WO2023153509A1 - Thin-film transistor and method for manufacturing thin-film transistor - Google Patents

Thin-film transistor and method for manufacturing thin-film transistor Download PDF

Info

Publication number
WO2023153509A1
WO2023153509A1 PCT/JP2023/004745 JP2023004745W WO2023153509A1 WO 2023153509 A1 WO2023153509 A1 WO 2023153509A1 JP 2023004745 W JP2023004745 W JP 2023004745W WO 2023153509 A1 WO2023153509 A1 WO 2023153509A1
Authority
WO
WIPO (PCT)
Prior art keywords
gate insulating
layer
insulating layer
thickness
electrode layer
Prior art date
Application number
PCT/JP2023/004745
Other languages
French (fr)
Japanese (ja)
Inventor
ちひろ 今村
学 伊藤
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Publication of WO2023153509A1 publication Critical patent/WO2023153509A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Definitions

  • the present disclosure relates to a thin film transistor including a semiconductor layer and a method for manufacturing the thin film transistor.
  • a thin film transistor comprising a semiconductor layer formed on a flexible base material is mounted in various devices such as display devices, mobile devices, and image sensors.
  • a semiconductor layer that achieves high field-effect mobility and low leakage current enables device miniaturization and low power consumption.
  • the semiconductor layer is arranged in a range where the thickness in the stacking direction is relatively thick.
  • a gate insulating layer covers the gate electrode layer.
  • the stacked region of the gate insulating layer overlapping the gate electrode layer is thicker than the single layer region of the gate insulating layer not covering the gate electrode layer by the thickness of the gate electrode layer.
  • Such laminated areas are less prone to bending than single layer areas.
  • the stacking range is extended in the channel width direction, and the entire semiconductor layer is arranged in a part of the stacking range in the channel width direction.
  • the stacking range is extended in the channel length direction, and the entire semiconductor layer is arranged in a part of the stacking range in the channel length direction.
  • bending of the semiconductor layer is suppressed in the entire channel width direction of the semiconductor layer or in the entire channel length direction of the metal oxide layer (see Patent Documents 1 and 2, for example).
  • a second example of suppression of mobility change due to bending includes a reinforcing layer for suppressing film stress acting on the semiconductor layer.
  • the semiconductor layer is located between the first reinforcing layer and the second reinforcing layer.
  • the first reinforcing layer is a silicide layer having an area larger than that of the semiconductor layer and a Young's modulus higher than that of the semiconductor layer, and supports the entire semiconductor layer.
  • the second reinforcing layer is a silicide layer having an area larger than that of the semiconductor layer and a Young's modulus higher than that of the semiconductor layer, and covers the entire semiconductor layer.
  • the semiconductor layer is arranged on the neutral plane on which tensile stress does not easily act, or on the neutral plane on which compressive stress does not easily act. This suppresses film stress acting on the semiconductor layer (see, for example, Patent Document 3).
  • JP 2021-77751 A Japanese Patent Application Laid-Open No. 2020-080430 JP 2018-195843 A
  • a gate insulating layer in which an inorganic compound layer is laminated on an organic compound layer achieves both high pressure resistance and high bending resistance.
  • structural differences between the organic compound layer and the inorganic compound layer may form various steps inside the thin film transistor.
  • the positional difference between the organic compound layer and the inorganic compound layer, the positional difference between the inorganic compound layer and the semiconductor layer, and the positional difference between the organic compound layer and the semiconductor layer are such that a step corresponding to the thickness of one layer is can be formed in layers of Dimensional differences between two layers and shape differences between two layers can also create a step corresponding to the thickness of one layer in the other layer.
  • the organic compound layer itself has a step as in the first suppression example, or when the inorganic compound layer itself has a step, the above step is further complicated.
  • a thin film transistor for solving the above problems is a thin film transistor comprising a flexible base material having a flat surface and an element structure located on the flat surface.
  • the device structure includes a gate electrode layer located on a part of the flat surface, a flat part located on the other part of the flat surface and following the flat surface, and a flat part covering the gate electrode layer.
  • a first gate insulating layer containing an organic atomic group a second gate insulating layer, which is an inorganic compound, located within the upper surface of the stepped portion; a semiconductor layer that is an oxide semiconductor, a source electrode layer that is connected to a first end of the semiconductor layer, and a drain electrode layer that is connected to a second end of the semiconductor layer;
  • the source electrode layer and the drain electrode layer each have a stepped shape that follows an end face of the stepped portion and an end face of the second gate insulating layer from the flat portion to the semiconductor layer, and As for the thickness, the thickness DA of the step portion and the thickness DB of the flat portion satisfy 0.30 ⁇ DB/DA ⁇ 0.94.
  • the area SD occupied by the second gate insulating layer on the upper surface of the step portion and the area SC occupied by the semiconductor layer on the upper surface of the second gate insulating layer are 1.0 ⁇ m or less, and 1 ⁇ SD/SC ⁇ 9 may be satisfied.
  • the step portion may have a thickness of 0.6 ⁇ m or less.
  • the difference between the thickness DA of the step portion and the thickness DB of the flat portion may be larger than the thickness of the gate electrode layer.
  • a thin film transistor for solving the above problems is a thin film transistor comprising a flexible base material having a flat surface and an element structure located on the flat surface.
  • the device structure includes a gate electrode layer located on a part of the flat surface, a flat part located on the other part of the flat surface and following the flat surface, and a flat part covering the gate electrode layer.
  • a first gate insulating layer containing an organic atomic group a second gate insulating layer, which is an inorganic compound, located within the upper surface of the stepped portion; a semiconductor layer that is an oxide semiconductor, a source electrode layer that is connected to a first end of the semiconductor layer, and a drain electrode layer that is connected to a second end of the semiconductor layer;
  • the thickness of the step portion is 0.6 ⁇ m or less, and the thickness DA of the step portion and the thickness DB of the flat portion satisfy 0.30 ⁇ DB/DA ⁇ 0.94.
  • the difference between the thickness DA of the step portion and the thickness DB of the flat portion is larger than the thickness of the gate electrode layer, and the area SD occupied by the second gate insulating layer on the upper surface of the step portion. and the area SC occupied by the semiconductor layer on the upper surface of the second gate insulating layer may satisfy 1 ⁇ SD/SC ⁇ 9.
  • the inorganic compound may be any one selected from the group consisting of silicon oxide, silicon nitride and silicon oxynitride.
  • the oxide semiconductor may contain indium.
  • a method of manufacturing a thin film transistor for solving the above problems includes forming a gate electrode layer on a part of a flat surface of a flexible base material, and forming a first gate insulator containing an organic atomic group so as to cover the gate electrode layer.
  • a layer is formed on the flat surface, thereby comprising a flat portion located on the other part of the flat surface and following the flat surface, and a stepped portion covering the gate electrode layer and protruding from the flat portion.
  • first gate insulating layer forming a first gate insulating layer; forming a second gate insulating layer, which is an inorganic compound, in the upper surface of the stepped portion; forming a semiconductor layer, which is an oxide semiconductor, in the upper surface of the second gate insulating layer; forming a source electrode layer from the flat portion to the first end of the semiconductor layer so as to have a stepped shape that follows the end face of the stepped portion and the end face of the second gate insulating layer; Forming a drain electrode layer from the flat portion to the second end of the semiconductor layer so as to have a stepped shape that follows the end face of the stepped portion and the end face of the second gate insulating layer.
  • the thickness DA of the step portion and the thickness DB of the flat portion satisfy 0.30 ⁇ DB/DA ⁇ 0.94.
  • a method of manufacturing a thin film transistor for solving the above problems includes forming a gate electrode layer on a part of a flat surface of a flexible base material, and forming a first gate insulator containing an organic atomic group so as to cover the gate electrode layer.
  • a layer is formed on the flat surface, thereby comprising a flat portion located on the other part of the flat surface and following the flat surface, and a stepped portion covering the gate electrode layer and protruding from the flat portion.
  • the thickness of the step portion is 0.6 ⁇ m or less, and the thickness DA of the step portion and the thickness DB of the flat portion satisfy 0.30 ⁇ DB/DA ⁇ 0.94.
  • FIG. 1 is a plan view showing a planar structure of a thin film transistor.
  • FIG. 2 is a cross-sectional view showing a cross-sectional structure of a thin film transistor.
  • FIG. 3 is a table showing mobility reduction rates of Examples and Comparative Examples.
  • FIG. 1 shows an example of a planar structure of a thin film transistor.
  • FIG. 2 shows an example of a cross-sectional structure of a thin film transistor. 1 and 2 omit wiring connected to various electrodes for convenience of explaining the layer structure of the thin film transistor.
  • the source and the drain of the thin film transistor are determined by the operation of the driver circuit in which the thin film transistor is mounted. Therefore, in a thin film transistor, one electrode layer may change function from source to drain, and another electrode layer may change function from drain to source.
  • a thin film transistor is a bottom-gate top-contact transistor. Further, the fact that the upper surface of the upper layer follows the upper surface of the underlying layer means that the upper surface shape of the upper layer follows the upper surface shape of the underlying layer.
  • the top surface shape of the upper layer conforms to the top surface shape of the underlying layer, which means that the position of the step on the top surface of the upper layer follows the position of the step on the top surface of the underlying layer, or the relative size of the step on the top surface of the upper layer depends on the shape of the underlying layer. It follows the relative size of the step on the top surface.
  • a thin film transistor includes a flexible substrate 11, a gate electrode layer 12 (see FIG. 2), a first gate insulating layer 21, a second gate insulating layer 23, a semiconductor layer 13, and a source electrode layer 14. , and a drain electrode layer 15 .
  • the gate electrode layer 12, the first gate insulating layer 21, the second gate insulating layer 23, the semiconductor layer 13, the source electrode layer 14, and the drain electrode layer 15 are examples of the element structure.
  • the first gate insulating layer 21 and the second gate insulating layer 23 are examples of gate insulating layers.
  • the flexible base material 11 and the gate electrode layer 12 are arranged in the channel depth direction, which is the thickness direction of the flexible base material 11 .
  • the source electrode layer 14 and the drain electrode layer 15 are arranged in the channel length direction, which is the horizontal direction in FIG.
  • the channel width direction is orthogonal to the channel length direction and the channel depth direction.
  • the upper surface of the flexible base material 11 is a flat surface extending in the channel length direction and the channel width direction.
  • the top surface of flexible substrate 11 comprises a first portion and a second portion.
  • the area of the first portion is sufficiently smaller than the area of the second portion.
  • a first portion of the flexible base 11 contacts the lower surface of the gate electrode layer 12 .
  • the second portion contacts a portion of the bottom surface of the first gate insulating layer 21 .
  • the first gate insulating layer 21 is in contact with the top surface of the gate electrode layer 12 and the end surfaces of the gate electrode layer 12 .
  • the first gate insulating layer 21 may cover a portion of the upper surface of the flexible substrate 11 or may cover the entire upper surface of the flexible substrate 11 .
  • the first gate insulating layer 21 has a flat portion in contact with the upper surface of the flexible base material 11 .
  • the upper surface of the flat portion of the first gate insulating layer 21 follows the flat surface of the flexible base material 11 .
  • the first gate insulating layer 21 further includes a step portion 22 .
  • the step portion 22 is surrounded by the flat portion of the first gate insulating layer 21 .
  • the stepped portion 22 covers the upper surface of the gate electrode layer 12 and the end face of the gate electrode layer 12 and protrudes from the flat portion adjacent to the stepped portion 22 .
  • the stepped portion 22 may rise sharply from the flat portion via a plane orthogonal to the top surface of the flat portion, or may gently rise from the flat portion via a slope with respect to the top surface of the flat portion.
  • the upper surface of the stepped portion 22 follows the flat surface of the flexible base material 11 .
  • the outer shape of each layer seen from the viewpoint facing the upper surface of the first gate insulating layer 21 is the planar shape of the layer.
  • the planar shape of the stepped portion 22 has, for example, a rectangular shape.
  • the planar shape of the step portion 22 may follow the planar shape of the gate electrode layer 12 or may differ from the planar shape of the gate electrode layer 12 .
  • the planar shape of the stepped portion 22 may be a shape having a portion that follows the planar shape of the wiring connected to the gate electrode layer 12, or may not have a portion that follows the planar shape of the wiring.
  • the bottom surface of the second gate insulating layer 23 is in contact with the top surface of the step portion 22 .
  • the second gate insulating layer 23 covers the upper surface of the gate electrode layer 12 so that the first gate insulating layer 21 is sandwiched between the second gate insulating layer 23 and the gate electrode layer 12 in the channel depth direction.
  • the second gate insulating layer 23 is positioned within the upper surface of the step portion 22 when viewed from the viewpoint facing the upper surface of the first gate insulating layer 21 .
  • the end face of the second gate insulating layer 23 may be located inside the end face of the stepped portion 22 or may be aligned with the end face of the stepped portion 22 .
  • the planar shape of the second gate insulating layer 23 may follow the planar shape of the stepped portion 22 or may differ from the planar shape of the stepped portion 22 .
  • the bottom surface of the semiconductor layer 13 is in contact with the top surface of the second gate insulating layer 23 .
  • the semiconductor layer 13 covers the upper surface of the gate electrode layer 12 so that the semiconductor layer 13 and the gate electrode layer 12 sandwich the first gate insulating layer 21 and the second gate insulating layer 23 in the channel depth direction.
  • the semiconductor layer 13 is positioned within the upper surface of the step portion 22 and within the upper surface of the second gate insulating layer 23 when viewed from the viewpoint facing the upper surface of the first gate insulating layer 21 .
  • the end surface of the semiconductor layer 13 may be located inside the end surface of the second gate insulating layer 23, or may be positioned inside the end surface of the second gate insulating layer 23. may match.
  • the planar shape of the second gate insulating layer 23 may follow the planar shape of the second gate insulating layer 23 or may differ from the planar shape of the second gate insulating layer 23 .
  • the lower surface of the source electrode layer 14 is in contact with the upper surface of the semiconductor layer 13 and the flat portion of the first gate insulating layer 21 .
  • the source electrode layer 14 covers the first end of the semiconductor layer 13 so as to be connected to the first end, which is the end of the semiconductor layer 13 in the channel length direction.
  • the source electrode layer 14 is in contact with the end face of the semiconductor layer 13, the end face of the second gate insulating layer 23, and the end face of the step portion 22, and extends in the channel length direction from the upper surface of the flat portion of the first gate insulating layer 21 to the semiconductor layer 13. extends to the first end of the
  • the lower surface of the drain electrode layer 15 is in contact with the upper surface of the semiconductor layer 13 and the flat portion of the first gate insulating layer 21 .
  • the drain electrode layer 15 covers the second end of the semiconductor layer 13 so as to be connected to the second end, which is the end of the semiconductor layer 13 in the channel length direction.
  • the first end and the second end of the semiconductor layer 13 are both ends of the semiconductor layer 13 in the channel length direction.
  • the drain electrode layer 15 is in contact with the end face of the semiconductor layer 13, the end face of the second gate insulating layer 23, and the end face of the step portion 22, and extends from the upper surface of the flat portion of the first gate insulating layer 21 to the semiconductor layer 13 in the channel length direction. extending to the second end of the
  • the source electrode layer 14 and the drain electrode layer 15 are separated from each other.
  • the length between the source electrode layer 14 and the drain electrode layer 15 is smaller than the length of the gate electrode layer 12 in the channel length direction.
  • a region between the source electrode layer 14 and the drain electrode layer 15 in the semiconductor layer 13 is a channel region.
  • the length of the channel region in the channel length direction, that is, the length between the source electrode layer 14 and the drain electrode layer 15 is the channel length.
  • the length of the channel region in the channel width direction is the channel width.
  • the average value of all channel lengths is the channel length in one thin film transistor.
  • the region of the semiconductor layer 13 overlapping the gate electrode layer 12 in the channel depth direction is the channel region.
  • the flexible base material 11 has an insulating upper surface.
  • the flexible substrate 11 may be a transparent substrate or an opaque substrate.
  • the flexible base material 11 may be a film having an insulating property, a metal foil provided with an insulating property on the top surface of the flexible base material 11 , or an insulating film on the top surface of the flexible base material 11 . It may be an alloy foil imparted with or may be a thin plate glass having flexibility.
  • the flexible substrate 11 may be a single layer structure or a multilayer structure.
  • examples of materials constituting the flexible substrate 11 include organic polymer compounds, composite materials of organic and inorganic materials, metals, alloys, and inorganic materials. It is at least one selected from the group consisting of polymer compounds.
  • examples of constituent materials of each layer constituting the flexible base material 11 are organic polymer compounds, composite materials, metals, alloys, and inorganic polymer compounds. Any one selected from the group.
  • the flexible base material 11 may include a base substrate and a release layer configured to be peelable from the base substrate.
  • the release layer is stripped from the underlying substrate together with the device structure.
  • a release layer comprising device structures may be applied to another flexible substrate.
  • flexible substrates include low heat resistant papers, cellophane substrates, cloths, recycled fibers, leathers, nylon substrates, and polyurethane substrates.
  • the release layer and the flexible base constitute another flexible base 11 .
  • organic polymer compounds include polymethyl methacrylate, polyacrylate, polycarbonate, polystyrene, polyethylene sulfide, polyethersulfone, polyolefin, polyethylene terephthalate, polyethylene naphthalate, cycloolefin polymer, polyethersulphene, triacetylcellulose, polyvinylfluoride. It is at least one selected from the group consisting of ride films, ethylene-tetrafluoroethylene copolymers, polyimides, fluorine-based polymers, and cyclic polyolefin-based polymers.
  • An example of a composite material is glass fiber reinforced acrylic polymer or glass fiber reinforced polycarbonate.
  • An example metal is aluminum or copper.
  • An example of an alloy is an iron-chromium alloy, an iron-nickel alloy, or an iron-nickel-chromium alloy.
  • An example of an inorganic polymer compound is alkali-free glass containing silicon oxide, boron oxide and aluminum oxide, or alkali glass containing silicon oxide, sodium oxide and calcium oxide.
  • the flexible base material 11 When the flexible base material 11 is a film made of an organic polymer compound, the flexible base material 11 may have a multilayer structure including a gas barrier layer. Examples of materials constituting the gas barrier layer are aluminum oxide, silicon oxide, silicon nitride, silicon oxynitride, silicon carbide, and diamond-like carbon.
  • the gas barrier layer may have a single layer structure or a multilayer structure.
  • the flexible substrate 11 may have a gas barrier layer on only one side of the film, or may have gas barrier layers on both sides of the film.
  • the material forming the first gate insulating layer 21 contains an organic atomic group that contributes to the flexibility of the first gate insulating layer 21 .
  • the material forming the first gate insulating layer 21 may be an organic polymer compound. Examples of organic polymer compounds include polyvinylphenol, polyimide, polyvinyl alcohol, acrylic polymers, epoxy polymers, fluoropolymers including amorphous fluoropolymers, melamine polymers, furan polymers, xylene polymers, polyamideimide polymers, silicone polymers, and parylene.
  • the organic polymer compound is preferably at least one selected from the group consisting of polyimide, acrylic polymer, and fluorine-based polymer.
  • the material forming the first gate insulating layer 21 may be an organic-inorganic composite material.
  • An organic-inorganic composite material has a molecular structure that includes an organic atomic group that has the properties of an organic compound and an atomic group that has the properties of an inorganic compound.
  • An example of an organic-inorganic composite is silsesquioxane.
  • a silsesquioxane has a skeleton composed of silicon and oxygen as an atomic group having the properties of an inorganic compound, and an organic group as an atomic group having the properties of an organic compound.
  • the material constituting the first gate insulating layer 21 may contain particles composed of inorganic compounds in compounds containing organic atomic groups.
  • the particles are nanoparticles having an average particle diameter of several nanometers or more and several hundreds of nanometers or less.
  • the first gate insulating layer 21 may be a single layer film or a multilayer film.
  • the constituent material of each layer forming the first gate insulating layer 21 contains an organic atomic group.
  • the resistivity of the first gate insulating layer 21 is preferably 1 ⁇ 10 11 ⁇ cm or more. Furthermore, when thinning of the first gate insulating layer 21 is required, the resistivity of the first gate insulating layer 21 is preferably 1 ⁇ 10 13 ⁇ cm or more. Further, when it is required to suppress current leakage between the gate electrode layer 12 and the other electrode layers 14 and 15, the dielectric constant of the first gate insulating layer 21 is 2.0 or more and 5.0 or less. Preferably.
  • the material forming the second gate insulating layer 23 contains an inorganic compound that does not have long-range order.
  • the inorganic compound is at least one selected from the group consisting of silicon compounds such as silicon oxides, silicon nitrides, and silicon oxynitrides, aluminum oxide, tantalum oxide, hafnium oxide, yttrium oxide, and zirconium oxide.
  • the material forming the second gate insulating layer 23 may be a mixture containing an inorganic compound having no long-range order and an organic compound.
  • the second gate insulating layer 23 may be a single layer film or a multilayer film.
  • the constituent material of each layer constituting the second gate insulating layer 23 contains the inorganic compound described above.
  • the second gate insulating layer 23 preferably has a resistivity of 1 ⁇ 10 11 ⁇ cm or more. Furthermore, when the thickness of the second gate insulating layer 23 is required to be reduced, the resistivity of the second gate insulating layer 23 is preferably 1 ⁇ 10 13 ⁇ cm or more. Further, when it is required to suppress current leakage between the gate electrode layer 12 and the other electrode layers 14 and 15, the dielectric constant of the second gate insulating layer 23 is 2.0 or more and 5.0 or less. Preferably.
  • Each electrode layer 12, 14, 15 may be a single-layer structure or a multilayer structure.
  • each electrode layer 12, 14, 15 includes the bottom layer that enhances the adhesion with the lower layer of the electrode layer and the adhesion with the upper layer of the electrode layer. It is preferred to have a top layer that enhances.
  • each electrode layer 12, 14, 15 may be a metal, an alloy, a conductive metal oxide, or a conductive organic polymer compound.
  • the materials forming each electrode layer 12, 14, 15 may be different from each other or may be the same.
  • metals are at least one of transition metals, alkali metals, and alkaline earth metals.
  • the transition metal is at least one selected from the group consisting of indium, aluminum, gold, silver, platinum, titanium, copper, nickel and tungsten.
  • the alkali metal is lithium or cesium.
  • Alkaline earth metal is at least one of magnesium and calcium.
  • the alloy is one selected from the group consisting of molybdenum niobium, iron chromium, aluminum lithium, magnesium silver, aluminum neodymium alloy, and aluminum neodymium zirconia alloy.
  • the metal oxide is any one selected from the group consisting of indium oxide, tin oxide, zinc oxide, cadmium oxide, indium cadmium oxide, cadmium tin oxide, and zinc tin oxide.
  • the metal oxide may contain impurities.
  • the metal oxide containing impurities is indium oxide containing at least one impurity selected from the group consisting of tin, zinc, titanium, cerium, hafnium, zirconium and molybdenum.
  • the metal oxide containing impurities may be antimony or tin oxide containing fluorine.
  • the metal oxide containing impurities may be zinc oxide containing at least one impurity selected from the group consisting of gallium, aluminum and boron.
  • Electrode layers 14 and 15 may be a layer composed of the same constituent elements as the semiconductor layer 13 and having an impurity concentration sufficiently higher than that of the semiconductor layer 13 .
  • the electrical resistivity of each electrode layer 12, 14, 15 should be 5.0 ⁇ 10 ⁇ 5 ⁇ cm or more. Preferably. If it is required to suppress the power consumption of the thin film transistor, the electric resistivity of each electrode layer 12, 14, 15 is preferably 1.0 ⁇ 10 ⁇ 2 ⁇ cm or less.
  • a material forming the semiconductor layer 13 is an oxide semiconductor.
  • the oxide semiconductor contains at least one metal element selected from the group consisting of indium, gallium, zinc, and tin.
  • the oxide semiconductor may be a one-component oxide semiconductor composed of one metal element, a binary oxide semiconductor composed of two metal elements, or composed of three or more metal elements. may be a multi-component oxide semiconductor.
  • the oxide semiconductor may be an amorphous semiconductor, a microcrystalline semiconductor including many microcrystals, or a polycrystalline semiconductor including many microcrystals.
  • the semiconductor layer 13 is preferably a semiconductor layer containing indium.
  • Single-component oxide semiconductors are, for example, indium oxide, zinc oxide, gallium oxide, and tin oxide.
  • Binary oxide semiconductors are, for example, indium zinc oxide and indium gallium oxide.
  • a ternary oxide semiconductor is a ternary oxide semiconductor containing indium.
  • Ternary oxide semiconductors are, for example, indium gallium zinc oxide, indium aluminum zinc oxide, indium tin zinc oxide, and indium hafnium zinc oxide.
  • the oxide semiconductor contains, in addition to the metal elements constituting the metal oxide, at least other metal elements selected from the group consisting of titanium, germanium, yttrium, zirconium, lanthanum, cerium, tungsten, and magnesium, for example. One element may be included.
  • An example of an oxide semiconductor is an In-M-Zn-based oxide.
  • In-M-Zn-based oxides include indium (In) and zinc (Zn).
  • the In-M-Zn oxide contains at least one metal element (M) selected from the group consisting of aluminum, titanium, gallium, germanium, yttrium, zirconium, lanthanum, cerium, hafnium, and tin.
  • the source electrode layer 14 has a stepped shape with steps corresponding to the thickness of the semiconductor layer 13 , the thickness of the second gate insulating layer 23 , and the thickness of the stepped portion 22 .
  • Each stepped surface forming source electrode layer 14 is in contact with an end surface of semiconductor layer 13 , an end surface of second gate insulating layer 23 , and an end surface of stepped portion 22 .
  • the source electrode layer 14 is formed on the upper surface of the semiconductor layer 13 so that the first end of the semiconductor layer 13 is in close contact with the second gate insulating layer 23 and the end of the second gate insulating layer 23 is in close contact with the step portion 22 . , to the flat portion of the first gate insulating layer 21 .
  • the drain electrode layer 15 has a stepped shape with steps corresponding to the thickness of the semiconductor layer 13 , the thickness of the second gate insulating layer 23 , and the thickness of the stepped portion 22 .
  • Each stepped surface forming the drain electrode layer 15 is in contact with the end surface of the semiconductor layer 13 , the end surface of the second gate insulating layer 23 , and the end surface of the stepped portion 22 .
  • the drain electrode layer 15 is formed on the upper surface of the semiconductor layer 13 so that the second end of the semiconductor layer 13 is in close contact with the second gate insulating layer 23 and the end of the second gate insulating layer 23 is in close contact with the step portion 22 . , to the flat portion of the first gate insulating layer 21 .
  • the upper surface of the flat portion of the first gate insulating layer 21 and the upper surface of the step portion 22 follow the flat surface of the flexible base material 11 .
  • the thickness DA of the step portion 22 and the thickness DB of the flat portion are obtained by measurement using a scanning electron microscope (SEM) or a contact-type profilometer.
  • the thickness DA of the stepped portion 22 and the thickness DB of the flat portion were measured at 10 points arranged at intervals of 1 ⁇ m in the channel length direction and at 10 points arranged at intervals of 1 ⁇ m in the channel width direction. Calculated as the average thickness.
  • the second gate insulating layer 23 is positioned within the upper surface of the stepped portion 22 .
  • the area SD occupied by the second gate insulating layer 23 on the upper surface of the step portion 22 is obtained from an SEM image of the second gate insulating layer 23 photographed from a viewpoint facing the first gate insulating layer 21 .
  • the semiconductor layer 13 is located within the upper surface of the second gate insulating layer 23 .
  • the area SC occupied by the semiconductor layer 13 on the upper surface of the second gate insulating layer 23 is obtained from an SEM image of the semiconductor layer 13 taken from a viewpoint facing the first gate insulating layer 21 .
  • planar shape of the second gate insulating layer 23 is irregular or the planar shape of the semiconductor layer 13 is irregular
  • image processing may be used to measure the areas SD and SC.
  • Indefinite shapes are shapes that are not geometric, such as quadrilaterals, trapezoids, and combinations thereof, and are surrounded by complex curves.
  • Area SD is greater than or equal to area SC.
  • the length DL of the second gate insulating layer 23 in the channel length direction is equal to or greater than the length CL of the semiconductor layer 13 in the channel length direction.
  • the length of the second gate insulating layer 23 in the channel width direction is greater than or equal to the length of the semiconductor layer 13 in the channel width direction.
  • the thickness DA of the stepped portion 22 and the thickness DB of the flat portion satisfy Condition 1 below.
  • the thickness DA of the stepped portion 22 may satisfy Condition 2 below.
  • the area SD occupied by the second gate insulating layer 23 on the upper surface of the step portion 22 and the area SC occupied by the semiconductor layer 13 on the upper surface of the second gate insulating layer 23 may satisfy Condition 3 below.
  • the thickness DA, the thickness DB, and the thickness of the gate electrode layer 12 may satisfy Condition 5 below.
  • the stepped portion 22 in the first gate insulating layer 21 acts as a charge injection layer of the thin film transistor.
  • the thickness DA of the stepped portion 22 has a size that (i) suppresses deterioration due to voltage for injecting charges.
  • Providing a flat portion thinner than the stepped portion 22 in the first gate insulating layer 21 allows (i) the first gate insulating layer 21 to withstand charge injection, and (ii) flatness other than the stepped portion 22 . Increase flexibility by part.
  • the flexibility of the first gate insulating layer 21 due to the flat portion of the first gate insulating layer 21 causes deterioration of the interface between the stepped portion 22 and the second gate insulating layer 23, Deterioration of the interface with the semiconductor layer 13 and cracking of the second gate insulating layer 23 are suppressed.
  • DA/DB ⁇ 0.94 (i) provides resistance to charge injection and (ii) increases the flexibility of the first gate insulating layer 21, while maintaining 0.94 ⁇ DB/DA. and (iii) a reduction in the mobility of the thin film transistor due to bending of the flexible substrate 11 is greatly suppressed. Satisfying 0.30 ⁇ DB/DA suppresses the occurrence of cracks and film peeling in the electrode layers 14 and 15 extending to the flat portion of the first gate insulating layer 21 .
  • DB/DA which is the ratio of the thickness DA to the thickness DB, may be 0.33 or more and 0.94 or less, or may be 0.67 or more and 0.94 or less.
  • DB/DA which is the ratio of the thickness DA to the thickness DB, may be 0.3 or more and 0.75 or less, or may be 0.3 or more and 0.67 or less.
  • the source electrode layer 14 has a step difference corresponding to the thickness of the semiconductor layer 13 and the thickness of the second gate insulating layer 23 and does not have a step difference corresponding to the thickness of the step portion 22, and has two steps. You may have one stepped shape consisting of. That is, the source electrode layer 14 may have a structure that extends from the upper surface of the semiconductor layer 13 to the stepped portion 22 . Further, the source electrode layer 14 has a step corresponding to the thickness of the semiconductor layer 13 and has a single step without a step corresponding to the thickness of the second gate insulating layer 23 and the thickness of the step portion 22 . It may have a shape. That is, the source electrode layer 14 may be configured to extend from the upper surface of the semiconductor layer 13 to the second gate insulating layer 23 .
  • the drain electrode layer 15 has two steps having a step corresponding to the thickness of the semiconductor layer 13 and the thickness of the second gate insulating layer 23 and not having a step corresponding to the thickness of the step portion 22. You may have one stepped shape consisting of. In other words, the drain electrode layer 15 may be configured to extend from the upper surface of the semiconductor layer 13 to the stepped portion 22 . In addition, the drain electrode layer 15 has a step corresponding to the thickness of the semiconductor layer 13 and has a single step without a step corresponding to the thickness of the second gate insulating layer 23 and the thickness of the step portion 22 . It may have a shape. In other words, the drain electrode layer 15 may be configured to extend from the upper surface of the semiconductor layer 13 to the second gate insulating layer 23 .
  • the thickness DA of the stepped portion 22 is , satisfy conditions 1 and 4 above.
  • the thickness DA of the stepped portion 22 is 0.6 ⁇ m or less, (ii) the flexibility is improved compared to the case where the thickness DA of the stepped portion 22 is 1.0 ⁇ m or more, such as 0.6 ⁇ m. and (iii) suppression and improvement of mobility decrease.
  • the area SD and the area SC may satisfy the above condition 3 when there is a demand for enhancing the effectiveness of the effect of suppressing the decrease in mobility in the thin film transistor.
  • the thickness DA, the thickness DB, and the thickness of the gate electrode layer 12 may satisfy Condition 5 above.
  • the thickness DB of the flat portion of the first gate insulating layer 21 should be 0.2 ⁇ m or more. preferable.
  • the thickness DA of the step portion 22 is preferably 1.2 ⁇ m or less.
  • the thickness DB of the flat portion in the first gate insulating layer 21 is 0.4 ⁇ m or more, and the thickness DA of the stepped portion 22 is 1.0 ⁇ m or less.
  • the thickness DA of the step portion 22 may be 0.4 ⁇ m or more and 1.2 ⁇ m or less, or may be 0.4 ⁇ m or more and 1.0 ⁇ m or less.
  • the thickness DB may be 0.2 ⁇ m or more and 0.94 ⁇ m or less, or may be 0.4 ⁇ m or more and 0.94 ⁇ m or less.
  • the area of the upper surface of the stepped portion 22 is 30 ⁇ m 2 or more and 5 ⁇ 10 4 ⁇ m. It is preferably 2 or less.
  • the area SD of the upper surface of the second gate insulating layer 23 is preferably 30 ⁇ m 2 or more and 5 ⁇ 10 4 ⁇ m 2 or less.
  • the area SC of the upper surface of the semiconductor layer 13 is preferably 30 ⁇ m 2 or more and 5 ⁇ 10 4 ⁇ m 2 or less.
  • the channel length is preferably 4 ⁇ m or more and 50 ⁇ m or less.
  • the channel width is preferably 4 ⁇ m or more and 500 ⁇ m or less.
  • the thickness of the second gate insulating layer 23 is preferably 50 nm or less.
  • the thickness of the second gate insulating layer 23 is preferably 2 nm or more.
  • the thickness of the first gate insulating layer 21 is preferably 2 nm or more and 50 nm or less.
  • the dielectric constant of the second gate insulating layer 23 should be 3.5 or more and 10 or less. is preferred.
  • the thickness of each electrode layer 12, 14, 15 is preferably 50 nm or more. If it is required to increase the flexibility of the thin film transistor, the thickness of each electrode layer 12, 14, 15 is preferably 300 nm or less.
  • the thickness of the semiconductor layer 13 is preferably 10 nm or more. When it is required to reduce the amount of material used in the semiconductor layer 13, the thickness of the semiconductor layer 13 is preferably 100 nm or less. If both improvement in thickness uniformity and suppression of material usage are required, the thickness of the semiconductor layer 13 is preferably 10 nm or more and 100 nm or less. Furthermore, when it is required to improve the effectiveness of obtaining these effects, the thickness of the semiconductor layer 13 is preferably 15 nm or more and 50 nm or less. When the mobility of the thin film transistor is required to be improved, the conductivity of the semiconductor layer 13 is preferably 1.0 ⁇ 10 ⁇ 7 S/cm or more and 1.0 ⁇ 10 ⁇ 1 S/cm or less.
  • a method for manufacturing a thin film transistor includes a first step of forming a gate electrode layer 12 on a flexible base material 11 .
  • the method of manufacturing a thin film transistor includes a second step of forming a first gate insulating layer 21 and a third step of stacking a second gate insulating layer 23 on the first gate insulating layer 21 .
  • the method of manufacturing the thin film transistor also includes a fourth step of stacking the semiconductor layer 13 on the second gate insulating layer 23 and a fifth step of stacking the source electrode layer 14 and the drain electrode layer 15 on the semiconductor layer 13 .
  • the gate electrode layer 12 may be formed by a film formation method using a mask that follows the outline of the gate electrode layer 12 .
  • the gate electrode layer 12 may be formed by forming an electrode film to form the gate electrode layer 12 and then processing the electrode film into the shape of the gate electrode layer 12 using an etching method.
  • the film formation method used to form the gate electrode layer 12 is at least one selected from the group consisting of vacuum deposition, ion plating, sputtering, laser ablation, spin coating, dip coating, and slit die coating. be.
  • the film formation method used to form the gate electrode layer 12 is at least one selected from the group consisting of screen printing, letterpress printing, intaglio printing, planographic printing, and inkjet.
  • the first gate insulating layer 21 may be formed by processing the coating film for forming the first gate insulating layer 21 .
  • a stepped portion 22 and a flat portion are formed in the first gate insulating layer 21 by an etching method using a mask that follows the planar shape of the first gate insulating layer 21 and a mask that follows the planar shape of the stepped portion 22 .
  • the first gate insulating layer 21 may be formed by applying a photolithographic method to the photosensitive coating film to form the stepped portion 22 and the flat portion of the first gate insulating layer 21 from the photosensitive coating film. .
  • the step of forming the stepped portion 22 and the flat portion of the first gate insulating layer 21 may be a single etching step in which the thickness of the resist covering the stepped portion 22 and the thickness of the resist covering the flat portion are made different from each other. , may be separate etching steps.
  • the steps of forming the stepped portion 22 and the flat portion of the first gate insulating layer 21 are carried out by a single method in which the exposure dose applied to the region corresponding to the stepped portion 22 and the exposure dose applied to the flat portion are different from each other.
  • a photolithography process may be used, or separate photolithography processes may be used.
  • the coating method used to form the first gate insulating layer 21 is selected from the group consisting of a spin coating method, a dip coating method, a slit die coating method, a screen printing method, and an inkjet method using a coating liquid containing an organic polymer compound. at least one.
  • a coating film is formed by baking a liquid film made of a coating liquid.
  • the coating liquid contains a photosensitive polymer.
  • the second gate insulating layer 23 may be formed by a film forming method using a mask that follows the shape of the second gate insulating layer 23 .
  • the second gate insulating layer 23 may be formed by forming an insulating layer to be the second gate insulating layer 23 and then processing the insulating layer into the shape of the second gate insulating layer 23 using an etching method. good.
  • the shape processing of the second gate insulating layer 23 may be performed by etching using the pattern of the semiconductor layer 13 as a mask in the fourth step.
  • the film formation method used to form the second gate insulating layer 23 is at least one selected from the group consisting of laser ablation, plasma CVD, optical CVD, thermal CVD, sputtering, and sol-gel.
  • the film forming method used to form the second gate insulating layer 23 is a group consisting of a spin coating method using a coating liquid containing an inorganic compound precursor, a dip coating method, a slit die coating method, a screen printing method, and an inkjet method. is at least one coating method selected from
  • the semiconductor layer 13 may be formed by a film forming method using a mask that follows the shape of the semiconductor layer 13 .
  • the semiconductor layer 13 may be formed by forming a semiconductor film to be the semiconductor layer 13 and then processing the semiconductor film into the shape of the semiconductor layer 13 using an etching method.
  • the semiconductor layer 13 is formed by a sputtering method, an atomic layer deposition method which is an ALD method, a pulse laser deposition method which is a PLD method, a CVD method, or a wet film formation method including a sol-gel method.
  • the sputtering method includes a DC sputtering method in which a DC voltage is applied to the flexible base material 11, or an RF sputtering method in which a high frequency is applied to the film forming space.
  • the semiconductor layer 13 may be subjected to heat treatment for microcrystallization or polycrystallization.
  • Impurity addition methods include a plasma processing method, an ion implantation method, an ion doping method, and a plasma immersion ion implantation method.
  • the carrier concentration of the semiconductor layer 13 can be changed by changing the oxygen concentration in the atmosphere when the semiconductor layer 13 is formed.
  • the carrier concentration of the semiconductor layer 13 can also be changed by changing the hydrogen concentration in the atmosphere when the semiconductor layer 13 is formed.
  • the carrier concentration of the semiconductor layer 13 can also be changed by changing the metal composition ratio in the oxide semiconductor.
  • the carrier concentration of the semiconductor layer 13 can also be changed by the temperature of the heat treatment applied to the semiconductor layer 13 and the atmosphere.
  • the source electrode layer 14 and the drain electrode layer 15 may be formed by a film formation method using a mask following the shape of the electrode layers.
  • the source electrode layer 14 and the drain electrode layer 15 are formed by forming electrode films to be the electrode layers 14 and 15, and then etching the electrode films into the shapes of the source electrode layer 14 and the drain electrode layer 15. It may be formed by a method of processing.
  • the film forming method used for forming the electrode layers 14 and 15 is at least one selected from the group consisting of vacuum deposition, ion plating, sputtering, laser ablation, spin coating, dip coating, and slit die coating. is.
  • the film formation method used to form the gate electrode layer 12 is at least one selected from the group consisting of screen printing, letterpress printing, intaglio printing, planographic printing, and inkjet.
  • Example 1 As the thin film transistor of Example 1, a bottom gate/top contact type transistor having the following structure was formed.
  • a polyimide film having a thickness of 20 ⁇ m was used as the flexible base material 11 .
  • an aluminum neodymium film which is an aluminum alloy film, was used as the gate electrode layer 12 .
  • the gate electrode layer 12 was obtained by patterning an aluminum alloy film formed on the flexible base material 11 .
  • the aluminum alloy film was obtained by a DC magnetron sputtering method using the flexible substrate 11 as a film formation target under the following film formation conditions.
  • the gate electrode layer 12 was obtained by forming a resist mask from a photosensitive polyresist film laminated on an aluminum alloy film, wet-etching the aluminum alloy film using the resist mask, and then removing the resist mask. .
  • the thickness of the gate electrode layer 12 was 80 nm.
  • the thin film transistor of Example 1 used an acrylic resin film for the first gate insulating layer 21 .
  • the first gate insulating layer 21 was obtained by patterning a coating film containing a photosensitive acrylic resin formed to cover the gate electrode layer 12 .
  • the photosensitive coating film was obtained by a slit coating method of a photosensitive acrylic resin using the flexible base material 11 laminated with the gate electrode layer 12 as a film formation target and setting the rotation speed of the base material to 2400 rpm.
  • the first gate insulating layer 21 is formed by exposing the photosensitive coating film using a mask for forming the first gate insulating layer 21, developing the coating film, and baking the developed coating film at 220°C. Got.
  • the thickness of the first gate insulating layer 21 was 0.6 ⁇ m.
  • the thin film transistor of Example 1 used a silicon oxide film for the second gate insulating layer 23 .
  • the second gate insulating layer 23 was obtained by patterning a silicon oxide film formed to cover the first gate insulating layer 21 .
  • the silicon oxide film was obtained by the CVD method under the following film forming conditions, using the flexible base material 11 laminated with the first gate insulating layer 21 as a film forming object.
  • the second gate insulating layer 23 was obtained by dry etching the silicon oxide film using a resist pattern formed on the silicon oxide film as a mask and using the following etching conditions for the second gate insulating layer 23 .
  • the formation of the step portion 22 was obtained by dry etching the first gate insulating layer 21 under the following etching conditions for the first gate insulating layer 21 .
  • an indium gallium zinc oxide (InGaZnO) film having a thickness of 30 nm was used as the semiconductor layer 13 .
  • the semiconductor layer 13 was obtained by wet etching an oxide semiconductor film formed so as to cover the second gate insulating layer 23 .
  • the oxide semiconductor film was obtained by a DC magnetron sputtering method under the following film formation conditions, using the flexible base material 11 laminated with the second gate insulating layer 23 as a film formation target.
  • an aluminum neodymium film which is an aluminum alloy film having a thickness of 80 nm, was used for the source electrode layer 14 and the drain electrode layer 15 .
  • the source electrode layer 14 and the drain electrode layer 15 were obtained by a lift-off method using a DC magnetron sputtering method under the following deposition conditions.
  • a lift-off resist having a hole shape following the contours of the electrode layers 14 and 15 was formed.
  • a source electrode layer 14 and a drain electrode layer 15 were obtained by forming an aluminum neodymium film and peeling off the inverted pattern deposited on the lift-off resist together with the resist.
  • the thin film transistor of Example 2 is a bottom-gate/top-contact transistor having the following structure.
  • dimensions related to structural items that are the same as the dimensions of the thin film transistor of Example 1 among the dimensions of the thin film transistor of Example 2 are omitted.
  • a thin film transistor of Example 2 was obtained in the same manner as in Example 1 except that the etching time of the first gate insulating layer 21 for forming the step portion 22 was changed to 40 seconds.
  • ⁇ Thickness DA of stepped portion 22 of first gate insulating layer 21 0.6 ⁇ m ⁇ Thickness DB of the flat portion of the first gate insulating layer 21: 0.4 ⁇ m ⁇ Thickness DB/thickness DA: 0.67 ⁇ Thickness DB-thickness DA: 0.2 ⁇ m
  • Example 3 The thin film transistor of Example 3 is a bottom-gate/top-contact transistor having the following structure.
  • dimensions related to structural items that are the same as the dimensions of the thin film transistor of Example 1 among the dimensions of the thin film transistor of Example 2 are omitted.
  • a thin film transistor of Example 2 was obtained in the same manner as in Example 1 except that the etching time of the first gate insulating layer 21 for forming the step portion 22 was changed to 8 seconds.
  • ⁇ Thickness DA of stepped portion 22 of first gate insulating layer 21 0.6 ⁇ m ⁇ Thickness DB of the flat portion of the first gate insulating layer 21: 0.55 ⁇ m ⁇ Thickness DB/thickness DA: 0.92 ⁇ Thickness DB-thickness DA: 0.05 ⁇ m
  • the thin film transistor of Example 4 is a bottom-gate/top-contact transistor having the following structure.
  • the rotation speed of the substrate for forming the first gate insulating layer 21 was changed to 890 rpm, and the etching time of the first gate insulating layer 21 for forming the step portion 22 was set to 6 seconds. It was obtained in the same manner as in Example 1 except for the above.
  • ⁇ Thickness DA of stepped portion 22 of first gate insulating layer 21 1.0 ⁇ m ⁇ Thickness DB of the flat portion of the first gate insulating layer 21: 0.94 ⁇ m ⁇ Thickness DB/thickness DA: 0.94 ⁇ Thickness DB-thickness DA: 0.06 ⁇ m
  • the thin film transistor of Example 5 is a bottom-gate/top-contact transistor having the following structure.
  • the dimensions of the thin film transistor of Example 5 that relate to structural items that are the same as the dimensions of the thin film transistor of Example 1 are omitted.
  • the rotation speed of the substrate for forming the first gate insulating layer 21 was changed to 4800 rpm, and the etching time of the first gate insulating layer 21 for forming the step portion 22 was set to 14 seconds. It was obtained in the same manner as in Example 1 except for the above.
  • ⁇ Thickness DA of stepped portion 22 of first gate insulating layer 21 0.4 ⁇ m ⁇ Thickness DB of the flat portion of the first gate insulating layer 21: 0.3 ⁇ m ⁇ Thickness DB/thickness DA: 0.75 ⁇ Thickness DB-thickness DA: 0.1 ⁇ m
  • Example 6 In the thin film transistor of Example 6, the constituent material of the first gate insulating layer 21, the constituent material of the second gate insulating layer 23, the forming conditions of the first gate insulating layer 21, and the forming conditions of the second gate insulating layer 23 were changed. , was obtained in the same manner as in Example 1 except for the above.
  • the material for forming the first gate insulating layer 21 of Example 6 is photosensitive polymethylsilsesquioxane.
  • the rotation speed of the substrate for forming the first gate insulating layer 21 of Example 6 is 1000 rpm, and the firing temperature of the coating film is 200.degree.
  • the second gate insulating layer 23 of Example 6 is a silicon oxynitride film formed using the following film formation conditions.
  • the etching time for forming the step portion 22 in the first gate insulating layer 21 in Example 6 was 30 seconds, and the etching time for forming the second gate insulating layer 23 in Example 6 was 30 seconds. be.
  • Example 7 In the thin film transistor of Example 7, the material for forming the first gate insulating layer 21, the material for forming the second gate insulating layer 23, the conditions for forming the first gate insulating layer 21, and the conditions for forming the second gate insulating layer 23 were changed. , was obtained in the same manner as in Example 1 except for the above.
  • the material for forming the first gate insulating layer 21 of Example 7 is a material in which nanoparticles made of silicon oxide are dispersed in an acrylic resin.
  • the first gate insulating layer 21 of Example 7 was obtained by baking the coating film formed on the upper surfaces of the flexible base material 11 and the gate electrode layer 12 at 250° C. using the gravure offset printing method. .
  • the coating liquid is a solution in which nanoparticles made of silicon oxide are dispersed in a solution containing an acrylic resin.
  • the second gate insulating layer 23 of Example 7 is a silicon nitride film formed using the following film formation conditions.
  • the etching time for forming the step portion 22 in the first gate insulating layer 21 in Example 7 was 40 seconds, and the etching time for forming the second gate insulating layer 23 in Example 7 was 40 seconds. be.
  • the thin film transistor of Example 8 is a bottom-gate/top-contact transistor having the following structure.
  • dimensions related to structural items that are the same as those of the thin film transistor of Example 1 among the dimensions of the thin film transistor of Example 8 are omitted.
  • a thin film transistor of Example 8 was obtained in the same manner as in Example 1 except that the size of the resist mask for forming the second gate insulating layer 23 was changed.
  • the thin film transistor of Example 9 is a bottom-gate/top-contact transistor having the following structure.
  • dimensions related to structural items that are the same as those of the thin film transistor of Example 1 among the dimensions of the thin film transistor of Example 9 are omitted.
  • a thin film transistor of Example 9 was obtained in the same manner as in Example 1 except that the size of the resist mask for forming the second gate insulating layer 23 was changed.
  • the thin film transistor of Example 10 is a bottom-gate/top-contact transistor having the following structure.
  • dimensions related to structural items that are the same as the dimensions of the thin film transistor of Example 4 among the dimensions of the thin film transistor of Example 10 are omitted.
  • a thin film transistor of Example 10 was obtained in the same manner as in Example 4 except that the etching time of the first gate insulating layer 21 for forming the step portion 22 was changed to 70 seconds.
  • ⁇ Thickness DA of stepped portion 22 of first gate insulating layer 21 1.0 ⁇ m ⁇ Thickness DB of the flat portion of the first gate insulating layer 21: 0.3 ⁇ m ⁇ Thickness DB/thickness DA: 0.3 ⁇ Thickness DB-thickness DA: 0.7 ⁇ m
  • the thin film transistor of Comparative Example 1 is a bottom-gate/top-contact transistor having the following structure.
  • dimensions related to structural items that are the same as the dimensions of the thin film transistor of Example 1 among the dimensions of the thin film transistor of Comparative Example 1 are omitted.
  • a thin film transistor of Comparative Example 1 was obtained in the same manner as in Example 1 except that the etching time of the first gate insulating layer 21 for forming the step portion 22 was changed to 0 seconds.
  • ⁇ Thickness DA of stepped portion 22 of first gate insulating layer 21 0.6 ⁇ m ⁇ Thickness DB of the flat portion of the first gate insulating layer 21: 0.6 ⁇ m ⁇ Thickness DB/thickness DA: 1.0 ⁇ Thickness DB-thickness DA: 0.0 ⁇ m
  • the thin film transistor of Comparative Example 2 is a bottom-gate/top-contact transistor having the following structure.
  • the dimensions related to structural items that are the same as the dimensions of the thin film transistor of Example 4 among the dimensions of the thin film transistor of Comparative Example 2 are omitted.
  • a thin film transistor of Comparative Example 2 was obtained in the same manner as in Example 4 except that the etching time of the first gate insulating layer 21 for forming the step portion 22 was changed to 5 seconds.
  • ⁇ Thickness DA of stepped portion 22 of first gate insulating layer 21 1.0 ⁇ m ⁇ Thickness DB of the flat portion of the first gate insulating layer 21: 0.95 ⁇ m ⁇ Thickness DB/thickness DA: 0.95 ⁇ Thickness DB-thickness DA: 0.05 ⁇ m
  • the voltage of the source electrode layer 14 was set to 0 V, and the source-drain voltage was set to 10 V, and the transfer characteristic, which is the relationship between the gate voltage and the drain current Id, was obtained.
  • the source-drain voltage is the voltage between source electrode layer 14 and drain electrode layer 15 .
  • a gate voltage is the voltage between the source electrode layer 14 and the gate electrode layer 12 .
  • a drain current is a current that flows through the drain electrode layer 15 .
  • the gate voltage was changed by changing the voltage of the gate electrode layer 12 from -20V to +20V.
  • the mutual conductance (A/V) which is the change in the drain current with respect to the change in the gate voltage. Then, the relative dielectric constant and thickness of the first gate insulating layer 21, the relative dielectric constant and thickness of the second gate insulating layer 23, the channel length, the channel Width, source-drain voltage were applied and the mobility was calculated.
  • the transfer characteristic which is the relationship between the gate voltage and the drain current Id, was obtained as described above. Then, the difference in mobility before and after the load test with respect to the mobility before the load test was measured as the mobility decrease rate.
  • FIG. 3 shows, for Examples 1 to 10 and Comparative Examples 1 and 2, the thickness DA of the stepped portion 22 of the first gate insulating layer 21, the thickness DB of the flat portion, the constituent material of the first gate insulating layer 21, The constituent material, area SD/area SC, pre-test mobility, and mobility reduction rate of the second gate insulating layer 23 are shown.
  • the mobilities before the bending test of the thin film transistors of Examples 1 to 10 and the thin film transistors of Comparative Examples 1 and 2 are all 10.0 cm 2 /Vs or more and 10.6 cm 2 /Vs or less. was recognized. On the other hand, it was found that the thin film transistors of Examples 1 to 10 had a mobility reduction rate of 2.0% or less. On the other hand, it was found that the mobility reduction rate in the thin film transistor of the comparative example exceeded 70%.
  • Example 3 Example 4, Comparative Example 1, and Comparative Example 2 all have a thickness DB/thickness DA of 0.9 or more and 1.0 or less, but the mobility of Comparative Examples 1 and 2 It was found that the mobility reduction rates of Examples 3 and 4 were significantly smaller than the reduction rates. Accordingly, it can be said that the ratio of thickness DB/thickness DA of 0.94 or less, that is, the thin film transistor satisfies the upper limit of Condition 1, significantly suppresses the rate of decrease in mobility of the thin film transistor.
  • the thin film transistor of Example 2 and the thin film transistor of Example 10 both have a thickness DB/thickness DA of about 0.3, while the thin film transistor of Example 2 has a better mobility reduction. It was also accepted to show the rate.
  • the thin film transistor of Example 3 and the thin film transistor of Example 4 both have a thickness DB/thickness DA of about 0.9, while the thin film transistor of Example 3 has better mobility reduction. It was also accepted to show the rate. Accordingly, the thickness DB/thickness DA is 0.94 or less and the thickness DA is 0.6 ⁇ m or less, that is, the thin film transistor satisfies the upper limit of Condition 1 and Condition 4. It can be said that the mobility decrease rate of is brought closer to 0.
  • a thin film transistor that satisfies Condition 1 and includes the electrode layers 14 and 15 covering from the semiconductor layer 13 to the flat portion of the first gate insulating layer 21 does not reduce mobility due to bending of the flexible base material 11. suppress.
  • a thin film transistor that satisfies Condition 1 and Condition 4 suppresses a decrease in mobility due to bending of the flexible base material 11 compared to a thin film transistor that does not satisfy Condition 1 or Condition 4.
  • the oxide semiconductor forming the semiconductor layer 13 is preferably a ternary oxide semiconductor that is the same type as InGaZnO. Further, in the case where it is required to improve the accuracy of suppressing the threshold variation ⁇ Vth in the bent state, the oxide semiconductor forming the semiconductor layer 13 should be a ternary semiconductor containing indium and gallium or containing indium and zinc. An oxide semiconductor is more preferable.
  • the device structure may further include a protective layer that protects the back channel portion of the semiconductor layer 13 .
  • the back channel portion of the semiconductor layer 13 is the surface of the semiconductor layer 13 opposite to the surface in contact with the second gate insulating layer 23 .
  • the protective layer is positioned to cover the back channel portion of the semiconductor layer 13 .
  • the layer structure of the protective layer may be a single layer structure or a multilayer structure.
  • the protective layer may cover only the back channel portion, or may cover the gate electrode layer 12, the first gate insulating layer 21, the second gate insulating layer 23, the source electrode layer 14, the drain electrode layer 15, and the semiconductor layer 13.
  • the back channel portion of the semiconductor layer 13 changes the electronic state of the semiconductor layer 13 by being exposed to chemical substances used in manufacturing the thin film transistor or by adsorbing gases in the atmosphere.
  • the protective layer protects the back channel portion of the semiconductor layer 13 from chemicals during manufacturing and the atmosphere, thereby stabilizing the electrical characteristics of the thin film transistor.
  • An example of the material forming the protective layer is at least one of an inorganic insulating compound and an organic insulating compound.
  • An example of an inorganic insulating compound is at least one selected from the group consisting of silicon oxide, aluminum oxide, tantalum oxide, hafnium oxide, yttrium oxide, zirconium oxide, silicon nitride, and silicon oxynitride.
  • An example of the organic insulating compound is at least one selected from the group consisting of acrylic resin such as polymethyl methacrylate, polyvinyl alcohol, polyvinyl phenol, epoxy resin, polyimide, and parylene.
  • the electrical resistance value of the protection layer is preferably 10 11 ⁇ cm or more, more preferably 10 14 ⁇ cm or more.
  • the thickness of the layer made of the organic insulating compound is preferably 0.3 ⁇ m or more and 3 ⁇ m or less.
  • the thickness of the layer made of the inorganic insulating compound is preferably 5 nm or more and 100 nm or less.
  • the end face shape of the protective layer may be a forward tapered shape. A protective layer having a forward tapered end face shape suppresses disconnection and unstable shape of electrode layers stacked on the protective layer.
  • a protective layer composed of an inorganic insulating compound is formed by a sputtering method, an atomic layer deposition method, a pulse laser deposition method, or a CVD method.
  • a protective layer composed of an organic insulating compound is formed by a wet film formation method such as a spin coating method, a slit coating method, or various printing methods.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)

Abstract

The present invention comprises: first gate insulation layer 21 which is provided with a flat part that follows a flat surface of a flexible base 11 and a step part 22 that covers a gate electrode layer 12 and that protrudes from the flat part, and which includes an organic atomic group; a second gate insulation layer 23 which is an inorganic compound that is positioned within the upper surface of the step part 22; and a semiconductor layer 13 which is positioned within the upper surface of the second gate insulation layer 23. Each electrode layer 14, 15 has a stepped shape that follows the end face of the step part 22 and the end face of the second gate insulation layer 23 from the flat part to the semiconductor layer 13. The thickness DA of the step part 22 and the thickness DB of the flat part satisfy 0.30≤DB/DA≤0.94. Thus, the electric durability of a thin-film transistor with respect to bending of a flexible base is improved.

Description

薄膜トランジスタ、および薄膜トランジスタの製造方法Thin film transistor and method for manufacturing thin film transistor
 本開示は、半導体層を備える薄膜トランジスタ、および薄膜トランジスタの製造方法に関する。 The present disclosure relates to a thin film transistor including a semiconductor layer and a method for manufacturing the thin film transistor.
 可撓性基材に形成された半導体層を備える薄膜トランジスタは、表示デバイス、携帯デバイス、イメージセンサなどの各種のデバイスに搭載される。高い電界効果移動度と低いリーク電流とを達成する半導体層は、デバイスの小型化と低消費電力化とを実現する。一方、可撓性基材を曲げるような、薄膜トランジスタに対する外部応力の印加は、半導体層の移動度を変化させる。 A thin film transistor comprising a semiconductor layer formed on a flexible base material is mounted in various devices such as display devices, mobile devices, and image sensors. A semiconductor layer that achieves high field-effect mobility and low leakage current enables device miniaturization and low power consumption. On the other hand, applying an external stress to the thin film transistor, such as bending the flexible substrate, changes the mobility of the semiconductor layer.
 曲げによる移動度変化の第1抑制例は、積層方向の厚さが相対的に厚い範囲に、半導体層を配置する。例えば、ゲート絶縁層がゲート電極層を覆う。ゲート絶縁層のなかでゲート電極層に重畳する積層範囲は、ゲート絶縁層のなかでゲート電極層を覆わない単層範囲よりも、ゲート電極層の厚みの分だけ厚い。こうした積層範囲は、単層範囲よりも曲がりにくい。第1抑制例は、チャンネル幅方向に積層範囲を延ばすと共に、チャンネル幅方向の積層範囲の一部に、半導体層の全体を配置する。あるいは、第1抑制例は、チャンネル長方向に積層範囲を延ばすと共に、チャンネル長方向の積層範囲の一部に、半導体層の全体を配置する。これによって、半導体層のチャンネル幅方向の全体、あるいは金属酸化物層のチャンネル長方向の全体で半導体層の曲がりが抑制される(例えば、特許文献1、2を参照)。 In the first example of suppressing the mobility change due to bending, the semiconductor layer is arranged in a range where the thickness in the stacking direction is relatively thick. For example, a gate insulating layer covers the gate electrode layer. The stacked region of the gate insulating layer overlapping the gate electrode layer is thicker than the single layer region of the gate insulating layer not covering the gate electrode layer by the thickness of the gate electrode layer. Such laminated areas are less prone to bending than single layer areas. In the first suppression example, the stacking range is extended in the channel width direction, and the entire semiconductor layer is arranged in a part of the stacking range in the channel width direction. Alternatively, in the first suppression example, the stacking range is extended in the channel length direction, and the entire semiconductor layer is arranged in a part of the stacking range in the channel length direction. As a result, bending of the semiconductor layer is suppressed in the entire channel width direction of the semiconductor layer or in the entire channel length direction of the metal oxide layer (see Patent Documents 1 and 2, for example).
 曲げによる移動度変化の第2抑制例は、半導体層に作用する膜応力を抑制するための補強層を備える。例えば、半導体層は、第1補強層と第2補強層との間に位置する。第1補強層は、半導体層よりも大きい面積を有し、また半導体層よりも高いヤング率を有する珪素化合物層であり、かつ半導体層の全体を支持する。第2補強層は、半導体層よりも大きい面積を有し、また半導体層よりも高いヤング率を有する珪素化合物層であり、かつ半導体層の全体を覆う。このように、第2抑制例は、引っ張り応力の作用しにくい中立面、あるいは圧縮応力の作用しにくい中立面に、半導体層を配置する。これによって、半導体層に作用する膜応力が抑制される(例えば、特許文献3を参照)。 A second example of suppression of mobility change due to bending includes a reinforcing layer for suppressing film stress acting on the semiconductor layer. For example, the semiconductor layer is located between the first reinforcing layer and the second reinforcing layer. The first reinforcing layer is a silicide layer having an area larger than that of the semiconductor layer and a Young's modulus higher than that of the semiconductor layer, and supports the entire semiconductor layer. The second reinforcing layer is a silicide layer having an area larger than that of the semiconductor layer and a Young's modulus higher than that of the semiconductor layer, and covers the entire semiconductor layer. As described above, in the second suppression example, the semiconductor layer is arranged on the neutral plane on which tensile stress does not easily act, or on the neutral plane on which compressive stress does not easily act. This suppresses film stress acting on the semiconductor layer (see, for example, Patent Document 3).
特開2021-77751号公報JP 2021-77751 A 特開2020-080430号公報Japanese Patent Application Laid-Open No. 2020-080430 特開2018-195843号公報JP 2018-195843 A
 ところで、有機化合物層に無機化合物層を積層されたゲート絶縁層は、高い耐圧性と高い屈曲耐性との両立を実現する。一方、有機化合物層と無機化合物層との間の構造の差異は、薄膜トランジスタの内部に、様々な段差を形成し得る。 By the way, a gate insulating layer in which an inorganic compound layer is laminated on an organic compound layer achieves both high pressure resistance and high bending resistance. On the other hand, structural differences between the organic compound layer and the inorganic compound layer may form various steps inside the thin film transistor.
 例えば、有機化合物層と無機化合物層との位置の差異、無機化合物層と半導体層との位置の差異、有機化合物層と半導体層との位置の差異は、一方の層厚に相当する段差を他方の層に形成し得る。2つの層間の寸法差異や、2つ層間の形状差異もまた、一方の層厚に相当する段差を他方の層に形成し得る。上記第1抑制例のように、有機化合物層自体が段差を有する場合、また無機化合物層自体が段差を有する場合、上述した段差は、さらに複雑化する。 For example, the positional difference between the organic compound layer and the inorganic compound layer, the positional difference between the inorganic compound layer and the semiconductor layer, and the positional difference between the organic compound layer and the semiconductor layer are such that a step corresponding to the thickness of one layer is can be formed in layers of Dimensional differences between two layers and shape differences between two layers can also create a step corresponding to the thickness of one layer in the other layer. When the organic compound layer itself has a step as in the first suppression example, or when the inorganic compound layer itself has a step, the above step is further complicated.
 引っ張り応力や圧縮応力などの層間における内部応力の差異は、層間の段差で膜剥がれを助長する。可撓性基材の曲げによる外部応力の印加は、こうした膜剥がれをさらに促す。単純な平面を積み重ねる構造であれば、上記第2抑制例のような中立面の形成が可能ではあるが、応力の作用方向を区々なものとする段差の存在は、中立面の形成を困難にする。結果として、第1抑制例であれ、第2抑制例であれ、有機化合物層と無機化合物層との間の構造の相違が考慮されていない構成は、段差に起因した移動度変化の抑制に、依然として改善の余地を残している。 Differences in internal stress between layers, such as tensile stress and compressive stress, promote film peeling at the steps between layers. Application of external stress by bending the flexible substrate further promotes such film detachment. If it is a structure in which simple planes are stacked, it is possible to form a neutral plane as in the second suppression example. make it difficult. As a result, whether in the first suppression example or the second suppression example, the configuration in which the difference in structure between the organic compound layer and the inorganic compound layer is not taken into consideration suppresses the mobility change caused by the step. There is still room for improvement.
 上記課題を解決するための薄膜トランジスタは、平坦面を備える可撓性基材と、前記平坦面上に位置する素子構造体と、を備える薄膜トランジスタである。前記素子構造体は、前記平坦面の一部に位置するゲート電極層と、前記平坦面の他部に位置して前記平坦面に追従する平坦部と、前記ゲート電極層を覆って前記平坦部から隆起する段差部と、を備え、有機原子団を含む第1ゲート絶縁層と、前記段差部の上面内に位置する、無機化合物である第2ゲート絶縁層と、前記第2ゲート絶縁層の上面内に位置する、酸化物半導体である半導体層と、前記半導体層の第1端部に接続されるソース電極層と、前記半導体層の第2端部に接続されるドレイン電極層と、を備える。そして、前記ソース電極層、および前記ドレイン電極層は、前記平坦部から前記半導体層まで前記段差部の端面と前記第2ゲート絶縁層の端面とに追従する段差形状を有し、前記段差部の厚さは、前記段差部の厚さDAと前記平坦部の厚さDBとは、0.30≦DB/DA≦0.94を満たす。 A thin film transistor for solving the above problems is a thin film transistor comprising a flexible base material having a flat surface and an element structure located on the flat surface. The device structure includes a gate electrode layer located on a part of the flat surface, a flat part located on the other part of the flat surface and following the flat surface, and a flat part covering the gate electrode layer. a first gate insulating layer containing an organic atomic group; a second gate insulating layer, which is an inorganic compound, located within the upper surface of the stepped portion; a semiconductor layer that is an oxide semiconductor, a source electrode layer that is connected to a first end of the semiconductor layer, and a drain electrode layer that is connected to a second end of the semiconductor layer; Prepare. The source electrode layer and the drain electrode layer each have a stepped shape that follows an end face of the stepped portion and an end face of the second gate insulating layer from the flat portion to the semiconductor layer, and As for the thickness, the thickness DA of the step portion and the thickness DB of the flat portion satisfy 0.30≦DB/DA≦0.94.
 上記薄膜トランジスタにおいて、1.0μm以下であり、前記段差部の上面において前記第2ゲート絶縁層が占める面積SDと、前記第2ゲート絶縁層の上面において前記半導体層が占める面積SCとは、1≦SD/SC≦9を満たしてもよい。 In the thin film transistor, the area SD occupied by the second gate insulating layer on the upper surface of the step portion and the area SC occupied by the semiconductor layer on the upper surface of the second gate insulating layer are 1.0 μm or less, and 1≦ SD/SC≦9 may be satisfied.
 上記薄膜トランジスタにおいて、前記段差部の厚さは、0.6μm以下でもよい。
 上記薄膜トランジスタにおいて、前記段差部の厚さDAと前記平坦部の厚さDBとの差は、前記ゲート電極層の厚さよりも大きくてもよい。
In the thin film transistor described above, the step portion may have a thickness of 0.6 μm or less.
In the thin film transistor described above, the difference between the thickness DA of the step portion and the thickness DB of the flat portion may be larger than the thickness of the gate electrode layer.
 上記課題を解決するための薄膜トランジスタは、平坦面を備える可撓性基材と、前記平坦面上に位置する素子構造体と、を備える薄膜トランジスタである。前記素子構造体は、前記平坦面の一部に位置するゲート電極層と、前記平坦面の他部に位置して前記平坦面に追従する平坦部と、前記ゲート電極層を覆って前記平坦部から隆起する段差部と、を備え、有機原子団を含む第1ゲート絶縁層と、前記段差部の上面内に位置する、無機化合物である第2ゲート絶縁層と、前記第2ゲート絶縁層の上面内に位置する、酸化物半導体である半導体層と、前記半導体層の第1端部に接続されるソース電極層と、前記半導体層の第2端部に接続されるドレイン電極層と、を備える。そして、前記段差部の厚さは、0.6μm以下であり、前記段差部の厚さDAと前記平坦部の厚さDBとは、0.30≦DB/DA≦0.94を満たす。 A thin film transistor for solving the above problems is a thin film transistor comprising a flexible base material having a flat surface and an element structure located on the flat surface. The device structure includes a gate electrode layer located on a part of the flat surface, a flat part located on the other part of the flat surface and following the flat surface, and a flat part covering the gate electrode layer. a first gate insulating layer containing an organic atomic group; a second gate insulating layer, which is an inorganic compound, located within the upper surface of the stepped portion; a semiconductor layer that is an oxide semiconductor, a source electrode layer that is connected to a first end of the semiconductor layer, and a drain electrode layer that is connected to a second end of the semiconductor layer; Prepare. The thickness of the step portion is 0.6 μm or less, and the thickness DA of the step portion and the thickness DB of the flat portion satisfy 0.30≦DB/DA≦0.94.
 上記薄膜トランジスタにおいて、前記段差部の厚さDAと前記平坦部の厚さDBとの差は、前記ゲート電極層の厚さよりも大きく、前記段差部の上面において前記第2ゲート絶縁層が占める面積SDと、前記第2ゲート絶縁層の上面において前記半導体層が占める面積SCとは、1≦SD/SC≦9を満たしてもよい。 In the thin film transistor, the difference between the thickness DA of the step portion and the thickness DB of the flat portion is larger than the thickness of the gate electrode layer, and the area SD occupied by the second gate insulating layer on the upper surface of the step portion. and the area SC occupied by the semiconductor layer on the upper surface of the second gate insulating layer may satisfy 1≦SD/SC≦9.
 上記薄膜トランジスタにおいて、前記無機化合物は、珪素酸化物、珪素窒化物、珪素酸窒化物からなる群から選択されるいずれか1つでもよい。
 上記薄膜トランジスタにおいて、前記酸化物半導体は、インジウムを含有してもよい。
In the thin film transistor, the inorganic compound may be any one selected from the group consisting of silicon oxide, silicon nitride and silicon oxynitride.
In the thin film transistor described above, the oxide semiconductor may contain indium.
 上記課題を解決するための薄膜トランジスタの製造方法は、可撓性基材における平坦面の一部にゲート電極層を形成すること、前記ゲート電極層を覆うように有機原子団を含む第1ゲート絶縁層を前記平坦面に形成し、これによって前記平坦面の他部に位置して前記平坦面に追従する平坦部と、前記ゲート電極層を覆って前記平坦部から隆起する段差部と、を備える第1ゲート絶縁層を形成すること、前記段差部の上面内に、無機化合物である第2ゲート絶縁層を形成すること、前記第2ゲート絶縁層の上面内に、酸化物半導体である半導体層を形成すること、前記平坦部から前記半導体層の第1端部まで前記段差部の端面と前記第2ゲート絶縁層の端面とに追従する段差形状を有するようにソース電極層を形成すること、前記平坦部から前記半導体層の第2端部まで前記段差部の端面と前記第2ゲート絶縁層の端面とに追従する段差形状を有するようにドレイン電極層を形成すること、を含む。そして、前記段差部の厚さDAと前記平坦部の厚さDBとは、0.30≦DB/DA≦0.94を満たす。 A method of manufacturing a thin film transistor for solving the above problems includes forming a gate electrode layer on a part of a flat surface of a flexible base material, and forming a first gate insulator containing an organic atomic group so as to cover the gate electrode layer. A layer is formed on the flat surface, thereby comprising a flat portion located on the other part of the flat surface and following the flat surface, and a stepped portion covering the gate electrode layer and protruding from the flat portion. forming a first gate insulating layer; forming a second gate insulating layer, which is an inorganic compound, in the upper surface of the stepped portion; forming a semiconductor layer, which is an oxide semiconductor, in the upper surface of the second gate insulating layer; forming a source electrode layer from the flat portion to the first end of the semiconductor layer so as to have a stepped shape that follows the end face of the stepped portion and the end face of the second gate insulating layer; Forming a drain electrode layer from the flat portion to the second end of the semiconductor layer so as to have a stepped shape that follows the end face of the stepped portion and the end face of the second gate insulating layer. The thickness DA of the step portion and the thickness DB of the flat portion satisfy 0.30≦DB/DA≦0.94.
 上記課題を解決するための薄膜トランジスタの製造方法は、可撓性基材における平坦面の一部にゲート電極層を形成すること、前記ゲート電極層を覆うように有機原子団を含む第1ゲート絶縁層を前記平坦面に形成し、これによって前記平坦面の他部に位置して前記平坦面に追従する平坦部と、前記ゲート電極層を覆って前記平坦部から隆起する段差部と、を備える第1ゲート絶縁層を形成すること、前記段差部の上面内に、無機化合物である第2ゲート絶縁層を形成すること、前記第2ゲート絶縁層の上面内に、酸化物半導体である半導体層を形成すること、前記半導体層の第1端部に接続されるソース電極層を形成すること、前記半導体層の第2端部に接続されるドレイン電極層を形成すること、を含む。そして、前記段差部の厚さは、0.6μm以下であり、前記段差部の厚さDAと前記平坦部の厚さDBとは、0.30≦DB/DA≦0.94を満たす。 A method of manufacturing a thin film transistor for solving the above problems includes forming a gate electrode layer on a part of a flat surface of a flexible base material, and forming a first gate insulator containing an organic atomic group so as to cover the gate electrode layer. A layer is formed on the flat surface, thereby comprising a flat portion located on the other part of the flat surface and following the flat surface, and a stepped portion covering the gate electrode layer and protruding from the flat portion. forming a first gate insulating layer; forming a second gate insulating layer, which is an inorganic compound, in the upper surface of the stepped portion; forming a semiconductor layer, which is an oxide semiconductor, in the upper surface of the second gate insulating layer; forming a source electrode layer connected to a first end of the semiconductor layer; and forming a drain electrode layer connected to a second end of the semiconductor layer. The thickness of the step portion is 0.6 μm or less, and the thickness DA of the step portion and the thickness DB of the flat portion satisfy 0.30≦DB/DA≦0.94.
 上記構成によれば、可撓性基材の曲げによる薄膜トランジスタの移動度減少が抑制可能である。 According to the above configuration, it is possible to suppress a decrease in the mobility of the thin film transistor due to bending of the flexible base material.
図1は、薄膜トランジスタの平面構造を示す平面図である。FIG. 1 is a plan view showing a planar structure of a thin film transistor. 図2は、薄膜トランジスタの断面構造を示す断面図である。FIG. 2 is a cross-sectional view showing a cross-sectional structure of a thin film transistor. 図3は、実施例および比較例の移動度減少率を示す表である。FIG. 3 is a table showing mobility reduction rates of Examples and Comparative Examples.
 以下、薄膜トランジスタ、および薄膜トランジスタの製造方法の一実施形態を示す。まず、薄膜トランジスタの層構造を説明し、次に、薄膜トランジスタの製造方法を説明する。 An embodiment of a thin film transistor and a method for manufacturing a thin film transistor will be described below. First, the layer structure of the thin film transistor will be described, and then the method for manufacturing the thin film transistor will be described.
 図1は、薄膜トランジスタが備える平面構造の一例を示す。図2は、薄膜トランジスタが備える断面構造の一例を示す。なお、図1、2は、薄膜トランジスタの層構造を説明する便宜上、各種の電極に接続される配線を割愛して示す。 FIG. 1 shows an example of a planar structure of a thin film transistor. FIG. 2 shows an example of a cross-sectional structure of a thin film transistor. 1 and 2 omit wiring connected to various electrodes for convenience of explaining the layer structure of the thin film transistor.
 以下では、図2を視座として、薄膜トランジスタの構成要素における上面、および下面を記載する。また、薄膜トランジスタが備えるソースとドレインとは、薄膜トランジスタを搭載した駆動回路の動作によって定まる。そのため、薄膜トランジスタにおいて、1つの電極層がソースからドレインに機能を替えてもよく、かつ他の電極層がドレインからソースに機能を替えてもよい。薄膜トランジスタは、ボトムゲート・トップコンタクト型トランジスタである。
 また、上層の上面が下地層の上面に追従することは、上層の上面形状が下地層の上面形状に従うことである。上層の上面形状が下地層の上面形状に従うことは、上層の上面における段差の位置が、下地層の上面における段差の位置に従ったり、上層の上面における相対的な段差の大きさが下地層の上面における相対的な段差の大きさに従ったりする。
Below, top and bottom surfaces of the components of the thin film transistor will be described with reference to FIG. Further, the source and the drain of the thin film transistor are determined by the operation of the driver circuit in which the thin film transistor is mounted. Therefore, in a thin film transistor, one electrode layer may change function from source to drain, and another electrode layer may change function from drain to source. A thin film transistor is a bottom-gate top-contact transistor.
Further, the fact that the upper surface of the upper layer follows the upper surface of the underlying layer means that the upper surface shape of the upper layer follows the upper surface shape of the underlying layer. The top surface shape of the upper layer conforms to the top surface shape of the underlying layer, which means that the position of the step on the top surface of the upper layer follows the position of the step on the top surface of the underlying layer, or the relative size of the step on the top surface of the upper layer depends on the shape of the underlying layer. It follows the relative size of the step on the top surface.
 [素子平面構造]
 図1が示すように、薄膜トランジスタは、可撓性基材11、ゲート電極層12(図2を参照)、第1ゲート絶縁層21、第2ゲート絶縁層23、半導体層13、ソース電極層14、およびドレイン電極層15を備える。ゲート電極層12、第1ゲート絶縁層21、第2ゲート絶縁層23、半導体層13、ソース電極層14、およびドレイン電極層15は、素子構造体の一例である。第1ゲート絶縁層21、および第2ゲート絶縁層23は、ゲート絶縁層の一例である。
[Device planar structure]
As shown in FIG. 1, a thin film transistor includes a flexible substrate 11, a gate electrode layer 12 (see FIG. 2), a first gate insulating layer 21, a second gate insulating layer 23, a semiconductor layer 13, and a source electrode layer 14. , and a drain electrode layer 15 . The gate electrode layer 12, the first gate insulating layer 21, the second gate insulating layer 23, the semiconductor layer 13, the source electrode layer 14, and the drain electrode layer 15 are examples of the element structure. The first gate insulating layer 21 and the second gate insulating layer 23 are examples of gate insulating layers.
 可撓性基材11とゲート電極層12とは、可撓性基材11の厚さ方向であるチャンネル深さ方向に並ぶ。ソース電極層14とドレイン電極層15とは、図1の横方向であるチャンネル長方向に並ぶ。チャンネル幅方向は、チャンネル長方向とチャンネル深さ方向とに直交する。 The flexible base material 11 and the gate electrode layer 12 are arranged in the channel depth direction, which is the thickness direction of the flexible base material 11 . The source electrode layer 14 and the drain electrode layer 15 are arranged in the channel length direction, which is the horizontal direction in FIG. The channel width direction is orthogonal to the channel length direction and the channel depth direction.
 可撓性基材11の上面は、チャンネル長方向とチャンネル幅方向とに広がる平坦面である。可撓性基材11の上面は、第1部分と第2部分とを備える。第1部分の面積は、第2部分の面積よりも十分に小さい。可撓性基材11の第1部分は、ゲート電極層12の下面と接する。第2部分は、第1ゲート絶縁層21の下面の一部分と接する。 The upper surface of the flexible base material 11 is a flat surface extending in the channel length direction and the channel width direction. The top surface of flexible substrate 11 comprises a first portion and a second portion. The area of the first portion is sufficiently smaller than the area of the second portion. A first portion of the flexible base 11 contacts the lower surface of the gate electrode layer 12 . The second portion contacts a portion of the bottom surface of the first gate insulating layer 21 .
 第1ゲート絶縁層21は、ゲート電極層12の上面、およびゲート電極層12の端面に接する。第1ゲート絶縁層21は、可撓性基材11の上面の一部分を覆ってもよいし、可撓性基材11の上面の全体を覆ってもよい。 The first gate insulating layer 21 is in contact with the top surface of the gate electrode layer 12 and the end surfaces of the gate electrode layer 12 . The first gate insulating layer 21 may cover a portion of the upper surface of the flexible substrate 11 or may cover the entire upper surface of the flexible substrate 11 .
 第1ゲート絶縁層21は、可撓性基材11の上面に接する平坦部を備える。第1ゲート絶縁層21の平坦部における上面は、可撓性基材11の平坦面に追従する。第1ゲート絶縁層21は、さらに段差部22を備える。段差部22は、第1ゲート絶縁層21の平坦部に囲まれている。段差部22は、ゲート電極層12の上面、およびゲート電極層12の端面を覆い、段差部22に隣接する平坦部から隆起する。段差部22は、平坦部の上面に対して直交する面を介して平坦部から急峻に隆起してもよいし、平坦部の上面に対する斜面を介して平坦部から緩やかに隆起してもよい。段差部22の上面は、可撓性基材11の平坦面に追従する。 The first gate insulating layer 21 has a flat portion in contact with the upper surface of the flexible base material 11 . The upper surface of the flat portion of the first gate insulating layer 21 follows the flat surface of the flexible base material 11 . The first gate insulating layer 21 further includes a step portion 22 . The step portion 22 is surrounded by the flat portion of the first gate insulating layer 21 . The stepped portion 22 covers the upper surface of the gate electrode layer 12 and the end face of the gate electrode layer 12 and protrudes from the flat portion adjacent to the stepped portion 22 . The stepped portion 22 may rise sharply from the flat portion via a plane orthogonal to the top surface of the flat portion, or may gently rise from the flat portion via a slope with respect to the top surface of the flat portion. The upper surface of the stepped portion 22 follows the flat surface of the flexible base material 11 .
 第1ゲート絶縁層21の上面と対向する視点から見た各層の外形は、当該層の平面形状である。段差部22の平面形状は、例えば矩形状を有する。段差部22の平面形状は、ゲート電極層12の平面形状に追従してもよいし、ゲート電極層12の平面形状とは異なってもよい。段差部22の平面形状は、ゲート電極層12に接続された配線の平面形状に追従する部分を備える形状でもよいし、配線の平面形状に追従する部分を備えなくてもよい。 The outer shape of each layer seen from the viewpoint facing the upper surface of the first gate insulating layer 21 is the planar shape of the layer. The planar shape of the stepped portion 22 has, for example, a rectangular shape. The planar shape of the step portion 22 may follow the planar shape of the gate electrode layer 12 or may differ from the planar shape of the gate electrode layer 12 . The planar shape of the stepped portion 22 may be a shape having a portion that follows the planar shape of the wiring connected to the gate electrode layer 12, or may not have a portion that follows the planar shape of the wiring.
 第2ゲート絶縁層23の下面は、段差部22の上面に接する。第2ゲート絶縁層23は、チャンネル深さ方向において、第2ゲート絶縁層23とゲート電極層12とが第1ゲート絶縁層21を挟むように、ゲート電極層12の上面を覆う。第1ゲート絶縁層21の上面と対向する視点から見て、第2ゲート絶縁層23は、段差部22の上面内に位置する。第1ゲート絶縁層21の上面と対向する視点から見て、第2ゲート絶縁層23の端面は、段差部22の端面よりも内側に位置してもよいし、段差部22の端面と一致してもよい。第2ゲート絶縁層23の平面形状は、段差部22の平面形状に追従してもよいし、段差部22の平面形状とは異なってもよい。 The bottom surface of the second gate insulating layer 23 is in contact with the top surface of the step portion 22 . The second gate insulating layer 23 covers the upper surface of the gate electrode layer 12 so that the first gate insulating layer 21 is sandwiched between the second gate insulating layer 23 and the gate electrode layer 12 in the channel depth direction. The second gate insulating layer 23 is positioned within the upper surface of the step portion 22 when viewed from the viewpoint facing the upper surface of the first gate insulating layer 21 . When viewed from the viewpoint facing the upper surface of the first gate insulating layer 21 , the end face of the second gate insulating layer 23 may be located inside the end face of the stepped portion 22 or may be aligned with the end face of the stepped portion 22 . may The planar shape of the second gate insulating layer 23 may follow the planar shape of the stepped portion 22 or may differ from the planar shape of the stepped portion 22 .
 半導体層13の下面は、第2ゲート絶縁層23の上面に接する。半導体層13は、チャンネル深さ方向において、半導体層13とゲート電極層12とが第1ゲート絶縁層21と第2ゲート絶縁層23とを挟むように、ゲート電極層12の上面を覆う。第1ゲート絶縁層21の上面と対向する視点から見て、半導体層13は、段差部22の上面内、かつ第2ゲート絶縁層23の上面内に位置する。第1ゲート絶縁層21の上面と対向する視点から見て、半導体層13の端面は、第2ゲート絶縁層23の端面よりも内側に位置してもよいし、第2ゲート絶縁層23の端面と一致してもよい。第2ゲート絶縁層23の平面形状は、第2ゲート絶縁層23の平面形状に追従してもよいし、第2ゲート絶縁層23の平面形状とは異なってもよい。 The bottom surface of the semiconductor layer 13 is in contact with the top surface of the second gate insulating layer 23 . The semiconductor layer 13 covers the upper surface of the gate electrode layer 12 so that the semiconductor layer 13 and the gate electrode layer 12 sandwich the first gate insulating layer 21 and the second gate insulating layer 23 in the channel depth direction. The semiconductor layer 13 is positioned within the upper surface of the step portion 22 and within the upper surface of the second gate insulating layer 23 when viewed from the viewpoint facing the upper surface of the first gate insulating layer 21 . When viewed from the viewpoint facing the upper surface of the first gate insulating layer 21, the end surface of the semiconductor layer 13 may be located inside the end surface of the second gate insulating layer 23, or may be positioned inside the end surface of the second gate insulating layer 23. may match. The planar shape of the second gate insulating layer 23 may follow the planar shape of the second gate insulating layer 23 or may differ from the planar shape of the second gate insulating layer 23 .
 ソース電極層14の下面は、半導体層13の上面、および第1ゲート絶縁層21の平坦部における上面に接する。ソース電極層14は、チャンネル長方向における半導体層13の端部である第1端部に接続されるように、半導体層13の第1端部を覆う。ソース電極層14は、半導体層13の端面、第2ゲート絶縁層23の端面、および段差部22の端面に接し、チャンネル長方向に、第1ゲート絶縁層21の平坦部における上面から半導体層13の第1端部まで延びる。 The lower surface of the source electrode layer 14 is in contact with the upper surface of the semiconductor layer 13 and the flat portion of the first gate insulating layer 21 . The source electrode layer 14 covers the first end of the semiconductor layer 13 so as to be connected to the first end, which is the end of the semiconductor layer 13 in the channel length direction. The source electrode layer 14 is in contact with the end face of the semiconductor layer 13, the end face of the second gate insulating layer 23, and the end face of the step portion 22, and extends in the channel length direction from the upper surface of the flat portion of the first gate insulating layer 21 to the semiconductor layer 13. extends to the first end of the
 ドレイン電極層15の下面は、半導体層13の上面、および第1ゲート絶縁層21の平坦部における上面に接する。ドレイン電極層15は、チャンネル長方向における半導体層13の端部である第2端部に接続されるように、半導体層13の第2端部を覆う。半導体層13の第1端部と第2端部とは、チャンネル長方向における半導体層13の両端部である。ドレイン電極層15は、半導体層13の端面、第2ゲート絶縁層23の端面、および段差部22の端面に接し、チャンネル長方向に、第1ゲート絶縁層21の平坦部における上面から半導体層13の第2端部まで延びる。 The lower surface of the drain electrode layer 15 is in contact with the upper surface of the semiconductor layer 13 and the flat portion of the first gate insulating layer 21 . The drain electrode layer 15 covers the second end of the semiconductor layer 13 so as to be connected to the second end, which is the end of the semiconductor layer 13 in the channel length direction. The first end and the second end of the semiconductor layer 13 are both ends of the semiconductor layer 13 in the channel length direction. The drain electrode layer 15 is in contact with the end face of the semiconductor layer 13, the end face of the second gate insulating layer 23, and the end face of the step portion 22, and extends from the upper surface of the flat portion of the first gate insulating layer 21 to the semiconductor layer 13 in the channel length direction. extending to the second end of the
 ソース電極層14とドレイン電極層15とは、相互に離間している。チャンネル長方向において、ソース電極層14とドレイン電極層15との間の長さは、ゲート電極層12の長さよりも小さい。半導体層13のなかのソース電極層14とドレイン電極層15との間の領域は、チャンネル領域である。チャンネル長方向におけるチャンネル領域の長さ、すなわち、ソース電極層14とドレイン電極層15との間の長さは、チャンネル長である。チャンネル幅方向におけるチャンネル領域の長さは、チャンネル幅である。 The source electrode layer 14 and the drain electrode layer 15 are separated from each other. The length between the source electrode layer 14 and the drain electrode layer 15 is smaller than the length of the gate electrode layer 12 in the channel length direction. A region between the source electrode layer 14 and the drain electrode layer 15 in the semiconductor layer 13 is a channel region. The length of the channel region in the channel length direction, that is, the length between the source electrode layer 14 and the drain electrode layer 15 is the channel length. The length of the channel region in the channel width direction is the channel width.
 1つの薄膜トランジスタのなかでチャンネル幅方向の各位置でのチャンネル長が一定でない場合、全てのチャンネル長の平均値が、1つの薄膜トランジスタにおけるチャンネル長である。また、チャンネル長さがゲート電極層12の長さよりも大きい場合、チャンネル深さ方向において、半導体層13のなかでゲート電極層12と重なる領域が、チャンネル領域である。 If the channel length at each position in the channel width direction in one thin film transistor is not constant, the average value of all channel lengths is the channel length in one thin film transistor. When the channel length is longer than the length of the gate electrode layer 12, the region of the semiconductor layer 13 overlapping the gate electrode layer 12 in the channel depth direction is the channel region.
 [可撓性基材11]
 可撓性基材11は、上面に絶縁性を有する。可撓性基材11は、透明基板でもよいし、不透明基板でもよい。可撓性基材11は、絶縁性を有したフィルムでもよいし、可撓性基材11の上面に絶縁性を付与された金属箔でもよいし、可撓性基材11の上面に絶縁性を付与された合金箔でもよいし、可撓性を有した薄板ガラスでもよい。可撓性基材11は、単層構造体でもよいし、多層構造体でもよい。
[Flexible base material 11]
The flexible base material 11 has an insulating upper surface. The flexible substrate 11 may be a transparent substrate or an opaque substrate. The flexible base material 11 may be a film having an insulating property, a metal foil provided with an insulating property on the top surface of the flexible base material 11 , or an insulating film on the top surface of the flexible base material 11 . It may be an alloy foil imparted with or may be a thin plate glass having flexibility. The flexible substrate 11 may be a single layer structure or a multilayer structure.
 可撓性基材11が単層構造体である場合、可撓性基材11を構成する材料の一例は、有機高分子化合物、有機材料と無機材料との複合材料、金属、合金、および無機高分子化合物からなる群から選択される少なくとも一種である。可撓性基材11が多層構造体である場合、可撓性基材11を構成する各層の構成材料の一例は、それぞれ有機高分子化合物、複合材料、金属、合金、無機高分子化合物からなる群から選択されるいずれか一種である。 When the flexible substrate 11 has a single-layer structure, examples of materials constituting the flexible substrate 11 include organic polymer compounds, composite materials of organic and inorganic materials, metals, alloys, and inorganic materials. It is at least one selected from the group consisting of polymer compounds. When the flexible base material 11 is a multi-layer structure, examples of constituent materials of each layer constituting the flexible base material 11 are organic polymer compounds, composite materials, metals, alloys, and inorganic polymer compounds. Any one selected from the group.
 可撓性基材11が多層構造体である場合、可撓性基材11は、下地基板と、下地基板から剥離可能に構成された剥離層とを備えてもよい。剥離層は、素子構造体と共に、下地基板から剥がされる。素子構造体を備える剥離層は、別の可撓性基材に貼り付けられてもよい。可撓性基材の一例は、耐熱性が低い紙類、セロファン基材、布類、再生繊維類、皮革類、ナイロン基材、ポリウレタン基材を含む。この場合、剥離層と可撓性基材とは、別の可撓性基材11を構成する。 When the flexible base material 11 is a multi-layer structure, the flexible base material 11 may include a base substrate and a release layer configured to be peelable from the base substrate. The release layer is stripped from the underlying substrate together with the device structure. A release layer comprising device structures may be applied to another flexible substrate. Examples of flexible substrates include low heat resistant papers, cellophane substrates, cloths, recycled fibers, leathers, nylon substrates, and polyurethane substrates. In this case, the release layer and the flexible base constitute another flexible base 11 .
 有機高分子化合物の一例は、ポリメチルメタクリレート、ポリアクリレート、ポリカーボネート、ポリスチレン、ポリエチレンサルファイド、ポリエーテルスルホン、ポリオレフィン、ポリエチレンテレフタレート、ポリエチレンナフタレート、シクロオレフィンポリマー、ポリエーテルサルフェン、トリアセチルセルロース、ポリビニルフルオライドフィルム、エチレン-テトラフルオロエチレンコポリマー、ポリイミド、フッ素系ポリマー、環状ポリオレフィン系ポリマーからなる群から選択される少なくとも一種である。 Examples of organic polymer compounds include polymethyl methacrylate, polyacrylate, polycarbonate, polystyrene, polyethylene sulfide, polyethersulfone, polyolefin, polyethylene terephthalate, polyethylene naphthalate, cycloolefin polymer, polyethersulphene, triacetylcellulose, polyvinylfluoride. It is at least one selected from the group consisting of ride films, ethylene-tetrafluoroethylene copolymers, polyimides, fluorine-based polymers, and cyclic polyolefin-based polymers.
 複合材料の一例は、ガラス繊維強化アクリルポリマー、あるいはガラス繊維強化ポリカーボネートである。金属の一例は、アルミニウム、あるいは銅である。合金の一例は、鉄クロム合金、鉄ニッケル合金、あるいは鉄ニッケルクロム合金である。無機高分子化合物の一例は、酸化珪素、酸化硼素、および酸化アルミニウムを含む無アルカリガラス、あるいは、酸化珪素、酸化ナトリウム、および酸化カルシウムを含むアルカリガラスである。 An example of a composite material is glass fiber reinforced acrylic polymer or glass fiber reinforced polycarbonate. An example metal is aluminum or copper. An example of an alloy is an iron-chromium alloy, an iron-nickel alloy, or an iron-nickel-chromium alloy. An example of an inorganic polymer compound is alkali-free glass containing silicon oxide, boron oxide and aluminum oxide, or alkali glass containing silicon oxide, sodium oxide and calcium oxide.
 可撓性基材11が有機高分子化合物製のフィルムである場合、可撓性基材11は、ガスバリア層を備える多層構造を有してもよい。ガスバリア層を構成する材料の一例は、酸化アルミニウム、酸化珪素、窒化珪素、酸化窒化珪素、炭化珪素、およびダイヤモンドライクカーボンである。ガスバリア層は、単層構造体でもよいし多層構造体でもよい。可撓性基材11は、フィルムの片面のみにガスバリア層を備えてもよいし、フィルムの両面にガスバリア層を備えてもよい。 When the flexible base material 11 is a film made of an organic polymer compound, the flexible base material 11 may have a multilayer structure including a gas barrier layer. Examples of materials constituting the gas barrier layer are aluminum oxide, silicon oxide, silicon nitride, silicon oxynitride, silicon carbide, and diamond-like carbon. The gas barrier layer may have a single layer structure or a multilayer structure. The flexible substrate 11 may have a gas barrier layer on only one side of the film, or may have gas barrier layers on both sides of the film.
 [ゲート絶縁層21,23]
 第1ゲート絶縁層21を構成する材料は、第1ゲート絶縁層21の可撓性に寄与する有機原子団を含む。第1ゲート絶縁層21を構成する材料は、有機高分子化合物でもよい。有機高分子化合物の一例は、ポリビニルフェノール、ポリイミド、ポリビニルアルコール、アクリルポリマー、エポキシポリマー、非晶質フッ素ポリマーを含むフッ素系ポリマー、メラミンポリマー、フランポリマー、キシレンポリマー、ポリアミドイミドポリマー、シリコーンポリマー、パリレンからなる群から選択される少なくとも一種である。第1ゲート絶縁層21の耐熱性を高めることを要求される場合、有機高分子化合物は、好ましくは、ポリイミド、アクリルポリマー、フッ素系ポリマーからなる群から選択される少なくとも一種である。
[Gate insulating layers 21 and 23]
The material forming the first gate insulating layer 21 contains an organic atomic group that contributes to the flexibility of the first gate insulating layer 21 . The material forming the first gate insulating layer 21 may be an organic polymer compound. Examples of organic polymer compounds include polyvinylphenol, polyimide, polyvinyl alcohol, acrylic polymers, epoxy polymers, fluoropolymers including amorphous fluoropolymers, melamine polymers, furan polymers, xylene polymers, polyamideimide polymers, silicone polymers, and parylene. It is at least one selected from the group consisting of When the heat resistance of the first gate insulating layer 21 is required to be improved, the organic polymer compound is preferably at least one selected from the group consisting of polyimide, acrylic polymer, and fluorine-based polymer.
 第1ゲート絶縁層21を構成する材料は、有機無機複合材料でもよい。有機無機複合材料は、有機化合物の特性を有する有機原子団と、無機化合物の特性を有する原子団とを含む分子構造を備える。有機無機複合材料の一例は、シルセスキオキサンである。シルセスキオキサンは、無機化合物の特性を有する原子団として、ケイ素と酸素とから構成される骨格を備え、かつ有機化合物の特性を有する原子団として、有機基を備える。 The material forming the first gate insulating layer 21 may be an organic-inorganic composite material. An organic-inorganic composite material has a molecular structure that includes an organic atomic group that has the properties of an organic compound and an atomic group that has the properties of an inorganic compound. An example of an organic-inorganic composite is silsesquioxane. A silsesquioxane has a skeleton composed of silicon and oxygen as an atomic group having the properties of an inorganic compound, and an organic group as an atomic group having the properties of an organic compound.
 第1ゲート絶縁層21を構成する材料は、有機原子団を含む化合物のなかに、無機化合物から構成される粒子を含めてもよい。粒子は、数nm以上数百nm以下の平均粒子径を有したナノ粒子である。 The material constituting the first gate insulating layer 21 may contain particles composed of inorganic compounds in compounds containing organic atomic groups. The particles are nanoparticles having an average particle diameter of several nanometers or more and several hundreds of nanometers or less.
 第1ゲート絶縁層21は、単層膜でもよいし、多層膜でもよい。第1ゲート絶縁層21が多層膜である場合、第1ゲート絶縁層21を構成する各層の構成材料は、それぞれ有機原子団を含む。 The first gate insulating layer 21 may be a single layer film or a multilayer film. When the first gate insulating layer 21 is a multilayer film, the constituent material of each layer forming the first gate insulating layer 21 contains an organic atomic group.
 ゲート絶縁層における耐圧性の向上を要求される場合、第1ゲート絶縁層21の抵抗率は、1×1011Ω・cm以上であることが好ましい。さらに、第1ゲート絶縁層21の薄膜化を要求される場合、第1ゲート絶縁層21の抵抗率は、1×1013Ω・cm以上であることが好ましい。また、ゲート電極層12と他の電極層14,15との間の電流漏れを抑えることを要求される場合、第1ゲート絶縁層21の比誘電率は、2.0以上5.0以下であることが好ましい。 When it is required to improve the withstand voltage of the gate insulating layer, the resistivity of the first gate insulating layer 21 is preferably 1×10 11 Ω·cm or more. Furthermore, when thinning of the first gate insulating layer 21 is required, the resistivity of the first gate insulating layer 21 is preferably 1×10 13 Ω·cm or more. Further, when it is required to suppress current leakage between the gate electrode layer 12 and the other electrode layers 14 and 15, the dielectric constant of the first gate insulating layer 21 is 2.0 or more and 5.0 or less. Preferably.
 第2ゲート絶縁層23を構成する材料は、長距離秩序を有しない無機化合物を含む。無機化合物は、珪素酸化物、珪素窒化物、および珪素酸窒化物である珪素化合物、酸化アルミニウム、酸化タンタル、酸化ハフニウム、酸化イットリウム、酸化ジルコニウムからなる群から選択される少なくとも一種である。第2ゲート絶縁層23を構成する材料は、長距離秩序を有しない無機化合物と有機化合物とを含む混合物でもよい。 The material forming the second gate insulating layer 23 contains an inorganic compound that does not have long-range order. The inorganic compound is at least one selected from the group consisting of silicon compounds such as silicon oxides, silicon nitrides, and silicon oxynitrides, aluminum oxide, tantalum oxide, hafnium oxide, yttrium oxide, and zirconium oxide. The material forming the second gate insulating layer 23 may be a mixture containing an inorganic compound having no long-range order and an organic compound.
 第2ゲート絶縁層23は、単層膜でもよいし、多層膜でもよい。第2ゲート絶縁層23が多層膜である場合、第2ゲート絶縁層23を構成する各層の構成材料は、それぞれ上述した無機化合物を含む。 The second gate insulating layer 23 may be a single layer film or a multilayer film. When the second gate insulating layer 23 is a multilayer film, the constituent material of each layer constituting the second gate insulating layer 23 contains the inorganic compound described above.
 ゲート絶縁層における耐圧性の向上を要求される場合、第2ゲート絶縁層23の抵抗率は、1×1011Ω・cm以上であることが好ましい。さらに、第2ゲート絶縁層23の薄膜化を要求される場合、第2ゲート絶縁層23の抵抗率は、1×1013Ω・cm以上であることが好ましい。また、ゲート電極層12と他の電極層14,15との間の電流漏れを抑えることを要求される場合、第2ゲート絶縁層23の比誘電率は、2.0以上5.0以下であることが好ましい。 If it is required to improve the withstand voltage of the gate insulating layer, the second gate insulating layer 23 preferably has a resistivity of 1×10 11 Ω·cm or more. Furthermore, when the thickness of the second gate insulating layer 23 is required to be reduced, the resistivity of the second gate insulating layer 23 is preferably 1×10 13 Ω·cm or more. Further, when it is required to suppress current leakage between the gate electrode layer 12 and the other electrode layers 14 and 15, the dielectric constant of the second gate insulating layer 23 is 2.0 or more and 5.0 or less. Preferably.
 [電極層12,14,15]
 各電極層12,14,15は、それぞれ単層構造体でもよいし、多層構造体でもよい。各電極層12,14,15が多層構造体である場合、各電極層12,14,15は、それぞれ電極層の下層との密着性を高める最下層、および電極層の上層との密着性を高める最上層を有することが好ましい。
[Electrode layers 12, 14, 15]
Each electrode layer 12, 14, 15 may be a single-layer structure or a multilayer structure. When each electrode layer 12, 14, 15 is a multi-layer structure, each electrode layer 12, 14, 15 includes the bottom layer that enhances the adhesion with the lower layer of the electrode layer and the adhesion with the upper layer of the electrode layer. It is preferred to have a top layer that enhances.
 各電極層12,14,15を構成する材料は、金属でもよいし、合金でもよいし、導電性を有する金属酸化物でもよいし、導電性を有する有機高分子化合物でもよい。各電極層12,14,15を構成する材料は、相互に異なってもよいし、同じであってもよい。 The material constituting each electrode layer 12, 14, 15 may be a metal, an alloy, a conductive metal oxide, or a conductive organic polymer compound. The materials forming each electrode layer 12, 14, 15 may be different from each other or may be the same.
 金属の一例は、それぞれ遷移金属、アルカリ金属、およびアルカリ土類金属の少なくとも一種である。遷移金属は、インジウム、アルミニウム、金、銀、白金、チタン、銅、ニッケル、タングステンからなる群から選択される少なくとも一種である。アルカリ金属は、リチウム、あるいはセシウムである。アルカリ土類金属は、マグネシウム、およびカルシウムの少なくとも一種である。合金は、モリブデンニオブ、鉄クロム、アルミニウムリチウム、マグネシウム銀、アルミネオジウム合金、アルミネオジムジルコニア合金からなる群から選択されるいずれか一種である。 Examples of metals are at least one of transition metals, alkali metals, and alkaline earth metals. The transition metal is at least one selected from the group consisting of indium, aluminum, gold, silver, platinum, titanium, copper, nickel and tungsten. The alkali metal is lithium or cesium. Alkaline earth metal is at least one of magnesium and calcium. The alloy is one selected from the group consisting of molybdenum niobium, iron chromium, aluminum lithium, magnesium silver, aluminum neodymium alloy, and aluminum neodymium zirconia alloy.
 金属酸化物の一例は、酸化インジウム、酸化錫、酸化亜鉛、酸化カドミウム、酸化インジウムカドミウム、酸化カドミウム錫、酸化亜鉛錫からなる群から選択されるいずれか一種である。金属酸化物は、不純物を含有してもよい。不純物を含有する金属酸化物は、錫、亜鉛、チタン、セリウム、ハフニウム、ジルコニウム、モリブデンからなる群から選択される少なくとも一種の不純物を含有する酸化インジウムである。不純物を含有する金属酸化物は、アンチモン、またはフッ素を含有する酸化錫でもよい。不純物を含有する金属酸化物は、ガリウム、アルミニウム、硼素からなる群から選択される少なくとも一種の不純物を含有する酸化亜鉛でもよい。 An example of the metal oxide is any one selected from the group consisting of indium oxide, tin oxide, zinc oxide, cadmium oxide, indium cadmium oxide, cadmium tin oxide, and zinc tin oxide. The metal oxide may contain impurities. The metal oxide containing impurities is indium oxide containing at least one impurity selected from the group consisting of tin, zinc, titanium, cerium, hafnium, zirconium and molybdenum. The metal oxide containing impurities may be antimony or tin oxide containing fluorine. The metal oxide containing impurities may be zinc oxide containing at least one impurity selected from the group consisting of gallium, aluminum and boron.
 導電性を有する有機高分子化合物の一例は、ポリ(エチレンジオキシチオフェン)/ポリスチレンスルホネート(PEDOT/PSS)、あるいはポリアニリンである。
 各電極層14,15は、半導体層13と同一の構成元素から構成され、かつ不純物の濃度を半導体層13よりも十分に高めた層であってもよい。
An example of a conductive organic polymer compound is poly(ethylenedioxythiophene)/polystyrene sulfonate (PEDOT/PSS) or polyaniline.
Each of the electrode layers 14 and 15 may be a layer composed of the same constituent elements as the semiconductor layer 13 and having an impurity concentration sufficiently higher than that of the semiconductor layer 13 .
 各電極層12,14,15に適用できる材料の範囲を広げることを要求される場合、各電極層12,14,15の電気抵抗率は、それぞれ5.0×10-5Ω・cm以上であることが好ましい。薄膜トランジスタの消費電力を抑えることを要求される場合、各電極層12,14,15の電気抵抗率は、それぞれ1.0×10-2Ω・cm以下であることが好ましい。 When it is required to expand the range of materials that can be applied to each electrode layer 12, 14, 15, the electrical resistivity of each electrode layer 12, 14, 15 should be 5.0×10 −5 Ω·cm or more. Preferably. If it is required to suppress the power consumption of the thin film transistor, the electric resistivity of each electrode layer 12, 14, 15 is preferably 1.0×10 −2 Ω·cm or less.
 [半導体層13]
 半導体層13を構成する材料は、酸化物半導体である。酸化物半導体は、インジウム、ガリウム、亜鉛、および錫からなる群から選択される少なくとも1種の金属元素を含む。
[Semiconductor layer 13]
A material forming the semiconductor layer 13 is an oxide semiconductor. The oxide semiconductor contains at least one metal element selected from the group consisting of indium, gallium, zinc, and tin.
 酸化物半導体は、1種類の金属元素から構成される一元系酸化物半導体でもよいし、2種類の金属元素から構成される二元系酸化物半導体でもよいし、三種類以上の金属元素から構成される多元系酸化物半導体でもよい。酸化物半導体は、非晶質半導体でもよいし、多数の微小な単結晶から構成される微結晶半導体でもよいし、多数の微結晶から構成される多結晶半導体でもよい。 The oxide semiconductor may be a one-component oxide semiconductor composed of one metal element, a binary oxide semiconductor composed of two metal elements, or composed of three or more metal elements. may be a multi-component oxide semiconductor. The oxide semiconductor may be an amorphous semiconductor, a microcrystalline semiconductor including many microcrystals, or a polycrystalline semiconductor including many microcrystals.
 半導体層13の光透過率、および電界効果移動度(以下、移動度とも言う)を高めることを要求される場合、半導体層13は、インジウムを含む半導体層であることが好ましい。 When the light transmittance and field effect mobility (hereinafter also referred to as mobility) of the semiconductor layer 13 are required to be increased, the semiconductor layer 13 is preferably a semiconductor layer containing indium.
 一元系酸化物半導体は、例えば、酸化インジウム、酸化亜鉛、酸化ガリウム、酸化スズである。二元系酸化物半導体は、例えば、酸化インジウム亜鉛、酸化インジウムガリウムである。三元系酸化物半導体は、インジウムを含む三元系酸化物半導体である。三元系酸化物半導体は、例えば、酸化インジウムガリウム亜鉛、酸化インジウムアルミニウム亜鉛、酸化インジウム錫亜鉛、酸化インジウムハフニウム亜鉛である。酸化物半導体は、金属酸化物を構成する金属元素の他に、他の金属元素として、例えば、チタン、ゲルマニウム、イットリウム、ジルコニウム、ランタン、セリウム、タングステン、マグネシウムから構成される群から選択される少なくとも1種の元素を含めてもよい。 Single-component oxide semiconductors are, for example, indium oxide, zinc oxide, gallium oxide, and tin oxide. Binary oxide semiconductors are, for example, indium zinc oxide and indium gallium oxide. A ternary oxide semiconductor is a ternary oxide semiconductor containing indium. Ternary oxide semiconductors are, for example, indium gallium zinc oxide, indium aluminum zinc oxide, indium tin zinc oxide, and indium hafnium zinc oxide. The oxide semiconductor contains, in addition to the metal elements constituting the metal oxide, at least other metal elements selected from the group consisting of titanium, germanium, yttrium, zirconium, lanthanum, cerium, tungsten, and magnesium, for example. One element may be included.
 酸化物半導体の一例は、In-M-Zn系酸化物である。In-M-Zn系酸化物は、インジウム(In)および亜鉛(Zn)を含む。In-M-Zn系酸化物は、アルミニウム、チタン、ガリウム、ゲルマニウム、イットリウム、ジルコニウム、ランタン、セリウム、ハフニウム、および錫からなる群から選択される少なくとも一種の金属元素(M)を含む。 An example of an oxide semiconductor is an In-M-Zn-based oxide. In-M-Zn-based oxides include indium (In) and zinc (Zn). The In-M-Zn oxide contains at least one metal element (M) selected from the group consisting of aluminum, titanium, gallium, germanium, yttrium, zirconium, lanthanum, cerium, hafnium, and tin.
 [素子断面構造]
 図2が示すように、ソース電極層14は、半導体層13の厚さ、第2ゲート絶縁層23の厚さ、および段差部22の厚さに相当する段差を備えた段差形状を有する。ソース電極層14を構成する各段差面は、半導体層13の端面、第2ゲート絶縁層23の端面、および段差部22の端面に接する。ソース電極層14は、半導体層13の第1端部を第2ゲート絶縁層23に密着させ、また第2ゲート絶縁層23の端部を段差部22に密着させるように、半導体層13の上面から第1ゲート絶縁層21の平坦部まで連なる。
[Element cross-sectional structure]
As shown in FIG. 2 , the source electrode layer 14 has a stepped shape with steps corresponding to the thickness of the semiconductor layer 13 , the thickness of the second gate insulating layer 23 , and the thickness of the stepped portion 22 . Each stepped surface forming source electrode layer 14 is in contact with an end surface of semiconductor layer 13 , an end surface of second gate insulating layer 23 , and an end surface of stepped portion 22 . The source electrode layer 14 is formed on the upper surface of the semiconductor layer 13 so that the first end of the semiconductor layer 13 is in close contact with the second gate insulating layer 23 and the end of the second gate insulating layer 23 is in close contact with the step portion 22 . , to the flat portion of the first gate insulating layer 21 .
 ドレイン電極層15は、半導体層13の厚さ、第2ゲート絶縁層23の厚さ、および段差部22の厚さに相当する段差を備えた段差形状を有する。ドレイン電極層15を構成する各段差面は、半導体層13の端面、第2ゲート絶縁層23の端面、および段差部22の端面に接する。ドレイン電極層15は、半導体層13の第2端部を第2ゲート絶縁層23に密着させ、また第2ゲート絶縁層23の端部を段差部22に密着させるように、半導体層13の上面から第1ゲート絶縁層21の平坦部まで連なる。 The drain electrode layer 15 has a stepped shape with steps corresponding to the thickness of the semiconductor layer 13 , the thickness of the second gate insulating layer 23 , and the thickness of the stepped portion 22 . Each stepped surface forming the drain electrode layer 15 is in contact with the end surface of the semiconductor layer 13 , the end surface of the second gate insulating layer 23 , and the end surface of the stepped portion 22 . The drain electrode layer 15 is formed on the upper surface of the semiconductor layer 13 so that the second end of the semiconductor layer 13 is in close contact with the second gate insulating layer 23 and the end of the second gate insulating layer 23 is in close contact with the step portion 22 . , to the flat portion of the first gate insulating layer 21 .
 第1ゲート絶縁層21の平坦部における上面、および段差部22の上面は、可撓性基材11の平坦面に追従する。段差部22の厚さDA、および平坦部の厚さDBは、走査型電子顕微鏡(SEM:scanning electron microscope)による測定、また接触式段差計による測定によって得られる。段差部22の厚さDA、および平坦部の厚さDBは、チャンネル長方向に1μmの間隔を空けて並ぶ10点、およびチャンネル幅方向に1μmの間隔を空けて並ぶ10点を測定点とした厚さの平均値として求められる。 The upper surface of the flat portion of the first gate insulating layer 21 and the upper surface of the step portion 22 follow the flat surface of the flexible base material 11 . The thickness DA of the step portion 22 and the thickness DB of the flat portion are obtained by measurement using a scanning electron microscope (SEM) or a contact-type profilometer. The thickness DA of the stepped portion 22 and the thickness DB of the flat portion were measured at 10 points arranged at intervals of 1 μm in the channel length direction and at 10 points arranged at intervals of 1 μm in the channel width direction. Calculated as the average thickness.
 上述したように、第2ゲート絶縁層23は、段差部22の上面内に位置する。段差部22の上面において第2ゲート絶縁層23が占める面積SDは、第1ゲート絶縁層21と対向する視点から撮影した第2ゲート絶縁層23のSEM画像から得られる。半導体層13は、第2ゲート絶縁層23の上面内に位置する。第2ゲート絶縁層23の上面において半導体層13が占める面積SCは、第1ゲート絶縁層21と対向する視点から撮影した半導体層13のSEM画像から得られる。第2ゲート絶縁層23の平面形状が不定形状である場合、また半導体層13の平面形状が不定形状である場合などに、面積SD、および面積SCの計測に画像処理を用いてもよい。不定形状は、四角形、台形、これらの集合などの幾何学形状ではない形状であって、複雑な曲線によって囲まれる形状である。面積SDは、面積SC以上である。第2ゲート絶縁層23のチャンネル長方向における長さDLは、半導体層13のチャンネル長方向における長さCL以上である。第2ゲート絶縁層23のチャンネル幅方向における長さは、半導体層13のチャンネル幅方向における長さ以上である。 As described above, the second gate insulating layer 23 is positioned within the upper surface of the stepped portion 22 . The area SD occupied by the second gate insulating layer 23 on the upper surface of the step portion 22 is obtained from an SEM image of the second gate insulating layer 23 photographed from a viewpoint facing the first gate insulating layer 21 . The semiconductor layer 13 is located within the upper surface of the second gate insulating layer 23 . The area SC occupied by the semiconductor layer 13 on the upper surface of the second gate insulating layer 23 is obtained from an SEM image of the semiconductor layer 13 taken from a viewpoint facing the first gate insulating layer 21 . When the planar shape of the second gate insulating layer 23 is irregular or the planar shape of the semiconductor layer 13 is irregular, image processing may be used to measure the areas SD and SC. Indefinite shapes are shapes that are not geometric, such as quadrilaterals, trapezoids, and combinations thereof, and are surrounded by complex curves. Area SD is greater than or equal to area SC. The length DL of the second gate insulating layer 23 in the channel length direction is equal to or greater than the length CL of the semiconductor layer 13 in the channel length direction. The length of the second gate insulating layer 23 in the channel width direction is greater than or equal to the length of the semiconductor layer 13 in the channel width direction.
 段差部22の厚さDAと平坦部の厚さDBとは、下記条件1を満たす。
 この際、薄膜トランジスタにおける移動度低下の抑制効果の実効性を高める要請を受ける場合、段差部22の厚さDAは、下記条件2を満たしてもよい。さらに、段差部22の上面において第2ゲート絶縁層23が占める面積SDと、第2ゲート絶縁層23の上面において半導体層13が占める面積SCとは、下記条件3を満たしてもよい。また、移動度低下の抑制効果の実効性を高める要請を受ける場合、厚さDA、厚さDB、およびゲート電極層12の厚さは、下記条件5を満たしてもよい。
The thickness DA of the stepped portion 22 and the thickness DB of the flat portion satisfy Condition 1 below.
At this time, if there is a demand for enhancing the effectiveness of the effect of suppressing the decrease in mobility in the thin film transistor, the thickness DA of the stepped portion 22 may satisfy Condition 2 below. Further, the area SD occupied by the second gate insulating layer 23 on the upper surface of the step portion 22 and the area SC occupied by the semiconductor layer 13 on the upper surface of the second gate insulating layer 23 may satisfy Condition 3 below. Further, when there is a demand for enhancing the effectiveness of the effect of suppressing the decrease in mobility, the thickness DA, the thickness DB, and the thickness of the gate electrode layer 12 may satisfy Condition 5 below.
 [条件1]0.30≦DB/DA≦0.94を満たす。
 [条件2]段差部22の厚さDAは、1.0μm以下である。
 [条件3]1≦SD/SC≦9を満たす。
 [条件4]段差部22の厚さDAは、0.6μm以下である。
 [条件5]厚さDAに対する厚さDBの差分がゲート電極層12の厚さよりも大きい。
[Condition 1] 0.30≦DB/DA≦0.94 is satisfied.
[Condition 2] The thickness DA of the step portion 22 is 1.0 μm or less.
[Condition 3] 1≦SD/SC≦9 is satisfied.
[Condition 4] The thickness DA of the step portion 22 is 0.6 μm or less.
[Condition 5] The difference between the thickness DB and the thickness DA is larger than the thickness of the gate electrode layer 12 .
 第1ゲート絶縁層21のなかの段差部22は、薄膜トランジスタの電荷注入層として作用する。段差部22の厚さDAは、(i)電荷を注入するための電圧による劣化を抑える大きさを有する。第1ゲート絶縁層21のなかに段差部22よりも薄い平坦部を備えることは、(i)第1ゲート絶縁層21に電荷注入による耐性を備えながら、そのうえ(ii)段差部22以外の平坦部によって可撓性を高める。そして、第1ゲート絶縁層21の平坦部が第1ゲート絶縁層21の可撓性を担うことは、段差部22と第2ゲート絶縁層23との界面の劣化、第2ゲート絶縁層23と半導体層13との界面の劣化、および第2ゲート絶縁層23の割れを抑える。 The stepped portion 22 in the first gate insulating layer 21 acts as a charge injection layer of the thin film transistor. The thickness DA of the stepped portion 22 has a size that (i) suppresses deterioration due to voltage for injecting charges. Providing a flat portion thinner than the stepped portion 22 in the first gate insulating layer 21 allows (i) the first gate insulating layer 21 to withstand charge injection, and (ii) flatness other than the stepped portion 22 . Increase flexibility by part. The flexibility of the first gate insulating layer 21 due to the flat portion of the first gate insulating layer 21 causes deterioration of the interface between the stepped portion 22 and the second gate insulating layer 23, Deterioration of the interface with the semiconductor layer 13 and cracking of the second gate insulating layer 23 are suppressed.
 DA/DB≦0.94を満たすことは、(i)電荷注入による耐性を備え、かつ(ii)第1ゲート絶縁層21の可撓性を高めながらも、0.94<DB/DAと比べ、(iii)可撓性基材11の曲げによる薄膜トランジスタの移動度低下を大幅に抑える。0.30≦DB/DAを満たすことは、第1ゲート絶縁層21の平坦部まで延びる電極層14,15に割れや膜剥がれの発生を抑える。厚さDAと厚さDBとの比であるDB/DAは、0.33以上0.94以下でもよいし、0.67以上0.94以下でもよい。厚さDAと厚さDBとの比であるDB/DAは、0.3以上0.75以下でもよいし、0.3以上0.67以下でもよい。 Satisfying DA/DB≤0.94 (i) provides resistance to charge injection and (ii) increases the flexibility of the first gate insulating layer 21, while maintaining 0.94<DB/DA. and (iii) a reduction in the mobility of the thin film transistor due to bending of the flexible substrate 11 is greatly suppressed. Satisfying 0.30≦DB/DA suppresses the occurrence of cracks and film peeling in the electrode layers 14 and 15 extending to the flat portion of the first gate insulating layer 21 . DB/DA, which is the ratio of the thickness DA to the thickness DB, may be 0.33 or more and 0.94 or less, or may be 0.67 or more and 0.94 or less. DB/DA, which is the ratio of the thickness DA to the thickness DB, may be 0.3 or more and 0.75 or less, or may be 0.3 or more and 0.67 or less.
 なお、ソース電極層14は、半導体層13の厚さ、および第2ゲート絶縁層23の厚さに相当する段差を備え、かつ段差部22の厚さに相当する段差を備えない、2つ段差からなる1つの段差形状を有してもよい。すなわち、ソース電極層14は、半導体層13の上面から段差部22まで連なる構成でもよい。また、ソース電極層14は、半導体層13の厚さに相当する段差を備え、かつ第2ゲート絶縁層23の厚さ、および段差部22の厚さに相当する段差を備えない1段の段差形状を有してもよい。すなわち、ソース電極層14は、半導体層13の上面から第2ゲート絶縁層23まで連なる構成でもよい。 Note that the source electrode layer 14 has a step difference corresponding to the thickness of the semiconductor layer 13 and the thickness of the second gate insulating layer 23 and does not have a step difference corresponding to the thickness of the step portion 22, and has two steps. You may have one stepped shape consisting of. That is, the source electrode layer 14 may have a structure that extends from the upper surface of the semiconductor layer 13 to the stepped portion 22 . Further, the source electrode layer 14 has a step corresponding to the thickness of the semiconductor layer 13 and has a single step without a step corresponding to the thickness of the second gate insulating layer 23 and the thickness of the step portion 22 . It may have a shape. That is, the source electrode layer 14 may be configured to extend from the upper surface of the semiconductor layer 13 to the second gate insulating layer 23 .
 また、ドレイン電極層15は、半導体層13の厚さ、および第2ゲート絶縁層23の厚さに相当する段差を備え、かつ段差部22の厚さに相当する段差を備えない、2つ段差からなる1つの段差形状を有してもよい。すなわち、ドレイン電極層15は、半導体層13の上面から段差部22まで連なる構成でもよい。また、ドレイン電極層15は、半導体層13の厚さに相当する段差を備え、かつ第2ゲート絶縁層23の厚さ、および段差部22の厚さに相当する段差を備えない1段の段差形状を有してもよい。すなわち、ドレイン電極層15は、半導体層13の上面から第2ゲート絶縁層23まで連なる構成でもよい。 In addition, the drain electrode layer 15 has two steps having a step corresponding to the thickness of the semiconductor layer 13 and the thickness of the second gate insulating layer 23 and not having a step corresponding to the thickness of the step portion 22. You may have one stepped shape consisting of. In other words, the drain electrode layer 15 may be configured to extend from the upper surface of the semiconductor layer 13 to the stepped portion 22 . In addition, the drain electrode layer 15 has a step corresponding to the thickness of the semiconductor layer 13 and has a single step without a step corresponding to the thickness of the second gate insulating layer 23 and the thickness of the step portion 22 . It may have a shape. In other words, the drain electrode layer 15 may be configured to extend from the upper surface of the semiconductor layer 13 to the second gate insulating layer 23 .
 上述したように、ソース電極層14、およびドレイン電極層15が2つの段差からなる1つの段差形状を有したり、1段の段差形状を有したりする場合、段差部22の厚さDAは、上記条件1、および条件4とを満たす。段差部22の厚さDAが0.6μm以下であることは、段差部22の厚さDAが1.0μmのように0.6μmよりも大きい場合と比べて、(ii)可撓性の向上と、(iii)移動度低下の抑制向上との両立を可能にする。この際、面積SDと面積SCとは、薄膜トランジスタにおける移動度低下の抑制効果の実効性を高める要請を受ける場合、上記条件3を満たしてもよい。また、移動度低下の抑制効果の実効性を高める要請を受ける場合、厚さDA、厚さDB、およびゲート電極層12の厚さは、上記条件5を満たしてもよい。 As described above, when the source electrode layer 14 and the drain electrode layer 15 have a single stepped shape consisting of two steps or a single stepped shape, the thickness DA of the stepped portion 22 is , satisfy conditions 1 and 4 above. When the thickness DA of the stepped portion 22 is 0.6 μm or less, (ii) the flexibility is improved compared to the case where the thickness DA of the stepped portion 22 is 1.0 μm or more, such as 0.6 μm. and (iii) suppression and improvement of mobility decrease. In this case, the area SD and the area SC may satisfy the above condition 3 when there is a demand for enhancing the effectiveness of the effect of suppressing the decrease in mobility in the thin film transistor. Further, when there is a demand for enhancing the effectiveness of the effect of suppressing the decrease in mobility, the thickness DA, the thickness DB, and the thickness of the gate electrode layer 12 may satisfy Condition 5 above.
 ゲート電極層12と他の電極層14,15との間の電流漏れを抑えることを要求される場合、第1ゲート絶縁層21における平坦部の厚さDBは、0.2μm以上であることが好ましい。薄膜トランジスタを駆動するためのゲート電圧の抑制を要求される場合、段差部22の厚さDAは、1.2μm以下であることが好ましい。電流漏れの抑制、およびゲート電圧の抑制を要求される場合、第1ゲート絶縁層21における平坦部の厚さDBは、0.4μ以上、かつ段差部22の厚さDAは、1.0μm以下であることが好ましい。段差部22の厚さDAは、0.4μm以上1.2μm以下でもよいし、0.4μm以上1.0μm以下でもよいし。厚さDBは、0.2μm以上0.94μm以下でもよいし、0.4μm以上0.94μm以下でもよい。 When it is required to suppress current leakage between the gate electrode layer 12 and the other electrode layers 14 and 15, the thickness DB of the flat portion of the first gate insulating layer 21 should be 0.2 μm or more. preferable. When it is required to suppress the gate voltage for driving the thin film transistor, the thickness DA of the step portion 22 is preferably 1.2 μm or less. When suppression of current leakage and suppression of gate voltage are required, the thickness DB of the flat portion in the first gate insulating layer 21 is 0.4 μm or more, and the thickness DA of the stepped portion 22 is 1.0 μm or less. is preferably The thickness DA of the step portion 22 may be 0.4 μm or more and 1.2 μm or less, or may be 0.4 μm or more and 1.0 μm or less. The thickness DB may be 0.2 μm or more and 0.94 μm or less, or may be 0.4 μm or more and 0.94 μm or less.
 可撓性基材11の曲げによる高い耐久性と、膜構造の高い加工性とを得ることの実効性が要求される場合、段差部22における上面の面積は、30μm以上5×10μm以下であることが好ましい。第2ゲート絶縁層23における上面の面積SDは、30μm以上5×10μm以下であることが好ましい。半導体層13における上面の面積SCは、30μm以上5×10μm以下であることが好ましい。チャンネル長は、4μm以上50μm以下であることが好ましい。チャンネル幅は、4μm以上500μm以下であることが好ましい。 When high durability due to bending of the flexible base material 11 and high workability of the membrane structure are required, the area of the upper surface of the stepped portion 22 is 30 μm 2 or more and 5×10 4 μm. It is preferably 2 or less. The area SD of the upper surface of the second gate insulating layer 23 is preferably 30 μm 2 or more and 5×10 4 μm 2 or less. The area SC of the upper surface of the semiconductor layer 13 is preferably 30 μm 2 or more and 5×10 4 μm 2 or less. The channel length is preferably 4 μm or more and 50 μm or less. The channel width is preferably 4 μm or more and 500 μm or less.
 ゲート電極層12に起因するクラックの発生を抑えることを要求される場合、第2ゲート絶縁層23の厚さは、50nm以下であることが好ましい。ゲート電極層12と他の電極層14,15との間の電流漏れを要求される場合、また第2ゲート絶縁層23そのものを島状に点在させることなく連続膜とすることを要求される場合、第2ゲート絶縁層23の厚さは、2nm以上であることが好ましい。ゲート電極層12における可撓性の向上、および電流漏れの抑制を要求される場合、第1ゲート絶縁層21の厚さは、2nm以上50nm以下であることが好ましい。また、ゲート電極層12と他の電極層14,15との間の電流漏れを抑えることを要求される場合、第2ゲート絶縁層23の比誘電率は、3.5以上10以下であることが好ましい。 When it is required to suppress the occurrence of cracks caused by the gate electrode layer 12, the thickness of the second gate insulating layer 23 is preferably 50 nm or less. When current leakage between the gate electrode layer 12 and the other electrode layers 14 and 15 is required, and the second gate insulating layer 23 itself is required to be a continuous film without being scattered like islands. In this case, the thickness of the second gate insulating layer 23 is preferably 2 nm or more. When it is required to improve the flexibility of the gate electrode layer 12 and suppress current leakage, the thickness of the first gate insulating layer 21 is preferably 2 nm or more and 50 nm or less. Further, when it is required to suppress current leakage between the gate electrode layer 12 and the other electrode layers 14 and 15, the dielectric constant of the second gate insulating layer 23 should be 3.5 or more and 10 or less. is preferred.
 各電極層12,14,15の電気抵抗値を抑えることを要求される場合、各電極層12,14,15の厚さは、50nm以上であることが好ましい。薄膜トランジスタの可撓性を高めることを要求される場合、各電極層12,14,15の厚さは、それぞれ300nm以下であることが好ましい。 When it is required to suppress the electrical resistance value of each electrode layer 12, 14, 15, the thickness of each electrode layer 12, 14, 15 is preferably 50 nm or more. If it is required to increase the flexibility of the thin film transistor, the thickness of each electrode layer 12, 14, 15 is preferably 300 nm or less.
 半導体層13の厚さの均一性を高めることを要求される場合、半導体層13の厚さは、10nm以上であることが好ましい。半導体層13における材料の使用量を抑えることを要求される場合、半導体層13の厚さは、100nm以下であることが好ましい。厚さの均一性の向上、および材料使用量の抑制の両立を要求される場合、半導体層13の厚さは、10nm以上100nm以下であることが好ましい。さらに、これらの効果を得る実効性を高めることを要求される場合、半導体層13の厚さは、15nm以上50nm以下であることが好ましい。薄膜トランジスタの移動度向上を要求される場合、半導体層13の導電率は1.0×10-7S/cm以上1.0×10-1S/cm以下であることが好ましい。 When it is required to improve the uniformity of the thickness of the semiconductor layer 13, the thickness of the semiconductor layer 13 is preferably 10 nm or more. When it is required to reduce the amount of material used in the semiconductor layer 13, the thickness of the semiconductor layer 13 is preferably 100 nm or less. If both improvement in thickness uniformity and suppression of material usage are required, the thickness of the semiconductor layer 13 is preferably 10 nm or more and 100 nm or less. Furthermore, when it is required to improve the effectiveness of obtaining these effects, the thickness of the semiconductor layer 13 is preferably 15 nm or more and 50 nm or less. When the mobility of the thin film transistor is required to be improved, the conductivity of the semiconductor layer 13 is preferably 1.0×10 −7 S/cm or more and 1.0×10 −1 S/cm or less.
 (薄膜トランジスタの製造方法)
 薄膜トランジスタの製造方法は、可撓性基材11にゲート電極層12を形成する第1工程を含む。薄膜トランジスタの製造方法は、第1ゲート絶縁層21を形成する第2工程、および第1ゲート絶縁層21に第2ゲート絶縁層23を積層する第3工程を含む。また、薄膜トランジスタの製造方法は、第2ゲート絶縁層23に半導体層13を積層する第4工程、および半導体層13にソース電極層14とドレイン電極層15とを積層する第5工程を含む。
(Manufacturing method of thin film transistor)
A method for manufacturing a thin film transistor includes a first step of forming a gate electrode layer 12 on a flexible base material 11 . The method of manufacturing a thin film transistor includes a second step of forming a first gate insulating layer 21 and a third step of stacking a second gate insulating layer 23 on the first gate insulating layer 21 . The method of manufacturing the thin film transistor also includes a fourth step of stacking the semiconductor layer 13 on the second gate insulating layer 23 and a fifth step of stacking the source electrode layer 14 and the drain electrode layer 15 on the semiconductor layer 13 .
 第1工程において、ゲート電極層12は、ゲート電極層12の外形に追従したマスクを用いる成膜方法によって形成されてもよい。あるいは、ゲート電極層12は、ゲート電極層12となる電極膜を成膜した後に、エッチング法を用いて電極膜をゲート電極層12の形状に加工する方法によって形成されてもよい。 In the first step, the gate electrode layer 12 may be formed by a film formation method using a mask that follows the outline of the gate electrode layer 12 . Alternatively, the gate electrode layer 12 may be formed by forming an electrode film to form the gate electrode layer 12 and then processing the electrode film into the shape of the gate electrode layer 12 using an etching method.
 ゲート電極層12の形成に用いる成膜方法は、真空蒸着法、イオンプレーティング法、スパッタリング法、レーザーアブレーション法、スピンコート法、ディップコート法、スリットダイコート法からなる群から選択される少なくとも一種である。あるいは、ゲート電極層12の形成に用いる成膜方法は、スクリーン印刷法、凸版印刷法、凹版印刷法、平版印刷法、インクジェット法からなる群から選択される少なくとも一種である。 The film formation method used to form the gate electrode layer 12 is at least one selected from the group consisting of vacuum deposition, ion plating, sputtering, laser ablation, spin coating, dip coating, and slit die coating. be. Alternatively, the film formation method used to form the gate electrode layer 12 is at least one selected from the group consisting of screen printing, letterpress printing, intaglio printing, planographic printing, and inkjet.
 第2工程において、第1ゲート絶縁層21は、第1ゲート絶縁層21を形成するための塗工膜の加工によって形成されてもよい。この際、第1ゲート絶縁層21の平面形状に追従したマスク、および段差部22の平面形状に追従したマスクを用いるエッチング法によって、第1ゲート絶縁層21に段差部22と平坦部とを形成してもよい。あるいは、第1ゲート絶縁層21は、感光性塗工膜にフォトリソグラフィー法を適用して、感光性塗工膜から第1ゲート絶縁層21の段差部22、および平坦部を形成してもよい。第1ゲート絶縁層21の段差部22、および平坦部を形成する工程は、段差部22を覆うレジストの厚さと平坦部を覆うレジストの厚さとを相互に異ならせる単一のエッチング工程でもよいし、各別のエッチング工程でもよい。第1ゲート絶縁層21の段差部22、および平坦部を形成する工程は、段差部22に相当する領域に照射する露光量と、平坦部に照射する露光量とを相互に異ならせる単一のフォトリソグラフィー工程でもよいし、各別のフォトリソグラフィー工程でもよい。 In the second step, the first gate insulating layer 21 may be formed by processing the coating film for forming the first gate insulating layer 21 . At this time, a stepped portion 22 and a flat portion are formed in the first gate insulating layer 21 by an etching method using a mask that follows the planar shape of the first gate insulating layer 21 and a mask that follows the planar shape of the stepped portion 22 . You may Alternatively, the first gate insulating layer 21 may be formed by applying a photolithographic method to the photosensitive coating film to form the stepped portion 22 and the flat portion of the first gate insulating layer 21 from the photosensitive coating film. . The step of forming the stepped portion 22 and the flat portion of the first gate insulating layer 21 may be a single etching step in which the thickness of the resist covering the stepped portion 22 and the thickness of the resist covering the flat portion are made different from each other. , may be separate etching steps. The steps of forming the stepped portion 22 and the flat portion of the first gate insulating layer 21 are carried out by a single method in which the exposure dose applied to the region corresponding to the stepped portion 22 and the exposure dose applied to the flat portion are different from each other. A photolithography process may be used, or separate photolithography processes may be used.
 第1ゲート絶縁層21の形成に用いる塗布法は、有機高分子化合物を含む塗工液を用いるスピンコート法、ディップコート法、スリットダイコート法、スクリーン印刷法、インクジェット法からなる群から選択される少なくとも一種である。塗布法は、塗工液からなる液状膜を焼成することによって塗工膜を形成する。第1ゲート絶縁層21の形成にフォトリソグラフィー法を用いる場合、塗工液は、感光性を有したポリマーを含む。 The coating method used to form the first gate insulating layer 21 is selected from the group consisting of a spin coating method, a dip coating method, a slit die coating method, a screen printing method, and an inkjet method using a coating liquid containing an organic polymer compound. at least one. In the coating method, a coating film is formed by baking a liquid film made of a coating liquid. When the photolithography method is used to form the first gate insulating layer 21, the coating liquid contains a photosensitive polymer.
 第3工程において、第2ゲート絶縁層23は、第2ゲート絶縁層23の形状に追従したマスクを用いる成膜方法によって形成されてもよい。あるいは、第2ゲート絶縁層23は、第2ゲート絶縁層23となる絶縁層を形成した後に、エッチング法を用いて絶縁層を第2ゲート絶縁層23の形状に加工する方法によって形成されてもよい。第2ゲート絶縁層23の形状加工は、第4工程時に、半導体層13のパターンをマスクとして、エッチング法を用いて行ってもよい。 In the third step, the second gate insulating layer 23 may be formed by a film forming method using a mask that follows the shape of the second gate insulating layer 23 . Alternatively, the second gate insulating layer 23 may be formed by forming an insulating layer to be the second gate insulating layer 23 and then processing the insulating layer into the shape of the second gate insulating layer 23 using an etching method. good. The shape processing of the second gate insulating layer 23 may be performed by etching using the pattern of the semiconductor layer 13 as a mask in the fourth step.
 第2ゲート絶縁層23の形成に用いる成膜方法は、レーザーアブレーション法、プラズマCVD法、光CVD法、熱CVD法、スパッタリング法、ゾルゲル法からなる群から選択される少なくとも一種である。あるいは、第2ゲート絶縁層23の形成に用いる成膜方法は、無機化合物の前駆体を含む塗工液を用いるスピンコート法、ディップコート法、スリットダイコート法、スクリーン印刷法、インクジェット法からなる群から選択される少なくとも一種の塗布法である。 The film formation method used to form the second gate insulating layer 23 is at least one selected from the group consisting of laser ablation, plasma CVD, optical CVD, thermal CVD, sputtering, and sol-gel. Alternatively, the film forming method used to form the second gate insulating layer 23 is a group consisting of a spin coating method using a coating liquid containing an inorganic compound precursor, a dip coating method, a slit die coating method, a screen printing method, and an inkjet method. is at least one coating method selected from
 第4工程において、半導体層13は、半導体層13の形状に追従したマスクを用いる成膜方法によって形成されてもよい。あるいは、半導体層13は、半導体層13となる半導体膜を形成した後に、エッチング法を用いて半導体膜を半導体層13の形状に加工する方法によって形成されてもよい。 In the fourth step, the semiconductor layer 13 may be formed by a film forming method using a mask that follows the shape of the semiconductor layer 13 . Alternatively, the semiconductor layer 13 may be formed by forming a semiconductor film to be the semiconductor layer 13 and then processing the semiconductor film into the shape of the semiconductor layer 13 using an etching method.
 半導体層13は、スパッタリング法、ALD法である原子層堆積法、PLD法であるパルスレーザー堆積法、CVD法、あるいはゾル-ゲル法を含むウェット成膜法によって形成される。スパッタリング法は、可撓性基材11に直流電圧を印加したDCスパッタ法、あるいは成膜空間に高周波を印加したRFスパッタ法を含む。半導体層13は、微結晶化、あるいは多結晶化を行うための熱処理を施されてもよい。不純物の添加法は、プラズマ処理法、イオン注入法、イオンドーピング法、プラズマイマージョンイオンインプランテーション法である。 The semiconductor layer 13 is formed by a sputtering method, an atomic layer deposition method which is an ALD method, a pulse laser deposition method which is a PLD method, a CVD method, or a wet film formation method including a sol-gel method. The sputtering method includes a DC sputtering method in which a DC voltage is applied to the flexible base material 11, or an RF sputtering method in which a high frequency is applied to the film forming space. The semiconductor layer 13 may be subjected to heat treatment for microcrystallization or polycrystallization. Impurity addition methods include a plasma processing method, an ion implantation method, an ion doping method, and a plasma immersion ion implantation method.
 半導体層13のキャリア濃度は、半導体層13を形成する際の雰囲気における酸素濃度を変えることによって変えることができる。半導体層13のキャリア濃度は、半導体層13を形成する際の雰囲気における水素濃度を変えることによって変えることもできる。半導体層13のキャリア濃度は、酸化物半導体における金属の組成比を変えることによって変えることもできる。半導体層13のキャリア濃度は、半導体層13に施される熱処理の温度、および雰囲気によって変えることもできる。 The carrier concentration of the semiconductor layer 13 can be changed by changing the oxygen concentration in the atmosphere when the semiconductor layer 13 is formed. The carrier concentration of the semiconductor layer 13 can also be changed by changing the hydrogen concentration in the atmosphere when the semiconductor layer 13 is formed. The carrier concentration of the semiconductor layer 13 can also be changed by changing the metal composition ratio in the oxide semiconductor. The carrier concentration of the semiconductor layer 13 can also be changed by the temperature of the heat treatment applied to the semiconductor layer 13 and the atmosphere.
 第5工程において、ソース電極層14、およびドレイン電極層15は、電極層の形状に追従したマスクを用いる成膜方法によって形成されてもよい。あるいは、ソース電極層14、およびドレイン電極層15は、電極層14,15となる電極膜を成膜した後に、エッチング法を用いて電極膜をソース電極層14、およびドレイン電極層15の形状に加工する方法によって形成されてもよい。 In the fifth step, the source electrode layer 14 and the drain electrode layer 15 may be formed by a film formation method using a mask following the shape of the electrode layers. Alternatively, the source electrode layer 14 and the drain electrode layer 15 are formed by forming electrode films to be the electrode layers 14 and 15, and then etching the electrode films into the shapes of the source electrode layer 14 and the drain electrode layer 15. It may be formed by a method of processing.
 電極層14,15の形成に用いる成膜方法は、真空蒸着法、イオンプレーティング法、スパッタリング法、レーザーアブレーション法、スピンコート法、ディップコート法、スリットダイコート法からなる群から選択される少なくとも一種である。あるいは、ゲート電極層12の形成に用いる成膜方法は、スクリーン印刷法、凸版印刷法、凹版印刷法、平版印刷法、インクジェット法からなる群から選択される少なくとも一種である。 The film forming method used for forming the electrode layers 14 and 15 is at least one selected from the group consisting of vacuum deposition, ion plating, sputtering, laser ablation, spin coating, dip coating, and slit die coating. is. Alternatively, the film formation method used to form the gate electrode layer 12 is at least one selected from the group consisting of screen printing, letterpress printing, intaglio printing, planographic printing, and inkjet.
 [実施例1]
 実施例1の薄膜トランジスタとして下記構造を有したボトムゲート・トップコンタクト型トランジスタを形成した。
 ・半導体層13の面積SC           :800μm
 ・第2ゲート絶縁層23の面積SD       :1500μm
 ・面積SD/面積SC             :1.9
 ・第1ゲート絶縁層21の段差部22の厚さDA :0.6μm
 ・第1ゲート絶縁層21の平坦部の厚さDB   :0.4μm
 ・厚さDB/厚さDA             :0.67
 ・厚さDB-厚さDA             :0.2μm
 ・ゲート電極層12の厚さ           :80nm
 ・第2ゲート絶縁層23の厚さ         :10nm
 ・半導体層13の厚さ             :30nm
 ・チャンネル長                :30μm
 ・チャンネル幅                :200μm
[Example 1]
As the thin film transistor of Example 1, a bottom gate/top contact type transistor having the following structure was formed.
Semiconductor layer 13 area SC: 800 μm 2
・Area SD of the second gate insulating layer 23: 1500 μm 2
・Area SD/Area SC: 1.9
・Thickness DA of stepped portion 22 of first gate insulating layer 21: 0.6 μm
・Thickness DB of the flat portion of the first gate insulating layer 21: 0.4 μm
・Thickness DB/thickness DA: 0.67
・Thickness DB-thickness DA: 0.2 μm
・Thickness of gate electrode layer 12: 80 nm
・Thickness of the second gate insulating layer 23: 10 nm
・Thickness of semiconductor layer 13: 30 nm
・Channel length: 30 μm
・Channel width: 200 μm
 実施例1の薄膜トランジスタは、可撓性基材11に、20μmの厚さを有したポリイミドフィルムを用いた。実施例1の薄膜トランジスタは、ゲート電極層12にアルミニウム合金膜であるアルミニウムネオジウム膜を用いた。ゲート電極層12は、可撓性基材11に成膜されたアルミニウム合金膜のパターニングによって得られた。アルミニウム合金膜は、可撓性基材11を成膜の対象とし、下記成膜条件によるDCマグネトロンスパッタ法によって得られた。ゲート電極層12は、アルミニウム合金膜に積層された感光性ポリレジスト膜からレジストマスクを形成し、当該レジストマスクを用いてアルミニウム合金膜をウエットエッチングした後、レジストマスクを剥離することによって得られた。ゲート電極層12の厚さは、80nmであった。 In the thin film transistor of Example 1, a polyimide film having a thickness of 20 μm was used as the flexible base material 11 . In the thin film transistor of Example 1, an aluminum neodymium film, which is an aluminum alloy film, was used as the gate electrode layer 12 . The gate electrode layer 12 was obtained by patterning an aluminum alloy film formed on the flexible base material 11 . The aluminum alloy film was obtained by a DC magnetron sputtering method using the flexible substrate 11 as a film formation target under the following film formation conditions. The gate electrode layer 12 was obtained by forming a resist mask from a photosensitive polyresist film laminated on an aluminum alloy film, wet-etching the aluminum alloy film using the resist mask, and then removing the resist mask. . The thickness of the gate electrode layer 12 was 80 nm.
 [ゲート電極層12の成膜条件]
 ・ターゲット組成比 :Al(at%):Nd(at%)=98:2
 ・スパッタガス   :アルゴン
 ・スパッタガス流量 :100sccm
 ・成膜圧力     :1.0Pa
 ・ターゲット電力  :200W
 ・基材温度     :23℃
[Film Formation Conditions for Gate Electrode Layer 12]
・Target composition ratio: Al (at%): Nd (at%) = 98:2
・Sputter gas: Argon ・Sputter gas flow rate: 100 sccm
・Deposition pressure: 1.0 Pa
・Target power: 200W
・Substrate temperature: 23°C
 実施例1の薄膜トランジスタは、第1ゲート絶縁層21にアクリル樹脂膜を用いた。第1ゲート絶縁層21は、ゲート電極層12を覆うように成膜された、感光性アクリル樹脂を含む塗工膜のパターニングによって得られた。感光性塗工膜は、ゲート電極層12を積層された可撓性基材11を成膜の対象とし、基材回転数に2400rpmを設定した感光性アクリル樹脂のスリットコート法によって得られた。第1ゲート絶縁層21は、第1ゲート絶縁層21を形成するためのマスクを用いた感光性塗工膜の露光、および現像を経て、現像後の塗工膜を220℃で焼成することによって得られた。第1ゲート絶縁層21の厚さは、0.6μmであった。 The thin film transistor of Example 1 used an acrylic resin film for the first gate insulating layer 21 . The first gate insulating layer 21 was obtained by patterning a coating film containing a photosensitive acrylic resin formed to cover the gate electrode layer 12 . The photosensitive coating film was obtained by a slit coating method of a photosensitive acrylic resin using the flexible base material 11 laminated with the gate electrode layer 12 as a film formation target and setting the rotation speed of the base material to 2400 rpm. The first gate insulating layer 21 is formed by exposing the photosensitive coating film using a mask for forming the first gate insulating layer 21, developing the coating film, and baking the developed coating film at 220°C. Got. The thickness of the first gate insulating layer 21 was 0.6 μm.
 実施例1の薄膜トランジスタは、第2ゲート絶縁層23に酸化珪素膜を用いた。第2ゲート絶縁層23は、第1ゲート絶縁層21を覆うように成膜された酸化珪素膜のパターニングによって得られた。酸化珪素膜は、第1ゲート絶縁層21を積層された可撓性基材11を成膜の対象とし、下記成膜条件によるCVD法によって得られた。 The thin film transistor of Example 1 used a silicon oxide film for the second gate insulating layer 23 . The second gate insulating layer 23 was obtained by patterning a silicon oxide film formed to cover the first gate insulating layer 21 . The silicon oxide film was obtained by the CVD method under the following film forming conditions, using the flexible base material 11 laminated with the first gate insulating layer 21 as a film forming object.
 [第2ゲート絶縁層23の成膜条件]
 ・反応ガス     :シランおよび一酸化二窒素
 ・シラン流量    :80sccm
 ・一酸化二窒素流量 :800sccm
 ・成膜圧力     :200Pa
 ・高周波電力    :600W
 ・高周波電力周波数 :13.56MHz
 ・基材温度     :200℃
[Film Formation Conditions for Second Gate Insulating Layer 23]
・Reactive gas: silane and dinitrogen monoxide ・Silane flow rate: 80 sccm
・Dinitrogen monoxide flow rate: 800 sccm
・Deposition pressure: 200 Pa
・High frequency power: 600W
・High frequency power frequency: 13.56MHz
・Substrate temperature: 200°C
 第2ゲート絶縁層23は、酸化珪素膜に形成されたレジストパターンをマスクとし、かつ下記第2ゲート絶縁層23のエッチング条件を用いる酸化珪素膜のドライエッチングによって得られた。段差部22の形成は、下記第1ゲート絶縁層21のエッチング条件による第1ゲート絶縁層21のドライエッチングによって得られた。 The second gate insulating layer 23 was obtained by dry etching the silicon oxide film using a resist pattern formed on the silicon oxide film as a mask and using the following etching conditions for the second gate insulating layer 23 . The formation of the step portion 22 was obtained by dry etching the first gate insulating layer 21 under the following etching conditions for the first gate insulating layer 21 .
 [第2ゲート絶縁層23のエッチング条件]
 ・反応ガス     :四フッ化メタン
 ・反応ガス流量   :30sccm
 ・成膜圧力     :10Pa
 ・高周波電力    :300W
 ・エッチング時間  :20秒
[Etching Conditions for Second Gate Insulating Layer 23]
・Reactive gas: Tetrafluoromethane ・Reactive gas flow rate: 30 sccm
・Deposition pressure: 10 Pa
・High frequency power: 300W
・Etching time: 20 seconds
 [第1ゲート絶縁層21のエッチング条件]
 ・反応ガス     :四フッ化メタン
 ・反応ガス流量   :40sccm
 ・成膜圧力     :20Pa
 ・高周波電力    :300W
 ・エッチング時間  :20秒
[Etching Conditions for First Gate Insulating Layer 21]
・Reactive gas: methane tetrafluoride ・Reactive gas flow rate: 40 sccm
・Deposition pressure: 20 Pa
・High frequency power: 300W
・Etching time: 20 seconds
 実施例1の薄膜トランジスタは、半導体層13に、30nmの厚さを有した酸化インジウムガリウム亜鉛(InGaZnO)膜を用いた。半導体層13は、第2ゲート絶縁層23を覆うように成膜された酸化物半導体膜のウエットエッチングによって得られた。酸化物半導体膜は、第2ゲート絶縁層23を積層された可撓性基材11を成膜の対象とし、下記成膜条件によるDCマグネトロンスパッタリング法によって得られた。 In the thin film transistor of Example 1, an indium gallium zinc oxide (InGaZnO) film having a thickness of 30 nm was used as the semiconductor layer 13 . The semiconductor layer 13 was obtained by wet etching an oxide semiconductor film formed so as to cover the second gate insulating layer 23 . The oxide semiconductor film was obtained by a DC magnetron sputtering method under the following film formation conditions, using the flexible base material 11 laminated with the second gate insulating layer 23 as a film formation target.
 [半導体層13の成膜条件]
 ・ターゲット組成比 :原子質量% In:Ga:Zn:O=1:1:1:4
 ・供給ガス     :アルゴンおよび酸素
 ・アルゴン流量   :100sccm
 ・酸素流量     :0.1sccm
 ・成膜圧力     :1.0Pa
 ・ターゲット電力  :300W
 ・ターゲット周波数 :13.56MHz
 ・基板温度     :室温
[Film Formation Conditions for Semiconductor Layer 13]
・Target composition ratio: atomic mass % In:Ga:Zn:O = 1:1:1:4
・Supply gas: argon and oxygen ・Argon flow rate: 100 sccm
・Oxygen flow rate: 0.1 sccm
・Deposition pressure: 1.0 Pa
・Target power: 300W
・Target frequency: 13.56MHz
・Substrate temperature: room temperature
 実施例1の薄膜トランジスタは、ソース電極層14、およびドレイン電極層15に、80nmの厚さを有したアルミニウム合金膜であるアルミニウムネオジウム膜を用いた。ソース電極層14、およびドレイン電極層15は、下記成膜条件のDCマグネトロンスパッタ法によるリフトオフ法によって得られた。ソース電極層14、およびドレイン電極層15の形成は、まず、電極層14,15の外形に追従する孔形状を有したリフトオフレジストを形成した。次に、アルミニウムネオジウム膜を成膜し、リフトオフレジストに堆積された反転パターンをレジストと共に剥離することによって、ソース電極層14、およびドレイン電極層15が得られた。 In the thin film transistor of Example 1, an aluminum neodymium film, which is an aluminum alloy film having a thickness of 80 nm, was used for the source electrode layer 14 and the drain electrode layer 15 . The source electrode layer 14 and the drain electrode layer 15 were obtained by a lift-off method using a DC magnetron sputtering method under the following deposition conditions. For the formation of the source electrode layer 14 and the drain electrode layer 15, first, a lift-off resist having a hole shape following the contours of the electrode layers 14 and 15 was formed. Next, a source electrode layer 14 and a drain electrode layer 15 were obtained by forming an aluminum neodymium film and peeling off the inverted pattern deposited on the lift-off resist together with the resist.
 [ソース電極層14,ドレイン電極層15の成膜条件]
 ・ターゲット組成比 :Al(at%):Nd(at%)=98:2
 ・スパッタガス   :アルゴン
 ・スパッタガス流量 :100sccm
 ・成膜圧力     :1.0Pa
 ・ターゲット電力  :200W
 ・基板温度     :23℃
[Formation Conditions for Source Electrode Layer 14 and Drain Electrode Layer 15]
・Target composition ratio: Al (at%): Nd (at%) = 98:2
・Sputter gas: Argon ・Sputter gas flow rate: 100 sccm
・Deposition pressure: 1.0 Pa
・Target power: 200W
・Substrate temperature: 23°C
 [実施例2]
 実施例2の薄膜トランジスタは、下記構造を有したボトムゲート・トップコンタクト型トランジスタである。なお、実施例2の薄膜トランジスタを説明する便宜上、実施例2の薄膜トランジスタの寸法のなかで実施例1の薄膜トランジスタの寸法と等しい構造項目に関わる寸法を割愛する。実施例2の薄膜トランジスタは、段差部22を形成するための第1ゲート絶縁層21のエッチング時間を40秒に変更し、それ以外を実施例1と同じくして得た。
 ・第1ゲート絶縁層21の段差部22の厚さDA :0.6μm
 ・第1ゲート絶縁層21の平坦部の厚さDB   :0.4μm
 ・厚さDB/厚さDA             :0.67
 ・厚さDB-厚さDA             :0.2μm
[Example 2]
The thin film transistor of Example 2 is a bottom-gate/top-contact transistor having the following structure. For the convenience of describing the thin film transistor of Example 2, dimensions related to structural items that are the same as the dimensions of the thin film transistor of Example 1 among the dimensions of the thin film transistor of Example 2 are omitted. A thin film transistor of Example 2 was obtained in the same manner as in Example 1 except that the etching time of the first gate insulating layer 21 for forming the step portion 22 was changed to 40 seconds.
・Thickness DA of stepped portion 22 of first gate insulating layer 21: 0.6 μm
・Thickness DB of the flat portion of the first gate insulating layer 21: 0.4 μm
・Thickness DB/thickness DA: 0.67
・Thickness DB-thickness DA: 0.2 μm
 [実施例3]
 実施例3の薄膜トランジスタは、下記構造を有したボトムゲート・トップコンタクト型トランジスタである。なお、実施例2の薄膜トランジスタを説明する便宜上、実施例2の薄膜トランジスタの寸法のなかで実施例1の薄膜トランジスタの寸法と等しい構造項目に関わる寸法を割愛する。実施例2の薄膜トランジスタは、段差部22を形成するための第1ゲート絶縁層21のエッチング時間を8秒に変更し、それ以外を実施例1と同じくして得た。
 ・第1ゲート絶縁層21の段差部22の厚さDA :0.6μm
 ・第1ゲート絶縁層21の平坦部の厚さDB   :0.55μm
 ・厚さDB/厚さDA             :0.92
 ・厚さDB-厚さDA             :0.05μm
[Example 3]
The thin film transistor of Example 3 is a bottom-gate/top-contact transistor having the following structure. For the convenience of describing the thin film transistor of Example 2, dimensions related to structural items that are the same as the dimensions of the thin film transistor of Example 1 among the dimensions of the thin film transistor of Example 2 are omitted. A thin film transistor of Example 2 was obtained in the same manner as in Example 1 except that the etching time of the first gate insulating layer 21 for forming the step portion 22 was changed to 8 seconds.
・Thickness DA of stepped portion 22 of first gate insulating layer 21: 0.6 μm
・Thickness DB of the flat portion of the first gate insulating layer 21: 0.55 μm
・Thickness DB/thickness DA: 0.92
・Thickness DB-thickness DA: 0.05 μm
 [実施例4]
 実施例4の薄膜トランジスタは、下記構造を有したボトムゲート・トップコンタクト型トランジスタである。なお、実施例4の薄膜トランジスタを説明する便宜上、実施例4の薄膜トランジスタの寸法のなかで実施例1の薄膜トランジスタの寸法と等しい構造項目に関わる寸法を割愛する。実施例4の薄膜トランジスタは、第1ゲート絶縁層21を形成するための基材回転数を890rpmに変更し、かつ段差部22を形成するための第1ゲート絶縁層21のエッチング時間を6秒に変更し、それ以外を実施例1と同じくして得た。
 ・第1ゲート絶縁層21の段差部22の厚さDA :1.0μm
 ・第1ゲート絶縁層21の平坦部の厚さDB   :0.94μm
 ・厚さDB/厚さDA             :0.94
 ・厚さDB-厚さDA             :0.06μm
[Example 4]
The thin film transistor of Example 4 is a bottom-gate/top-contact transistor having the following structure. For the convenience of describing the thin film transistor of Example 4, dimensions related to structural items that are the same as the dimensions of the thin film transistor of Example 1 among the dimensions of the thin film transistor of Example 4 are omitted. In the thin film transistor of Example 4, the rotation speed of the substrate for forming the first gate insulating layer 21 was changed to 890 rpm, and the etching time of the first gate insulating layer 21 for forming the step portion 22 was set to 6 seconds. It was obtained in the same manner as in Example 1 except for the above.
・Thickness DA of stepped portion 22 of first gate insulating layer 21: 1.0 μm
・Thickness DB of the flat portion of the first gate insulating layer 21: 0.94 μm
・Thickness DB/thickness DA: 0.94
・ Thickness DB-thickness DA: 0.06 μm
 [実施例5]
 実施例5の薄膜トランジスタは、下記構造を有したボトムゲート・トップコンタクト型トランジスタである。なお、実施例5の薄膜トランジスタを説明する便宜上、実施例5の薄膜トランジスタの寸法のなかで実施例1の薄膜トランジスタの寸法と等しい構造項目に関わる寸法を割愛する。実施例4の薄膜トランジスタは、第1ゲート絶縁層21を形成するための基材回転数を4800rpmに変更し、かつ段差部22を形成するための第1ゲート絶縁層21のエッチング時間を14秒に変更し、それ以外を実施例1と同じくして得た。
 ・第1ゲート絶縁層21の段差部22の厚さDA :0.4μm
 ・第1ゲート絶縁層21の平坦部の厚さDB   :0.3μm
 ・厚さDB/厚さDA             :0.75
 ・厚さDB-厚さDA             :0.1μm
[Example 5]
The thin film transistor of Example 5 is a bottom-gate/top-contact transistor having the following structure. For the sake of convenience in describing the thin film transistor of Example 5, the dimensions of the thin film transistor of Example 5 that relate to structural items that are the same as the dimensions of the thin film transistor of Example 1 are omitted. In the thin film transistor of Example 4, the rotation speed of the substrate for forming the first gate insulating layer 21 was changed to 4800 rpm, and the etching time of the first gate insulating layer 21 for forming the step portion 22 was set to 14 seconds. It was obtained in the same manner as in Example 1 except for the above.
・Thickness DA of stepped portion 22 of first gate insulating layer 21: 0.4 μm
・Thickness DB of the flat portion of the first gate insulating layer 21: 0.3 μm
・Thickness DB/thickness DA: 0.75
・Thickness DB-thickness DA: 0.1 μm
 [実施例6]
 実施例6の薄膜トランジスタは、第1ゲート絶縁層21の構成材料、第2ゲート絶縁層23の構成材料、第1ゲート絶縁層21の形成条件、および第2ゲート絶縁層23の形成条件を変更し、それ以外を実施例1と同じくして得た。
[Example 6]
In the thin film transistor of Example 6, the constituent material of the first gate insulating layer 21, the constituent material of the second gate insulating layer 23, the forming conditions of the first gate insulating layer 21, and the forming conditions of the second gate insulating layer 23 were changed. , was obtained in the same manner as in Example 1 except for the above.
 実施例6の第1ゲート絶縁層21を形成するための材料は、感光性ポリメチルシルセスキオキサンである。実施例6の第1ゲート絶縁層21を形成するための基板回転数は、1000rpmであり、塗工膜の焼成温度は、200℃である。 The material for forming the first gate insulating layer 21 of Example 6 is photosensitive polymethylsilsesquioxane. The rotation speed of the substrate for forming the first gate insulating layer 21 of Example 6 is 1000 rpm, and the firing temperature of the coating film is 200.degree.
 実施例6の第2ゲート絶縁層23は、下記成膜条件を用いて形成された酸化窒化珪素膜である。実施例6の第1ゲート絶縁層21に段差部22を形成するためのエッチング時間は、30秒であり、実施例6の第2ゲート絶縁層23を形成するためのエッチング時間は、30秒である。 The second gate insulating layer 23 of Example 6 is a silicon oxynitride film formed using the following film formation conditions. The etching time for forming the step portion 22 in the first gate insulating layer 21 in Example 6 was 30 seconds, and the etching time for forming the second gate insulating layer 23 in Example 6 was 30 seconds. be.
 [第2ゲート絶縁層23の成膜条件]
 ・反応ガス   :シラン、アンモニア、水素、および一酸化二窒素
 ・シラン流量    :50sccm
 ・アンモニア流量  :100sccm
 ・水素流量     :1000sccm
 ・一酸化二窒素流量 :500sccm
 ・成膜圧力     :300Pa
 ・高周波電力    :900W
 ・高周波電力周波数 :13.56MHz
 ・基板温度     :200℃
[Film Formation Conditions for Second Gate Insulating Layer 23]
・Reactive gas: silane, ammonia, hydrogen, and dinitrogen monoxide ・Silane flow rate: 50 sccm
・Ammonia flow rate: 100sccm
・Hydrogen flow rate: 1000sccm
・Dinitrogen monoxide flow rate: 500sccm
・Deposition pressure: 300 Pa
・High frequency power: 900W
・High frequency power frequency: 13.56MHz
・Substrate temperature: 200°C
 [実施例7]
 実施例7の薄膜トランジスタは、第1ゲート絶縁層21の構成材料、第2ゲート絶縁層23の構成材料、第1ゲート絶縁層21の形成条件、および第2ゲート絶縁層23の形成条件を変更し、それ以外を実施例1と同じくして得た。
[Example 7]
In the thin film transistor of Example 7, the material for forming the first gate insulating layer 21, the material for forming the second gate insulating layer 23, the conditions for forming the first gate insulating layer 21, and the conditions for forming the second gate insulating layer 23 were changed. , was obtained in the same manner as in Example 1 except for the above.
 実施例7の第1ゲート絶縁層21を形成するための材料は、アクリル樹脂に酸化珪素から構成されたナノ粒子を分散させた材料である。実施例7の第1ゲート絶縁層21は、グラビアオフセット印刷法を用いて可撓性基材11、およびゲート電極層12の上面に形成された塗工膜を250℃で焼成することによって得た。塗工液は、アクリル樹脂を含む溶液に酸化珪素から構成されたナノ粒子を分散させた溶液である。 The material for forming the first gate insulating layer 21 of Example 7 is a material in which nanoparticles made of silicon oxide are dispersed in an acrylic resin. The first gate insulating layer 21 of Example 7 was obtained by baking the coating film formed on the upper surfaces of the flexible base material 11 and the gate electrode layer 12 at 250° C. using the gravure offset printing method. . The coating liquid is a solution in which nanoparticles made of silicon oxide are dispersed in a solution containing an acrylic resin.
 実施例7の第2ゲート絶縁層23は、下記成膜条件を用いて形成された窒化珪素膜である。実施例7の第1ゲート絶縁層21に段差部22を形成するためのエッチング時間は、40秒であり、実施例7の第2ゲート絶縁層23を形成するためのエッチング時間は、40秒である。 The second gate insulating layer 23 of Example 7 is a silicon nitride film formed using the following film formation conditions. The etching time for forming the step portion 22 in the first gate insulating layer 21 in Example 7 was 40 seconds, and the etching time for forming the second gate insulating layer 23 in Example 7 was 40 seconds. be.
 [第2ゲート絶縁層23の成膜条件]
 ・反応ガス     :シラン、アンモニア、水素、および窒素
 ・シラン流量    :10sccm
 ・アンモニア流量  :70sccm
 ・水素流量     :5000sccm
 ・窒素流量     :2000sccm
 ・成膜圧力     :200Pa
 ・高周波電力    :1000W
 ・高周波電力周波数 :13.56MHz
 ・基板温度     :200℃
[Film Formation Conditions for Second Gate Insulating Layer 23]
・Reactive gases: silane, ammonia, hydrogen, and nitrogen ・Silane flow rate: 10 sccm
・Ammonia flow rate: 70 sccm
・Hydrogen flow rate: 5000sccm
・Nitrogen flow rate: 2000sccm
・Deposition pressure: 200 Pa
・High frequency power: 1000W
・High frequency power frequency: 13.56MHz
・Substrate temperature: 200°C
 [実施例8]
 実施例8の薄膜トランジスタは、下記構造を有したボトムゲート・トップコンタクト型トランジスタである。なお、実施例8の薄膜トランジスタを説明する便宜上、実施例8の薄膜トランジスタの寸法のなかで実施例1の薄膜トランジスタの寸法と等しい構造項目に関わる寸法を割愛する。実施例8の薄膜トランジスタは、第2ゲート絶縁層23を形成するためのレジストマスクのサイズを変更し、それ以外を実施例1と同じくして得た。
 ・半導体層13の面積SC           :800μm
 ・第2ゲート絶縁層23の面積SD       :800μm
 ・面積SD/面積SC             :1.0
[Example 8]
The thin film transistor of Example 8 is a bottom-gate/top-contact transistor having the following structure. For the sake of convenience in describing the thin film transistor of Example 8, dimensions related to structural items that are the same as those of the thin film transistor of Example 1 among the dimensions of the thin film transistor of Example 8 are omitted. A thin film transistor of Example 8 was obtained in the same manner as in Example 1 except that the size of the resist mask for forming the second gate insulating layer 23 was changed.
Semiconductor layer 13 area SC: 800 μm 2
・Area SD of the second gate insulating layer 23: 800 μm 2
・Area SD/Area SC: 1.0
 [実施例9]
 実施例9の薄膜トランジスタは、下記構造を有したボトムゲート・トップコンタクト型トランジスタである。なお、実施例9の薄膜トランジスタを説明する便宜上、実施例9の薄膜トランジスタの寸法のなかで実施例1の薄膜トランジスタの寸法と等しい構造項目に関わる寸法を割愛する。実施例9の薄膜トランジスタは、第2ゲート絶縁層23を形成するためのレジストマスクのサイズを変更し、それ以外を実施例1と同じくして得た。
 ・半導体層13の面積SC           :800μm
 ・第2ゲート絶縁層23の面積SD       :7200μm
 ・面積SD/面積SC             :9.0
[Example 9]
The thin film transistor of Example 9 is a bottom-gate/top-contact transistor having the following structure. For the sake of convenience in describing the thin film transistor of Example 9, dimensions related to structural items that are the same as those of the thin film transistor of Example 1 among the dimensions of the thin film transistor of Example 9 are omitted. A thin film transistor of Example 9 was obtained in the same manner as in Example 1 except that the size of the resist mask for forming the second gate insulating layer 23 was changed.
Semiconductor layer 13 area SC: 800 μm 2
・Area SD of the second gate insulating layer 23: 7200 μm 2
・Area SD/Area SC: 9.0
 [実施例10]
 実施例10の薄膜トランジスタは、下記構造を有したボトムゲート・トップコンタクト型トランジスタである。なお、実施例10の薄膜トランジスタを説明する便宜上、実施例10の薄膜トランジスタの寸法のなかで実施例4の薄膜トランジスタの寸法と等しい構造項目に関わる寸法を割愛する。実施例10の薄膜トランジスタは、段差部22を形成するための第1ゲート絶縁層21のエッチング時間を70秒に変更し、それ以外を実施例4と同じくして得た。
 ・第1ゲート絶縁層21の段差部22の厚さDA :1.0μm
 ・第1ゲート絶縁層21の平坦部の厚さDB   :0.3μm
 ・厚さDB/厚さDA             :0.3
 ・厚さDB-厚さDA             :0.7μm
[Example 10]
The thin film transistor of Example 10 is a bottom-gate/top-contact transistor having the following structure. For the sake of convenience in describing the thin film transistor of Example 10, dimensions related to structural items that are the same as the dimensions of the thin film transistor of Example 4 among the dimensions of the thin film transistor of Example 10 are omitted. A thin film transistor of Example 10 was obtained in the same manner as in Example 4 except that the etching time of the first gate insulating layer 21 for forming the step portion 22 was changed to 70 seconds.
・Thickness DA of stepped portion 22 of first gate insulating layer 21: 1.0 μm
・Thickness DB of the flat portion of the first gate insulating layer 21: 0.3 μm
・Thickness DB/thickness DA: 0.3
・Thickness DB-thickness DA: 0.7 μm
 [比較例1]
 比較例1の薄膜トランジスタは、下記構造を有したボトムゲート・トップコンタクト型トランジスタである。なお、比較例1の薄膜トランジスタを説明する便宜上、比較例1の薄膜トランジスタの寸法のなかで実施例1の薄膜トランジスタの寸法と等しい構造項目に関わる寸法を割愛する。比較例1の薄膜トランジスタは、段差部22を形成するための第1ゲート絶縁層21のエッチング時間を0秒に変更し、それ以外を実施例1と同じくして得た。
 ・第1ゲート絶縁層21の段差部22の厚さDA :0.6μm
 ・第1ゲート絶縁層21の平坦部の厚さDB   :0.6μm
 ・厚さDB/厚さDA             :1.0
 ・厚さDB-厚さDA             :0.0μm
[Comparative Example 1]
The thin film transistor of Comparative Example 1 is a bottom-gate/top-contact transistor having the following structure. For the convenience of describing the thin film transistor of Comparative Example 1, dimensions related to structural items that are the same as the dimensions of the thin film transistor of Example 1 among the dimensions of the thin film transistor of Comparative Example 1 are omitted. A thin film transistor of Comparative Example 1 was obtained in the same manner as in Example 1 except that the etching time of the first gate insulating layer 21 for forming the step portion 22 was changed to 0 seconds.
・Thickness DA of stepped portion 22 of first gate insulating layer 21: 0.6 μm
・Thickness DB of the flat portion of the first gate insulating layer 21: 0.6 μm
・Thickness DB/thickness DA: 1.0
・Thickness DB-thickness DA: 0.0 μm
 [比較例2]
 比較例2の薄膜トランジスタは、下記構造を有したボトムゲート・トップコンタクト型トランジスタである。なお、比較例2の薄膜トランジスタを説明する便宜上、比較例2の薄膜トランジスタの寸法のなかで実施例4の薄膜トランジスタの寸法と等しい構造項目に関わる寸法を割愛する。比較例2の薄膜トランジスタは、段差部22を形成するための第1ゲート絶縁層21のエッチング時間を5秒に変更し、それ以外を実施例4と同じくして得た。
 ・第1ゲート絶縁層21の段差部22の厚さDA :1.0μm
 ・第1ゲート絶縁層21の平坦部の厚さDB   :0.95μm
 ・厚さDB/厚さDA             :0.95
 ・厚さDB-厚さDA             :0.05μm
[Comparative Example 2]
The thin film transistor of Comparative Example 2 is a bottom-gate/top-contact transistor having the following structure. For the convenience of describing the thin film transistor of Comparative Example 2, the dimensions related to structural items that are the same as the dimensions of the thin film transistor of Example 4 among the dimensions of the thin film transistor of Comparative Example 2 are omitted. A thin film transistor of Comparative Example 2 was obtained in the same manner as in Example 4 except that the etching time of the first gate insulating layer 21 for forming the step portion 22 was changed to 5 seconds.
・Thickness DA of stepped portion 22 of first gate insulating layer 21: 1.0 μm
・Thickness DB of the flat portion of the first gate insulating layer 21: 0.95 μm
・Thickness DB/thickness DA: 0.95
・Thickness DB-thickness DA: 0.05 μm
 [評価]
 実施例1~10、および比較例1,2の薄膜トランジスタについて、半導体パラメータアナライザ(B1500A:アジレント・テクノロジー株式会社製)を用い、伝達特性から移動度を算出した。
[evaluation]
For the thin film transistors of Examples 1 to 10 and Comparative Examples 1 and 2, mobilities were calculated from transfer characteristics using a semiconductor parameter analyzer (B1500A: manufactured by Agilent Technologies).
 移動度の算出は、まず、ソース電極層14の電圧を0V、ソース-ドレイン電圧を10Vに設定し、ゲート電圧とドレイン電流Idとの関係である伝達特性を得た。ソース-ドレイン電圧は、ソース電極層14とドレイン電極層15との間の電圧である。ゲート電圧は、ソース電極層14とゲート電極層12との間の電圧である。ドレイン電流は、ドレイン電極層15に流れる電流である。この際、ゲート電極層12の電圧を-20Vから+20Vまで変化させることによって、ゲート電圧を変化させた。 To calculate the mobility, first, the voltage of the source electrode layer 14 was set to 0 V, and the source-drain voltage was set to 10 V, and the transfer characteristic, which is the relationship between the gate voltage and the drain current Id, was obtained. The source-drain voltage is the voltage between source electrode layer 14 and drain electrode layer 15 . A gate voltage is the voltage between the source electrode layer 14 and the gate electrode layer 12 . A drain current is a current that flows through the drain electrode layer 15 . At this time, the gate voltage was changed by changing the voltage of the gate electrode layer 12 from -20V to +20V.
 次に、ゲート電圧とドレイン電流との伝達特性を用い、ゲート電圧の変化に対するドレイン電流の変化である相互コンダクタンス(A/V)を算出した。そして、飽和領域の相互コンダクタンスとソース-ドレイン電圧との関係式に、第1ゲート絶縁層21の比誘電率と厚さ、第2ゲート絶縁層23の比誘電率と厚さ、チャンネル長、チャンネル幅、ソース-ドレイン電圧を適用し、移動度を算出した。 Next, using the transfer characteristics of the gate voltage and the drain current, the mutual conductance (A/V), which is the change in the drain current with respect to the change in the gate voltage, was calculated. Then, the relative dielectric constant and thickness of the first gate insulating layer 21, the relative dielectric constant and thickness of the second gate insulating layer 23, the channel length, the channel Width, source-drain voltage were applied and the mobility was calculated.
 次いで、半径が1mmである金属棒に可撓性基材11を巻き付けながら、上述したように、ゲート電圧とドレイン電流Idとの関係である伝達特性を得た。そして、負荷試験前の移動度に対する、負荷試験前後の移動度差を、移動度減少率として測定した。 Next, while winding the flexible base material 11 around a metal rod with a radius of 1 mm, the transfer characteristic, which is the relationship between the gate voltage and the drain current Id, was obtained as described above. Then, the difference in mobility before and after the load test with respect to the mobility before the load test was measured as the mobility decrease rate.
 図3は、実施例1~10、および比較例1,2について、第1ゲート絶縁層21の段差部22の厚さDA、平坦部の厚さDB、第1ゲート絶縁層21の構成材料、第2ゲート絶縁層23の構成材料、面積SD/面積SC、試験前移動度、および移動度減少率を示す。 FIG. 3 shows, for Examples 1 to 10 and Comparative Examples 1 and 2, the thickness DA of the stepped portion 22 of the first gate insulating layer 21, the thickness DB of the flat portion, the constituent material of the first gate insulating layer 21, The constituent material, area SD/area SC, pre-test mobility, and mobility reduction rate of the second gate insulating layer 23 are shown.
 図3が示すように、実施例1~10の薄膜トランジスタ、および比較例1、2の薄膜トランジスタにおける屈曲試験前の移動度は、いずれも10.0cm/Vs以上10.6cm/Vs以下であることが認められた。一方、実施例1~10の薄膜トランジスタにおける移動度減少率が2.0%以下であることが認められた。他方、比較例の薄膜トランジスタにおける移動度減少率が70%を越えることが認められた。特に、実施例3、実施例4、比較例1、および比較例2は、いずれも0.9以上1.0以下の厚さDB/厚さDAを有するが、比較例1、2の移動度減少率と比べて、実施例3、4の移動度減少率が大幅に小さいことが認められた。これによって、厚さDB/厚さDAが0.94以下であること、すなわち薄膜トランジスタが条件1の上限値を満たすことは、薄膜トランジスタの移動度減少率を著しく抑えるといえる。 As shown in FIG. 3, the mobilities before the bending test of the thin film transistors of Examples 1 to 10 and the thin film transistors of Comparative Examples 1 and 2 are all 10.0 cm 2 /Vs or more and 10.6 cm 2 /Vs or less. was recognized. On the other hand, it was found that the thin film transistors of Examples 1 to 10 had a mobility reduction rate of 2.0% or less. On the other hand, it was found that the mobility reduction rate in the thin film transistor of the comparative example exceeded 70%. In particular, Example 3, Example 4, Comparative Example 1, and Comparative Example 2 all have a thickness DB/thickness DA of 0.9 or more and 1.0 or less, but the mobility of Comparative Examples 1 and 2 It was found that the mobility reduction rates of Examples 3 and 4 were significantly smaller than the reduction rates. Accordingly, it can be said that the ratio of thickness DB/thickness DA of 0.94 or less, that is, the thin film transistor satisfies the upper limit of Condition 1, significantly suppresses the rate of decrease in mobility of the thin film transistor.
 また、実施例2の薄膜トランジスタと、実施例10の薄膜トランジスタとは、いずれも0.3程度の厚さDB/厚さDAを有する一方、実施例2の薄膜トランジスタの方が、より良好な移動度減少率を示すことも認められた。同じく、実施例3の薄膜トランジスタと、実施例4の薄膜トランジスタとは、いずれも0.9程度の厚さDB/厚さDAを有する一方、実施例3の薄膜トランジスタの方が、より良好な移動度減少率を示すことも認められた。これによって、厚さDB/厚さDAが0.94以下であること、および厚さDAが0.6μm以下であること、すなわち薄膜トランジスタが条件1の上限値、および条件4を満たすことは、薄膜トランジスタの移動度減少率を、より0に近づけるといえる。 In addition, the thin film transistor of Example 2 and the thin film transistor of Example 10 both have a thickness DB/thickness DA of about 0.3, while the thin film transistor of Example 2 has a better mobility reduction. It was also accepted to show the rate. Similarly, the thin film transistor of Example 3 and the thin film transistor of Example 4 both have a thickness DB/thickness DA of about 0.9, while the thin film transistor of Example 3 has better mobility reduction. It was also accepted to show the rate. Accordingly, the thickness DB/thickness DA is 0.94 or less and the thickness DA is 0.6 μm or less, that is, the thin film transistor satisfies the upper limit of Condition 1 and Condition 4. It can be said that the mobility decrease rate of is brought closer to 0.
 また、実施例10の薄膜トランジスタにおいては、屈曲試験後に、段差部22の端面を覆うソース電極層14、およびドレイン電極層15の表面に、断線には至らないような、微小なクラックが生成されていることが、顕微鏡観察によって認められた。実施例2の薄膜トランジスタにおいては、屈曲試験後においても、段差部22の端面を覆うソース電極層14、およびドレイン電極層15の表面に、微小なクラックは認められなかった。これによって、厚さDB/厚さDAが0.30以上であること、特に、厚さDAが0.6μm以下であることは、移動度減少率の抑制効果の実効性を高めるといえる。 In addition, in the thin film transistor of Example 10, after the bending test, minute cracks were generated on the surfaces of the source electrode layer 14 and the drain electrode layer 15 covering the end face of the stepped portion 22 so as not to cause disconnection. was confirmed by microscopic observation. In the thin film transistor of Example 2, no minute cracks were observed on the surfaces of the source electrode layer 14 and the drain electrode layer 15 covering the end face of the stepped portion 22 even after the bending test. Accordingly, it can be said that the thickness DB/thickness DA of 0.30 or more, particularly the thickness DA of 0.6 μm or less, enhances the effectiveness of the effect of suppressing the mobility decrease rate.
 上記実施形態によれば、以下に列挙する効果が得られる。
 (1)条件1を満たし、かつ半導体層13から第1ゲート絶縁層21の平坦部までを覆う電極層14,15を備えた薄膜トランジスタは、可撓性基材11の屈曲による移動度の減少を抑える。
According to the above embodiment, the following effects can be obtained.
(1) A thin film transistor that satisfies Condition 1 and includes the electrode layers 14 and 15 covering from the semiconductor layer 13 to the flat portion of the first gate insulating layer 21 does not reduce mobility due to bending of the flexible base material 11. suppress.
 (2)条件1を満たし、かつ条件4を満たす薄膜トランジスタは、条件1、あるいは条件4を満たさない薄膜トランジスタと比べて、可撓性基材11の屈曲による移動度の減少を抑える。 (2) A thin film transistor that satisfies Condition 1 and Condition 4 suppresses a decrease in mobility due to bending of the flexible base material 11 compared to a thin film transistor that does not satisfy Condition 1 or Condition 4.
 (3)薄膜トランジスタが条件2、条件3、条件5の少なくとも1つを満たすことは、上記(1)(2)に準じた効果が得られることの実効性を高める。 (3) If the thin film transistor satisfies at least one of the conditions 2, 3, and 5, the effectiveness of obtaining the effects according to the above (1) and (2) is enhanced.
 上記実施形態は、以下のように変更して実施することもできる。
 [酸化物半導体]
 ・屈曲状態でのしきい値変動ΔVthを抑える精度の向上を要求される場合、半導体層13を構成する酸化物半導体は、InGaZnOと同種である三元系酸化物半導体であることが好ましい。また、屈曲状態でのしきい値変動ΔVthを抑える精度の向上を要求される場合、半導体層13を構成する酸化物半導体は、インジウムとガリウムとを含む、あるいはインジウムと亜鉛とを含む三元系酸化物半導体であることがより好ましい。
The above embodiment can also be implemented with the following modifications.
[Oxide semiconductor]
If it is required to improve the accuracy of suppressing the threshold variation ΔVth in the bent state, the oxide semiconductor forming the semiconductor layer 13 is preferably a ternary oxide semiconductor that is the same type as InGaZnO. Further, in the case where it is required to improve the accuracy of suppressing the threshold variation ΔVth in the bent state, the oxide semiconductor forming the semiconductor layer 13 should be a ternary semiconductor containing indium and gallium or containing indium and zinc. An oxide semiconductor is more preferable.
 [保護層]
 ・素子構造体は、半導体層13のバックチャンネル部を保護する保護層をさらに備えてもよい。半導体層13のバックチャンネル部は、半導体層13のなかで第2ゲート絶縁層23に接する面とは反対側の面である。保護層は、半導体層13のバックチャンネル部を覆うように位置する。
[Protective layer]
- The device structure may further include a protective layer that protects the back channel portion of the semiconductor layer 13 . The back channel portion of the semiconductor layer 13 is the surface of the semiconductor layer 13 opposite to the surface in contact with the second gate insulating layer 23 . The protective layer is positioned to cover the back channel portion of the semiconductor layer 13 .
 保護層の層構造は、単層構造でもよいし、多層構造でもよい。保護層は、バックチャンネル部のみを覆ってもよいし、ゲート電極層12、第1ゲート絶縁層21、第2ゲート絶縁層23、ソース電極層14、ドレイン電極層15、および半導体層13を覆ってもよい。半導体層13のバックチャンネル部は、薄膜トランジスタの製造時に用いられた化学物質に暴露されたり、大気中のガスを吸着したりすることによって、半導体層13の電子状態を変えてしまう。保護層は、半導体層13のバックチャネル部を製造時の化学物質や大気から保護し、これによって薄膜トランジスタの電気的な特性を安定させる。 The layer structure of the protective layer may be a single layer structure or a multilayer structure. The protective layer may cover only the back channel portion, or may cover the gate electrode layer 12, the first gate insulating layer 21, the second gate insulating layer 23, the source electrode layer 14, the drain electrode layer 15, and the semiconductor layer 13. may The back channel portion of the semiconductor layer 13 changes the electronic state of the semiconductor layer 13 by being exposed to chemical substances used in manufacturing the thin film transistor or by adsorbing gases in the atmosphere. The protective layer protects the back channel portion of the semiconductor layer 13 from chemicals during manufacturing and the atmosphere, thereby stabilizing the electrical characteristics of the thin film transistor.
 保護層を構成する材料の一例は、無機絶縁化合物、および有機絶縁化合物の少なくとも1つである。無機絶縁化合物の一例は、酸化珪素、酸化アルミニウム、酸化タンタル、酸化ハフニウム、酸化イットリウム、酸化ジルコニウム、窒化珪素、酸化窒化珪素からなる群から選択される少なくとも1つのである。有機絶縁化合物の一例は、ポリメチルメタクリレートなどのアクリル樹脂、ポリビニルアルコール、ポリビニルフェノール、エポキシ樹脂、ポリイミド、パリレンからなる群から選択される少なくとも1つである。 An example of the material forming the protective layer is at least one of an inorganic insulating compound and an organic insulating compound. An example of an inorganic insulating compound is at least one selected from the group consisting of silicon oxide, aluminum oxide, tantalum oxide, hafnium oxide, yttrium oxide, zirconium oxide, silicon nitride, and silicon oxynitride. An example of the organic insulating compound is at least one selected from the group consisting of acrylic resin such as polymethyl methacrylate, polyvinyl alcohol, polyvinyl phenol, epoxy resin, polyimide, and parylene.
 保護層にリーク電流の抑制を要求される場合、保護層の電気抵抗値は、1011Ωcm以上であることが好ましく、1014Ωcm以上であることがより好ましい。保護層を構成する材料が、有機絶縁化合物を含有する場合、有機絶縁化合物からなる層の厚さは、0.3μm以上3μm以下であることが好ましい。保護層を構成する材料が、無機絶縁化合物を含有する場合、無機絶縁化合物からなる層の厚さは、5nm以上100nm以下であることが好ましい。保護層の上層としてソース電極層14、およびドレイン電極層15の形成を要求される場合、保護層の端面形状は、順テーパー形状でもよい。端面形状に順テーパー形状を備える保護層は、保護層に積み重ねられる電極層の断線、また形状の不安定化を抑える。 When the protection layer is required to suppress leakage current, the electrical resistance value of the protection layer is preferably 10 11 Ωcm or more, more preferably 10 14 Ωcm or more. When the material forming the protective layer contains an organic insulating compound, the thickness of the layer made of the organic insulating compound is preferably 0.3 μm or more and 3 μm or less. When the material forming the protective layer contains an inorganic insulating compound, the thickness of the layer made of the inorganic insulating compound is preferably 5 nm or more and 100 nm or less. When the source electrode layer 14 and the drain electrode layer 15 are required to be formed as upper layers of the protective layer, the end face shape of the protective layer may be a forward tapered shape. A protective layer having a forward tapered end face shape suppresses disconnection and unstable shape of electrode layers stacked on the protective layer.
 無機絶縁化合物から構成される保護層は、スパッタリング法、原子層堆積法、パルスレーザー堆積法、あるいはCVD法によって形成される。有機絶縁化合物から構成される保護層は、スピンコート法、スリットコート法、各種印刷法などのウェット成膜法によって形成される。 A protective layer composed of an inorganic insulating compound is formed by a sputtering method, an atomic layer deposition method, a pulse laser deposition method, or a CVD method. A protective layer composed of an organic insulating compound is formed by a wet film formation method such as a spin coating method, a slit coating method, or various printing methods.
 CL…半導体層長さ
 DL…第2絶縁層長さ
 11…可撓性基材
 12…ゲート電極層
 13…半導体層
 14…ソース電極層
 15…ドレイン電極層
 21…第1ゲート絶縁層
 22…段差部
 23…第2ゲート絶縁層
CL... Length of semiconductor layer DL... Length of second insulating layer 11... Flexible base material 12... Gate electrode layer 13... Semiconductor layer 14... Source electrode layer 15... Drain electrode layer 21... First gate insulating layer 22... Step Part 23... Second gate insulating layer

Claims (10)

  1.  平坦面を備える可撓性基材と、
     前記平坦面上に位置する素子構造体と、を備える薄膜トランジスタであって、
     前記素子構造体は、
     前記平坦面の一部に位置するゲート電極層と、
     前記平坦面の他部に位置して前記平坦面に追従する平坦部と、前記ゲート電極層を覆って前記平坦部から隆起する段差部と、を備え、有機原子団を含む第1ゲート絶縁層と、
     前記段差部の上面内に位置する、無機化合物である第2ゲート絶縁層と、
     前記第2ゲート絶縁層の上面内に位置する、酸化物半導体である半導体層と、
     前記半導体層の第1端部に接続されるソース電極層と、
     前記半導体層の第2端部に接続されるドレイン電極層と、を備え、
     前記ソース電極層、および前記ドレイン電極層は、
     前記平坦部から前記半導体層まで前記段差部の端面と前記第2ゲート絶縁層の端面とに追従する段差形状を有し、
     前記段差部の厚さDAと前記平坦部の厚さDBとは、0.30≦DB/DA≦0.94を満たす
     ことを特徴とする薄膜トランジスタ。
    a flexible substrate comprising a flat surface;
    a device structure located on the flat surface, the thin film transistor comprising:
    The element structure is
    a gate electrode layer positioned on a portion of the flat surface;
    a first gate insulating layer including an organic atomic group, comprising a flat portion positioned on the other portion of the flat surface and following the flat surface, and a stepped portion covering the gate electrode layer and protruding from the flat portion; and,
    a second gate insulating layer, which is an inorganic compound, positioned within the upper surface of the stepped portion;
    a semiconductor layer, which is an oxide semiconductor, located within the upper surface of the second gate insulating layer;
    a source electrode layer connected to a first end of the semiconductor layer;
    a drain electrode layer connected to the second end of the semiconductor layer;
    The source electrode layer and the drain electrode layer are
    having a stepped shape that follows the end surface of the stepped portion and the end surface of the second gate insulating layer from the flat portion to the semiconductor layer;
    A thin film transistor, wherein the thickness DA of the step portion and the thickness DB of the flat portion satisfy 0.30≦DB/DA≦0.94.
  2.  前記段差部の厚さは、1.0μm以下であり、
     前記段差部の上面において前記第2ゲート絶縁層が占める面積SDと、前記第2ゲート絶縁層の上面において前記半導体層が占める面積SCとは、1≦SD/SC≦9を満たす
     請求項1に記載の薄膜トランジスタ。
    The stepped portion has a thickness of 1.0 μm or less,
    2. An area SD occupied by the second gate insulating layer on the upper surface of the step portion and an area SC occupied by the semiconductor layer on the upper surface of the second gate insulating layer satisfy 1≦SD/SC≦9. The thin film transistor described.
  3.  前記段差部の厚さは、0.6μm以下である
     請求項1または2に記載の薄膜トランジスタ。
    3. The thin film transistor according to claim 1, wherein the step portion has a thickness of 0.6 [mu]m or less.
  4.  前記段差部の厚さDAと前記平坦部の厚さDBとの差は、前記ゲート電極層の厚さよりも大きい
     請求項1から3のいずれか一項に記載の薄膜トランジスタ。
    The thin film transistor according to any one of claims 1 to 3, wherein a difference between a thickness DA of the step portion and a thickness DB of the flat portion is larger than a thickness of the gate electrode layer.
  5.  平坦面を備える可撓性基材と、
     前記平坦面上に位置する素子構造体と、を備える薄膜トランジスタであって、
     前記素子構造体は、
     前記平坦面の一部に位置するゲート電極層と、
     前記平坦面の他部に位置して前記平坦面に追従する平坦部と、前記ゲート電極層を覆って前記平坦部から隆起する段差部と、を備え、有機原子団を含む第1ゲート絶縁層と、
     前記段差部の上面内に位置する、無機化合物である第2ゲート絶縁層と、
     前記第2ゲート絶縁層の上面内に位置する、酸化物半導体である半導体層と、
     前記半導体層の第1端部に接続されるソース電極層と、
     前記半導体層の第2端部に接続されるドレイン電極層と、を備え、
     前記段差部の厚さは、0.6μm以下であり、
     前記段差部の厚さDAと前記平坦部の厚さDBとは、0.30≦DB/DA≦0.94を満たす
     ことを特徴とする薄膜トランジスタ。
    a flexible substrate comprising a flat surface;
    a device structure located on the flat surface, the thin film transistor comprising:
    The element structure is
    a gate electrode layer positioned on a portion of the flat surface;
    a first gate insulating layer including an organic atomic group, comprising a flat portion positioned on the other portion of the flat surface and following the flat surface, and a stepped portion covering the gate electrode layer and protruding from the flat portion; and,
    a second gate insulating layer, which is an inorganic compound, positioned within the upper surface of the stepped portion;
    a semiconductor layer, which is an oxide semiconductor, located within the upper surface of the second gate insulating layer;
    a source electrode layer connected to a first end of the semiconductor layer;
    a drain electrode layer connected to the second end of the semiconductor layer;
    The stepped portion has a thickness of 0.6 μm or less,
    A thin film transistor, wherein the thickness DA of the step portion and the thickness DB of the flat portion satisfy 0.30≦DB/DA≦0.94.
  6.  前記段差部の厚さDAと前記平坦部の厚さDBとの差は、前記ゲート電極層の厚さよりも大きく、
     前記段差部の上面において前記第2ゲート絶縁層が占める面積SDと、前記第2ゲート絶縁層の上面において前記半導体層が占める面積SCとは、1≦SD/SC≦9を満たし、
     請求項5に記載の薄膜トランジスタ。
    a difference between a thickness DA of the step portion and a thickness DB of the flat portion is larger than a thickness of the gate electrode layer;
    an area SD occupied by the second gate insulating layer on the upper surface of the step portion and an area SC occupied by the semiconductor layer on the upper surface of the second gate insulating layer satisfy 1≦SD/SC≦9,
    6. The thin film transistor according to claim 5.
  7.  前記無機化合物は、珪素酸化物、珪素窒化物、珪素酸窒化物からなる群から選択されるいずれか1つである
     請求項1から5のいずれか一項に記載の薄膜トランジスタ。
    The thin film transistor according to any one of Claims 1 to 5, wherein the inorganic compound is one selected from the group consisting of silicon oxide, silicon nitride, and silicon oxynitride.
  8.  前記酸化物半導体は、インジウムを含有する
     請求項1から6のいずれか一項に記載の薄膜トランジスタ。
    The thin film transistor according to any one of claims 1 to 6, wherein the oxide semiconductor contains indium.
  9.  可撓性基材における平坦面の一部にゲート電極層を形成すること、
     前記ゲート電極層を覆うように有機原子団を含む第1ゲート絶縁層を前記平坦面に形成し、これによって前記平坦面の他部に位置して前記平坦面に追従する平坦部と、前記ゲート電極層を覆って前記平坦部から隆起する段差部と、を備える第1ゲート絶縁層を形成すること、
     前記段差部の上面内に、無機化合物である第2ゲート絶縁層を形成すること、
     前記第2ゲート絶縁層の上面内に、酸化物半導体である半導体層を形成すること、
     前記平坦部から前記半導体層の第1端部まで前記段差部の端面と前記第2ゲート絶縁層の端面とに追従する段差形状を有するようにソース電極層を形成すること、
     前記平坦部から前記半導体層の第2端部まで前記段差部の端面と前記第2ゲート絶縁層の端面とに追従する段差形状を有するようにドレイン電極層を形成すること、を含み、
     前記段差部の厚さDAと前記平坦部の厚さDBとは、0.30≦DB/DA≦0.94を満たす
     ことを特徴とする薄膜トランジスタの製造方法。
    forming a gate electrode layer on a portion of the flat surface of the flexible substrate;
    forming a first gate insulating layer containing an organic atomic group on the flat surface so as to cover the gate electrode layer, thereby forming a flat portion located on another portion of the flat surface and following the flat surface; forming a first gate insulating layer covering the electrode layer and comprising a stepped portion protruding from the flat portion;
    forming a second gate insulating layer made of an inorganic compound in the upper surface of the stepped portion;
    forming a semiconductor layer that is an oxide semiconductor in the upper surface of the second gate insulating layer;
    forming a source electrode layer from the flat portion to the first end of the semiconductor layer so as to have a stepped shape that follows the end face of the stepped portion and the end face of the second gate insulating layer;
    forming a drain electrode layer from the flat portion to a second end of the semiconductor layer so as to have a stepped shape that follows the end face of the stepped portion and the end face of the second gate insulating layer;
    A method of manufacturing a thin film transistor, wherein the thickness DA of the step portion and the thickness DB of the flat portion satisfy 0.30≦DB/DA≦0.94.
  10.  可撓性基材における平坦面の一部にゲート電極層を形成すること、
     前記ゲート電極層を覆うように有機原子団を含む第1ゲート絶縁層を前記平坦面に形成し、これによって前記平坦面の他部に位置して前記平坦面に追従する平坦部と、前記ゲート電極層を覆って前記平坦部から隆起する段差部と、を備える第1ゲート絶縁層を形成すること、
     前記段差部の上面内に、無機化合物である第2ゲート絶縁層を形成すること、
     前記第2ゲート絶縁層の上面内に、酸化物半導体である半導体層を形成すること、
     前記半導体層の第1端部に接続されるソース電極層を形成すること、
     前記半導体層の第2端部に接続されるドレイン電極層を形成すること、を含み、
     前記段差部の厚さは、0.6μm以下であり、
     前記段差部の厚さDAと前記平坦部の厚さDBとは、0.30≦DB/DA≦0.94を満たす
     ことを特徴とする薄膜トランジスタの製造方法。
    forming a gate electrode layer on a portion of the flat surface of the flexible substrate;
    forming a first gate insulating layer containing an organic atomic group on the flat surface so as to cover the gate electrode layer, thereby forming a flat portion located on another portion of the flat surface and following the flat surface; forming a first gate insulating layer covering the electrode layer and comprising a stepped portion protruding from the flat portion;
    forming a second gate insulating layer made of an inorganic compound in the upper surface of the stepped portion;
    forming a semiconductor layer that is an oxide semiconductor in the upper surface of the second gate insulating layer;
    forming a source electrode layer connected to a first end of the semiconductor layer;
    forming a drain electrode layer connected to a second end of the semiconductor layer;
    The stepped portion has a thickness of 0.6 μm or less,
    A method of manufacturing a thin film transistor, wherein the thickness DA of the step portion and the thickness DB of the flat portion satisfy 0.30≦DB/DA≦0.94.
PCT/JP2023/004745 2022-02-14 2023-02-13 Thin-film transistor and method for manufacturing thin-film transistor WO2023153509A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022020413A JP7369340B2 (en) 2022-02-14 2022-02-14 Thin film transistor and method for manufacturing thin film transistor
JP2022-020413 2022-02-14

Publications (1)

Publication Number Publication Date
WO2023153509A1 true WO2023153509A1 (en) 2023-08-17

Family

ID=87564550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/004745 WO2023153509A1 (en) 2022-02-14 2023-02-13 Thin-film transistor and method for manufacturing thin-film transistor

Country Status (2)

Country Link
JP (1) JP7369340B2 (en)
WO (1) WO2023153509A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014170829A (en) * 2013-03-04 2014-09-18 Sony Corp Semiconductor device, manufacturing method of the same, display device manufacturing method, and electronic apparatus manufacturing method
JP2015088715A (en) * 2013-09-25 2015-05-07 富士フイルム株式会社 Method of manufacturing organic thin-film transistor and organic thin-film transistor
JP2019102652A (en) * 2017-12-04 2019-06-24 三菱電機株式会社 Thin film transistor substrate and manufacturing method of thin film transistor substrate
JP2021077751A (en) * 2019-11-07 2021-05-20 凸版印刷株式会社 Thin film transistor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014170829A (en) * 2013-03-04 2014-09-18 Sony Corp Semiconductor device, manufacturing method of the same, display device manufacturing method, and electronic apparatus manufacturing method
JP2015088715A (en) * 2013-09-25 2015-05-07 富士フイルム株式会社 Method of manufacturing organic thin-film transistor and organic thin-film transistor
JP2019102652A (en) * 2017-12-04 2019-06-24 三菱電機株式会社 Thin film transistor substrate and manufacturing method of thin film transistor substrate
JP2021077751A (en) * 2019-11-07 2021-05-20 凸版印刷株式会社 Thin film transistor

Also Published As

Publication number Publication date
JP7369340B2 (en) 2023-10-26
JP2023117705A (en) 2023-08-24

Similar Documents

Publication Publication Date Title
EP2589085B1 (en) Thin film transistors
US20140183522A1 (en) Thin film transistor, thin film transistor array panel including the same and manufacturing method thereof
TWI405335B (en) Semiconductor structure and fabricating method thereof
KR20070122517A (en) Thin film transistor and manufacturing method thereof
JPWO2012043338A1 (en) THIN FILM TRANSISTOR, MANUFACTURING METHOD THEREOF, AND IMAGE DISPLAY DEVICE PROVIDED WITH THIN FILM TRANSISTOR
US8680526B2 (en) Electronic device, method of producing the same, and display device
KR20110072270A (en) Transistor, method of manufacturing the same and electronic device comprising transistor
TWI508171B (en) Semiconductor device structure and manufacturing method for the same
US20230420573A1 (en) Thin film transistor and method of manufactruting thin film transistor
US20230387242A1 (en) Thin film transistor and method of manufactruting thin film transistor
JP2010182929A (en) Manufacturing method of field effect transistor
WO2023153509A1 (en) Thin-film transistor and method for manufacturing thin-film transistor
JP5604938B2 (en) Thin film transistor and manufacturing method thereof
US20230146193A1 (en) Thin-film transistor, thin-film transistor array, and method of producing thin-film transistor
JP2023120470A (en) Thin-film transistor and method for manufacturing thin-film transistor
JP2023155745A (en) Thin-film transistor, and method of manufacturing the same
CN116207133B (en) Thin film transistor and preparation method thereof
JP2024012995A (en) Thin film transistor and manufacturing method of thin film transistor
CN115136323A (en) Transistor, electronic device and method for manufacturing transistor
KR20170072438A (en) Transistor array panel and manufacturing method thereof
JP2024072115A (en) Thin Film Transistor Array
JP2024027842A (en) Thin-film transistor
JP2024081291A (en) Thin-film transistor
CN116207131A (en) Thin film transistor and preparation method thereof
JP2011216602A (en) Thin-film transistor and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23752971

Country of ref document: EP

Kind code of ref document: A1