JP3819793B2 - Film-forming method and semiconductor device manufacturing method - Google Patents

Film-forming method and semiconductor device manufacturing method Download PDF

Info

Publication number
JP3819793B2
JP3819793B2 JP2002072906A JP2002072906A JP3819793B2 JP 3819793 B2 JP3819793 B2 JP 3819793B2 JP 2002072906 A JP2002072906 A JP 2002072906A JP 2002072906 A JP2002072906 A JP 2002072906A JP 3819793 B2 JP3819793 B2 JP 3819793B2
Authority
JP
Japan
Prior art keywords
zinc oxide
film
gas
oxide film
oxygen gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002072906A
Other languages
Japanese (ja)
Other versions
JP2003273134A (en
Inventor
勝利 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2002072906A priority Critical patent/JP3819793B2/en
Priority to US10/390,563 priority patent/US7049190B2/en
Priority to CN03120453.8A priority patent/CN1445821A/en
Publication of JP2003273134A publication Critical patent/JP2003273134A/en
Application granted granted Critical
Publication of JP3819793B2 publication Critical patent/JP3819793B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Thin Film Transistor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、スパッタ法による酸化亜鉛膜の成膜方法、及び基板上に酸化亜鉛膜をスパッタ法によって積層してなる半導体装置の製造方法に関する。
【0002】
【従来の技術】
薄膜トランジスタ、発光素子、又は圧電体等の電子デバイスは、絶縁膜、半導体膜、又は導電膜等の導電率が異なる薄膜を積層して構成される。
酸化亜鉛は、絶縁膜、透明電極膜、又は半導体膜等を形成するために用いられる。酸化亜鉛を用いて電子デバイスを構成する場合、該電子デバイスは、酸化亜鉛膜と、酸化亜鉛とは導電率が異なる物質を用いてなる膜とを積層したり、夫々導電率が異なる複数の酸化亜鉛膜を積層したりして構成される。導電率が異なる複数の酸化亜鉛膜をスパッタ法によって形成するときは、各酸化亜鉛膜に対して膜中のキャリア密度を調整すべく、ドーピングされている不純物(Al又はGa等)の量が異なる酸化亜鉛ターゲットを用いて各酸化亜鉛膜を成膜する。
【0003】
【発明が解決しようとする課題】
しかしながら、従来の成膜方法で導電率が異なる薄膜を形成する場合、複数の物質(酸化亜鉛と、酸化亜鉛とは導電率が異なる物質と)を準備したり、不純物含有量が異なる複数の酸化亜鉛ターゲットを準備したりする必要があるため、材料コストの増大、又は製造工程数の増大等が生じ、電子デバイスが高コスト化するという問題があった。
【0004】
図5は、RFスパッタリング装置を用いてガラス基板に酸化亜鉛膜を200nm形成する場合、ノンドープの酸化亜鉛(99.99%)をターゲットとして用い、また、放電ガスとしてArガスと酸素ガスとを用いたときの放電ガス中の酸素流量比と酸化亜鉛膜の導電率との関係を示すグラフである。成膜条件は、基板温度300℃、圧力0.5Pa、RFパワー密度10W/cm2 であり、酸素流量比を0%〜100%の間で変化させた。図中横軸は、放電ガス中の酸素ガスの流量比(%)であり、縦軸は酸化亜鉛膜の導電率(S/cm)である。
【0005】
酸素流量比が0%の場合(Arガスのみを放電ガスとして用いる場合)、酸化亜鉛膜の導電率は最も高く(1×10-2S/cm超)、酸素流量比を0%から10%まで増大させた場合、前記導電率は1×10-2S/cm超から約1×10-8S/cmへ急激に低下する。また、25%まで増大させた場合は約1×10-9S/cmに低下し、50%まで増大させた場合は約1×10-10S/cmに低下する。50%から100%まで増大させた場合、前記導電率は緩やかに低下し、100%(酸素ガスのみを放電ガスとして用いる場合)で最も低くなる。
グラフから、放電ガス中の酸素ガスの流量比の増大(0%〜100%)に伴い、導電率が低下(1×10-2S/cm超〜1×10-10S/cm未満)することがわかる。これは、酸化亜鉛膜中に酸素が多く含まれた場合、酸素欠陥に起因するドナーが減少して導電率が低下するためと考えられる。
【0006】
また、不純物がドーピングされた酸化亜鉛をターゲットとして用いる場合は、酸素ガスの流量比を変更しても導電率がほとんど変化しない。
以上のような結果から、発明者らは、ノンドープの酸化亜鉛ターゲットを用い、放電ガス中の酸素ガスの分圧(ここでは流量比)を変更することによって、酸化亜鉛膜の導電率を容易に、また広範囲かつ高精度に変更できるという知見を得た。
【0007】
本発明は、斯かる知見に基づいてなされたものであり、ノンドープの酸化亜鉛ターゲットを用い、スパッタ法によって酸化亜鉛膜を形成する場合に、放電ガス中の酸素ガスの分圧を変更することにより、材料コストを低減して、導電率が異なる酸化亜鉛膜を容易に成膜できる成膜方法を提供することを目的とする。
本発明の他の目的は、放電ガス中の酸素ガスの分圧を連続的に増減させることにより、導電率が膜厚方向に連続して変化する酸化亜鉛膜を容易に形成できる成膜方法を提供することにある。
本発明の他の目的は、放電ガス中の酸素ガスの分圧の増加と減少とを反復させることにより、容易に、導電率が低い酸化亜鉛膜と高い酸化亜鉛膜とを交互に積層できる成膜方法を提供することにある。
本発明の更に他の目的は、放電ガス中の酸素ガスの分圧を連続的に減少させて酸化亜鉛膜を成膜することにより、材料コストを低減して、導電率が、基板側から膜圧方向へ連続して増加する酸化亜鉛膜を備える半導体装置を容易に形成できる半導体装置の製造方法を提供することにある。
【0008】
【課題を解決するための手段】
第1発明に係る成膜方法は、スパッタ法によって酸化亜鉛膜を形成する成膜方法において、ターゲットとしてノンドープの酸化亜鉛を用い、放電ガスとして不活性ガス、酸素ガス、又は不活性ガスと酸素ガスとの混合ガスを用い、成膜中に酸素ガスの分圧を少なくとも1回以上増加させる工程、及び成膜中に前記酸素ガスの分圧を少なくとも1回以上減少させる工程とを含むことを特徴とする。
【0009】
第1発明にあっては、酸化亜鉛膜を成膜している時の放電ガス中の酸素ガスの分圧に応じて、成膜された酸化亜鉛膜の導電率が変化するため、ノンドープの酸化亜鉛のみをターゲットの材料として用い、放電ガス中の酸素ガスの分圧を変更することによって酸化亜鉛膜内の導電率を調整することができる。即ち、酸化亜鉛のみを用いるため材料コストを低減することができ、ターゲットを交換する必要がないため製造工程数を減少させることができ、酸素ガスの分圧を変更することによって導電率を調整できるため導電率が異なる酸化亜鉛膜を容易に形成することができる。以上のようにして、酸化亜鉛膜を用いてなる電子デバイスが高コスト化を防止することができ、また、前記電子デバイスを設計する場合の自由度を向上させることができる。
なお、放電ガス中の酸素ガスの分圧を100%にした場合、放電ガスは酸素ガスのみで構成され、酸素ガスの分圧を0%にした場合、放電ガスは不活性ガスのみで構成される。
【0010】
第2発明に係る成膜方法は、前記分圧を連続的に増減させることを特徴とする。
第2発明にあっては、酸化亜鉛膜を成膜している時の放電ガス中の酸素ガスの分圧を連続的に増加させた場合、成膜された酸化亜鉛膜の導電率が連続的に減少し、前記分圧を連続的に減少させた場合、前記導電率が連続的に増大するため、導電率が膜厚方向に連続して変化する酸化亜鉛膜を容易に形成することができる。このため、例えばLDD(Lightly Doped Drain)/半導体膜(活性層)構造の積層膜を、低コストで容易に形成することができる。
【0011】
第3発明に係る成膜方法は、前記分圧を交互に増加/減少させることを特徴とする。
第3発明にあっては、例えば、放電ガス中の酸素ガスの分圧を高くして第1酸化亜鉛膜を成膜し、次いで、前記分圧を低くして、第1酸化亜鉛膜上に第2酸化亜鉛膜を成膜する。この場合、第1酸化亜鉛膜は第2酸化亜鉛膜より導電率が低い。このようにして、導電率が高い酸化亜鉛膜と低い酸化亜鉛膜とを交互に、容易に積層することができるため、導電率が異なる酸化亜鉛膜の積層構造を、低コストで容易に形成することができる。
【0012】
第4発明に係る半導体装置の製造方法は、基板上に酸化亜鉛膜をスパッタ法によって積層し、ソース電極、ドレイン電極、及びゲート電極を設ける半導体装置の製造方法において、ターゲットとしてノンドープの酸化亜鉛を用い、放電ガスとして不活性ガス、酸素ガス、又は不活性ガスと酸素ガスとの混合ガスを用い、まず、酸素ガス又は前記混合ガスを放電ガスとして用いてスパッタ法によって第1酸化亜鉛膜の成膜を開始し、次いで、前記放電ガス中の酸素分圧を連続的に減少させながらスパッタ法によって第2酸化亜鉛膜の成膜を行ない、次に、該第2酸化亜鉛膜を分割する溝部を形成し、次いで、該溝部の上に絶縁層を介してゲート電極を設け、前記溝部を挟むようにして前記第2酸化亜鉛膜上にソース電極及びドレイン電極を設けることを特徴とする。
【0013】
第4発明にあっては、第1酸化亜鉛膜の形成後、第2発明の成膜方法を用いて放電ガス中の酸素分圧を連続的に減少させながら第2酸化亜鉛膜を成膜するため、半導体装置を形成する場合に、第2発明の効果を得ることができる。即ち、材料コストを低減して、導電率が、基板側から膜圧方向へ連続して増加する酸化亜鉛膜を備える半導体装置を容易に形成することができる。
また、放電ガス中の酸素分圧を連続的に減少させることによって、第2酸化亜鉛膜の導電率は、基板側から膜圧方向へ連続的に増大する。このため、導電率が高い第2酸化亜鉛膜のソース電極側及びドレイン電極側の領域を、ソース領域及びドレイン領域として作用させることができ、前記領域よりも導電率が低い第2酸化亜鉛膜の第1酸化亜鉛膜側の領域を、LDD領域として作用させることができる。
なお、放電ガス中の酸素ガスの分圧を100%にした場合、放電ガスは酸素ガスのみで構成され、酸素ガスの分圧を0%にした場合、放電ガスは不活性ガスのみで構成される。
【0014】
【発明の実施の形態】
以下、本発明をその実施の形態を示す図面に基づいて詳述する。
本実施の形態にあっては、公知のRFスパッタリング装置を用いてガラス基板に酸化亜鉛膜を成膜する。ターゲットとしてはノンドープの酸化亜鉛(99.99%)を用い、放電ガスとしては酸素ガスとArガスとを用いる。成膜条件は、基板温度300℃、圧力0.5Pa、RFパワー密度10W/cm2 である。また、酸素ガスの分圧は、Arガスと酸素ガスとの流量比を変更することによって調整する。
【0015】
実施の形態 1.
図1及び図2は、本発明の実施の形態1に係る成膜方法を用いてLDD/半導体膜構造の積層膜を有するFETを形成する場合の説明図である。
放電ガス中の酸素ガスの流量比を3%にし、ガラス基板10の一面に、膜厚200nmの酸化亜鉛半導体膜11を形成する(図1(a))。続いて、放電をオフにすることなく酸素ガスの流量比を3%から0%(即ち、放電ガスはArガスのみ)まで連続的に減少させて、酸化亜鉛半導体膜11上に膜厚10nmのLDD/ソース・ドレイン膜12を形成する(図1(b))。
次いで、希塩酸を用いてエッチングを行ない、LDD/ソース・ドレイン膜12の一部を除去することにより、溝部12aを形成する(図1(c))。
【0016】
LDD/ソース・ドレイン膜12上及び溝部12a内に、プラズマCVD法によってSiNを堆積し、膜厚500nmの絶縁膜130を形成し(図2(a))、LDD/ソース・ドレイン膜12上の絶縁膜130のみをエッチングによって除去して溝部12aを底部とする絶縁層13を形成する(図2(b))。
最後に、LDD/ソース・ドレイン膜12上及び絶縁層13上にAl膜を形成することによって、LDD/ソース・ドレイン膜12上にソース電極141及びドレイン電極143を形成し、絶縁層13上にゲート電極142を形成する(図2(c))。
【0017】
以上のような成膜方法によれば、n- 型の酸化亜鉛半導体膜11上に、酸素ガスの流量比を3%から0%まで連続的に減少させて酸化亜鉛半導体膜を成膜することによって、n- 型からn+ 型へ連続的に変化するLDD/ソース・ドレイン膜12を容易に積層することができる。
また、酸素ガスの流量比を連続的に減少させて成膜するため、LDD/ソース・ドレイン膜12は、導電率が、基板側から膜圧方向へ連続的に増大する。このため、LDD/ソース・ドレイン膜12のソース電極141側及びドレイン電極143側の領域は導電率が高く、ソース領域及びドレイン領域として作用し、LDD/ソース・ドレイン膜12の酸化亜鉛半導体膜11側の領域は、ソース領域及びドレイン領域よりも導電率が低く、LDD領域として作用する。即ち、LDD/半導体膜構造の積層膜を有するFETを低コストで、また容易に形成することができる。
【0018】
以上のようにして形成されたFETは、LDD/半導体膜構造によってドレイン電極近傍の電界を緩和することができ、ホットエレクトロンによるFETの性能劣化(高速に加速されたキャリアが絶縁層13中に注入され、固定電荷となること)を防止できる。
【0019】
実施の形態 2.
図3は、本発明の実施の形態2に係る成膜方法を用いて導電率が異なる酸化亜鉛膜の多層膜を形成する場合の説明図である。
酸素ガスの流量比を100%にして(即ち、酸素ガスのみを放電ガスとして用いて)、ガラス基板20の一面に、膜厚100Åの第1酸化亜鉛膜21を形成する(図3(a))。続いて、放電をオフにし、酸素ガスの流量比を0%に減少させて(即ち、Arガスのみを放電ガスとして用いて)、放電を再開し、第1酸化亜鉛膜21上に膜厚100Åの第2酸化亜鉛膜22を積層する(図3(b))。同様にして、第1酸化亜鉛膜21と第2酸化亜鉛膜22とを交互に積層する(図3(c))。
【0020】
以上のような成膜方法によって形成された多層膜は、高抵抗の第1酸化亜鉛膜21と低抵抗の第2酸化亜鉛膜22とが積層してなる。このため、第2酸化亜鉛膜22,22,…は、第1酸化亜鉛膜21,21,…によって夫々絶縁されている。
【0021】
図4は、前記成膜方法で形成された多層膜の模式図である。
図中2は、電気伝導に寄与する電子である。該電子2は、該電子2が位置する第2酸化亜鉛膜22の内部を移動し、第1酸化亜鉛膜21を通過して他の第2酸化亜鉛膜22へ移動することがない。即ち、電子2,2,…を各第2酸化亜鉛膜22内に閉じこめることができ、不純物散乱による移動度の低下を防止できる。このため、前記多層膜は高電子移動度を有する。
即ち、本実施の形態の成膜方法は、導電率が異なる多層膜を備えるため高電子移動度を有する電子デバイス(例えばTFT)を、低コストで、また容易に形成することができる。
【0022】
なお、実施の形態1及び2では、RFスパッタリング装置を用い、放電ガスとして酸素ガスとArガスとを用いたが、DCスパッタリング装置、ECRスパッタリング装置、又はヘリコンプラズマ波スパッタリング装置等を用い、放電ガスとして、酸素ガスとHeガス、Neガス、又はKrガス等の希ガスとを用いても良い。
また、本発明の成膜方法を、透光性を有する薄膜トランジスタ、光センサ、又は圧電体等の電子デバイスを形成する場合に用いても良い。
【0023】
【発明の効果】
本発明の成膜方法によれば、材料コストを低減して、導電率が異なる酸化亜鉛膜を容易に成膜することができる。また、導電率が膜厚方向に連続して変化する酸化亜鉛膜を形成することができる。更に、導電率が低い酸化亜鉛膜と高い酸化亜鉛膜とを交互に積層することができる。
また、本発明の半導体装置の製造方法によれば、材料コストを低減して、導電率が膜厚方向に連続して変化する酸化亜鉛膜を備える半導体装置を容易に形成できる等、本発明は優れた効果を奏する。
【図面の簡単な説明】
【図1】本発明の実施の形態1に係る成膜方法の説明図である。
【図2】本発明の実施の形態1に係る成膜方法の説明図である。
【図3】本発明の実施の形態2に係る成膜方法の説明図である。
【図4】本発明の実施の形態2に係る成膜方法で形成された多層膜の模式図である。
【図5】放電ガス中の酸素流量比と酸化亜鉛膜の導電率との関係を示すグラフである。
【符号の説明】
11 酸化亜鉛半導体膜
12 LDD/ソース・ドレイン膜
21 第1酸化亜鉛膜
22 第2酸化亜鉛膜
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for forming a zinc oxide film by sputtering and a method for manufacturing a semiconductor device in which a zinc oxide film is stacked on a substrate by sputtering.
[0002]
[Prior art]
An electronic device such as a thin film transistor, a light-emitting element, or a piezoelectric body is formed by stacking thin films having different conductivities such as an insulating film, a semiconductor film, or a conductive film.
Zinc oxide is used to form an insulating film, a transparent electrode film, a semiconductor film, or the like. When an electronic device is configured using zinc oxide, the electronic device is formed by laminating a zinc oxide film and a film made of a substance having a conductivity different from that of zinc oxide, or a plurality of oxides each having different conductivity. It is configured by laminating zinc films. When a plurality of zinc oxide films having different conductivities are formed by sputtering, the amount of doped impurities (Al or Ga, etc.) is different for each zinc oxide film in order to adjust the carrier density in the film. Each zinc oxide film is formed using a zinc oxide target.
[0003]
[Problems to be solved by the invention]
However, when forming a thin film with different conductivity by the conventional film formation method, a plurality of substances (zinc oxide and zinc oxide having different conductivity) are prepared, or a plurality of oxidations having different impurity contents are prepared. Since it is necessary to prepare a zinc target, an increase in material cost or an increase in the number of manufacturing steps occurs, and there is a problem that the cost of the electronic device increases.
[0004]
FIG. 5 shows that when a 200 nm zinc oxide film is formed on a glass substrate using an RF sputtering apparatus, non-doped zinc oxide (99.99%) is used as a target, and Ar gas and oxygen gas are used as discharge gases. 5 is a graph showing the relationship between the oxygen flow rate ratio in the discharge gas and the conductivity of the zinc oxide film. The film formation conditions were a substrate temperature of 300 ° C., a pressure of 0.5 Pa, an RF power density of 10 W / cm 2 , and the oxygen flow rate ratio was changed between 0% and 100%. In the figure, the horizontal axis represents the flow rate ratio (%) of oxygen gas in the discharge gas, and the vertical axis represents the conductivity (S / cm) of the zinc oxide film.
[0005]
When the oxygen flow ratio is 0% (when only Ar gas is used as the discharge gas), the conductivity of the zinc oxide film is the highest (over 1 × 10 −2 S / cm), and the oxygen flow ratio is 0% to 10%. The conductivity decreases rapidly from above 1 × 10 −2 S / cm to about 1 × 10 −8 S / cm. Further, when it is increased to 25%, it decreases to about 1 × 10 −9 S / cm, and when it is increased to 50%, it decreases to about 1 × 10 −10 S / cm. When increasing from 50% to 100%, the conductivity gradually decreases and becomes the lowest at 100% (when only oxygen gas is used as the discharge gas).
From the graph, as the flow rate ratio of oxygen gas in the discharge gas increases (0% to 100%), the conductivity decreases (above 1 × 10 −2 S / cm to less than 1 × 10 −10 S / cm). I understand that. This is presumably because when the zinc oxide film contains a large amount of oxygen, the number of donors due to oxygen defects decreases and the conductivity decreases.
[0006]
In addition, when zinc oxide doped with impurities is used as a target, the conductivity hardly changes even if the flow rate ratio of oxygen gas is changed.
From the above results, the inventors can easily increase the conductivity of the zinc oxide film by using a non-doped zinc oxide target and changing the partial pressure (here, the flow ratio) of the oxygen gas in the discharge gas. In addition, we have obtained knowledge that it can be changed over a wide range and with high accuracy.
[0007]
The present invention has been made on the basis of such knowledge. When a zinc oxide film is formed by a sputtering method using a non-doped zinc oxide target, the partial pressure of oxygen gas in the discharge gas is changed. Another object of the present invention is to provide a film forming method capable of reducing the material cost and easily forming a zinc oxide film having different conductivity.
Another object of the present invention is to provide a film forming method capable of easily forming a zinc oxide film whose conductivity continuously changes in the film thickness direction by continuously increasing or decreasing the partial pressure of oxygen gas in the discharge gas. It is to provide.
Another object of the present invention is to make it possible to easily and alternately stack a low-conductivity zinc oxide film and a high-conductivity zinc oxide film by repeatedly increasing and decreasing the partial pressure of oxygen gas in the discharge gas. It is to provide a membrane method.
Still another object of the present invention is to form a zinc oxide film by continuously reducing the partial pressure of oxygen gas in the discharge gas, thereby reducing the material cost and improving the conductivity from the substrate side. An object of the present invention is to provide a method of manufacturing a semiconductor device that can easily form a semiconductor device including a zinc oxide film continuously increasing in the pressure direction.
[0008]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided a film forming method for forming a zinc oxide film by a sputtering method, wherein non-doped zinc oxide is used as a target, and an inert gas, an oxygen gas, or an inert gas and an oxygen gas are used as a discharge gas. And a step of increasing the partial pressure of the oxygen gas at least once during the film formation and a step of decreasing the partial pressure of the oxygen gas at least once during the film formation. And
[0009]
In the first invention, since the conductivity of the formed zinc oxide film changes according to the partial pressure of the oxygen gas in the discharge gas when forming the zinc oxide film, non-doped oxidation The conductivity in the zinc oxide film can be adjusted by using only zinc as a target material and changing the partial pressure of the oxygen gas in the discharge gas. In other words, since only zinc oxide is used, the material cost can be reduced, the number of manufacturing steps can be reduced because there is no need to replace the target, and the conductivity can be adjusted by changing the partial pressure of oxygen gas. Therefore, zinc oxide films having different electrical conductivities can be easily formed. As described above, an electronic device using a zinc oxide film can prevent an increase in cost, and the degree of freedom in designing the electronic device can be improved.
When the partial pressure of oxygen gas in the discharge gas is 100%, the discharge gas is composed only of oxygen gas, and when the partial pressure of oxygen gas is 0%, the discharge gas is composed only of inert gas. The
[0010]
The film forming method according to the second invention is characterized in that the partial pressure is continuously increased or decreased.
In the second invention, when the partial pressure of the oxygen gas in the discharge gas during the formation of the zinc oxide film is continuously increased, the conductivity of the formed zinc oxide film is continuous. When the partial pressure is decreased continuously, the conductivity increases continuously, so that a zinc oxide film whose conductivity continuously changes in the film thickness direction can be easily formed. . For this reason, for example, a laminated film having an LDD (Lightly Doped Drain) / semiconductor film (active layer) structure can be easily formed at low cost.
[0011]
A film forming method according to a third invention is characterized in that the partial pressure is alternately increased / decreased.
In the third aspect of the invention, for example, the first zinc oxide film is formed by increasing the partial pressure of oxygen gas in the discharge gas, and then the partial pressure is decreased and formed on the first zinc oxide film. A second zinc oxide film is formed. In this case, the first zinc oxide film has a lower conductivity than the second zinc oxide film. In this manner, since a zinc oxide film having a high conductivity and a zinc oxide film having a low conductivity can be alternately stacked, a stacked structure of zinc oxide films having different conductivity can be easily formed at low cost. be able to.
[0012]
According to a fourth aspect of the present invention, there is provided a method for manufacturing a semiconductor device, comprising: stacking a zinc oxide film on a substrate by a sputtering method; and providing a source electrode, a drain electrode, and a gate electrode. The first zinc oxide film is formed by sputtering using an inert gas, an oxygen gas, or a mixed gas of an inert gas and an oxygen gas as a discharge gas. First, the oxygen gas or the mixed gas is used as a discharge gas. Then, the second zinc oxide film is formed by sputtering while continuously reducing the partial pressure of oxygen in the discharge gas. Next, a groove for dividing the second zinc oxide film is formed. Next, a gate electrode is provided on the groove via an insulating layer, and a source electrode and a drain electrode are provided on the second zinc oxide film so as to sandwich the groove. It is characterized in.
[0013]
In the fourth invention, after the first zinc oxide film is formed, the second zinc oxide film is formed while continuously reducing the oxygen partial pressure in the discharge gas by using the film forming method of the second invention. Therefore, when the semiconductor device is formed, the effect of the second invention can be obtained. That is, it is possible to easily form a semiconductor device including a zinc oxide film whose material cost is reduced and whose conductivity continuously increases in the film pressure direction from the substrate side.
Further, by continuously decreasing the oxygen partial pressure in the discharge gas, the conductivity of the second zinc oxide film continuously increases in the film pressure direction from the substrate side. For this reason, the regions on the source electrode side and the drain electrode side of the second zinc oxide film having a high conductivity can act as the source region and the drain region, and the second zinc oxide film having a lower conductivity than the region can be used. The region on the first zinc oxide film side can act as an LDD region.
When the partial pressure of oxygen gas in the discharge gas is 100%, the discharge gas is composed only of oxygen gas, and when the partial pressure of oxygen gas is 0%, the discharge gas is composed only of inert gas. The
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the drawings illustrating embodiments thereof.
In this embodiment, a zinc oxide film is formed on a glass substrate using a known RF sputtering apparatus. Non-doped zinc oxide (99.99%) is used as the target, and oxygen gas and Ar gas are used as the discharge gas. The film forming conditions are a substrate temperature of 300 ° C., a pressure of 0.5 Pa, and an RF power density of 10 W / cm 2 . Moreover, the partial pressure of oxygen gas is adjusted by changing the flow rate ratio between Ar gas and oxygen gas.
[0015]
Embodiment 1.
1 and 2 are explanatory diagrams for forming an FET having an LDD / semiconductor film laminated film by using the film forming method according to the first embodiment of the present invention.
A flow rate ratio of oxygen gas in the discharge gas is set to 3%, and a zinc oxide semiconductor film 11 having a film thickness of 200 nm is formed on one surface of the glass substrate 10 (FIG. 1A). Subsequently, the flow rate ratio of the oxygen gas is continuously decreased from 3% to 0% (that is, the discharge gas is only Ar gas) without turning off the discharge, and the film thickness of 10 nm is formed on the zinc oxide semiconductor film 11. An LDD / source / drain film 12 is formed (FIG. 1B).
Next, etching is performed using dilute hydrochloric acid to remove a part of the LDD / source / drain film 12, thereby forming a groove 12a (FIG. 1C).
[0016]
On the LDD / source / drain film 12 and in the trench 12a, SiN is deposited by plasma CVD to form an insulating film 130 having a thickness of 500 nm (FIG. 2A). Only the insulating film 130 is removed by etching to form the insulating layer 13 having the groove 12a as the bottom (FIG. 2B).
Finally, an Al film is formed on the LDD / source / drain film 12 and the insulating layer 13 to form a source electrode 141 and a drain electrode 143 on the LDD / source / drain film 12, and on the insulating layer 13. A gate electrode 142 is formed (FIG. 2C).
[0017]
According to the film formation method as described above, the zinc oxide semiconductor film is formed on the n -type zinc oxide semiconductor film 11 by continuously reducing the flow rate ratio of oxygen gas from 3% to 0%. Thus, the LDD / source / drain film 12 that continuously changes from the n -type to the n + -type can be easily stacked.
Further, since the film is formed by continuously reducing the flow ratio of oxygen gas, the conductivity of the LDD / source / drain film 12 continuously increases in the film pressure direction from the substrate side. For this reason, the regions on the source electrode 141 side and the drain electrode 143 side of the LDD / source / drain film 12 have high conductivity and act as the source region and the drain region, and the zinc oxide semiconductor film 11 of the LDD / source / drain film 12 The side region has lower conductivity than the source region and the drain region, and acts as an LDD region. That is, an FET having a laminated film having an LDD / semiconductor film structure can be easily formed at low cost.
[0018]
The FET formed as described above can relax the electric field in the vicinity of the drain electrode by the LDD / semiconductor film structure, and the FET performance degradation due to hot electrons (high-speed accelerated carriers are injected into the insulating layer 13). And a fixed charge) can be prevented.
[0019]
Embodiment 2. FIG.
FIG. 3 is an explanatory diagram in the case of forming a multilayer film of zinc oxide films having different conductivities using the film forming method according to the second embodiment of the present invention.
A flow rate ratio of oxygen gas is set to 100% (that is, only oxygen gas is used as a discharge gas), and a first zinc oxide film 21 having a thickness of 100 mm is formed on one surface of the glass substrate 20 (FIG. 3A). ). Subsequently, the discharge is turned off, the flow rate ratio of the oxygen gas is reduced to 0% (that is, only Ar gas is used as the discharge gas), the discharge is restarted, and a film thickness of 100 mm is formed on the first zinc oxide film 21. The second zinc oxide film 22 is laminated (FIG. 3B). Similarly, the first zinc oxide film 21 and the second zinc oxide film 22 are alternately stacked (FIG. 3C).
[0020]
The multilayer film formed by the film forming method as described above is formed by laminating a high-resistance first zinc oxide film 21 and a low-resistance second zinc oxide film 22. For this reason, the second zinc oxide films 22, 22,... Are insulated by the first zinc oxide films 21, 21,.
[0021]
FIG. 4 is a schematic diagram of a multilayer film formed by the film forming method.
In the figure, 2 is an electron contributing to electrical conduction. The electrons 2 move inside the second zinc oxide film 22 where the electrons 2 are located, do not pass through the first zinc oxide film 21 and move to other second zinc oxide films 22. That is, the electrons 2, 2,... Can be confined in each second zinc oxide film 22, and a decrease in mobility due to impurity scattering can be prevented. For this reason, the multilayer film has a high electron mobility.
That is, since the film formation method of this embodiment includes a multilayer film having different conductivity, an electronic device (eg, TFT) having high electron mobility can be easily formed at low cost.
[0022]
In Embodiments 1 and 2, an RF sputtering apparatus is used and oxygen gas and Ar gas are used as the discharge gas. However, a DC sputtering apparatus, an ECR sputtering apparatus, a helicon plasma wave sputtering apparatus, or the like is used, and the discharge gas is used. As an alternative, oxygen gas and rare gas such as He gas, Ne gas, or Kr gas may be used.
Further, the film forming method of the present invention may be used when an electronic device such as a light-transmitting thin film transistor, a photosensor, or a piezoelectric body is formed.
[0023]
【The invention's effect】
According to the film forming method of the present invention, it is possible to easily form a zinc oxide film having different electrical conductivity while reducing the material cost. In addition, a zinc oxide film whose conductivity continuously changes in the film thickness direction can be formed. Furthermore, a zinc oxide film having a low conductivity and a zinc oxide film having a high conductivity can be alternately stacked.
In addition, according to the method for manufacturing a semiconductor device of the present invention, the present invention can reduce the material cost and easily form a semiconductor device including a zinc oxide film whose conductivity continuously changes in the film thickness direction. Excellent effect.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a film forming method according to a first embodiment of the present invention.
FIG. 2 is an explanatory diagram of a film forming method according to Embodiment 1 of the present invention.
FIG. 3 is an explanatory diagram of a film forming method according to a second embodiment of the present invention.
FIG. 4 is a schematic diagram of a multilayer film formed by a film forming method according to Embodiment 2 of the present invention.
FIG. 5 is a graph showing the relationship between the oxygen flow rate ratio in the discharge gas and the conductivity of the zinc oxide film.
[Explanation of symbols]
11 zinc oxide semiconductor film 12 LDD / source / drain film 21 first zinc oxide film 22 second zinc oxide film

Claims (4)

スパッタ法によって酸化亜鉛膜を形成する成膜方法において、
ターゲットとしてノンドープの酸化亜鉛を用い、放電ガスとして不活性ガス、酸素ガス、又は不活性ガスと酸素ガスとの混合ガスを用い、成膜中に酸素ガスの分圧を少なくとも1回以上増加させる工程、及び成膜中に前記酸素ガスの分圧を少なくとも1回以上減少させる工程とを含むことを特徴とする成膜方法。
In a film forming method for forming a zinc oxide film by sputtering,
A step of increasing the partial pressure of oxygen gas at least once during film formation using non-doped zinc oxide as a target, an inert gas, oxygen gas, or a mixed gas of inert gas and oxygen gas as a discharge gas And a step of reducing the partial pressure of the oxygen gas at least once during the film formation.
前記分圧を連続的に増減させることを特徴とする請求項1に記載の成膜方法。The film forming method according to claim 1, wherein the partial pressure is continuously increased or decreased. 前記分圧を交互に増加/減少させることを特徴とする請求項1に記載の成膜方法。The film forming method according to claim 1, wherein the partial pressure is alternately increased / decreased. 基板上に酸化亜鉛膜をスパッタ法によって積層し、ソース電極、ドレイン電極、及びゲート電極を設ける半導体装置の製造方法において、
ターゲットとしてノンドープの酸化亜鉛を用い、放電ガスとして不活性ガス、酸素ガス、又は不活性ガスと酸素ガスとの混合ガスを用い、まず、酸素ガス又は前記混合ガスを放電ガスとして用いてスパッタ法によって第1酸化亜鉛膜の成膜を開始し、次いで、前記放電ガス中の酸素分圧を連続的に減少させながらスパッタ法によって第2酸化亜鉛膜の成膜を行ない、次に、該第2酸化亜鉛膜を分割する溝部を形成し、次いで、該溝部の上に絶縁層を介してゲート電極を設け、前記溝部を挟むようにして前記第2酸化亜鉛膜上にソース電極及びドレイン電極を設けることを特徴とする半導体装置の製造方法。
In a method for manufacturing a semiconductor device in which a zinc oxide film is stacked on a substrate by a sputtering method, and a source electrode, a drain electrode, and a gate electrode are provided,
Non-doped zinc oxide is used as a target, inert gas, oxygen gas, or a mixed gas of inert gas and oxygen gas is used as a discharge gas, and first, sputtering is performed using oxygen gas or the mixed gas as a discharge gas. The formation of the first zinc oxide film is started, and then the second zinc oxide film is formed by sputtering while continuously reducing the partial pressure of oxygen in the discharge gas. A groove part for dividing the zinc film is formed, then a gate electrode is provided on the groove part via an insulating layer, and a source electrode and a drain electrode are provided on the second zinc oxide film so as to sandwich the groove part. A method for manufacturing a semiconductor device.
JP2002072906A 2002-03-15 2002-03-15 Film-forming method and semiconductor device manufacturing method Expired - Fee Related JP3819793B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002072906A JP3819793B2 (en) 2002-03-15 2002-03-15 Film-forming method and semiconductor device manufacturing method
US10/390,563 US7049190B2 (en) 2002-03-15 2003-03-17 Method for forming ZnO film, method for forming ZnO semiconductor layer, method for fabricating semiconductor device, and semiconductor device
CN03120453.8A CN1445821A (en) 2002-03-15 2003-03-17 Forming method of ZnO film and ZnO semiconductor layer, semiconductor element and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002072906A JP3819793B2 (en) 2002-03-15 2002-03-15 Film-forming method and semiconductor device manufacturing method

Publications (2)

Publication Number Publication Date
JP2003273134A JP2003273134A (en) 2003-09-26
JP3819793B2 true JP3819793B2 (en) 2006-09-13

Family

ID=29202773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002072906A Expired - Fee Related JP3819793B2 (en) 2002-03-15 2002-03-15 Film-forming method and semiconductor device manufacturing method

Country Status (1)

Country Link
JP (1) JP3819793B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005226131A (en) * 2004-02-13 2005-08-25 Sumitomo Heavy Ind Ltd Method for manufacturing zinc oxide film
JP2007258599A (en) * 2006-03-24 2007-10-04 Sanyo Electric Co Ltd Semiconductor device and method for manufacturing semiconductor device
KR101603180B1 (en) * 2007-08-02 2016-03-15 어플라이드 머티어리얼스, 인코포레이티드 Thin film transistors using thin film semiconductor materials
JP5352878B2 (en) * 2008-03-31 2013-11-27 公立大学法人高知工科大学 Display substrate, method for manufacturing the same, and display device
US8258511B2 (en) 2008-07-02 2012-09-04 Applied Materials, Inc. Thin film transistors using multiple active channel layers
JP5434000B2 (en) * 2008-07-17 2014-03-05 株式会社リコー Field effect transistor and manufacturing method thereof
KR101609557B1 (en) * 2008-09-19 2016-04-06 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
TWI506795B (en) * 2008-11-28 2015-11-01 Semiconductor Energy Lab Semiconductor device and method for manufacturing the same
CN103151266B (en) 2009-11-20 2016-08-03 株式会社半导体能源研究所 The method being used for producing the semiconductor devices
WO2011111503A1 (en) 2010-03-08 2011-09-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
JP5352599B2 (en) * 2011-01-17 2013-11-27 株式会社半導体エネルギー研究所 Semiconductor device
JP2018022879A (en) 2016-07-20 2018-02-08 株式会社リコー Field-effect transistor, method for manufacturing the same, display element, image display device, and system

Also Published As

Publication number Publication date
JP2003273134A (en) 2003-09-26

Similar Documents

Publication Publication Date Title
JP4166105B2 (en) Semiconductor device and manufacturing method thereof
US7883934B2 (en) Method of fabricating oxide semiconductor device
US20120009725A1 (en) Tft substrate and method for producing tft substrate
US10068996B2 (en) Array substrate, fabrication method, and display panel
EP2413367A1 (en) Transistors, Methods of Manufacturing Transistors, and Electronic Devices Including Transistors
JP3819793B2 (en) Film-forming method and semiconductor device manufacturing method
JP4237448B2 (en) Manufacturing method of semiconductor device
US9159746B2 (en) Thin film transistor, manufacturing method thereof, array substrate and display device
WO2017000503A1 (en) Metal oxide semiconductor thin film, thin-film-transistor, and their fabricating methods, and display apparatus
US20160064217A1 (en) Semiconductor device and method for manufacturing same
TWI508171B (en) Semiconductor device structure and manufacturing method for the same
CN112397573B (en) Array substrate, preparation method thereof and display panel
US8324625B2 (en) Electronic device and method for producing the same
KR102103428B1 (en) Method for manufacturing thin film transistor, thin film transistor and display device
US10205026B2 (en) Thin film transistor having a composite metal gate layer
CN110034178B (en) Thin film transistor, preparation method thereof, array substrate and display device
FR2752338A1 (en) SILICIDE THIN FILM TRANSISTOR
US20240006516A1 (en) Thin film transistor and manufacturing method thereof
WO2022115992A1 (en) Oxide thin film transistor and preparation method therefor, and display device
JP7464863B2 (en) Fixed charge control method, thin film transistor manufacturing method and thin film transistor
JP2013004849A (en) Thin film transistor manufacturing method and roll thin film transistor
WO2023153509A1 (en) Thin-film transistor and method for manufacturing thin-film transistor
JPH07321106A (en) Modifying method for silicon oxide thin film and manufacture of thin film transistor
JP2635086B2 (en) Method for manufacturing semiconductor device
WO2018181296A1 (en) Method for manufacturing channel-etch-type thin film transistor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060615

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130623

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130623

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees