JP3819212B2 - 蒸発燃料処理装置の故障診断装置 - Google Patents

蒸発燃料処理装置の故障診断装置 Download PDF

Info

Publication number
JP3819212B2
JP3819212B2 JP2000100363A JP2000100363A JP3819212B2 JP 3819212 B2 JP3819212 B2 JP 3819212B2 JP 2000100363 A JP2000100363 A JP 2000100363A JP 2000100363 A JP2000100363 A JP 2000100363A JP 3819212 B2 JP3819212 B2 JP 3819212B2
Authority
JP
Japan
Prior art keywords
pressure
flow rate
failure diagnosis
value
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000100363A
Other languages
English (en)
Other versions
JP2001289127A (ja
Inventor
高志 磯部
学 仁木
康次郎 堤
宏幸 安藤
崇 岩本
聡 木曽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2000100363A priority Critical patent/JP3819212B2/ja
Priority to US09/822,412 priority patent/US6550318B2/en
Publication of JP2001289127A publication Critical patent/JP2001289127A/ja
Application granted granted Critical
Publication of JP3819212B2 publication Critical patent/JP3819212B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • F02M25/0809Judging failure of purge control system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0414Air temperature

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、燃料タンク内で発生する蒸発燃料をキャニスタに貯蔵し、適時内燃機関の吸気系に放出する蒸発燃料処理装置の故障診断装置に関する。
【0002】
【従来の技術】
車両用蒸発燃料処理装置の故障診断は、例えば特開平9−126064号公報に示されるように、車両がいわゆるクルージング状態にあり、機関運転状態が定常的な状態にあることなどを条件として実行されている。この故障診断は、機関吸気系の負圧を蒸発燃料処理装置を導入して実行されるため、負圧導入時、すなわち蒸発燃料処理装置内の減圧処理時に、蒸発燃料の吸気系への放出量が多くなる傾向がある。そのため、蒸発燃料の放出の影響を極力少なくすべく、上記したような故障診断の実行条件が決められている。
【0003】
【発明が解決しようとする課題】
しかしながら、ユーザの使用態様によっては、故障診断を実行できる、すなわち故障診断の実行条件を満たす車両運転状態とならない場合もあるため、機関のアイドル状態においても故障診断を実行可能とすることが望まれていた。上述したように、従来の故障診断手法は、車両がクルージング状態にあることを前提としたものであるため、そのまま機関のアイドル状態での故障診断に適用すると、機関吸気系への蒸発燃料の放出量が多くなりすぎて、機関が停止してしまうおそれがあった。
【0004】
本発明はこの点に着目してなされたものであり、機関のアイドル状態においても、機関停止といった問題を起こすことなく、蒸発燃料処理装置内の減圧処理を含む故障診断を実行できるようにした故障診断装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記目的を達成するため請求項1に記載の発明は、燃料タンクと、該燃料タンク内で発生する蒸発燃料を貯蔵するキャニスタと、前記燃料タンクとキャニスタとを接続するチャージ通路と、前記キャニスタと内燃機関の吸気系とを接続するパージ通路と、該パージ通路の途中に設けられたパージ制御弁とを備える蒸発燃料処理装置の漏れの有無を判定する故障診断装置において、前記機関のアイドル状態において前記漏れの有無の判定を行うときは、前記パージ制御弁を通過するガス流量を、アイドル状態以外の運転状態において判定を行うときの最大流量より小さい所定流量以下に制限すると共に、前記蒸発燃料処理装置内の圧力変化の振幅が徐々に減少するように前記ガス流量を制御して、前記蒸発燃料処理装置内の減圧処理を行い、該減圧処理後の前記蒸発燃料装置内の圧力の変化に基づいて前記漏れの有無を判定することを特徴とする。
【0006】
この構成によれば、機関のアイドル状態において蒸発燃料処理装置の漏れの有無の判定を行うときは、パージ制御弁を通過するガス流量を、アイドル状態以外の運転状態において判定を行うときの最大流量より小さい所定流量以下に制限して、蒸発燃料処理装置内の減圧処理が行われ、該減圧処理後の蒸発燃料装置内の圧力の変化に基づいて漏れの有無が判定されるので、機関吸気系への蒸発燃料供給量が急激に増加することがなく、アイドル状態においても機関停止といった問題を起こすことなく、蒸発燃料処理装置の故障診断を実行することができる。また蒸発燃料処理装置内の圧力変化の振幅が徐々に減少するようにガス流量を制御して減圧処理が行われるので、例えば蒸発燃料装置内の圧力を検出する圧力センサをチャージ通路に配置するような場合でも、燃料タンク内の圧力を正確に減圧目標値に減圧することができる。
【0007】
請求項2に記載の発明は、請求項1に記載の故障診断装置は、前記内燃機関及びその制御装置とは別個に設けられる外部装置であり、該外部装置が前記制御装置に接続され、前記外部装置からの実行指令に応じて前記漏れの有無の判定を実行することを特徴とする。
