシーブやドラムの長寿命化を図ることができる。
【0076】
また、芯シュンケル2が高分子化合物被覆4の分だけ増径しているので、スペーサとしての機能を発揮し、ストランド層3A,3B,3Cに被覆層6の高分子化合物が浸透充填しやすい隙間を形成することができる。このため、各ストランド層におけるストランド相互のフレッティングが緩和され、疲労性を向上することができる。
【0077】
また、被覆層6として使用する高分子化合物の選択により摩擦係数を制御することができ、シーブcの溝は図20(a)に示すような丸溝で足りることになるので、コストを低減することができる。それでいてモータの回転によるシーブの回転運動をロープに正確に伝えて、シーブの回転運動と荷重物の上下運動をよく連動させ、正確な位置制御を行なえるので、乗り心地をよくすることができる。またロープ断面が円形状であるため、自転やねじれの影響(片荷重による部分断線)が軽減される。
さらに、無給油とすることができるので、その手間が省けるとともにドラムやシーブに油が付着したり、周辺に飛散することがなくなるので機械室やクレーンなどの機械を清潔にすることができる。
【0078】
第2態様においては、中心の撚り芯体が芯ストランド20からなっていて高分子化合物被覆4を有し、その高分子化合物被覆4の周りに高分子化合物の被覆6を有する第1素線層30A、さらに高分子化合物の被覆6を有する第2素線層30Bを配し、それの外周にそれぞれが高分子化合物の被覆6を有するストランド層30C,30D,30Eを配しているため各層ごとがメタルタッチせず、フレッティングが防止されるので、ロープ寿命を向上させることができる。また、外装被覆層6によりロープ表面を被覆しているので、ロープがシーブやドラムと金属接触せず、両者の摩耗が低減され、これによってもロープやシーブやドラムの長寿命化を図ることができる。
【0079】
第1態様および第2態様の双方とも素線や素線本数の少ないストランドを層状に撚り合わせているので、そうした素線や素線本数の少ないストランドの層数の増減あるいはストランドを構成する素線数の選択により、所望の径と強度を持つ長寿命のロープを自在に作ることができる。
【0080】
また、第1態様においては、使用する素線の径として2種類程度で足り、芯シェンケル2の側ストランド2bと第2ストランド層3Bのストランドとして同じ仕様(撚り方向、撚りピッチ)のものを、また第1ストランド層3Aと第3ストランド層のストランドとして同じ仕様(撚り方向、撚りピッチ)のものを使用することができるので、製造コストを安くすることができる。
第2態様においても、同様に使用する素線の径として2種類程度で足り、かつ、第1ストランド層30Cと第3ストランド層30Eのストランドとして同じ仕様(撚り方向、撚りピッチ)のものを使用することができるので、製造コストを安くすることができる。
【0081】
第2態様は側シェンケルでなく側ストランドを多層に撚り合わせたものであり、ロープとして、芯ストランドと側ストランドからなっているので、製作工程が大幅に短縮されるため、側シェンケルを使用する場合に比べてコストダウンが可能となる。また、いわゆるIWRCタイプに比べてフレッティングが減少し、芯の超寿命化を図ることができる。
【0082】
第3態様(図17)の構成を採用した場合には、芯ストランド20’をたとえばS撚りとし、第1ストランド層3Aのストランド3aをZ撚り、ストランド層をS撚り、第2ストランド層3Bのストランド3bをS撚り、ストランド層をZ撚り、第3ストランド層3Cのストランド3cをZ撚り、ストランド層をS撚りというように交互に撚り方向を変えてゆくことにより回転性の極めて小さいロープとすることができる。
これにより、使用時に、シーブ上での回転が少なくなるので、シーブおよびロープの回転方向の摩耗を低減することができる。また、回転によるストランドと被覆材(高分子化合物)間のせん断応力を低減することができるため、高分子化合物の摩耗や劣化を抑えることができる。また、クレーンロープに適用した場合、吊り荷の回転を抑えることができる。
【0083】
図18と図19の第4態様および第5態様によれば、中心の撚り芯体2,20とこれを囲むストランド層3A,3B,3C,30C,30Dがそれぞれ高分子化合物の被覆6によって各層ごとがメタルタッチせず、フレッティングが防止されるうえに、各ストランド層3A,3B,3C,30C,30Dを構成する各ストランド間に隙間Sが設けられ、それら隙間Sに高分子化合物60が浸透充填されているので、これによる緩衝作用で層内での隣接するストランド間の接触が起こらず、疲労性を高くすることができる。
【0084】
【実施例】
実施例1
本発明を適用して、図3に示す(7×7)+13×7+20×7+27×7の構造の動索用ロープを作製した。
(1)素線
原料として直径5.5mmの高炭素鋼線材(C:0.82%、Si:0.21%、Mn:0.48%、残部鉄及び不可避的不純物)を用いた。
この鋼線材を次の工程で伸線して素線を得た。
1)酸洗い後、10パス程度で冷間伸線を行って線径2.0mmとし、これを980℃程度で空気パテインティングし、酸洗い後、5パス程度の冷間伸線を行って線径1.40mmとし、980℃程度で加熱後、550℃程度で鉛パテンティングを行い、酸洗い、湯洗い後に電気メッキ法にて亜鉛めっきを施し、水性タイプ潤滑剤を使用して20パス程度の湿式伸線を行い、最終径0.250mm〜0.260mmの素線を得た。各素線の特性は引張り強さ320kg/mm2、破断時伸び2%であった。
【0085】
(2)芯シェンケルの製作
2−1)芯シェンケルの芯ストランドの製作工程
第1工程:1+6
径0.260mmの芯素線1本と、径0.260mmの6本の側素線を、撚りピッチ12.5mmにてZ方向に撚り合せ、外径0.78mmの芯ストランドを作った。
【0086】
2−2)芯シェンケルの側ストランドの製作工程
第1工程:1+6
径0.250mmの芯素線1本と、径0.250mmの6本の側素線を、撚りピッチ12.5mmでS方向に撚り合せ、外径0.75mmの側ストランドを得た。
【0087】
2−3)芯シェンケル撚り工程(1+6)+6×(1+6}
前記2−1)で得た1本の芯シェンケル芯ストランドの回りに、2−2)で得た6本の芯シェンケル側ストランドを配し、撚りピッチ20.0mmでZ方向に撚り合せ、外径2.28mmの芯シェンケルを得た。
【0088】
(3)芯シェンケルの被覆
溶融ポリエチレンをエクスチュルーダにて押出し、前記芯シェンケルに0.25mmの厚さで被覆し、仕上げ径2.78mmの樹脂被覆芯シェンケルを得た。
【0089】
(4)第1層の製作
4−1)第1工程:1+6
径0.250mmの1本の素線の周りに径0.250mmの6本の素線を配し、撚りピッチ12.5mmでZ方向に撚り合わせ、外径0.75mmのストランドを得た。
4−2)第2工程:芯シェンケル+13ストランド
前記被覆芯シェンケルの周りに、第1工程で得たストランドを13本配し、撚りピッチ30.0mmでS方向に撚り合せ、外径4.28mmの素第1層ストランドを得た。
4−3)第3工程:被覆
溶融ポリエチレンをエクスチュルーダにて押出し、前記第1層ストランドに0.25mmの厚さで被覆し、仕上げ径4.53mmの樹脂被覆第1ストランド層を得た。
【0090】
(5)第2層の製作
5−1)第1工程:1+6
径0.250mmの1本の素線の周りに径0.250mmの6本の素線を配し、撚りピッチ12.5mmでS方向に撚り合わせ、外径0.75mmのストランドを得た。
5−2)第2工程:第1層+20ストランド
前記被覆第1層ストランドの周りに、第1工程で得たストランドを20本配し、撚りピッチ42.0mmでZ方向に撚り合せ、外径6.03mmの素第2層ストランドを得た。
5−3)第3工程:被覆
溶融ポリエチレンをエクスチュルーダにて押出し、前記第2層ストランドに0.25mmの厚さで被覆し、仕上げ径6.53mmの樹脂被覆第2ストランド層を得た。
【0091】
(6)第3層の製作
6−1)第1工程:1+6
径0.250mmの1本の素線の周りに径0.250mmの6本の素線を配し、撚りピッチ12.5mmでZ方向に撚り合わせ、外径0.75mmのストランドを得た。
6−2)第2工程:第2層+27ストランド
前記被覆第2層ストランドの周りに、第1工程で得たストランドを27本配し、撚りピッチ56.0mmでS方向に撚り合せ、外径8.03mmの素第3層ストランドを得た。
6−3)第3工程:被覆
溶融ポリエチレンをエクスチュルーダにて押出し、前記第3層ストランドに0.25mmの厚さで被覆し、仕上げ径8.53mmの最外ストランド層を有するロープを得た。
【0092】
なお、前記各層の撚り線作業は、チューブラー型撚線機を使用し、型付装置として直径8.0mmの千鳥配置3ロールを使用し、整直ロールとして直径50mmで9+10組のならしロールを使用し、型付率平均70%前後の型付けとならしを行なった。
【0093】
(7)全体被覆
前記最外層の被覆付きロープに溶融ポリウレタンをエクスチュルーダにて0.50mmの厚さに被覆し、外径9.53mmの仕上げロープを得た。得られたロープの鋼材断面密度は32.3%、表面の摩擦係数(μ)は0.3、破断荷重は50kNであった。
【0094】
本発明ロープ3本を、かごとカウンターウエイトの重量2tonの模擬エレベータに使用したところ、径150mm、溝3個で溝R5.25mmの丸溝付きシーブを使用して、安全率10で円滑に運転することができた。
比較のため、素線径0.475〜0.955mmの低炭素鋼素線(C:0.42wt%)を用いた比較ロープ:構造8×S(19)、径12.5mm、強度63.5KN×3本を作成し、前記模擬エレベータに使用したところ、シーブ径500mm、シーブ溝3個、溝R6.2mmアンダーカット付きでなければ、円滑な運転ができなかった。
【0095】
実施例2
本発明を適用して(1×37)+26+32+40+46+(4×24)+(4×30)+(4×38)構造の動索用ロープを製作した。
素線として実施例1と同じ0.250〜0.260mmの範囲の亜鉛めっき付ワイヤを使用した。
【0096】
(1)被覆芯ストランドの製作
1−1)第1工程:1+6(芯部)
径0.260mmの芯素線1本と、径0.260mmの6本の側素線を、撚りピッチ12.5mmにてS方向に撚り合せ、外径0.78mmの芯部を作った。
1−2)第2工程:(1+6)+12−第1側層
前記芯部(1+6)の周りに外層用の径0.250mmの側素線12本を配し、撚りピッチ12.5mmでS方向で撚り合せ、外径1.28mmの第1側層を得た。
【0097】
1−3)第3工程:第1側層+18−第2側層
前記第1側層の周りに外層用の径0.250mmの側素線18本を配し、撚りピッチ12.5mmでS方向で撚り合せ、外径1.78mmの第2側層を得た。
1−4)被覆工程
溶融ポリエチレンをエクスチュルーダにて押出し、前記第3側層に0.25mmの厚さで被覆し、仕上げ径2.28mmの被覆芯ストランドを得た。
【0098】
(2)第1素線層の製作
2−1)第1工程:被覆芯ストランド+26 −第1層
被覆芯ストランドの周りに径0.250の素線を26本配し、撚りピッチ22.0mmでZ方向に撚り合わせ、外径2.78mmの第1層を得た。
2−2)第2工程:第1層+32 −第2層
第1層の周りに径0.250mmの素線を32本配し、撚りピッチ22.0mmでZ方向に撚り合わせ、外径3.28mmの第2層(素第1素線層)を得た。
2−3)被覆工程
溶融ポリエチレンをエクスチュルーダにて押出し、前記第2層に0.25mmの厚さで被覆し、仕上げ径3.78mmの被覆第1素線層を得た。
【0099】
(3)第2素線層の製作
3−1)第1工程:被覆第1素線層+40 −第1層
被覆第1素線層の周りに径0.250の素線を40本配し、撚りピッチ32.0mmでS方向に撚り合わせ、外径4.28mmの第1層を得た。
3−2)第2工程:第1層+46 −第2層
第1層の周りに径0.250mmの素線を46本配し、撚りピッチ32.0mmでS方向に撚り合わせ、外径4.78mmの第2層(素第2素線層)を得た。
3−3)被覆工程
溶融ポリエチレンをエクスチュルーダにて押出し、前記第2層に0.25mmの厚さで被覆し、仕上げ径5.28mmの被覆第2素線層を得た。
【0100】
(4)第1ストランド層の製作
4−1)第1工程:1×4
径0.250mmの4本の素線を撚りピッチ12.5mm、撚り方向S方向に撚り合わせ、外径0.60mmのストランドを得た。
4−2)第2工程:被覆第2素線層+(4×24)
4−1)の工程で得たストランドを被覆第2素線層の周りに24本配し、撚りピッチ45.0mm、撚り方向Z方向にて撚り合わせ、外径6.48mmの素第1ストランド層を得た。
4−3)被覆工程:
溶融ポリエチレンをエクスチュルーダにて押出し、前記素第1ストランド層に0.25mmの厚さで被覆し、仕上げ径6.98mmの被覆第1ストランド層を得た。
【0101】
(5)第2ストランド層の製作
5−1)第1工程:1×4
径0.250mmの4本の素線を撚りピッチ12.5mm、撚り方向Z方向に撚り合わせ、外径0.60mmのストランドを得た。
5−2)第2工程:被覆第1ストランド層+(4×30)
5−1)の工程で得たストランドを被覆第1ストランド層の周りに30本配し、撚りピッチ58.0mm、撚り方向S方向にて撚り合わせ、外径8.18mmの素第2ストランド層を得た。
5−3)被覆工程:
溶融ポリエチレンをエクスチュルーダにて押出し、前記素第2ストランド層に0.25mmの厚さで被覆し、仕上げ径8.68mmの被覆第2ストランド層を得た。
【0102】
(6)第3ストランド層の製作
6−1)第1工程:1×4
径0.250mmの4本の素線を撚りピッチ12.5mm、撚り方向S方向に撚り合わせ、外径0.60mmのストランドを得た。
6−2)第2工程:被覆第2ストランド層+(4×38)
6−1)の工程で得たストランドを被覆第2ストランド層の周りに38本配し、撚りピッチ70.0mm、撚り方向Z方向にて撚り合わせ、外径9.88mmの素第3ストランド層を得た。
【0103】
なお、前記各層の撚り線作業は、チューブラー型撚線機を使用し、型付装置として直径8.0mmの千鳥配置3ロールを使用し、整直ロールとして直径50mmで9+10組のならしロールを使用し、型付率平均70%前後の型付けとならしを行なった。
【0104】
(7)外装被覆工程
素第3ストランド層に溶融ポリウレタンをエクスチュルーダにて0.50mmの厚さに被覆し、径10.88mmの仕上げロープを得た。得られたロープの鋼材断面密度は29.0%、表面の摩擦係数(μ)は0.3、破断荷重は59kNであった。
【0105】
上記のようにして得られた本発明ロープ3本を、かごとカウンターウエイトの重量2tonの模擬エレベータに使用したところ、径150mm、溝3個で溝R5.25mmの丸溝付きシーブを使用して、安全率10で円滑に運転することができた。
【0106】
実施例3
本発明を適用して、図18に示す(7×6)+10×7+15×7+22×7の構造の動索用ロープを作製した。
【0107】
2−3)芯シェンケル撚り工程(1+6)+5×(1+6}
前記2−1)で得た1本の芯シェンケル芯ストランドの回りに、2−2)で得た5本の芯シェンケル側ストランドを配し、撚りピッチ20.0mmでZ方向に撚り合せ、外径2.28mmの芯シェンケルを得た。芯シェンケル側ストランド間の隙間は、層心円周長さに対して16%とした。
【0108】
(3)芯シェンケルの被覆
溶融高密度ポリエチレンをエクスチュルーダにて押出し、前記芯シェンケルに0.25mmの厚さで被覆し、仕上げ径2.78mmの樹脂被覆芯シェンケルを得た。
【0109】
(4)第1層の製作
4−1)第1工程:1+6
径0.250mmの1本の素線の周りに径0.250mmの6本の素線を配し、撚りピッチ12.5mmでZ方向に撚り合わせ、外径0.75mmのストランドを得た。
4−2)第2工程:芯シェンケル+10ストランド
前記被覆芯シェンケルの周りに、第1工程で得たストランドを10本配し、撚りピッチ30.0mmでS方向に撚り合せ、外径4.28mmの素第1層ストランドを得た。ストランド間の隙間は、層心円周長さに対して23%とした。
4−3)第3工程:被覆
溶融高密度ポリエチレンをエクスチュルーダにて押出し、前記第1層ストランドに0.25mmの厚さで被覆し、仕上げ径4.53mmの樹脂被覆第1ストランド層を得た。
【0110】
(5)第2層の製作
5−1)第1工程:1+6
径0.250mmの1本の素線の周りに径0.250mmの6本の素線を配し、撚りピッチ12.5mmでS方向に撚り合わせ、外径0.75mmのストランドを得た。
5−2)第2工程:第1層+15ストランド
前記被覆第1層ストランドの周りに、第1工程で得たストランドを15本配し、撚りピッチ42.0mmでZ方向に撚り合せ、外径6.03mmの素第2層ストランドを得た。ストランド間の隙間は、層心円周長さに対して25%とした。
5−3)第3工程:被覆
溶融高密度ポリエチレンをエクスチュルーダにて押出し、前記第2層ストランドに0.25mmの厚さで被覆し、仕上げ径6.53mmの樹脂被覆第2ストランド層を得た。
【0111】
(6)第3層の製作
6−1)第1工程:1+6
径0.250mmの1本の素線の周りに径0.250mmの6本の素線を配し、撚りピッチ12.5mmでZ方向に撚り合わせ、外径0.75mmのストランドを得た。
6−2)第2工程:第2層+22ストランド
前記被覆第2層ストランドの周りに、第1工程で得たストランドを22本配し、撚りピッチ56.0mmでS方向に撚り合せ、外径8.03mmの素第3層ストランドを得た。ストランド間の隙間は、層心円周長さに対して19%とした。
6−3)第3工程:被覆
溶融高密度ポリエチレンをエクスチュルーダにて押出し、前記第3層ストランドに0.25mmの厚さで被覆し、仕上げ径8.53mmの最外ストランド層を有するロープを得た。
他の工程は第1実施例と同様であり、得られたロープを繰り返し曲げ試験したところ、第1実施例に比べて疲労性が著しく向上していたことが確認された。これは、各層のストランド間の適切な隙間に高密度ポリエチレンがそれぞれ十分に浸透し、それら高密度ポリエチレンの外周面側と内周面側が各層の被覆と半径方向で結合するので、各層の隣接するストランド相互間に安定した緩衝部が作られたことによるものである。
【0112】
実施例4
図19に示す19×7の多層ロープを製作した。
1×7からなる径1.98mmの芯ストランドに高密度ポリエチレンを加圧押出しして被覆厚0.5mmの被覆芯体を得た。
この被覆芯体の周りに径が1.64mmの6本のストランドを配し、第1ストランド層を得た。この層内の各ストランド間の隙間は層心円周長に対し26%である。
【0113】
そして、高密度ポリエチレンを加圧押出しして被覆厚0.5mmの被覆を施した。高密度ポリエチレンは前記各隙間に完全に充填され被覆芯体とも接合していた。
次いで、被覆第1ストランド層の外周に、径が1.64mmの12本のストランドを配し、第2ストランド層を得た。この層内の各ストランド間の隙間は層心円周長に対し23%である。
そして、高密度ポリエチレンを加圧押出しして被覆厚0.5mmの被覆を施し、外径11.54mmの多層ロープを得た。
【0114】
得られたロープは、高密度ポリエチレンが前記各隙間に完全に充填され、被覆芯体と第1ストランド層被覆と接合し、また第1ストランド層被覆と第2ストランド層被覆と接合していた。
隙間を設けない仕様のロープを作成して繰り返し曲げ試験したところ、疲労性が著しく向上していたことが確認された。
【0115】
【発明の効果】
以上説明した本発明によるときには、外装被覆前のロープ径(DR)との関係で素線径(WR)を15≦DR/WR≦100とした高強度鋼素線を使用したワイヤロープにして、素線を撚り合わせて構成した撚り芯体に高分子化合物被覆を施した被覆撚り芯体の周りに、素線または7本以下の素線を撚り合せたストランドを配して複数の層状に撚り合わせ、しかも中間の各層がそれぞれ高分子化合物被覆を有するとともに、最外層が高分子化合物により被覆されているため、次のようなすぐれた効果が得られる。
【0116】
1)高強度材質の細径の素線を多数撚り込んでいるため、疲労性が良好な細径かつ軽量で要求強度を満足するロープとすることができ、それによりシーブ、ドラム、モータ類を小型化できて、省スペースを図ることができる。
【0117】
2)最外層が高分子化合物の外装被覆6’を施しており、この部分がシーブやドラムと接触するので、ロープとドラム、シーブの摩耗を防止することができるとともに、摩擦係数が高くなるので、シーブやドラムの特殊な溝加工が不要になり、エレベータにおいては、シーブに対するロープのダブルラップが不要になり、シーブ軸に作用する力を軽減できるため、軸や軸受け小型化することができ、これによってもコストダウンを図ることができる。
【0118】
3)撚り芯体2,20が高分子化合物で被覆されているため、撚り芯体2,20に対する外層とのフレッティングが緩和され、しかも各中間層も高分子化合物で被覆されているため各層毎のフレッティングも減少させることができる。このため、疲労性を改善し、ロープ寿命を向上することができる。
【0119】
4)撚り芯体2,20を囲む層の増減により使用条件に即応したロープ径、強度を簡単に調整することができる。
5)さび止めのための給油を省略することができるため、作業性がよくなるとともに、シーブ、ドラムあるいは周辺への油の付着や飛散がなくなり、ロープ使用機械や使用環境を清潔なものに改善することができる。
【0120】
請求項2によれば、撚り芯体が素線を撚り合わせて構成した芯ストランド2aの周りに複数本の側ストランド2bを配して撚り合わせた芯シェンケル2であるため、高分子化合物を十分に浸透充填させることができ、フレッテイング緩和効果を高くすることができるというすぐれた効果が得られる。
【0121】
請求項3によれば、撚り芯体が素線を撚り合わせて構成したストランドあるため、鋼材断面密度を高くすることができるというすぐれた効果が得られる。
請求項4によれば、被覆撚り芯体の周りの層のすべてがストランドから構成されているので、回転性を極めて小さくすることができるというすぐれた効果が得られる。
【0122】
請求項5によれば、被覆撚り芯体の外周層の各ストランドが層心円周長さに対し3〜40%の隙間を有し、各隙間に高分子化合物が充填されているので、撚り芯体2,20と各層ごとがメタルタッチせず、フレッティングが防止されるだけでなく、隙間に浸透した高分子化合物により各層内の隣接するストランド間あるいは素線間がセパレートされ、緩衝作用が発揮されるため、隣接するストランド同士あるいは素線同士の接触が防止される。このため疲労性を著しく向上することができるというすぐれた効果が得られる。
【0123】
請求項6によれば、前記請求項1の特性によりシステムの省スペースやコストダウンが可能な実用性の高いエレベータ用ロープを提供できるというすぐれた効果が得られる。
【0124】
請求項7によれば、前記請求項1の特性によりシーブ径、ドラム径が小型で、摩耗が少なく、長寿命で低コストのクレ−ン類用のロープ提供できるというすぐれた効果が得られる。
【図面の簡単な説明】
【図1】(a)は本発明の多層撚りロープを適用したエレベータの一例を模式的に示す説明図、(b)は本発明の多層撚りロープを適用したクレーンの一例を示す説明図である。
【図2】本発明ロープの第1態様を示す部分切欠斜視図である。
【図3】図2の軸線と直角の拡大断面図である。
【図4】(a)は第1態様における芯シェンケルの芯ストランドの断面図、(b)は側ストランドの断面図である。
【図5】(a)は第1態様における素芯シェンケルの断面図、(b)は被覆芯シェンケルの断面図である。
【図6】(a)は第1態様における素第1ストランド層を得た状態の断面図、(b)は第1ストランド層が完成した状態の断面図である。
【図7】第2ストランド層の完成状態の断面図である。
【図8】第3ストランド層を施した状態の断面図である。
【図9】本発明によるワイヤロープの第2態様を示す部分切欠斜視図である。
【図10】図9の軸線と直角の拡大断面図である。
【図11】(a)は第2態様の芯ストランドの芯部の拡大断面図、(b)は第1側層を撚合した状態の断面図、(c)は第2側層を撚合した状態の断面図、(d)は被覆芯ストランドの断面図である。
【図12】(a)は第1素線層の第1層を得た状態の断面図、(b)は被覆第1素線層の完成状態を示す断面図である。
【図13】被覆第2素線層を得た状態を示す断面図である。
【図14】第1ストランド層の完成状態を示す断面図である。
【図15】第2ストランド層の完成状態を示す断面図である。
【図16】第3ストランド層を撚り合わせ、被覆を施した状態の断面図である。
【図17】本発明によるワイヤロープの第3態様を示す拡大断面図である。
【図18】本発明によるワイヤロープの第4態様を示す拡大断面図である。
【図19】本発明によるワイヤロープの第5態様を示す拡大断面図である。
【図20】(a)は本発明ロープが使用するシーブの側面図、(b)は従来ロープが使用するシーブの側面図である。
【符号の説明】
1 ワイヤロープ
2 被覆芯シェンケル
2a 芯シェンケルの芯ストランド
2b 芯シェンケルの側ストランド
3A,3B,3C ストランド層
4 高分子化合物被覆
6,6’ 高分子化合物被覆
20 被覆芯ストランド
30A,30B 素線層
30C,30D,30E ストランド層
40,60 高分子化合物
Claims (7)
- 外装被覆前のロープ径(DR)との関係で素線径(WR)を15≦DR/WR≦100とした高強度鋼素線を使用したワイヤロープにして、素線を撚り合わせて構成した撚り芯体に高分子化合物被覆を施した被覆撚り芯体の周りに、素線または7本以下の素線を撚り合せたストランドを配して複数の層状に撚り合わせてなり、しかも中間の各層がそれぞれ高分子化合物被覆を有するとともに、最外層が高分子化合物により被覆されていることを特徴とする多層撚りワイヤロープ。
- 撚り芯体が、素線を撚り合わせて構成した芯ストランドの周りに複数本の側ストランドを配して撚り合わせた芯シェンケルである請求項1に記載の多層撚りワイヤロープ。
- 撚り芯体が、素線を撚り合わせて構成したストランドである請求項1に記載の多層撚りワイヤロープ。
- 被覆撚り芯体の周りの層のすべてがストランドから構成されている請求項1ないし3のいずれかに記載の多層撚りワイヤロープ。
- 被覆撚り芯体の外周層の各ストランドが層心円周長さに対し3〜40%の隙間を有し、各隙間に高分子化合物が充填されている請求項1ないし4のいずれかに記載の多層撚りワイヤロープ。
- ワイヤロープがエレベータ用ロープである請求項1ないし5のいずれかに記載の多層撚りワイヤロープ。
- ワイヤロープがクレーン用ロープである請求項1ないし5のいずれかに記載の多層撚りワイヤロープ。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002146812A JP3827610B2 (ja) | 2001-05-21 | 2002-05-21 | 多層撚りワイヤロープ |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001-150987 | 2001-05-21 | ||
JP2001150987 | 2001-05-21 | ||
JP2002146812A JP3827610B2 (ja) | 2001-05-21 | 2002-05-21 | 多層撚りワイヤロープ |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003041493A JP2003041493A (ja) | 2003-02-13 |
JP3827610B2 true JP3827610B2 (ja) | 2006-09-27 |
Family
ID=26615414
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002146812A Expired - Fee Related JP3827610B2 (ja) | 2001-05-21 | 2002-05-21 | 多層撚りワイヤロープ |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3827610B2 (ja) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FI119236B (fi) | 2002-06-07 | 2008-09-15 | Kone Corp | Päällystetyllä nostoköydellä varustettu hissi |
JP4110139B2 (ja) | 2002-06-27 | 2008-07-02 | 三菱電機株式会社 | エレベータ用ロープ及びその製造方法 |
EP1820765A4 (en) * | 2004-12-08 | 2011-12-28 | Mitsubishi Electric Corp | CABLE FOR ELEVATOR AND ELEVATOR |
WO2006075384A1 (ja) * | 2005-01-14 | 2006-07-20 | Mitsubishi Denki Kabushiki Kaisha | エレベータ用ロープ及びその製造方法 |
JP2007119961A (ja) * | 2005-10-28 | 2007-05-17 | Tesac Wirerope Co Ltd | ワイヤロープ及びその製造方法 |
KR100830777B1 (ko) * | 2006-08-16 | 2008-05-20 | 미쓰비시덴키 가부시키가이샤 | 엘리베이터용 로프 및 엘리베이터 장치 |
CN107709214B (zh) * | 2015-06-08 | 2019-12-20 | 株式会社日立制作所 | 电梯用主吊索和使用其的电梯装置 |
CN108166287A (zh) * | 2018-01-26 | 2018-06-15 | 贵州钢绳股份有限公司 | 一种大直径密封钢丝绳及其制造方法 |
CN110409203A (zh) * | 2019-06-24 | 2019-11-05 | 江苏兴达钢帘线股份有限公司 | 一种多股钢帘线及其制造方法 |
CN115323814A (zh) * | 2022-08-31 | 2022-11-11 | 神华准格尔能源有限责任公司 | 钢丝绳和钢丝绳的制造方法 |
-
2002
- 2002-05-21 JP JP2002146812A patent/JP3827610B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2003041493A (ja) | 2003-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3910377B2 (ja) | ワイヤロープ | |
JP4064668B2 (ja) | 複合型ワイヤロープ | |
KR100625006B1 (ko) | 동삭용 피복형 와이어 로프 | |
US6314711B1 (en) | Stranded synthetic fiber rope | |
US6508051B1 (en) | Synthetic fiber rope to be driven by a rope sheave | |
AU752488B2 (en) | Synthetic fiber rope | |
JP4108607B2 (ja) | エレベータ用ロープ及びエレベータ装置 | |
AU758414B2 (en) | Sheathless synthetic fiber rope | |
US6321520B1 (en) | Sheathed synthetic fiber robe and method of making same | |
JP5519607B2 (ja) | エレベータ用の引張り部材 | |
JP3660259B2 (ja) | ワイヤロープ | |
JP2002505240A (ja) | エレベータ用引張り部材 | |
JP3827610B2 (ja) | 多層撚りワイヤロープ | |
JP2011046462A (ja) | エレベータ装置およびエレベータ用ワイヤロープ | |
JP2010504264A (ja) | エレベータ装置のための懸垂及び牽引要素、及びエレベータ装置 | |
JP3660319B2 (ja) | ワイヤロープ | |
JP4096879B2 (ja) | エレベータ用ロープ | |
KR100830777B1 (ko) | 엘리베이터용 로프 및 엘리베이터 장치 | |
JP5244275B2 (ja) | エレベータ装置の引張り部材および引張り部材の形成方法 | |
WO2024089885A1 (ja) | ロープ及びそれを用いたベルト | |
CN104763775A (zh) | 一种承载体及使用该承载体的电梯用绳索 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041007 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20051201 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051213 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060213 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060314 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060512 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060606 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060704 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090714 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090714 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120714 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120714 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130714 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |