WO2016199204A1 - エレベータ用主ロープ並びにそれを用いるエレベータ装置 - Google Patents

エレベータ用主ロープ並びにそれを用いるエレベータ装置 Download PDF

Info

Publication number
WO2016199204A1
WO2016199204A1 PCT/JP2015/066518 JP2015066518W WO2016199204A1 WO 2016199204 A1 WO2016199204 A1 WO 2016199204A1 JP 2015066518 W JP2015066518 W JP 2015066518W WO 2016199204 A1 WO2016199204 A1 WO 2016199204A1
Authority
WO
WIPO (PCT)
Prior art keywords
strands
main
rope
main rope
side strands
Prior art date
Application number
PCT/JP2015/066518
Other languages
English (en)
French (fr)
Inventor
真人 中山
俊昭 松本
松本 達也
一平 古川
洋平 中本
Original Assignee
株式会社日立製作所
東京製綱株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所, 東京製綱株式会社 filed Critical 株式会社日立製作所
Priority to JP2017522775A priority Critical patent/JP6607935B2/ja
Priority to PCT/JP2015/066518 priority patent/WO2016199204A1/ja
Priority to CN201580080619.0A priority patent/CN107709214B/zh
Publication of WO2016199204A1 publication Critical patent/WO2016199204A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B7/00Other common features of elevators
    • B66B7/06Arrangements of ropes or cables
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/02Ropes built-up from fibrous or filamentary material, e.g. of vegetable origin, of animal origin, regenerated cellulose, plastics
    • D07B1/04Ropes built-up from fibrous or filamentary material, e.g. of vegetable origin, of animal origin, regenerated cellulose, plastics with a core of fibres or filaments arranged parallel to the centre line

Definitions

  • the present invention relates to an elevator rope used for raising and lowering a passenger car and an elevator apparatus using the same.
  • the elevator car is suspended and driven by the main rope in the hoistway.
  • a plurality of main strands are twisted around the steel core.
  • an independent rope that is, an IWRC (Independent Wire Rope Core) is used as a steel core.
  • IWRC Independent Wire Rope Core
  • a technique described in Patent Document 1 is known.
  • a strand having a strength of 2050 N / mm 2 or more is used as the strand of the IWRC core strand and side strand, and a strength of 1770 N / mm 2 or less is used as the strand of the main strand.
  • the strand which has is used.
  • the collective breaking load of the IWRC core strands is set to a magnitude of 0.4 to 0.6 times the collective breaking load of all the main strands.
  • the contact of the IWRC core strand and the side strand or the contact of the side strands easily occurs. Further, when tension is applied to the main rope or the main rope is bent when passing through the sheave or sheave (pulley) of the elevator, the strands come close to each other and rub against each other. As a result, the strands are worn, so that there is a problem that the life of the main rope is shortened.
  • the present invention provides an elevator main rope capable of improving the rope life and an elevator apparatus using the same.
  • an elevator main rope includes a core strand, a plurality of side strands arranged around the core strand, and a coating resin that covers the core strand and the plurality of side strands.
  • IWRC Independent Wire Rope Core
  • main strands arranged around the IWRC, wherein the plurality of side strands is a virtual layer center circle in which the centers of the plurality of side strands are located.
  • the total ratio of the gaps between two side strands adjacent to each other in the circumferential direction of the virtual layer center circle out of the plurality of side strands is 8 with respect to the circumference of the virtual layer center circle. .5% or more.
  • an elevator main rope includes a core strand, a plurality of side strands arranged around the core strand, and a coating resin that covers the core strand and the plurality of side strands.
  • IWRC Independent ⁇ Rope Core
  • the ratio of the gap between each virtual circumscribed circle and the virtual inscribed circle of the plurality of main strands is 3.0% or more.
  • An elevator apparatus includes a car and a counterweight, a main rope that suspends the car and the counterweight in the hoistway, and a hoisting machine that drives the main rope. Is the main rope for an elevator according to the present invention.
  • the strands constituting the IWRC can be prevented from contacting each other, so that the rope life can be improved. Further, the reliability of the elevator apparatus is improved, and the maintenance of the elevator apparatus is facilitated.
  • FIG. 1 is a schematic configuration diagram illustrating an elevator apparatus according to an embodiment of the present invention. It is sectional drawing which shows the main rope for elevators which is one Embodiment of this invention. It is sectional drawing which wrote together the gap
  • the relationship between the wire rubbing dimension ratio and the spacing ratio A is shown.
  • the relationship between the number of strand rubbing number ratio and the spacing ratio B is shown.
  • An example of the relationship between the spacing ratio A and the spacing ratio B is shown.
  • the cross section of the representative sample in the main rope sample is shown.
  • the cross section of the representative sample in the main rope sample is shown.
  • the cross section of the representative sample in the main rope sample is shown.
  • the cross section of the representative sample in the main rope sample is shown.
  • the cross section of the representative sample in the main rope sample is shown.
  • the cross section of the representative sample in the main rope sample is shown.
  • the cross section of the representative sample in the main rope sample is shown.
  • the cross section of the representative sample in the main rope sample is shown.
  • the relationship between the wire rubbing dimensional ratio and the spacing ratio A and the relationship between the strand rubbing number ratio and the spacing ratio B are shown.
  • the relationship between the allowable ratio of the rope breaking strength and the number of ropes is shown.
  • the relationship between the ratio of the rope breaking strength and the spacing ratio A is shown.
  • FIG. 1 is a schematic configuration diagram showing an elevator apparatus according to an embodiment of the present invention.
  • main rope 2 is connected to the car 3 and the other end of the main rope 2 is connected to the counterweight 4.
  • the main rope 2 is wound around the sheave of the hoist 1 and the direction change pulley 20.
  • the car 3 and the counterweight 4 are suspended by the main rope 2 in a hoistway (not shown).
  • the sheave is rotated by the motor of the hoist 1, the main rope 2 is driven, so that the car 3 and the counterweight 4 are raised and lowered while being guided by a guide rail (not shown).
  • an elevator main rope which is an embodiment of the present invention as described later is used.
  • the reliability of the elevator apparatus is improved. Furthermore, since the main rope maintenance life is improved, the maintenance inspection frequency of the main rope can be reduced, so that the maintenance of the elevator apparatus is facilitated. In addition, since the strength drop of the main rope is suppressed, an increase in the number of ropes to the desired load capacity can be suppressed, thus suppressing an increase in sheave and pulley dimensions and an increase in the rope installation space in the hoistway. Can do.
  • FIG. 2 is a sectional view showing an elevator main rope according to an embodiment of the present invention.
  • FIG. 2 shows a cross section in a direction perpendicular to the longitudinal direction of the main rope (the same applies to other cross sectional views).
  • the elevator main rope of the present embodiment includes an IWRC as a rope core and ten main strands 10A to 10J that are arranged around the IWRC and wound while being twisted around the outer periphery of the IWRC. It consists of.
  • the main strands 10A to 10J are in contact with the outer peripheral surface of the IWRC. Further, in the main rope section, the main strands 10A to 10J are arranged at substantially equal intervals along the circumferential direction around the IWRC.
  • the IWRC is wound while being twisted while keeping a space between one core strand 7 arranged in the center portion thereof, that is, the center portion of the main rope, and the core strand 7 on the outer periphery of the core strand 7 6.
  • Side strands 8A to 8F, and a coating resin 9 that covers the entire periphery of the core strand 7 and the side strands 8A to 8F, including between the core strand 7 and the side strands 8A to 8F and between the side strands. have.
  • the side strands 8A to 8F are positioned at equal intervals on the same circumference centered on the center of the core strand 7, that is, the center of the IWRC (ie, the center of the main rope) in the cross section of the main rope. Placed in.
  • the IWRC is composed of an independent rope having a circular cross section, which is constituted by the core strand 7, the side strands 8A to 8F, and the coating resin 9.
  • the main strands 10A to 10J, the core strand 7 and the side strands 8A to 8F have a known configuration in which a plurality of strands made of steel wires are twisted so that the cross-section of the strand is substantially circular.
  • the strand diameters (diameters) of the core strand 7 and the side strands 8A to 8F are set to be equal to each other and smaller than the strand diameters (diameters) of the main strands 10A to 10J.
  • the kind of strand diameter of the strand which comprises a main rope can be reduced by making each strand diameter of IWRC equal in this way, productivity improves or cost is reduced.
  • the predetermined main rope diameter (diameter) and the corresponding IWRC diameter (diameter) between the core strand 7 and the side strands 8A to 8F, between the side strands, and between the side strands 8A to 8F and the main strand 10A.
  • the strand diameters of the core strand 7 and the side strands 8A to 8F are set so that the coating resin 9 is interposed between ⁇ 10J. This prevents direct contact between the core strand 7 and the side strands 8A to 8F, between the side strands, and between the side strands 8A to 8F and the main strands 10A to 10J. For this reason, even if tension is applied to the main rope or the main rope is bent when passing through the sheave or pulley of the elevator, wear of the strands due to contact between the strands is prevented. Therefore, it is possible to improve the rope life and to suppress the deterioration of the rope strength over time.
  • the core strand 7 and the side strands 8A to 8F are in contact with each other under the predetermined main rope diameter and the corresponding IWRC diameter, the side strands are in contact with each other, and the side strands 8A to 8F and the main strand are in contact with each other.
  • the strand diameters of the core strand 7 and the side strands 8A to 8F are set so that 10A to 10J are in contact with each other
  • the strand diameters of the core strand 7 and the side strands 8A to 8F are larger than those of this embodiment. Since it increases, the strength increases. That is, in this embodiment, the life of the rope can be extended, but the rope strength tends to decrease. Accordingly, in the elevator apparatus, the number of ropes for supporting the same load tends to increase.
  • the strands in IWRC are arranged so as to provide gaps between 8A to 8F, between side strands, and between side strands 8A to 8F and main strands 10A to 10J, and the center of side strands 8A to 8F
  • the ratio of the total value of the gap dimension between the side strands 8A to 8F to the length of the circumference at which the side strands 8A to 8F are located, that is, the circumference of the virtual layer center circle of the side strands 8A to 8F is 8.5% to 20%.
  • FIG. 3 is a cross-sectional view similar to FIG. 2 in which gap dimensions (a, b) between strands are also shown.
  • the side strands 8A to 8F are arranged so that the centers of the side strands 8A to 8F are positioned on the circumference of the virtual layer center circle 11 with the center of the center strand 7 as the center. 11 are arranged at substantially equal intervals along the circumferential direction.
  • a gap dimension between two side strands adjacent on the circumference of the virtual layer center circle 11 is defined as a.
  • the main strands 10A to 10J are in contact with the surface of the IWRC, are inscribed in the main strands 10A to 10J, and are arranged at equal intervals along a virtual inscribed circle 12 centering on the center of the core strand 7.
  • the gap dimension between the main strand and the side strand adjacent in the radial direction of the IWRC and the main strand is b.
  • the size of the gap between the virtual circumscribed circles of each of the two adjacent side strands (a circle having the center of the side strand as the center and the diameter of the strand as the diameter) is regarded as a, and the side strand
  • the size of the gap between each virtual circumscribed circle in contact with each outer periphery of 8A to 8F and the virtual inscribed circle 12 of the main strands 10A to 10J is regarded as b.
  • the virtual inscribed circle 12 coincides with the outer periphery of the IWRC (that is, the outer periphery of the coating resin).
  • the spacing ratio A is the ratio of the total value of the gap dimension a to the circumferential length of the virtual layer center circle (11 in FIG. 3) of the side strand, and is represented by the formula (1).
  • Interval ratio A (%) (total value of a / circumferential length of virtual layer center circle) ⁇ 100 (1)
  • the total value of the gap dimension a is 6a because there are six side strands.
  • the spacing ratio B is the ratio of the gap dimension b to the radius of the virtual inscribed circle (12 in FIG. 3) of the main strand, and is expressed by Expression (2).
  • FIG. 4 shows a result of an investigation by the present inventor and shows the relationship between the wire rubbing dimension ratio and the spacing ratio A.
  • the results of this study are the results of a repeated bending fatigue test, using a planetary fatigue tester as the testing machine, with the rope tension being 1/10 of the rope breaking strength, and the number of repeated bendings being 6 million. Yes. After the bending test, the rope was disassembled, and the length of the strand rubbing trace in the strand of the IWRC strand was measured using an optical microscope. In addition, in FIG.
  • the spacing ratio A is 8.5% or more, the strands of the IWRC strands are not rubbed. Therefore, the rope life can be improved by setting the spacing ratio A to 8.5% or more.
  • FIG. 5 shows a result of the study by the present inventor and shows the relationship between the number of strand rubbing number ratio and the spacing ratio B.
  • This examination result is a result of the repeated bending fatigue test, and the testing machine and test conditions are the same as those in FIG.
  • the rope was disassembled, and the number of strand rubbing traces in the strand of the IWRC strand was measured using an optical microscope.
  • the spacing ratio B 0 (%), that is, when the side strand and the main strand contact each other without a gap along the radial direction of the virtual inscribed circle
  • the number of wire rubbing traces is used as the reference number.
  • the number of wire rubbing traces with respect to each spacing ratio is indicated by the number of wire rubbing number ratios, which is the number ratio with respect to the reference number.
  • the spacing ratio B is set to 3.0% or more, the strand of the IWRC strand does not rub. Therefore, the rope life can be improved by setting the spacing ratio B to 3.0% or more.
  • FIG. 6 shows an example of the relationship between the spacing ratio A and the spacing ratio B as studied by the present inventors.
  • Plots 13 to 18 in the figure show the values of the spacing ratio A and the spacing ratio B in the representative sample in the main rope sample in the study of the present inventors.
  • the spacing ratio B is proportional to the spacing ratio A.
  • the plots 13 to 18 are substantially aligned with respect to the representative sample in the main rope sample in the study by the present inventor, and the spacing ratio A and the spacing ratio B are in a proportional relationship. is there.
  • the diameters (diameters) of the side strands and the core strands of the main rope sample corresponding to the plots 14 to 18 become smaller in the order of the plot numbers, and the gap dimensions a and b become larger, so that the spacing ratios A and B both increase.
  • (A, B) of plots 13 to 18 are (0, 0), (6, 2.1), (10, 3.6), (14.3, 5.1), (18, 6), respectively. .3) and (24, 8.3), and the relationship of the expression (3) is substantially satisfied.
  • 7 to 12 show cross sections of representative samples in the main rope sample in the study of the present inventors. 7, 8, 9, 10, 11 and 12 show the main rope samples having (A, B) of plots 13, 14, 15, 16, 17 and 18 in FIG. 6, respectively. 7 to 12, the main rope diameter, the IWRC diameter, the number of main strands (10), and the strand diameter of the main strand are kept constant. Moreover, although the strand diameter of a side strand and the strand diameter of a core strand are made into the same magnitude
  • the six side strands are located on the circumference of the same layer center circle 11 as the main rope sample of FIG. Arranged at regular intervals.
  • the diameters of the side strands and the core strands are made smaller in the order of FIGS. That is, the center position of the side strand and the core strand is not changed from the main rope sample of FIG.
  • the diameter of the virtual inscribed circle 12 of the main strand is the same as that of the main rope sample of FIG. Thereby, a gap is provided between the core strand and the side strand, between the side strands, and between the main strand and the side strands. For this reason, the contact between the side strands and the contact between the side strand and the main strand are prevented, and the rope life can be improved.
  • FIG. 13 shows a result of an examination by the present inventor, showing the relationship between the wire rubbing dimension ratio and the spacing ratio A and the relationship between the number of strand rubbing number ratio and the spacing ratio B.
  • the result of this study is a repeated bending fatigue test for main rope samples having various spacing ratios A and B as shown in FIG. 6, represented by the main rope samples shown in FIGS. Is the result of Note that the testing machine, test conditions, measurement method, and the like are the same as the examination results shown in FIGS.
  • the spacing ratio A is 8.5% or more.
  • the spacing ratio B is 3.0% or more, rubbing due to contact between the strands can be prevented. Accordingly, the rope life can be improved.
  • the interval ratio A of 8.5% or more corresponds to the interval ratio B of 3% or more by the relationship shown in FIG. 6 or the relationship of the expression (3). Therefore, if the spacing ratio A is 8.5% or more, the contact between the strands can be prevented and the rope life can be improved.
  • FIG. 14 shows the relationship between the allowable ratio of the rope breaking strength and the number of ropes, which is the result of the study by the present inventor.
  • the allowable ratio of rope rupture strength is the ratio of the rope rupture strength that is allowed when the same load is supported by increasing the number of ropes to the rope rupture strength when a certain load can be supported by a certain number of ropes.
  • Curve 19 in FIG. 14 is the ratio of the rope breaking strength allowed when the same load is supported by increasing the number of rope hooks to the rope breaking strength when a certain load can be supported by a certain number of rope hooks, The relationship of the number of ropes is shown. Therefore, if the number of ropes is n, the relationship in FIG.
  • the number of rope hangings can be limited to one. That is, as shown in FIG. 13, the life ratio is improved by setting the spacing ratio A to 8.5% or more, but the ratio of the rope breaking strength is 0.91 or more even when the main rope having a reduced breaking strength is used.
  • the increase in the number of ropes can be stopped to one, and the size of the sheaves and pulleys and the increase in the rope installation space can be suppressed.
  • FIG. 15 shows the result of the study by the present inventor and shows the relationship between the ratio of the rope breaking strength and the spacing ratio A.
  • the results of this study are for a main rope sample with IWRC having various spacing ratios A including the main rope sample as shown in FIGS. 7-12 under a predetermined main rope diameter.
  • the number of main strands is set to 6, 8, 10, and 12, which are the normal numbers used.
  • the plot rows 20, 21, 22, and 23 in FIG. 15 are the cases where the number of main strands is 6, 8, 10, and 12, respectively.
  • the strand diameter in IWRC decreases, so that the rope breaking strength decreases as shown in FIG.
  • the rope breaking strength decreases as the number of main strands increases, but this increases the number of main strands when the number of main strands increases under a predetermined main rope diameter. This is because the diameter is reduced.
  • the strand diameter of the main strand is smaller.
  • the contrast ratio of the rope breaking strength is 0.91 or more.
  • the spacing ratio A is 31.5% or less, 23% or less, 20%, respectively. Or less and 18% or less. That is, for the normal number of main strands (6 to 12), if the spacing ratio A is 18% or less, the increase in the number of ropes can be stopped, and the size of the sheave or pulley and the rope An increase in installation space can be suppressed.
  • the spacing ratio A is 8.5% or more, the strands can be prevented from contacting each other and the rope life can be improved. Therefore, with respect to the normal number of main strands (6 to 12), if the spacing ratio A is set to 8.5% or more and 18% or less, the rope life can be improved while suppressing the decrease in the rope strength. .
  • the spacing ratio A is 8.5% or more and 31.5% or less, 8.5% or more and 23% or less, and 8.5%, respectively. By setting it as 20% or less and 8.5% or more and 18% or less, the rope life can be improved while suppressing a decrease in rope strength.
  • the range of the strand spacing ratio for improving the life of the elevator main rope having IWRC is numerically clarified, whereas there is a conventional technique for simply separating the strands, The numerical range of the ratio is not clear.
  • the conventional technology does not have a concept of allowing the number of ropes to be increased by one with respect to the rope breaking strength that is sacrificed when increasing the spacing ratio to improve the rope life, and based on such a concept.
  • the numerical range of the spacing ratio is also not clear in the prior art.
  • the elevator main rope according to the present invention can be applied to both an elevator equipped with a machine room and a machine room-less elevator.

Landscapes

  • Lift-Guide Devices, And Elevator Ropes And Cables (AREA)
  • Ropes Or Cables (AREA)

Abstract

本発明は、ロープ寿命を向上できるエレベータ用主ロープ(2)を提供する。本発明によるエレベータ用主ロープ(2)は、心ストランド(7)と、心ストランド(7)の周囲に配置される複数の側ストランド(8A~8F)と、心ストランド(7)および複数の側ストランド(8A~8F)を被覆する被覆樹脂(9)とを有するIWRCと、IWRCの周囲に配置される複数の主ストランド(10A~10J)と、を備えるものであって、複数の側ストランド(8A~8F)は、複数の側ストランド(8A~8F)の各中心が位置する仮想層心円(11)の周上に略等間隔で配置され、仮想層心円(11)の周長に対して、複数の側ストランド(8A~8F)の内、仮想層心円(11)の周方向において隣り合う二つの側ストランド(8A~8F)の間隙(a)の総計の割合が8.5%以上であるか、あるいは複数の主ストランド(10A~10J)の仮想内接円(12)の半径に対して、複数の側ストランド(8A~8F)の各仮想外接円と、複数の主ストランド(10A~10J)の仮想内接円(12)との間隙(b)の割合が3.0%以上である。

Description

エレベータ用主ロープ並びにそれを用いるエレベータ装置
 本発明は、乗りかごの昇降のために使用されるエレベータ用ロープ並びにそれを用いるエレベータ装置に関する。
 エレベータ装置の乗りかごは、昇降路内において、主ロープによって吊られると共に昇降駆動される。このようなエレベータ用の主ロープにおいては、鋼心の周囲に複数本の主ストランドが撚り合わされる。
 主ロープの強度と柔軟性を共に確保するために、鋼心(Steel Core)として独立した一つのロープすなわちIWRC(Independent Wire Rope Core)が用いられる。IWRCに関する従来技術として、特許文献1に記載の技術が知られている。本従来技術によるエレベータ用主ロープにおいては、IWRCの心ストランドおよび側ストランドの素線として2050N/mm以上の強度を有する素線が用いられ、主ストランドの素線として1770N/mm以下の強度を有する素線が用いられる。さらに、IWRCの心ストランドの集合破断荷重は、すべての主ストランドの集合破断荷重の0.4倍以上かつ0.6倍以下の大きさに設定される。
特許第5307395号公報
 上記従来技術による主ロープにおいては、IWRCの心ストランドおよび側ストランドの接触あるいは側ストランド同士の接触が発生し易い。また、主ロープに張力が負荷されたり、主ロープがエレベータの綱車(シーブ)や滑車(プーリ)を通過する際に屈曲されたりすると、ストランド同士が近接して接触し、互いに擦れ合う。これらにより、ストランドに摩耗が生じるため、主ロープの寿命が短くなるという問題がある。
 そこで、本発明は、ロープ寿命を向上できるエレベータ用主ロープ並びにそれを用いるエレベータ装置を提供する。
 上記課題を解決するために、本発明によるエレベータ用主ロープは、心ストランドと、心ストランドの周囲に配置される複数の側ストランドと、心ストランドおよび複数の側ストランドを被覆する被覆樹脂とを有するIWRC(Independent Wire Rope Core)と、IWRCの周囲に配置される複数の主ストランドと、を備えるものであって、複数の側ストランドは、複数の側ストランドの各中心が位置する仮想層心円の周上に略等間隔で配置され、仮想層心円の周長に対して、複数の側ストランドの内、仮想層心円の周方向において隣り合う二つの側ストランドの間隙の総計の割合が8.5%以上である。
 また、上記課題を解決するために、本発明によるエレベータ用主ロープは、心ストランドと、心ストランドの周囲に配置される複数の側ストランドと、心ストランドおよび複数の側ストランドを被覆する被覆樹脂とを有するIWRC(Independent Wire Rope Core)と、IWRCの周囲に配置される複数の主ストランドと、を備えるものであって、複数の主ストランドの仮想内接円の半径に対して、複数の側ストランドの各仮想外接円と、複数の主ストランドの仮想内接円との間隙の割合が3.0%以上である。
 また、本発明によるエレベータ装置は、乗りかごおよび釣り合い錘と、昇降路内において乗りかごおよび釣り合い錘を吊る主ロープと、主ロープを駆動する巻上機と、を備えるものであって、主ロープは、上記本発明によるエレベータ用主ロープとする。
 本発明によれば、IWRCを構成するストランド同士の接触を防止できるので、ロープ寿命を向上することができる。また、エレベータ装置の信頼性が向上したり、エレベータ装置の保守が容易になったりする。
 上記した以外の課題、構成および効果は、以下の実施形態の説明により明らかにされる。
本発明の一実施形態であるエレベータ装置を示す概略構成図である。 本発明の一実施形態であるエレベータ用主ロープを示す断面図である。 ストランド間の間隙寸法を併記した断面図である。 素線擦れ寸法比と間隔比Aの関係を示す。 素線擦れ個数比と間隔比Bの関係を示す。 間隔比Aと間隔比Bの関係例を示す。 主ロープサンプル中の代表サンプルの断面を示す。 主ロープサンプル中の代表サンプルの断面を示す。 主ロープサンプル中の代表サンプルの断面を示す。 主ロープサンプル中の代表サンプルの断面を示す。 主ロープサンプル中の代表サンプルの断面を示す。 主ロープサンプル中の代表サンプルの断面を示す。 素線擦れ寸法比と間隔比Aの関係および素線擦れ個数比と間隔比Bの関係を示す。 ロープ破断強度の許容対比率とロープ掛け本数との関係を示す。 ロープ破断強度の対比率と間隔比Aとの関係を示す。
 以下、本発明の実施形態を図面に基づいて説明する。なお、各図において、参照番号が同一のものは同一の構成要件あるいは類似の機能を備えた構成要件を示している。
 図1は、本発明の一実施形態であるエレベータ装置を示す概略構成図である。
 図1に示すように、乗りかご3には主ロープ2の一端が接続され、釣り合い錘4には主ロープ2の他端が接続される。主ロープ2は巻上機1のシーブと方向転換プーリ20に巻き掛けられる。乗りかご3および釣り合い錘4は、図示されない昇降路内において主ロープ2によって吊られる。巻上機1のモータによってシーブが回転すると、主ロープ2が駆動されるので、乗りかご3および釣り合い錘4は、図示されないガイドレールに案内されながら昇降する。主ロープ2として、後述するような本発明の一実施形態であるエレベータ用主ロープが用いられる。
 本実施形態によれば、後述するように主ロープ2の強度の低下を抑えつつ主ロープ2の寿命が向上するため、エレベータ装置の信頼性が向上する。さらに、主ロープの寿命が向上することにより主ロープの保守点検頻度が低減できるので、エレベータ装置の保守が容易になる。また、主ロープの強度低下が抑制されているため、所望の積載量に対するロープ掛け本数の増加を抑制できるので、シーブやプーリの寸法の増大や、昇降路内におけるロープ設置空間の増大を抑えることができる。
 図2は、本発明の一実施形態であるエレベータ用主ロープを示す断面図である。本図2は、主ロープの長手方向に垂直な方向における断面を示す(他の断面図も同様)。
 図2に示すように、本実施形態のエレベータ用主ロープは、ロープ芯材となるIWRCと、このIWRCの周囲に配置され、IWRCの外周において撚り合わされながら巻き付けられる10本の主ストランド10A~10Jとからなる。主ストランド10A~10Jは、IWRCの外周表面に接する。さらに、主ロープ断面において、主ストランド10A~10Jは、IWRCの周囲において周方向に沿って略等間隔に配置される。
 IWRCは、その中心部すなわち主ロープの中心部に配置される1本の心ストランド7と、心ストランド7の外周において、心ストランド7との間に間隔を保持して、撚られながら巻き付けられる6本の側ストランド8A~8Fと、心ストランド7と側ストランド8A~8Fとの間および側ストランド同士の間も含めて、心ストランド7と側ストランド8A~8Fの周囲全体を被覆する被覆樹脂9とを有している。側ストランド8A~8Fは、主ロープ断面において、側ストランド8A~8Fの中心が心ストランド7の中心すなわちIWRCの中心(すなわち主ロープ中心)を中心とする同一円周上に等間隔に位置するように配置される。このように、IWRCは、心ストランド7、側ストランド8A~8Fおよび被覆樹脂9によって構成される、断面が円形の独立したロープからなる。
 なお、主ストランド10A~10J、心ストランド7と側ストランド8A~8Fは、鋼線からなる複数本の素線が、ストランド断面が略円形となるように撚り合わされる公知の構成を有する。
 図2の主ロープ断面において、心ストランド7および側ストランド8A~8Fのストランド径(直径)は、互いに等しく、かつ主ストランド10A~10Jのストランド径(直径)よりも小さな値に設定される。なお、このようにIWRCの各ストランド径を等しくすることにより、主ロープを構成するストランドのストランド径の種類が低減できるので、生産性が向上したり、コストが低減されたりする。また所定の主ロープ径(直径)およびそれに対応するIWRC径(直径)のもとで、心ストランド7と側ストランド8A~8Fの間、側ストランド同士間、および側ストランド8A~8Fと主ストランド10A~10Jの間に被覆樹脂9が介在するように、心ストランド7および側ストランド8A~8Fのストランド径の大きさが設定される。これにより、心ストランド7と側ストランド8A~8Fとの間、側ストランド同士の間、側ストランド8A~8Fと主ストランド10A~10Jの間における直接的な接触が防止される。このため、主ロープに張力が負荷されたり、主ロープがエレベータのシーブやプーリを通過する際に屈曲されたりしても、各ストランド間の接触による素線の摩耗が防止される。従って、ロープ寿命を向上できると共に、ロープ強度の経年低下を抑えることができる。
 ここで、所定の主ロープ径およびそれに対応するIWRC径のもとで、心ストランド7と側ストランド8A~8Fが互いに接触し、側ストランド同士が互いに接触し、かつ側ストランド8A~8Fと主ストランド10A~10Jが互いに接触するように、心ストランド7および側ストランド8A~8Fのストランド径の大きさが設定される場合、本実施形態よりも、心ストランド7および側ストランド8A~8Fのストランド径が大きくなるので、強度は大きくなる。すなわち、本実施形態は、ロープの長寿命化が可能となる反面、ロープ強度が低下する傾向にある。従って、エレベータ装置において、同じ荷重を支えるためのロープ掛け本数が増加する傾向にある。
 これに対し、後述するようなエレベータ用主ロープの寿命と強度に関する本発明者の検討により得られた新規な知見に基づき、本実施形態では、図2に示すように、心ストランド7と側ストランド8A~8Fとの間、側ストランド同士の間、および側ストランド8A~8Fと主ストランド10A~10Jとの間に間隙を設けるようにIWRCにおける各ストランドを配置し、かつ側ストランド8A~8Fの中心が位置する円周の長さ、すなわち側ストランド8A~8Fの仮想層心円の周長に対する側ストランド8A~8F間の間隙寸法の総計値の割合が8.5%以上20%以下にする。これにより、ロープ強度の低下を抑えながらロープ寿命を向上することができる。
 以下、エレベータ用主ロープの寿命と強度に関する本発明者の検討について説明する。
 図3は、ストランド間の間隙寸法(a,b)を併記した図2と同様の断面図である。
 図3に示すように、側ストランド8A~8Fは、心ストランド7の中心を中心とする仮想層心円11の円周上に側ストランド8A~8Fの各中心を位置させて、仮想層心円11の周方向に沿ってほぼ等間隔に配置される。ここで、仮想層心円11の円周上において隣り合う二個の側ストランド間の間隙寸法をaとする。また、主ストランド10A~10Jは、IWRCの表面に接し、かつ主ストランド10A~10Jに内接し、心ストランド7の中心を中心とする仮想内接円12に沿って等間隔に配置されている。ここで、主ロープおよびIWRCの径方向において隣り合う側ストランドと主ストランドの間隙寸法をbとする。なお、以下の検討においては、隣り合う二個の側ストランドの各々の仮想外接円(側ストランドの中心を中心とし、ストランド径を直径とする円)の間隙の大きさ上記aと見なし、側ストランド8A~8Fの各外周に接する各仮想外接円と主ストランド10A~10Jの仮想内接円12との間隙の大きさを上記bと見なす。なお、主ロープ断面において、仮想内接円12はIWRC外周(すなわち被覆樹脂の外周)に一致している。
 以下の検討結果におけるロープ構成に係るパラメータである「間隔比A」および「間隔比B」について説明する。
 間隔比Aは、側ストランドの仮想層心円(図3の11)の円周長に対する間隙寸法aの総計値の割合あり、式(1)で表される。
 間隔比A(%)=(aの総計値/仮想層心円の円周長)×100 … (1)
 なお、間隙寸法aの総計値は、例えば図3の場合、側ストランドが6本であるから、6aとなる。
 また、間隔比Bは、主ストランドの仮想内接円(図3の12)の半径に対する間隙寸法bの割合であり、式(2)で表される。
 間隔比B(%)=(b/仮想内接円の半径)×100 … (2)
 図4は、本発明者による一検討結果であり、素線擦れ寸法比と間隔比Aの関係を示す。本検討結果は、繰り返し屈曲疲労試験の結果であり、試験機としては遊星式疲労試験機を使用し、試験条件としてロープ張力はロープ破断強度の1/10とし、繰り返し屈曲回数は600万回としている。屈曲試験後ロープを分解して、光学顕微鏡を用いて、IWRCのストランドの素線における素線擦れ痕の長さを測定している。なお、図4においては、間隔比A=0(%)の場合、すなわち側ストランドが仮想層心円の周方向に沿って間隙なく接する場合における素線擦れ痕の長さを基準長さとして、各間隔比に対する素線擦れ痕の長さを、基準長さに対する寸法比である素線擦れ寸法比によって示している。
 図4に示すように、本発明者の検討によれば、間隔比Aを8.5%以上とすればIWRCのストランドの素線に擦れが発生しない。従って、間隔比Aを8.5%以上とすることにより、ロープ寿命を向上できる。
 図5は、本発明者による一検討結果であり、素線擦れ個数比と間隔比Bの関係を示す。本検討結果は、繰り返し屈曲疲労試験の結果であり、試験機および試験条件は先の図4の場合と同じである。屈曲試験後ロープを分解して、光学顕微鏡を用いて、IWRCのストランドの素線における素線擦れ痕の個数を測定している。なお、図5においては、間隔比B=0(%)の場合、すなわち側ストランドと主ストランドが仮想内接円の径方向に沿って間隙なく接する場合における素線擦れ痕の個数を基準個数として、各間隔比に対する素線擦れ痕の個数を、基準個数に対する個数比である素線擦れ個数比によって示している。
 図5に示すように、本発明者の検討によれば、間隔比Bを3.0%以上とすればIWRCのストランドの素線に擦れが発生しない。従って、間隔比Bを3.0%以上とすることにより、ロープ寿命を向上できる。
 図6は、本発明者の検討における間隔比Aと間隔比Bの関係例を示す。図中のプロット13~18は、本発明者の検討における主ロープサンプル中の代表サンプルにおける間隔比Aおよび間隔比Bの値を示す。
 本発明者の検討における主ロープサンプルのIWRCにおいては、所定のロープ径および所定のIWRC径のもとで、図1の実施形態と同様に、一本の心ストランドの回りに6本の側ストランドが同一の仮想層心円周に沿って等間隔に配置される。心ストランドのストランド径と側ストランドのストランド径は同じ大きさdとし、IWRCにおける側ストランドおよび心ストランドの中心の位置は変えずに、dを変えることによって図3における間隙寸法a,bを変えている。ここで、仮想層心円は、dが最大の場合、すなわち隣接するストランドが間隙なく接する場合の側ストランドの中心を通り、この中心の位置はdを変えても変えない。
 このとき、側ストランドおよび心ストランドの断面形状の外形を円とみなし、かつA=B=0の場合のdの値すなわちdの最大値をdとすると、間隙寸法aの総計値=6a=6(d-d)、仮想層心円の円周長=2πd、間隙寸法b=(d-d)/2、仮想内接円の半径=3d/2であるから、式(1),(2)より、A=100×3(d-d)/(π・d),B=100×(d-d)/3dである。従って、式(3)が得られる。
 B=πA/9 … (3)
 式(3)が示すように、間隔比Bは間隔比Aに比例する。これに対し、本発明者の検討における主ロープサンプル中の代表サンプルについては、図6に示すように、プロット13~18はほぼ一直線に並んでおり、間隔比Aと間隔比Bは比例関係にある。プロット13に対応する主ロープサンプルの側ストランドおよび心ストランドの径(直径)は、プロット13の場合に最大となり、間隙寸法a,b=0となるので、間隔比A,B=0となる。プロット14~18に対応する主ロープサンプルの側ストランドおよび心ストランドの径(直径)は、プロット番号の順に小さくなり、間隙寸法a,bが大きくなるため、間隔比A,Bはともに増加する。プロット13~18の(A,B)は、それぞれ、(0,0),(6,2.1),(10,3.6),(14.3,5.1),(18,6.3),(24,8.3)であり、式(3)の関係がほぼ満たされている。
 本発明者の検討における主ロープサンプルのように、間隔比A,Bの間に上記のような比例関係を設定すれば、A≧8.5%(図3)およびB≧3%(図4)の一方が満たされれば、他方も満たされる。
 図7~12は、本発明者の検討における主ロープサンプル中の代表サンプルの断面を示す。図7,8,9,10,11および12は、それぞれ、図6におけるプロット13,14,15,16,17および18の(A,B)を有する主ロープサンプルを示す。なお、図7~12の主ロープサンプルにおいて、主ロープ径、IWRC径、主ストランド数(10本)および主ストランドのストランド径は変えずに一定としている。また、側ストランドのストランド径と心ストランドのストランド径は同じ大きさとしているが、これにより主ロープを構成するストランド径の種類が低減できるので、生産性が向上したりコストが低減されたりする。
 図7に示す主ロープサンプルは、A=0,B=0である(図6のプロット13)。このため、IWRCにおいて側ストランド同士は層心円11の周方向で接触する。さらに、各側ストランドが、主ストランドの仮想内接円12、すなわちIWRCの外周表面に接する。このため、図7の主ロープサンプルにおいては、主ロープの径方向すなわちIWRCの径方向で、側ストランド8Bと主ストランド10Cが接触し、側ストランド8Eと主ストランド10Hとが接触する。
 図8~12に示す主ロープサンプルにおいて、6本の側ストランドは、それらの中心が図7の主ロープサンプルと同じ層心円11の周上に位置し、層心円11の周方向に沿って等間隔に配置される。図8~12の順に、側ストランドおよび心ストランドの径を小さくしている。すなわち、側ストランドおよび心ストランドの中心位置は、図7の主ロープサンプルと変えずに、ストランド径の大きさを変化させる。また、主ストランドの仮想内接円12の直径は、図7の主ロープサンプルと同じである。これにより、心ストランドと側ストランドの間、側ストランド間、および主ストランドと側ストランド間に、間隙が設けられる。このため、側ストランド同士の接触および側ストランドと主ストランドの接触が防止され、ロープ寿命を向上できる。
 図13は、本発明者による一検討結果であり、素線擦れ寸法比と間隔比Aの関係および素線擦れ個数比と間隔比Bの関係を示す。本検討結果は、上述した図7~図12に示した主ロープサンプルを代表とする、図6に示すような比例関係にある種々の間隔比A,Bを有する主ロープサンプルに対する繰り返し屈曲疲労試験の結果である。なお、試験機、試験条件、測定方法などについては、図4および図5に示した検討結果と同様である。
 図13が示すように、図7~12に示すような主ロープサンプル、すなわち図6に示すような関係にある間隔比A,Bを有する主ロープサンプルについて、間隔比Aが8.5%以上、あるいは間隔比Bが3.0%以上であれば、ストランド同士の接触による擦れを防止することができる。従って、ロープ寿命を向上できる。ここで、図6に示す関係あるいは式(3)の関係により、間隔比Aが8.5%以上であることは間隔比Bが3%以上であることに対応する。従って、間隔比Aが8.5%以上であれば、ストランド同士の接触を防止して、ロープ寿命を向上できる。
 図1に示す実施形態のエレベータ用主ロープ並びに図7~12に示すようなエレベータ用主ロープサンプルにおいては、1本の心ストランドの回りに、6本の側ストランドが配置される。6本の側ストランドの中心を、層心円の周方向に沿って、隣り合う側ストランドの中心を結ぶ6本の直線は、正六角形を描く。従って、間隔比A,B=0の場合、所定の径を有するIWRC内、すなわち主ストランドの仮想内接円12内において、心ストランドおよび側ストランドが最密充填される。従って、図7~12に示すような主ロープサンプル中で、図7の主ロープサンプルのIWRCのストランド総断面積が最大となる。このため、図7~12に示すような主ロープサンプルにおいては、間隔比A,B=0である図7の主ロープサンプルのロープ破断強度が最大となる。しかし、上述したように、間隔比Aを8.5%以上として、ロープ寿命を向上させると、IWRC内におけるストランド径が小さくなりストランドの総断面積が低減するため、ロープ破断強度は低下する。ロープ破断強度が低下する場合、エレベータ装置においては、ロープ掛け本数を増やすことになるが、シーブやプーリの大きさやロープ設置空間の増大を招く。そこで、このような点を考慮した、ロープ破断強度に関する本発明者の検討について、次に説明する。
 図14は、本発明者の検討結果である、ロープ破断強度の許容対比率とロープ掛け本数との関係を示す。ロープ破断強度の許容対比率とは、ある荷重をあるロープ掛け本数で支持できる場合のロープ破断強度に対する、同じ荷重を、ロープ掛け本数を増やして支持する場合において許容されるロープ破断強度の比を示す。図14における曲線19は、ある荷重をあるロープ掛け本数で支持できる場合のロープ破断強度に対する、同じ荷重を、ロープ掛け本数を1本増やして支持する場合において許容されるロープ破断強度の比と、ロープ掛け本数の関係を示す。従って、ロープ掛け本数をnとすれば、図19の関係は、ロープ破断強度の許容対比率=n/(n+1)である。例えば、3本の主ロープで支持できる荷重を4本の主ロープで支持する場合、許容されるロープ破断強度は、3本の主ロープで支持する場合のロープ破断強度の0.75倍である。
 図14が示すように、通常のロープ掛け本数である3~10本の場合、ロープ破断強度の許容対比率を0.91以上とすることにより、ロープ破断強度が低下しても、ロープ掛け本数の増加を1本に止めることができる。すなわち、図13に示すように、間隔比Aを8.5%以上として寿命が向上する反面、破断強度が低下する主ロープを用いる場合でも、ロープ破断強度の対比率を0.91以上とすることにより、ロープ掛け本数の増加を1本に止めることができ、シーブやプーリの大きさやロープ設置空間の増大を抑えることができる。
 図15は、本発明者の検討結果であり、ロープ破断強度の対比率と間隔比Aとの関係を示す。本検討結果は、所定の主ロープ径のもとで、図7~12に示すような主ロープサンプルを含む種々の間隔比Aを有するIWRCを備える主ロープサンプルに対するものである。但し、主ストランドの本数は、通常の使用本数である6本、8本、10本、12本としている。図15におけるプロット列20,21,22,23が、それぞれ主ストランド本数6,8,10,12の場合である。
 間隔比Aが大きくなるほどIWRCにおけるストランド径が小さくなるので、図15が示すように、ロープ破断強度が低下する。なお、間隔比Aが同じ大きさであっても、主ストランド本数が増えるとロープ破断強度が低下するが、これは所定の主ロープ径のもとで主ストランドの本数を増やすと主ストランドのストランド径が小さくなるためである。但し、エレベータ用主ロープの柔軟性については、主ストランドのストランド径が小さい方が好ましい。
 上述したように、ロープ掛け本数の増大を1本に止める場合、ロープ破断強度の対比率は0.91以上とする。これを満たすためには、図15に示すように、主ストランド本数が6本、8本、10本および12本の場合、それぞれ間隔比Aを、31.5%以下、23%以下、20%以下および18%以下とする。すなわち、通常の主ストランド本数(6~12本)に対しては、間隔比Aを18%以下とすれば、ロープ掛け本数の増大を1本に止めることができ、シーブやプーリの大きさやロープ設置空間の増大を抑えることができる。
 また、上述したように、間隔比Aが8.5%以上であれば、ストランド同士の接触を防止して、ロープ寿命を向上できる。従って、通常の主ストランド本数(6~12本)に対しては、間隔比Aを8.5%以上かつ18%以下とすれば、ロープ強度の低下を抑えながらロープ寿命を向上することができる。また、主ストランド本数が6本、8本、10本および12本の場合、それぞれ間隔比Aを、8.5%以上31.5%以下、8.5%以上23%以下、8.5%以上20%以下および8.5%以上18%以下とすることにより、ロープ強度の低下を抑えながらロープ寿命を向上することができる。
 なお、上記のようにロープ強度の低下を抑えながらロープ寿命を向上することができる間隔比Aの範囲のもとで、IWRCの側ストランドは、本数を本実施形態のように6本として、正六角形を描くように配置することが力学的バランス上好ましい。さらに、このような配置とし、間隔比A=0の場合の層心円上に側ストランドを配置して、間隔比A=0の場合よりも側ストランドおよび心ストランドのストランド径を小さくすることにより、ストランド間に間隙を設けることが好ましい。これにより、ロープ強度が低下しても、IWRC内にストランドを最密充填する場合のロープ強度すなわち最大ロープ強度から大幅に低下することがなく、ロープ強度の低下を抑えることができる。さらに、主ロープの柔軟性を考慮すると、図2の実施形態のように、主ストランドの本数を10本とすることが好ましい。これにより、柔軟性、ロープ強度およびロープ寿命というエレベータ用主ロープの主要特性のバランスが向上する。
 ここで、本実施形態と、前述した特許文献1などにおける従来技術との比較について述べておく。
 本実施形態では、IWRCを有するエレベータ用主ロープの寿命を向上するためのストランドの間隔比の範囲が数値的に明らかにされているのに対し、ストランド同士を単に離す従来技術はあるものの、間隔比の数値範囲は明らかにされていない。また、間隔比を大きくしてロープ寿命を向上する際に犠牲となるロープ破断強度について、ロープ掛け本数を1本増しまで許容するというような考え方は従来技術には無く、そのような考え方に基づく間隔比の数値範囲も従来技術では明らかではない。さらに、強度の低下を抑えながら、ストランド間に間隙を設けるために、仮想される最密充填時の側ストランドの層心円周に沿って側ストランドを配置するという側ストランドの配置構成についても、従来技術では明らかではない。
 なお、本発明は前述した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、前述した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、各実施形態の構成の一部について、他の構成の追加・削除・置き換えをすることが可能である。
 例えば、本発明によるエレベータ用主ロープは、機械室を備えるエレベータおよび機械室レスエレベータのいずれにも適用できる。
1…巻上機,2…主ロープ,3…乗りかご,4…釣り合い錘,7…心ストランド,8A~8F…側ストランド,9…被覆樹脂,10A~10J…主ストランド,11…仮想層心円,12…仮想内接円,20…方向転換プーリ

Claims (12)

  1.  心ストランドと、前記心ストランドの周囲に配置される複数の側ストランドと、前記心ストランドおよび前記複数の側ストランドを被覆する被覆樹脂とを有するIWRC(Independent Wire Rope Core)と、
     前記IWRCの周囲に配置される複数の主ストランドと、
    を備えるエレベータ用主ロープにおいて、
     前記複数の側ストランドは、前記複数の側ストランドの各中心が位置する仮想層心円の周上に略等間隔で配置され、
     前記仮想層心円の周長に対して、前記複数の側ストランドの内、前記仮想層心円の周方向において隣り合う二つの側ストランドの間隙の総計の割合が8.5%以上であることを特徴とするエレベータ用主ロープ。
  2.  心ストランドと、前記心ストランドの周囲に配置される複数の側ストランドと、前記心ストランドおよび前記複数の側ストランドを被覆する被覆樹脂とを有するIWRC(Independent Wire Rope Core)と、
     前記IWRCの周囲に配置される複数の主ストランドと、
    を備えるエレベータ用主ロープにおいて、
     前記複数の側ストランドは、前記複数の側ストランドの各中心が位置する仮想層心円の周上に略等間隔で配置され、
     前記複数の主ストランドの仮想内接円の半径に対して、前記複数の側ストランドの各仮想外接円と前記仮想内接円との間隙の割合が3.0%以上であることを特徴とするエレベータ用主ロープ。
  3.  請求項1に記載のエレベータ用主ロープにおいて、
     前記複数の主ストランドの本数が6本であり、前記割合が31.5%以下であることを特徴とするエレベータ用主ロープ。
  4.  請求項1に記載のエレベータ用主ロープにおいて、
     前記複数の主ストランドの本数が8本であり、前記割合が23%以下であることを特徴とするエレベータ用主ロープ。
  5.  請求項1に記載のエレベータ用主ロープにおいて、
     前記複数の主ストランドの本数が10本であり、前記割合が20%以下であることを特徴とするエレベータ用主ロープ。
  6.  請求項1に記載のエレベータ用主ロープにおいて、
     前記複数の主ストランドの本数が12本であり、前記割合が18%以下であることを特徴とするエレベータ用主ロープ。
  7.  請求項1,3,4,5,6のいずれか一項に記載のエレベータ用主ロープにおいて、
     前記仮想層心円は、前記複数の主ストランドの仮想内接円内に前記複数の側ストランドが仮想的に最密充填される場合における層心円であることを特徴とするエレベータ用主ロープ。
  8.  請求項1,3,4,6のいずれか一項に記載のエレベータ用主ロープにおいて、
     前記仮想層心円は、前記複数の主ストランドの仮想内接円内に前記複数の側ストランドが仮想的に最密充填される場合における層心円であり、
     前記複数の側ストランドの本数が6本であることを特徴とするエレベータ用主ロープ。
  9.  請求項1に記載のエレベータ用主ロープにおいて、
     前記複数の側ストランドの本数が6本、前記複数の主ストランドの本数が10本であり、
     前記仮想層心円は、前記複数の主ストランドの仮想内接円内に前記複数の側ストランドが仮想的に最密充填される場合における層心円であり、
     前記割合が20%以下であることを特徴とするエレベータ用主ロープ。
  10.  請求項2に記載のエレベータ用主ロープにおいて、
     前記仮想層心円は、前記複数の主ストランドの仮想内接円内に前記複数の側ストランドが仮想的に最密充填される場合における層心円であることを特徴とするエレベータ用主ロープ。
  11.  乗りかごおよび釣り合い錘と、
     昇降路内において前記乗りかごおよび前記釣り合い錘を吊る主ロープと、
     前記主ロープを駆動する巻上機と、
    を備えるエレベータ装置において、
     前記主ロープは、
     心ストランドと、前記心ストランドの周囲に配置される複数の側ストランドと、前記心ストランドおよび前記複数の側ストランドを被覆する被覆樹脂とを有するIWRC(Independent Wire Rope Core)と、
     前記IWRCの周囲に配置される複数の主ストランドと、
    を備え、
     前記複数の側ストランドは、前記複数の側ストランドの各中心が位置する仮想層心円の周上に略等間隔で配置され、
     前記仮想層心円の周長に対して、前記複数の側ストランドの内、前記仮想層心円の周方向において隣り合う二つの側ストランドの間隙の総計の割合が8.5%以上であることを特徴とするエレベータ装置。
  12.  乗りかごおよび釣り合い錘と、
     昇降路内において前記乗りかごおよび前記釣り合い錘を吊る主ロープと、
     前記主ロープを駆動する巻上機と、
    を備えるエレベータ装置において、
     前記主ロープは、
     心ストランドと、前記心ストランドの周囲に配置される複数の側ストランドと、前記心ストランドおよび前記複数の側ストランドを被覆する被覆樹脂とを有するIWRC(Independent Wire Rope Core)と、
     前記IWRCの周囲に配置される複数の主ストランドと、
    を備え、
     前記複数の側ストランドは、前記複数の側ストランドの各中心が位置する仮想層心円の周上に略等間隔で配置され、
     前記複数の主ストランドの仮想内接円の半径に対して、前記複数の側ストランドの各仮想外接円と前記仮想内接円との間隙の割合が3.0%以上であることを特徴とするエレベータ用主ロープ。
PCT/JP2015/066518 2015-06-08 2015-06-08 エレベータ用主ロープ並びにそれを用いるエレベータ装置 WO2016199204A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017522775A JP6607935B2 (ja) 2015-06-08 2015-06-08 エレベータ用主ロープ並びにそれを用いるエレベータ装置
PCT/JP2015/066518 WO2016199204A1 (ja) 2015-06-08 2015-06-08 エレベータ用主ロープ並びにそれを用いるエレベータ装置
CN201580080619.0A CN107709214B (zh) 2015-06-08 2015-06-08 电梯用主吊索和使用其的电梯装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/066518 WO2016199204A1 (ja) 2015-06-08 2015-06-08 エレベータ用主ロープ並びにそれを用いるエレベータ装置

Publications (1)

Publication Number Publication Date
WO2016199204A1 true WO2016199204A1 (ja) 2016-12-15

Family

ID=57503377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/066518 WO2016199204A1 (ja) 2015-06-08 2015-06-08 エレベータ用主ロープ並びにそれを用いるエレベータ装置

Country Status (3)

Country Link
JP (1) JP6607935B2 (ja)
CN (1) CN107709214B (ja)
WO (1) WO2016199204A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019049514A1 (ja) 2017-09-11 2019-03-14 株式会社日立製作所 エレベーターロープ
WO2023053192A1 (ja) * 2021-09-28 2023-04-06 三菱電機株式会社 ロープ及びその製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111996662A (zh) * 2020-08-10 2020-11-27 泰安科鼎特工贸有限公司 一种耐磨型绞合式绳缆及其编织方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002327381A (ja) * 2001-04-25 2002-11-15 Tokyo Seiko Co Ltd ワイヤロープ
JP2003041493A (ja) * 2001-05-21 2003-02-13 Tokyo Seiko Co Ltd 多層撚りワイヤロープ
JP2008248426A (ja) * 2007-03-30 2008-10-16 Tokyo Seiko Co Ltd 動索用ワイヤロープ

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA996983B (en) * 1998-11-25 2000-05-18 Inventio Ag Sheathless synthetic fiber rope.
WO2002016248A1 (fr) * 2000-08-21 2002-02-28 Mitsubishi Denki Kabushiki Kaisha Cable de levage
FI119236B (fi) * 2002-06-07 2008-09-15 Kone Corp Päällystetyllä nostoköydellä varustettu hissi
JP4374293B2 (ja) * 2004-07-15 2009-12-02 株式会社日立製作所 ワイヤロープおよびワイヤロープの劣化検出方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002327381A (ja) * 2001-04-25 2002-11-15 Tokyo Seiko Co Ltd ワイヤロープ
JP2003041493A (ja) * 2001-05-21 2003-02-13 Tokyo Seiko Co Ltd 多層撚りワイヤロープ
JP2008248426A (ja) * 2007-03-30 2008-10-16 Tokyo Seiko Co Ltd 動索用ワイヤロープ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019049514A1 (ja) 2017-09-11 2019-03-14 株式会社日立製作所 エレベーターロープ
WO2023053192A1 (ja) * 2021-09-28 2023-04-06 三菱電機株式会社 ロープ及びその製造方法
JP7483153B2 (ja) 2021-09-28 2024-05-14 三菱電機株式会社 ロープ及びその製造方法

Also Published As

Publication number Publication date
JPWO2016199204A1 (ja) 2018-02-08
CN107709214B (zh) 2019-12-20
CN107709214A (zh) 2018-02-16
JP6607935B2 (ja) 2019-11-20

Similar Documents

Publication Publication Date Title
KR101665837B1 (ko) 엘리베이터용 로프
JP6452839B2 (ja) エレベータ用ロープ及びその製造方法
JP5269838B2 (ja) エレベータ用ワイヤロープ
US9902594B2 (en) Elevator rope and elevator apparatus that uses same
RU2007136047A (ru) Канат из синтетических волокон и лифтовая установка с таким канатом из синтетических волокон
JP6607935B2 (ja) エレベータ用主ロープ並びにそれを用いるエレベータ装置
WO2012056529A1 (ja) エレベータ用ロープ
JP5859138B2 (ja) エレベータシステムベルト
JP4296152B2 (ja) エレベータ用ロープ及びエレベータ装置
CN110002322B (zh) 绳间间距矫正方法及装置
JP6077941B2 (ja) エレベータ用ワイヤロープ
JP2014507349A (ja) エレベータシステムベルト
CN108861955A (zh) 电梯系统的曳引带及其带轮和采用该曳引带及带轮的电梯
JP2014507348A (ja) エレベータの懸吊装置および/または駆動装置
RU109113U1 (ru) Канат стальной многопрядный малокрутящийся
EP2511219A1 (en) Rope for elevator
JP6576575B2 (ja) エレベータ用ロープ及びエレベータ装置
JP7195483B1 (ja) ロープ及びそれを用いたベルト
WO2023053192A1 (ja) ロープ及びその製造方法
JP2014061958A (ja) エレベータ用ロープ及びそれを用いたエレベータ装置
KR100744737B1 (ko) 엘리베이터용 로프 및 엘리베이터 장치
CN105839435A (zh) 一种电梯绳
JP2016020269A (ja) エレベータ用巻上ロープ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15894889

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017522775

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15894889

Country of ref document: EP

Kind code of ref document: A1