【0008】
この構成によれば、機関のアイドル時に外部装置としての故障診断装置を接続することにより、任意に故障診断を実行することができるので、車両の点検整備を行う際に容易に蒸発燃料処理装置の故障診断を行うことが可能となる。
また前記故障診断装置は、前記チャージ通路に取り付けられた圧力センサによる検出圧力と、第1の所定圧力(POBJH)及び該第1の所定圧力より低い第2の所定圧力(POBJL)とを比較し、前記検出圧力が前記第1の所定圧力に達したとき前記パージ制御弁の開弁量を徐々に大きくする一方、前記検出圧力が前記第2の所定圧に達したとき、前記パージ制御弁の開弁量を徐々に小さくすることにより、前記減圧処理を実行するものである場合には、前記所定流量は、該減圧実行時の目標流量の上限値(QEVAPH)とすることが望ましい。
【0009】
【発明の実施の形態】
以下本発明の実施の形態を図面を参照して説明する。
図1は本発明の一実施形態にかかる蒸発燃料処理装置及び故障診断装置を含む内燃機関の制御装置の構成を示す図である。同図において、符号1は例えば4気筒を有する内燃機関(以下、単に「エンジン」という)であって、該エンジン1の吸気管2の途中にはスロットル弁3が配されている。また、スロットル弁3にはスロットル弁開度(θTH)センサ4が連結されており、当該スロットル弁3の開度に応じた電気信号を出力して電子コントロールユニット(以下「ECU」という)5に供給する。
【0010】
燃料噴射弁6は、吸気管2の途中であってエンジン1とスロットル弁3との間の図示しない吸気弁の少し上流側に各気筒毎に設けられている。また、各燃料噴射弁6は燃料供給管7を介して燃料タンク9に接続されており、燃料供給管7の途中には燃料ポンプ8が設けられている。燃料噴射弁6はECU5に電気的に接続され、該ECU5からの信号により燃料噴射弁6の開弁時期が制御される。
【0011】
吸気管2の前記スロットル弁3の下流側には吸気管内絶対圧PBAを検出する吸気管内絶対圧(PBA)センサ13及び吸気温TAを検出する吸気温(TA)センサ14が装着されており、これらのセンサの検出信号はECU5に供給される。
エンジン1のシリンダブロックの冷却水が充満した気筒周壁にはサーミスタ等からなるエンジン水温(TW)センサ15が挿着され、該TWセンサ15により検出されたエンジン冷却水温TWは電気信号に変換されてECU5に供給される。
【0012】
エンジン1の図示しないカム軸周囲またはクランク軸周囲にはエンジン回転数(NE)センサ16が取り付けられている。エンジン回転数センサ16はエンジン1のクランク軸の180度回転毎に所定のクランク角度位置で信号パルス(以下、「TDC信号パルス」という)を出力し、該TDC信号パルスはECU5に供給される。
【0013】
排気管12の途中には、酸素濃度センサ32が装着されており、酸素濃度センサ32は、排気中の酸素濃度を検出してその検出値VO2に応じた信号をECU5に供給する。排気管12の酸素濃度センサ32の下流には、排気ガス浄化装置である三元触媒33が設けられている。
【0014】
またECU5には、エンジン1が搭載された車両の走行速度VPを検出する車速センサ17、バッテリ電圧VBを検出するバッテリ電圧センサ18及び大気圧PAを検出する大気圧センサ19が接続されており、これらのセンサの検出信号はECU5に供給される。
【0015】
次に燃料タンク9、チャージ通路20、キャニスタ25、パージ通路27等から構成される蒸発燃料処理装置31について説明する。
燃料タンク9はチャージ通路20を介してキャニスタ25に接続されており、チャージ通路20はエンジンルーム内に設けられた第1〜第3の分岐部20a〜20cを有する。そして、この分岐部20a〜20c側のチャージ通路20にはタンク内圧センサ11が取り付けられている。タンク内圧センサ11は、チャージ通路20内の圧力をタンク内圧PTANKとして検出し、その検出信号はECU5に供給される。タンク内圧PTANKは、定常状態では燃料タンク9内の実際の圧力と等しいが、後述するように過渡的な状態では、実際の燃料タンク9内の圧力と若干異なる値を示す。
【0016】
第1の分岐部20aには、一方向弁21及びパフロス弁22が設けられている。一方向弁21は、タンク内圧PTANKが大気圧より1.6〜1.7kPa(12〜13mmHg)程度高くなったときのみ開弁作動するように構成されている。パフロス弁22は、後述するパージ実行中に開弁され、エンジン停止中は閉弁される電磁弁であり、その作動はECU5により制御される。
【0017】
第2の分岐部20bには二方向弁23が設けられている。二方向弁23は、タンク内圧PTANKが大気圧より2.7kPa(20mmHg)程度高くなったとき及びタンク内圧PTANKが二方向弁23のキャニスタ25側の圧力より所定圧だけ低くなったときに開弁作動するように構成されている。
【0018】
第3の分岐部20cには、バイパス弁24が設けられている。バイパス弁24は、通常は閉弁状態とされ、後述する異常判定実行中開閉される電磁弁であり、その作動はECU5により制御される。
キャニスタ25は、蒸発燃料を吸着する活性炭を内蔵し、通路26aを介して大気に連通する吸気口(図示せず)を有する。通路26aの途中には、ベントシャット弁26が設けられている。ベントシャット弁26は、通常は開弁状態に保持され、後述する異常判定実行中、一時的に閉弁される電磁弁であり、その作動はECU5により制御される。
【0019】
キャニスタ25は、パージ通路27を介して吸気管2のスロットル弁3の下流側に接続されており、パージ通路27は第1及び第2の分岐部27a,27bを有する。第1の分岐部27aにはジェットオリフィス28及びジェットパージ制御弁29が設けられ、第2の分岐部27bにパージ制御弁30が設けられている。ジェットパージ制御弁29は、パージ制御弁30では正確に制御できないような小流量のパージ燃料混合気を制御するための電磁弁であり、パージ制御弁30は、その制御信号のオン−オフデューティ比を変更することにより流量を連続的に制御することができるように構成された電磁弁であり、これらの電磁弁29,30の作動はECU5により制御される。なお、パージ制御弁30はその開弁量を連続的に変更可能な電磁弁を使用してもよく、上記オン−オフデューティ比は、このような開弁量連続可変型の電磁弁における開弁量に相当する。
【0020】
ECU5は、上述の各種センサからの入力信号波形を整形して電圧レベルを所定レベルに修正し、アナログ信号値をデジタル信号値に変換する等の機能を有する入力回路と、中央演算処理回路(以下「CPU」という)と、該CPUで実行する演算プログラムや演算結果等を記憶する記憶手段と、前記燃料噴射弁6、パフロス弁22、バイパス弁24、ジェットパージ制御29及びパージ制御弁30に駆動信号を供給する出力回路とを備えている。
【0021】
ECU5は上述の各種エンジンパラメータ信号に基づいて、O2センサ32により検出される排ガス中の酸素濃度に応じたフィードバック(O2フィードバック)制御運転領域やオープンループ制御運転領域等の種々のエンジン運転状態を判別するとともに、エンジン運転状態に応じ、次式(1)に基づき、前記TDC信号パルスに同期する燃料噴射弁6の燃料噴射時間Toutを演算する。
Tout=Ti×K1×KO2+K2 (1)
【0022】
ここに、Tiは燃料噴射弁6の噴射時間Toutの基準値であり、エンジン回転数NEと吸気管絶対圧PBAに応じて設定されたTiマップから読み出される。
【0023】
KO2は空燃比補正係数であってフィードバック制御時、O2センサ32により検出される排気ガス中の酸素濃度に応じて設定され、更にフィードバック制御を行わない複数のオープンループ制御運転領域では各運転領域に応じた値に設定される係数である。
【0024】
K1及びK2は夫々各種エンジンパラメータ信号に応じて演算される他の補正係数及び補正変数であり、エンジン運転状態に応じた燃費特性、エンジン加速特性等の諸特性の最適化が図られるような所定値に設定される。
【0025】
図2は、本実施形態における故障診断処理の手順を説明するためのフローチャートである。図6も参照して、故障診断処理の全体を流れを説明する。
先ずステップS11では、補正チェック用大気開放モード処理を実行する(図6,時刻t0〜t1)。この処理では、ベントシャット弁26、バイパス弁24及びパフロス弁22を開弁状態とするとともに、パージ制御弁30を閉弁状態とし、且つジェットパージ制御弁28を開弁状態として、所定時間T1だけその状態を維持する。
【0026】
ステップS12では、補正チェックモード処理を実行する(図6,時刻t1〜t2)。この処理では、ステップS11の状態からベントシャット弁26のみ閉弁し、その状態を所定時間T2だけ維持し、その所定時間T2におけるタンク内圧PTANKの変化量ΔP1を計測する。この状態では、燃料タンク9で発生する蒸発燃料により、タンク内圧PTANKが若干上昇する。
【0027】
ステップS13では、減圧用大気開放モード処理を実行する(図6,時刻t2〜t3)。この処理では、ステップS12の状態からベントシャット弁26を開弁してステップS11の状態と同一とし、所定時間T3だけその状態を維持する。これにより、蒸発燃料処理装置31内の圧力を大気圧と等しくする。
【0028】
ステップS14では、減圧モード処理を実行する(図6,時刻t3〜t4)。この処理では、ステップS13の状態からベントシャット弁26を閉弁するとともに、パージ制御弁30及びジェットパージ制御弁29を開弁し、吸気管2内の負圧を蒸発燃料処理装置31内に導入する減圧処理を実行し、燃料タンク9内の圧力を所定圧(例えば大気圧より2.0kPa(15mmHg)程度低い圧力)まで減圧する。
【0029】
ステップS15では、リークチェックモード処理を実行する(図6,時刻t4〜t5)。この処理では、ステップS14の状態からパージ制御弁30及びジェットパージ制御弁29を閉弁し、所定時間T4だけその状態を維持する。そして、その所定時間T4におけるタンク内圧PTANKの変化量ΔP2を計測する。漏れがないときは、図6に実線で示すように圧力変化量ΔP2は小さいが、漏れがあるときは同図に破線で示すように圧力変化量ΔP2が大きくなるので、この違いにより漏れの有無を判定する。なお本実施形態では、所定時間T4=T2としている。
【0030】
ステップS16では、ベーパチェックモード処理を実行する(図6,時刻t5〜t6)。この処理では、ステップS15の状態からベントシャット弁26を開弁し、所定時間T5だけその状態を維持する。そして、ベントシャット弁開弁直後のタンク内圧PTANKが大気圧より低い状態から大気圧に向かって上昇したときは、燃料タンク9におけるベーパ(蒸発燃料)発生量は所定量以下と判定する一方、タンク内圧PTANKが大気圧より高い状態から大気圧に向かって下降したときは、ベーパ発生量が所定量以上と判定する。
【0031】
ステップS17では、ステップS16の処理の結果、ベーパ発生量が所定量以下か否かを判別し、その答が否定(NO)であってベーパ発生量が多いときは、漏れがあってもリークチェックモードにおける圧力変化量ΔP2が小さくなり、正確な診断ができないので、再診断を行うこととして(ステップS18)、故障診断処理を終了する。
【0032】
一方ベーパ発生量が少ないときは、ステップS15で計測した変化量ΔP2と、ステップS12で計測した変化量ΔP1との差、すなわち蒸発燃料の蒸気圧の影響を除いた圧力変化量(=ΔP2−ΔP1)が、所定変化量ΔPLEAKより大きいか否かを判別し、ΔP2−ΔP1>ΔPLEAKであるときは、故障(漏れがある)と判定し(ステップS20)、ΔP2−ΔP1≦ΔPLEAKであるときは、正常と判定して(ステップS21)、故障診断処理を終了する。
【0033】
次に図3〜図5を参照して本実施形態における減圧モード処理を詳細に説明する。
本実施例形態では、タンク内圧センサ11を燃料タンク9内に取り付けず、エンジンルーム内の分岐部20a〜20c側のチャージ通路20に取り付けるようにしたので、減圧中は圧力損失によってタンク内圧センサ11の出力値PTANKと実際の燃料タンク9内の圧力との差が大きくなる。従って、正確に燃料タンク内圧力を検出することができず、燃料タンク9内を正確に目標圧力まで減圧できないおそれがある。そこで、本実施形態の減圧モード処理では、図3及び図4のフローチャートに示す手法によりタンク内圧センサ11の出力値PTANKに基づいて燃料タンク9内の圧力を推定し、これによって燃料タンク9内の実際の圧力を目標圧力まで正確に減圧させるようにしている。
【0034】
図3のステップS31では、バイパス弁24を開弁状態にし、且つパフロス弁22及びベントシャット弁26を閉弁状態にする。続くステップS32では、PTANK値が下限値POBJLを一度下まわったときに「1」に設定されるフィードバック減圧フラグFPFBが「1」であるか否かを判別する。最初はその答が否定(NO)であるので、エンジン1がアイドル状態にあることを「1」で示すアイドルフラグFIDLが「1」であるか否かを判別し(ステップS33)、FIDL=0であってアイドル状態以外の運転状態にあるときは、オープン減圧処理を行うべくステップS34に進み、FIDL=1であってアイドル状態にあるときは、直ちにフィードバック減圧処理を実行すべくステップS35に進む。
【0035】
ステップS34では、PTANK値が減圧目標下限値POBJLの初期値POBJL0より低いか否かを判別する。最初はその答が否定(NO)であるので、ステップS36に進み、予めECU5の記憶手段に記憶されている目標流量テーブルを検索して、目標パージ流量QEVAPを現在のタンク内圧PTANKに応じて決定し、ステップS51(図4)に進む。ここで、この目標流量テーブルは、PTANK値が増加するほどQEVAP値が増加するように設定されている。なお、前記減圧目標下限値POBJLの初期値POBJL0は、図5に示すフィードバック(F/B)減圧処理で使用されるPOBJLテーブルの、カウンタCFB=0に対応する値である。
【0036】
ステップS51では、今回、パージ制御弁30で制御されるべきパージ流量QPFRQEを、ステップS36で検索された目標パージ流量QEVAPからジェットパージ制御弁29における流量QPJETを差し引いて算出する。続くステップS52では、ステップS51で算出されたパージ流量QPFRQEが「0」以上か否かを判別し、その答が肯定(YES)のときには、さらに該パージ流量QPFRQEが所定上限値QPBLIM以下か否かを判別し(ステップS53)、その答が肯定(YES)のときには、0≦QPFRQE≦QPBLIMが成立するので、ステップS56へ進む。所定上限値QPBLIMは、後述するフィードバック減圧処理中の上限値QEVAPHより大きい値、例えば50L/min程度に設定される。上限値QEVAPHは、15L/min程度である。
【0037】
また、これらステップS52,S53の答が否定(NO)のときには、ステップS54でQPFRQE値を下限値「0」に、ステップS55でQPFRQE値を所定上限値QPBLIMにそれぞれリミット設定してステップS56へ進む。
【0038】
これらの処理により設定されたパージ流量QPFRQEと、タンク内圧PTAN及び吸気管内絶対圧PBAとに応じてパージ制御弁30のデューティ比が算出される。
ステップS56では、前記デューティ比に応じた開度でパージ制御弁30を開弁する共に、ジェットパージ制御弁29は開弁状態を維持する。その後、ステップS57へ進み、空燃比補正係数KO2が所定閾値EVPLMT以上か否かを判別し、その答が否定(NO)であるときには、かなり多量の蒸発燃料が発生していて、KO2値がリーンリミットに向かって大きく変動するおそれがあると判断し、ステップS58へ進み、当該故障診断処理を終了すべくパージ積算流量DQPAIRTを「0」にリセットして本ルーチンを終了する。パージ積算流量DQPAIRTは、パージ制御弁30の開度と、吸気管内絶対圧PBA及びタンク内圧PTANKとに応じて算出される実パージ流量をエンジン始動時から積算して算出されるパラメータであり、積算パージ流量DQPAIRTが所定値以上であることが故障診断の実行条件としているので、DQPAIRT=0となると、故障診断実行条件不成立となって、故障診断処理が中止される。
【0039】
ステップS57の答が肯定(YES)であるときには、蒸発燃料の発生量が小さく安定した空燃比の下で当該故障診断が実行できると判断し、ステップS59へ進む。ステップS59ではPTANK値が所定閾値PKO2以下であるか否かを判別し、PTANK>PKO2であるときは直ちにステップS61に進む一方、PTANK≦PKO2であるときには、蒸発燃料がパージされて燃料タンク側が負圧になっていると判断し、エアーフローがあったことを「1」で示すフラグFKO2OKを「1」に設定して(ステップS60)、ステップS61へ進む。
【0040】
そして、ステップS61では、後述するフィードバック減圧処理の終了時期を決定するためのダウンカウントタイマtPFBSTの値が「0」になっているか否かを判別する。オープン減圧処理中は、その答が否定(NO)となるので、直ちに本処理を終了する。
【0041】
減圧処理を継続し、PTANK<POBJL0が成立してステップS34(図3)の答が肯定(YES)となったときには、ステップS35へ進み、1)フィードバック減圧フラグFPFBを「1」に設定し、2)PTANK値が減圧目標下限値POBJLより低下した後、減圧目標上限値POBJHに達するまで「1」に設定される圧力上昇フラグFPOBJを「1」に設定し、3)後述するF/B減圧処理(ステップS47,図5)で設定され、目標パージ流量QEVAPが上限値にはりついていることを「1」で示す上限値貼り付きフラグFQEVAPHを「0」に設定し、4)目標パージ流量QEVAPを後述するF/B減圧処理時のQEVAP値の初期値QEVAPSTに設定し、5)F/B減圧処理(ステップS47)の実行回数をカウントするCFBカウンタの値を「0」に設定し、6)F/B減圧処理の終了時期を決定するためのタイマtPFBSTに所定時間T13(例えば5秒)を設定してスタートさせ、7)減圧目標値POBJを所定の減圧目標上限値POBJHに設定する。次いで、ステップS51〜S61の処理を経てオープン減圧処理を終了する。この時点では、PTANK値が下限値POBJL0よりも小さくなるまで減圧されている。
【0042】
次回からは、フィードバック減圧フラグFPFBが「1」となっているので、ステップS32の答が肯定(YES)となり、ステップS41に進んであらかじめECU5の記憶手段に記憶されているPOBJLテーブルを検索して、減圧目標値POBJの下限値POBJLをF/B減圧処理(図5)の実行回数を示すCFBカウンタのカウント値に応じて決定する。このPOBJLテーブルのPOBJL値は、CFBカウンタのカウント値が増加するほど減圧目標上限値POBJHに近づくように設定されている。
【0043】
次いで、圧力上昇フラグFPOBJが「1」であるか否かを判別し(ステップS42)、最初はステップS35で「1」に設定されているため、その答は肯定(YES)となり、ステップS45に進む。ステップS45では現在のタンク内圧PTANKが減圧目標上限値POBJHより大きいか否かを判別し、最初はPTANK<POBJHであるので、直ちにステップS47に進み、図5に示すF/B減圧処理を実行する。
【0044】
図5のステップS71では、F/B減圧処理に入ってから圧力上昇フラグFPOBJが反転したか否かを判別し、最初はその答が否定(NO)であるので、ステップS72へ進み、目標パージ流量QEVAPを減少させるべく次式(2)の値に設定する。
QEVAP=QEVAP+IQ×(PTANK−POBJ) (2)
【0045】
ここで、式(2)中のIQは、パージ流量I(積分)項の制御ゲインであり、所定値に設定されている。また減圧目標値POBJは上限値POBJHに設定されており(図3、ステップS35)、PTANK<POBJであるので、目標パージ流量QEVAPは減少することになる。
【0046】
次いで、ステップS76へ進んで、本処理の実行回数をカウントするCFBカウンタをインクリメントした後、続くステップS77で目標パージ流量QEVAPがその下限値QEVAPLよりも大きいか否かを判別する。その答が肯定(YES)であるときにはステップS79へ進み、目標パージ流量QEVAPがその上限値QEVAPHより小さいか否かを判別し、その答が肯定(YES)であるときには、QEVAPL<QEVAP<QEVAPHが成立するとしてQEVAP値リミット貼付き経過時間計測し、F/B減圧処理の終了時期を決定するためのtPFBSTタイマを所定時間T13にセットしてスタートさせると共に、目標パージ流量QEVAPが上限値QEVAPHに貼付いたことを「1」で示す上限値貼り付きフラグFQEVAPHを「0」に設定して(ステップS81)、本処理を終了する。
【0047】
一方、ステップS77の答が否定(NO)であるときには、目標パージ流量QEVAPをその下限値QEVAPLに設定すると共に上限値貼り付きフラグFQEVAPHを「0」に設定し(ステップS78)、またステップS79の答が否定(NO)であるときには、目標パージ流量QEVAPをその上限値QEVAPHに設定すると共に上限値貼り付きフラグFQEVAPHを「1」に設定して本処理を終了する。
【0048】
その後、目標パージ流量QEVAPの減少によりタンク内圧PTANKが増加し、PTANK>POBJHとなってステップS45(図3)の答が肯定(YES)となると、ステップS46へ進み、圧力上昇フラグFPOBJを「0」に戻すと共に、ステップS41でCFBカウンタのカウント値に応じて決定された下限値POBJLを減圧目標値POBJとする。この時点での下限値POBJLは前回値より上限値POBJHに近づいた値に設定される。
【0049】
そして、F/B減圧処理(図5)に移行し、ステップS71の答は肯定(YES)となるので、ステップS73へ進み、圧力上昇フラグFPOBJが「0」であるか否かを判別する。今回はその答が肯定(YES)となるので、ステップS75へ進み、目標パージ流量QEVAPを増加すべく次式(3)の値に設定する。
QEVAP=QEVAP+PQ (3)
【0050】
ここで、式(3)中のPQは、パージ流量P(比例)項である。
その後は、ステップS76以降の処理を実行して本処理を終了する。
次回図3のステップS42に進むと、FPOBJ=0であるため、ステップS43に進み、タンク内圧PTANKが下限値POBJLより低いか否かを判別する。最初はこの答は否定(NO)となり直ちにステップS47以降の処理を行う。この後、F/B減圧処理ではステップS71→ステップS72の処理が繰り返され、目標パージ流量QEVAPは徐々に増加し、タンク内圧PTANKは徐々に減少する。
【0051】
そしてPTANK<POBJLとなると、ステップS43(図3)の答が肯定(YES)となるので、圧力上昇フラグFOBJを「1」とすると共に減圧目標値POBJを上限値POBJHに設定して(ステップS44)、ステップS47以降の処理を行う。このときは図5のステップS71からステップS73を経由してステップS74へ進み、目標パージ流量QEVAPを減少すべく次式(4)の値に設定する。
QEVAP=QEVAP−PQ (4)
【0052】
以後同様の処理を繰り返し実行し、次回以降のループでtPFBST=0となってステップS61(図4)の答が肯定(YES)となったときには、圧力上昇フラグFPOBJの反転が所定時間T13に亘って行われてなく、その結果、目標パージ流量QEVAPが上限値QEVAPHまたは下限値QEVAPLに貼付ついてから所定時間T13経過したと判断して、ステップS62へ進み、アイドルフラグFIDLが「1」であるか否かを判別する。FIDL=0であってアイドル状態以外の運転状態にあるときは、当該減圧処理が終了したことを「1」で示す減圧終了フラグFPLVLを「1」に設定して(ステップS64)、減圧モード処理を終了する。
【0053】
一方FIDL=1であってエンジン1がアイドル状態にあるときは、目標パージ流量QEVAPが上限値QEVAPHと等しいか否かを判別し(ステップS63)、QEVAP=QEVAPHであるときは、直ちに本処理を終了して、減圧モード処理を継続する。また目標パージ流量QEVAPが上限値QEVAPHと等しくない、すなわち下限値QEVAPLに貼り付いているときは、ステップS64に進み、減圧モード処理を終了する。
【0054】
なお、所定上限時間以内にステップS62が実行されて減圧モード処理が終了しないときは、図示しない処理により、減圧モード処理は強制終了される。
【0055】
図7は、アイドル状態以外の運転状態において故障診断処理を実行した場合の減圧モードにおける、タンク内圧PTANK(同図(a))、目標パージ流量QEVAP(同図(b))及びtPFBSTタイマの値(同図(c))の推移を示す。なお、同図(a)の破線は、実際の燃料タンク9内の圧力(推定値)の推移を示す。
【0056】
時刻t0から減圧モード処理を開始すると、先ずオープン減圧が実行される。このとき、目標パージ流量QEVAPは、図3のステップS36でタンク内圧PTANKに応じて設定され、当初はタンク内圧PTANKは大気圧近傍にあるため、目標パージ流量QEVAPは、パージ可能な最大流量、例えば50L/min程度まで増加する。その後タンク内圧PTANKが低下して、PTANK<POBJL0となると(時刻t1)、フィードバック減圧に移行する。そしてtPFBSTタイマの値が「0」となると(時刻t2)、減圧モード処理を終了する。
【0057】
図8は、エンジンのアイドル状態において故障診断処理を実行した場合の減圧モードにおける、タンク内圧PTANK(同図(a))、目標パージ流量QEVAP(同図(b))及びtPFBSTタイマの値(同図(c))の推移を示す。図7と同様に、図8(a)の破線は、実際の燃料タンク9内の圧力の推移を示す。
【0058】
時刻t0から減圧モード処理を開始すると、直ちにフィードバック減圧モードとなるが、タンク内圧PTANKが高いため、目標パージ流量QEVAPは上限値QEVAPHに貼り付いた状態となる。ここで上限値QEVAPHは、例えば15L/min程度に設定されるので、図7に示す場合のようにパージ流量が大きくなることはなく、蒸発燃料の過剰供給が回避される。
【0059】
このように本実施形態の減圧モード処理では、オープン減圧処理の次に実施されるF/B減圧処理で、タンク内圧センサ11の出力値PTANKよってパージ流量を増減し、その際、減圧目標値POBJの下限値POBJLを上限値POBJHに近づけるように変更していくことにより、PTANK値の振幅を減少させ、最終的にPTANK値を減圧目標値POBJに収束させる。この間、パージ流量は、全体として漸減し、PTANK値が減圧目標値POBJに収束する時は下限値QEVAPLで一定となる。こうして、パージ流量を増減しながらパージ流量を漸減させていくので、減圧中の圧力損失がなくなり、よってPTANK値が減圧目標値POBJに収束するときにはタンク内圧センサ11の出力値PANKと実際の燃料タンク内圧力と差が略0となっている。これにより、減圧目標値POBJに収束した時のPTANK値が燃料タンク9の内圧と等しいと推定され、正確に減圧目標値に減圧される。
【0060】
さらに本実施形態では、エンジン1がアイドル状態にあるときは、オープン減圧を行うことなく直ちにフィードバック減圧を行い、目標パージ流量QEVAPが上限値QEVAPHに貼り付いたときは、減圧モード処理を終了しないようにした。これにより、オープン減圧を実行することによるパージ流量の急激な増加が防止され、蒸発燃料の過剰供給が回避される。その結果エンジンストールを引き起こすことなく、エンジンのアイドル状態においても蒸発燃料処理装置の故障診断を実行することが可能となる。
【0061】
本実施形態では、タンク内圧センサ11及びECU5により、故障診断装置が構成される。具体的には、図2〜図5の処理が故障診断装置に相当する。
なお本発明は上述した実施形態に限るものではなく、種々の変形が可能である。例えば、上述した実施形態では、エンジン1がアイドル状態にあるときは、オープン減圧を行うことなく直ちにフィードバック減圧を実行することにより、パージ流量を低い状態に維持して減圧を行うようにしたが、実際には目標パージ流量QEVAPは、パージ流量の上限値QEVAPHに固定されることになる。したがって、最大流量をこの上限値QEVAPHに設定してオープン減圧を実行するようにしてもよい。
【0062】
また上述した実施形態では、エンジン制御用のECU5が故障診断装置を構成するようにしたが、故障診断装置をエンジン1及びその制御装置(ECU5等)とは別個に設けられる外部装置として構成し、例えば車両の点検整備を行う際に、外部装置としての故障診断装置を制御装置に接続し、エンジン1をアイドル状態として外部装置からの実行指令により、故障診断を実行するようにしてもよい。その場合には、図3〜5の減圧モード処理は、アイドル状態に対応した部分のみを実行するようにすればよい。
【0063】
【発明の効果】
以上詳述したように請求項1に記載の発明によれば、機関のアイドル状態において蒸発燃料処理装置の漏れの有無の判定を行うときは、パージ制御弁を通過するガス流量を、アイドル状態以外の運転状態において判定を行うときの最大流量より小さい所定流量以下に制限して、蒸発燃料処理装置内の減圧処理が行われ、該減圧処理後の蒸発燃料装置内の圧力の変化に基づいて漏れの有無が判定されるので、機関吸気系への蒸発燃料供給量が急激に増加することがなく、アイドル状態においても機関停止といった問題を起こすことなく、蒸発燃料処理装置の故障診断を実行することができる。また蒸発燃料処理装置内の圧力変化の振幅が徐々に減少するようにガス流量を制御して減圧処理が行われるので、例えば蒸発燃料装置内の圧力を検出する圧力センサをチャージ通路に配置するような場合でも、燃料タンク内の圧力を正確に減圧目標値に減圧することができる。
【0064】
請求項2に記載の発明によれば、機関のアイドル時に外部装置としての故障診断装置を接続することにより、任意に故障診断を実行することができるので、車両の点検整備を行う際に容易に蒸発燃料処理装置の故障診断を行うことが可能となる。
【図面の簡単な説明】
【図1】本発明の一実施形態にかかる蒸発燃料処理装置及び故障診断装置を含む内燃機関の制御システムの構成を示す図である。
【図2】蒸発燃料処理装置の故障診断を行う処理のフローチャートである。
【図3】蒸発燃料処理装置内を減圧する処理のフローチャートである。
【図4】蒸発燃料処理装置内を減圧する処理のフローチャートである。
【図5】図3で実行されるF/B減圧処理のフローチャートである。
【図6】図2の故障診断処理の全体を説明するためのタイムチャートである。
【図7】アイドル状態以外の運転状態における減圧モード処理を説明するためのタイムチャートである。
【図8】アイドル状態における減圧モード処理を説明するためのタイムチャートである。
【符号の説明】
1 内燃機関
2 吸気管
5 電子コントロールユニット(故障診断装置)
9 燃料タンク
20 チャージ通路
25 キャニスタ
27 パージ通路
30 パージ制御弁
31 蒸発燃料処理装置

Claims (2)

  1. 燃料タンクと、該燃料タンク内で発生する蒸発燃料を貯蔵するキャニスタと、前記燃料タンクとキャニスタとを接続するチャージ通路と、前記キャニスタと内燃機関の吸気系とを接続するパージ通路と、該パージ通路の途中に設けられたパージ制御弁とを備える蒸発燃料処理装置の漏れの有無を判定する故障診断装置において、
    前記機関のアイドル状態において前記漏れの有無の判定を行うときは、前記パージ制御弁を通過するガス流量を、アイドル状態以外の運転状態において判定を行うときの最大流量より小さい所定流量以下に制限すると共に、前記蒸発燃料処理装置内の圧力変化の振幅が徐々に減少するように前記ガス流量を制御して、前記蒸発燃料処理装置内の減圧処理を行い、該減圧処理後の前記蒸発燃料装置内の圧力の変化に基づいて前記漏れの有無を判定することを特徴とする故障診断装置。
  2. 当該故障診断装置は、前記内燃機関及びその制御装置とは別個に設けられる外部装置であり、該外部装置が前記制御装置に接続され、前記外部装置からの実行指令に応じて前記漏れの有無の判定を実行することを特徴とする請求項1に記載の故障診断装置。
JP2000100363A 2000-04-03 2000-04-03 蒸発燃料処理装置の故障診断装置 Expired - Fee Related JP3819212B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000100363A JP3819212B2 (ja) 2000-04-03 2000-04-03 蒸発燃料処理装置の故障診断装置
US09/822,412 US6550318B2 (en) 2000-04-03 2001-04-02 Abnormality diagnosis apparatus for evaporative fuel processing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000100363A JP3819212B2 (ja) 2000-04-03 2000-04-03 蒸発燃料処理装置の故障診断装置

Publications (2)

Publication Number Publication Date
JP2001289127A JP2001289127A (ja) 2001-10-19
JP3819212B2 true JP3819212B2 (ja) 2006-09-06

Family

ID=18614584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000100363A Expired - Fee Related JP3819212B2 (ja) 2000-04-03 2000-04-03 蒸発燃料処理装置の故障診断装置

Country Status (2)

Country Link
US (1) US6550318B2 (ja)
JP (1) JP3819212B2 (ja)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6761058B2 (en) * 2000-06-08 2004-07-13 Honda Giken Kogyo Kabushiki Kaisha Leakage determination system for evaporative fuel processing system
JP2003090270A (ja) * 2001-09-17 2003-03-28 Denso Corp 加圧装置
JP4075370B2 (ja) * 2001-12-19 2008-04-16 三菱自動車工業株式会社 大気圧検出手段の故障判定装置
DE10163818B4 (de) * 2001-12-22 2020-08-20 Contitech Luftfedersysteme Gmbh Schlauchrollbalg-Feder
JP2007231814A (ja) * 2006-02-28 2007-09-13 Denso Corp 漏れ診断装置
DE102007016217A1 (de) * 2007-04-04 2008-10-09 Audi Ag Verfahren und Vorrichtung zum Prüfen einer Bewegbarkeit eines Unterdruckventils einer Kraftstoffanlage eines Kraftfahrzeugs
JP5560140B2 (ja) * 2010-08-25 2014-07-23 本田技研工業株式会社 蒸発燃料処理装置
CN103228898B (zh) * 2010-09-24 2017-07-28 凯莱汽车公司 用于车辆的蒸发性及再加燃料排放控制的系统
JP5556702B2 (ja) * 2011-03-04 2014-07-23 三菱自動車工業株式会社 内燃機関の燃料蒸発ガス排出抑止装置
JP5582367B2 (ja) * 2012-07-25 2014-09-03 株式会社デンソー 蒸発燃料処理装置
US9109548B2 (en) * 2013-05-09 2015-08-18 Ford Global Technologies, Llc Internal orifice characterization in leak check module
US10774761B2 (en) * 2018-11-13 2020-09-15 Ford Global Technologies, Llc Systems and methods for reducing vehicle valve degradation
DE102019215472B4 (de) * 2019-10-09 2023-05-11 Vitesco Technologies GmbH Verfahren sowie Vorrichtung zur Ermittlung des Durchflusses durch ein Taktventil
US11932080B2 (en) 2020-08-20 2024-03-19 Denso International America, Inc. Diagnostic and recirculation control systems and methods
US12017506B2 (en) 2020-08-20 2024-06-25 Denso International America, Inc. Passenger cabin air control systems and methods
US11828210B2 (en) 2020-08-20 2023-11-28 Denso International America, Inc. Diagnostic systems and methods of vehicles using olfaction
US11760169B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Particulate control systems and methods for olfaction sensors
US11813926B2 (en) 2020-08-20 2023-11-14 Denso International America, Inc. Binding agent and olfaction sensor
US11636870B2 (en) 2020-08-20 2023-04-25 Denso International America, Inc. Smoking cessation systems and methods
US11760170B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Olfaction sensor preservation systems and methods
US11881093B2 (en) 2020-08-20 2024-01-23 Denso International America, Inc. Systems and methods for identifying smoking in vehicles
CN113550836A (zh) * 2021-08-13 2021-10-26 安徽江淮汽车集团股份有限公司 碳罐电磁阀泄露诊断方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0968112A (ja) * 1995-09-01 1997-03-11 Denso Corp 燃料蒸発ガスパージシステム
JP2785238B2 (ja) 1995-11-02 1998-08-13 本田技研工業株式会社 蒸発燃料処理装置
DE19738470A1 (de) * 1997-09-03 1999-03-11 Sket Walzwerkstechnik Gmbh Vorrichtung zum Schopfen und Auslenken einer Walzader

Also Published As

Publication number Publication date
US20010025525A1 (en) 2001-10-04
US6550318B2 (en) 2003-04-22
JP2001289127A (ja) 2001-10-19

Similar Documents

Publication Publication Date Title
JP3819212B2 (ja) 蒸発燃料処理装置の故障診断装置
JP2819836B2 (ja) 内燃機関の自己診断装置
US5826566A (en) Evaporative fuel-processing system for internal combustion engines
JP3096377B2 (ja) 内燃エンジンの蒸発燃料処理装置
JP4022982B2 (ja) 蒸発燃料処理装置の診断装置
JP2759908B2 (ja) 内燃エンジンの蒸発燃料処理装置
JP2001193580A (ja) 蒸発燃料放出防止装置の異常診断装置
US6789523B2 (en) Failure diagnosis apparatus for evaporative fuel processing system
JP3325518B2 (ja) 圧力センサの故障検出装置
JP3167924B2 (ja) 蒸発燃料処理装置
JPH0579410A (ja) 内燃エンジンの蒸発燃料制御装置
JPH0874682A (ja) 蒸発燃料処理装置
JP3243413B2 (ja) 内燃エンジンの蒸発燃料処理装置
JP3570626B2 (ja) 蒸発燃料処理系のリーク判定装置
JP4122825B2 (ja) 2次空気供給システム
JP2785238B2 (ja) 蒸発燃料処理装置
JP3337271B2 (ja) 内燃エンジンの蒸発燃料処理装置
JP3783837B2 (ja) 蒸発燃料処理系のリーク判定装置
JP2631930B2 (ja) 内燃エンジンの蒸発燃料処理装置
JP3009988B2 (ja) 内燃エンジンの蒸発燃料処理装置
JP2630371B2 (ja) 内燃エンジンの空燃比フィードバック制御方法
JPH06323206A (ja) 内燃エンジンの蒸発燃料処理装置
JPH06229296A (ja) 内燃エンジンの空燃比制御装置
JPS60164652A (ja) 燃料蒸気のパ−ジ方法
JPH09291854A (ja) 蒸発燃料処理装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060614

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130623

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130623

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140623

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees