JP3816027B2 - 水膜付着防止性に優れたアンテナレドーム - Google Patents

水膜付着防止性に優れたアンテナレドーム Download PDF

Info

Publication number
JP3816027B2
JP3816027B2 JP2002178649A JP2002178649A JP3816027B2 JP 3816027 B2 JP3816027 B2 JP 3816027B2 JP 2002178649 A JP2002178649 A JP 2002178649A JP 2002178649 A JP2002178649 A JP 2002178649A JP 3816027 B2 JP3816027 B2 JP 3816027B2
Authority
JP
Japan
Prior art keywords
radome
radio wave
antenna
groove
protrusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002178649A
Other languages
English (en)
Other versions
JP2004023645A (ja
Inventor
知多佳 真鍋
有一郎 後藤
吉人 福本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2002178649A priority Critical patent/JP3816027B2/ja
Publication of JP2004023645A publication Critical patent/JP2004023645A/ja
Application granted granted Critical
Publication of JP3816027B2 publication Critical patent/JP3816027B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、降雨時の水膜付着防止性に優れたアンテナレドームに関するものである。
【0002】
【従来の技術】
通信・放送においては、使用する電波の周波数が高くなるにつれ、降雨により電波が減衰する現象が顕著になる。例えば、「衛星放送受信の手引き」( 金原 晃、渡邊 浩共著、コロナ社発行、36〜38頁) などでは、この降雨減衰の現象が衛星放送の受信においても生じることが指摘されている。この降雨減衰は、主として、アンテナの送信受信の間の空間に存在する雨滴の、電波の散乱、吸収によるものである。
【0003】
一方、マイクロ波〜ミリ波帯の通信において、屋外で使用されるアンテナは、外界の気象条件から保護するため、通常、レドームと呼ばれる、保護カバー内に収容される。このレドームは、電波を透過する材質を成形して形成され、アンテナの開口部形状に合わせ、球状、円筒状などの種々の形状からなる。
【0004】
レドーム外表面は、降雨時には、当然ながら雨がかかり、雨滴により濡れる。そして、このレドームを設けたタイプのアンテナにおいて、前記雨滴による濡れに起因するレドーム外表面の水膜の形成が、電波の減衰の主たる要因となることが「電子通信学会論文誌」(55-B 、No.6、321-322 頁) などでも指摘されている。即ち、レドームを設けたタイプのアンテナにおいては、上記降雨に伴う雨滴の散乱、吸収による以外に、前記雨滴による濡れに起因するレドーム外表面の水膜の形成が、電波の減衰の主たる要因となる。
【0005】
このようなレドーム外表面の水膜形成に対する対策として、従来から、特許第3117634 号や実用新案第2589735 号の公報などで、レドームの上部を取り囲むように降雨を集水する機構と、そこで集水された水を排水する機構とを設けて、レドームに落下する降雨を集め、レドーム表面を濡らさぬよう排水するようにすることが提案されている。
【0006】
例えば、上記特許第3117634 号公報では、レドームの上部を取り囲むように、レドーム外表面に凸条を固定し、この凸条とレドーム本体外表面とで排水溝 (凹条) を形成し、この排水溝を流下する水を受け止める雨樋と、雨樋を流下する水を受け止める排水路とを設けて、レドーム外表面の雨水をレドーム下部に排水して、水膜の形成を防止している。
【0007】
また、上記実用新案第2589735 号公報では、同じく、電波放射範囲よりも上部のレドーム上部を取り囲むように、ロープで支持されたホースを各々円形 (水平方向) および垂直方向にレドーム外表面に複数本設けて、ガイドなども用いながら両方のホースを接続し、このホースを雨樋として、雨水を集水および流下させて水膜の形成を防止している。
【0008】
【発明が解決しようとする課題】
これらの従来技術は、共通して、レドームの電波放射範囲への雨水の侵入を未然に防止すべく、レドーム天辺部における水受けを意図している。しかし、降雨は風を伴う場合もあり、必ずしも鉛直方向に降るわけではない。このため、上記従来のレドーム天辺部における水受けだけでは、レドームの電波放射範囲、特に、レドームの電波通過部分の表面が、直接雨で濡れ、水膜が形成されるのを防止乃至抑制できない。
【0009】
本発明者らの観察によれば、レドームに付着した雨滴が粒状を保っている場合は、雨粒の間隔も広く、レドームの電波通過部分の断面に占める割合が小さく、大きな減衰はない。しかも、レドームに付着した雨滴が流れ落ちる際に、水膜を形成して電波の減衰を大きくするのみならず、流れ落ちる雨滴が他の付着した雨滴を伴って流れるため、より電波の減衰を大きくする(但しこの領域の大きさは幅5 〜10mm程度の縦長の領域である)。
【0010】
このため、上記従来技術だけでは、これら実際の雨滴挙動に対し、十分な対策になり得ない。特に1対多の無線通信における基地局(1の側にあたる)用セクタアンテナ(水平面内広角に均等に電波を放射する)、オムニアンテナ(水平面内全方位に均等に電波を放射する)では、通信品質に影響を及ぼすレドームの電波の通過する部分(領域とも言う)が通信相手の方向毎に異なり、かつ狭いために、これら雨滴挙動の影響を特に受けやすい。
【0011】
この現象を以下に図により説明する。図10はセクタアンテナを例示する斜視図、図11はこのセクタアンテナの水平面内の放射特性を説明する説明図、図12はこのセクタアンテナの水平面内断面を示す要部断面図である。図12のように、要部のみ簡略化すると、セクタアンテナ1 は放射素子31とレドーム32からなる。このようなセクタアンテナにおいて、電波強度が正面放射に対して半分になる(3dB 低下する)角度の範囲(半値角)は、図11の通り、90度であり、図12に示すαの角度範囲である。これに対して、レドーム32は、図12に示すように、通常、電波の全放射範囲をカバーする大きさが必要である。このため、オムニアンテナの場合にはレドームがアンテナ放射素子の全周にある。
【0012】
今、前記図12において、A の方向との通信の場合を考えると、レドーム32とアンテナ (放射素子31) との距離が通信距離に比べて著しく小さいために、レドーム32を電波が通過する部分の大きさは十分小さくなる。このため、図12に示すレドーム32のハッチングした部分で示すように、レドーム32を電波が通過する部分5 の大きさはアンテナ開口にほぼ等しいと考えられる。
【0013】
この種セクタアンテナとしての、ホーンアンテナ、パラボラアンテナなどの開口アンテナの電波放射角とレドームのアンテナ開口の大きさには一定の関係がある。レドームのアンテナ開口での電波強度分布が一様で角形開口の場合、開口の幅をa、電波の波長をλとすると、θ1/2(rad)≒0.88λ/aである。したがって、半値角が90度ならば、開口幅は0.56λ程度となる。このような通信に使われる準ミリ波帯の26GHz を例にあげると、開口幅は約6.5mm となる。このように、セクタアンテナなどにおけるレドームの電波通過部分の大きさは非常に小さなものとなる。
【0014】
このように、レドームの電波が通過する部分5 の大きさが小さいと (レドームの電波が通過する領域が狭いと) 、降雨時に、前記雨滴の流れ落ちによる水膜が、たまたま、このレドームのレドームの電波通過部分5 に重なった場合、大きな電波の減衰を生じるのが特徴である。
【0015】
実際に、26GHz 帯の電波において、降雨を模擬して上方よりレドームに水滴を散布して測定した例を図13に示す。図13において、横軸は時間、縦軸は電波の信号強度を示す。この図13から分かる通り、時間経過の前半と後半はレドームに降りかかる水量が異なっており、後半がより多く、より強い雨に対応している。信号強度は大きなうねる変動と鋭いパルス状の変動が組合わさった状態である。大きな変動は全体に平均的に流れている水に起因するもので、鋭いパルス状の変動は水滴が水膜を形成しながら流れることに起因する。
【0016】
これに対し、前記特許第3117634 号や実用新案第2589735 号の公報など、従来技術で対象としていたアンテナは、レーダあるいは通信基幹回線などの、アンテナ指向性が鋭いアンテナである。図14に、このようなアンテナの場合の、水平面内断面を示すように、アンテナ41に対し、レドーム42におけるレドームの電波が通過する部分43は十分大きい。このように、レドームの電波通過部分が十分大きいアンテナの場合、レドームの電波通過部分43の範囲内での降雨による水膜は局所的かつランダムに起こるので、平均化され、電波の減衰に対する影響はあまりない。
【0017】
例えば、レーダ、通信基幹回線のアンテナは円形開口が多く、開口での電波強度分布が一様な場合θ1/2 ≒1.02λ/D(D:アンテナ開口径)となり、θ1/2 =2度程度のアンテナはD≒29λとなる。また使用される周波数帯が5 〜6GHzであるので、アンテナ開口径は1.5m程度と大きくなる。
【0018】
以上の通り、セクタアンテナやオムニアンテナなど、レドームの電波通過部分が小さく、実際の雨滴挙動により電波の減衰影響を受けやすいアンテナレドームに対し、降雨による濡れに起因する電波の減衰を防止する有効な手段は、これまでに無かったのが実情である。
【0019】
したがって、本発明は、特に、セクタアンテナやオムニアンテナなど、レドームの電波通過部分が小さく、実際の雨滴挙動により電波の減衰影響を受けやすいアンテナに対し、水膜付着防止性に優れたアンテナレドームを提供することを目的とする。
【0020】
【課題を解決するための手段】
この目的のために、本発明アンテナレドームでは、レドームの電波通過部分への水膜形成を防止すべく、アンテナを収容するレドームの少なくとも外表面に、レドーム下方に向けて傾斜させた筋状の突起および/ または筋状の溝が垂直方向に間隔を開けて複数本設けられ、かつ、これら突起および/ または溝が、レドームの電波通過部分を横断するように設けられたことを要旨とする。
【0021】
前記した通り、従来技術では、レドームの電波放射範囲への雨水の侵入を未然に防止すべく、レドーム天辺部において水受けすることを主旨としていた。しかし、この方式では、風を伴う降雨など、レドームの電波通過部分へ、直接雨水が侵入あるいは降りかかる場合に、全く対応できない。
【0022】
これに対し、本発明アンテナレドームでは、後述する通り、実際の雨滴挙動に対応して、レドームの電波通過部分への雨水や水滴の侵入は許容するものの、これらの雨水や水滴を、連続的にかつ強制的に、レドームの電波通過部分から排出することを主旨とする。しかも、この排出によって、逆に、レドームの電波通過部分への雨水や水滴の侵入量自体も低減できるという予想外の効果も生まれる。
【0023】
そして、これらの効果を生むのが、アンテナを収容するレドームの少なくとも外表面に、レドーム下方に向けて傾斜させて設けられ、かつ、レドームの電波通過部分を横断するように設けられた、筋状の突起および/ または筋状の溝である。
【0024】
【発明の実施の形態】
以下、本発明の実施の形態について、図面を用いて説明する。
【0025】
図1 は本発明の1実施態様を示し、セクタアンテナの場合のレドーム外表面形状を示す。図1(a)はレドーム2aの斜視図、図1(b)はレドーム2aの左側面図、図1(c)はレドーム2aの右側面図である。図1 において、レドーム2aの電波通過部分5aへの水膜形成を防止すべく、レドーム2aの外表面には、垂直方向に (レドーム2a下方に向けて) 傾斜させた筋状の排水用突起3aが、垂直(鉛直)方向に間隔を開けて、かつ1 方向に平行に複数本設けられている。そして、重要なことには、これら突起3aは、レドームの電波通過部分5aを横断するように設けられている。
【0026】
この筋状の排水用突起3aの断面を、レドーム2aの部分断面図である図2(a)に示す。また、この突起3aに代わり、突起3aと同じ大きさの排水溝4aを、突起3aと同じ条件で、レドーム2aの外表面 (外側) に設けた別の態様を、図2(b)にレドーム2aの部分断面図で示す。
【0027】
ここにおいて、図3(a)、(b) に、降雨時における図1 のレドーム外表面を模式的に示す。図3(a)は図1 は本発明の1実施態様、図2(b)は従来技術を示す。先ず、図3(b)に示すように、通常、電波の減衰の原因となる雨滴 (水滴)6は、レドーム2a表面を流れ落ちながら、他の (回りや下部の) 水滴Xを取り込み (引き込み現象) 、水量を増しながらレドーム外表面2aに沿って下方へ流れる水流7 となる。この水流7 は、図中の破線で示すレドームの電波通過部分5a上を流れ落ちながら広がり、レドームの電波通過部分5a上に大きな水膜を形成する。
【0028】
しかも、前記した水流7 の回りの水滴6 の引き込み現象は、降雨中に、連続的に生じ、レドームの電波通過部分5a上を下方へ流れる水流長さあるいは時間が長くなるため、レドームの電波通過部分5a上で発生する水膜領域は大きくなり、かつ降雨期間中に恒常的に存在することとなる。このため、レドームの電波通過部分5a上での電波の減衰が大きくなり、このような電波の減衰が降雨期間中に恒常的に発生する。したがって、前記図13で示したように、無線通信の品質を著しく低下させる。この点は、前記したレドーム天辺部において水受けする従来技術でも同様である。
【0029】
これに対し、図3(a)の本発明実施態様では、レドーム2aの外表面に沿って下方へ流れる前記水流7 は、レドーム2a下方に向けて傾斜させ、かつ、レドームの電波通過部分5aを横断するように設けられた複数本の排水用突起3aに、突起ごとに当たって、この突起3aごとにせき止められ、かつ、突起3aに沿って誘導され、レドーム下方へ排出され、流下する。
【0030】
実際の雨滴挙動では、水滴乃至雨滴6 が、電波通過部分5a内に逐次あるいは連続的に侵入して、これらが集合した垂直方向の水流7 がレドームの電波通過部分5a上を下方へ流れ落ちようとする。しかし、本発明排水用突起3aによって、突起3aごとに、言い換えると、レドームの電波通過部分の垂直方向の各突起設置部分ごとに、水滴6 や水流7 は、連続的かつ強制的に、レドームの電波通過部分5a上から外れる方向に誘導され、レドーム性能に影響ない下方へと排水される。
【0031】
このため、レドームの電波通過部分5a上を下方へ流れる水流長さあるいは時間が大きく限定される。また、これによって、水流7 の回りの水滴Xの前記引き込み現象も制約され、レドームの電波通過部分5a上を下方へ流れる水流長さ自体も短くなる (水流量も少なくなる) 。この結果、レドームの電波通過部分5a上で発生する水膜領域が小さくなり、レドームの電波通過部分5a上に、水膜が形成するのを抑制する効果を有する。そして、この効果によって、レドームの電波通過部分5a上での電波の減衰が少なくなり、無線通信の品質を高める。
【0032】
図1 の本発明実施態様および図3 で説明した効果を図4 により以下に裏付ける。図4 は、セクタアンテナにおける26GHz 帯の電波において、前記図14と同じ条件で、実際に降雨を模擬して上方よりレドームに水滴を散布して測定した例を示す。図4 において、前記図14と比較して、パルス状の鋭い変化が大幅に減少していることが分かる。実際にも、強度変動の標準偏差を計算すると、前記図14と比較して、半減したことが確認された。
【0033】
なお、これらの作用効果は、前記図2(b)に示した排水溝4aであっても、あるいは、後述する図5 や6 の本発明の別の態様であっても、基本的に同じく発揮される。
【0034】
図5 、図6 に本発明の別の実施態様を示す。図5 、図6 はセクタアンテナの場合のレドーム外表面形状を示し、図5(a)はレドーム2bの斜視図、図5(b)はレドーム2bの左側面図、図5(c)はレドーム2bの右側面図である。図6 はオムニアンテナのレドームの場合を示す斜視図である。
【0035】
図5 において、筋状の排水用突起3bは、垂直方向に (レドーム2b下方に向けて) 傾斜させ、垂直方向に間隔を開けて、かつ、レドームの電波通過部分5bを横断するように、平行に複数本設けられている点は、前記図1 の排水用突起3aと同じである。ただ、図5 の筋状の排水用突起3bは、前記図1 の排水用突起3aのように1 方向に向かうのではなく、レドーム2bの真ん中から左右に振り分けられた2 方向の下方に向かい設けられている。因みに、2 方向の上方に向かい排水用突起3b設けた場合、レドーム外表面の真ん中に水を集めてくることになるので好ましくない。
【0036】
ここで、セクタアンテナの場合のレドーム外表面形状は、水平面内の1 方向に、広角に均等に電波を放射するセクタアンテナの特性に合わせ、レドームの電波通過部分を含む前記1 方向に対してのみ、円形乃至円弧状となっている。したがって、本発明における排水用突起乃至排水溝は、上記した条件を満足した上で、この円形乃至円弧状部に、部分的に設ければ良い。
【0037】
図6 のオムニアンテナの場合において、筋状の排水用突起3cは、図1 の排水用突起3aと同じく、レドーム2c下方に向けて傾斜させ、垂直方向に間隔を開けて、かつ、レドームの電波通過部分5cを横断するように、平行に複数本設けられている。ただ、オムニアンテナの場合は、水平面内全方位に均等に電波を放射するオムニアンテナの特性に合わせて、レドーム2cが円形であり、レドームの電波通過部分5cはレドーム全周に渡っている。したがって、このような場合には、本発明における排水用突起乃至排水溝は、この図6 の排水用突起3cのようにレドーム2cの外側全周に設ける。
【0038】
次に、本発明における排水用突起乃至排水溝の設け方について、以下に詳細に説明する。
本発明における突起乃至溝は前記した通り、レドーム表面に沿ってレドームの電波通過部分を下方へ流れる水流、言い換えると、レドームの電波通過部分へ逐次侵入する水流を、レドームの電波通過部分の部分ごとにせき止めるとともに、レドーム下方へ連続的かつ強制的に排出 (誘導) する作用効果を有する。このため、この作用効果を発揮するためには、突起乃至溝を、レドーム下方に向けて傾斜させること、垂直方向に間隔を開けて複数本設けること、レドームの電波通過部分を横断するように設けることが必要である。
【0039】
ただ、この条件を満足した上で、種々の条件を変更することは許容される。例えば、突起乃至溝のレドーム下方に向けての傾斜角度は、互いに平行である必要や、各々の突起乃至溝において一様な角度である必要はない。突起乃至溝を垂直方向に間隔を開けて複数本設ける場合も、突起乃至溝が各々分割乃至独立していても良く、レドーム外周を連続的に巻き回した1 本の突起乃至溝とし、垂直方向の断面乃至側面で見た場合に、間隔を開けて複数本設けているようにしても良い。更に、設ける複数本の突起乃至溝が全てレドームの電波通過部分を横断する必要はない。例えばレドームの上部や下部などの端部に設ける突起乃至溝は、レドームの電波通過部分を横断する必要はない。
【0040】
この他、突起乃至溝は、雨量やレドーム表面に沿って下方へ流れる水流に応じ、かつレドームの電波通過部分やレドーム外表面の大きさや形状にも対応した、好ましい大きさ (幅、突起高さあるいは溝深さ) や長さ、本数を選択する。
【0041】
また、排水用突起や排水溝は同じ大きさや形状を、1 種類のみ設けるのではなく、レドームの電波通過部分やレドーム外表面の大きさや形状に対応させるか、レドーム外表面部位による水流の違いに応じて、レドーム表面周囲方向やレドーム表面の垂直方向に渡って、大きさや形状を順次変えても良い。また、排水用突起と排水溝とを、垂直方向に交互に順次配置するなど、適宜組み合わせて用いても良い。
【0042】
なお、レドームにおける排水用突起乃至排水溝を設ける位置も、特にレドームの電波通過部分を下方へ流れる水流を止められるとともに、レドームの電波通過部分の水の流下を防止でき、更にレドームの電波通過部分外へ排水できる位置を選択する。但し、これら排水用突起乃至排水溝の配置位置は、レドームの電波通過部分の大きさ乃至面積をカバーする必要がある。前記したような従来のレドーム天辺部の水受けだけでは、レドームの電波通過部分への水膜が形成されるのを抑制できない。
【0043】
ただ、本発明における排水用突起乃至排水溝は、特殊な形状は必要なく、前記図2 に断面で示したような、通常の断面矩形状、あるいは断面略円形状などが、レドーム表面の加工しやすさなどの点から適宜選択できる。これらの突起あるいは溝は、後述するレドーム内表面に設ける場合も含めて、地上でレドームを成形する際に、同時に、レドームを成形あるいはレドーム表面を加工して、形成することが作業上や精度上などからして好ましい。また、突起の場合には、長尺の突起物を、レドームに別付け (別個に接着や接合) する事も可能である。この場合、レドームに汎用されるABS 樹脂などとは異なる材質を選定することも可能になり、後述する電波波面の制約条件を制御しやすくなる。また、電波波面の制約条件を少なくする材質を選定することも可能になり、後述する電波波面の制約条件を制御しやすくなる。但し、金属類は材質的に電波を反射し透過させないので、本発明における排水用突起乃至排水溝には使用できない。
【0044】
一方、本発明における排水用突起乃至排水溝を設けると、レドームの厚さは、図2 に断面で示したように、その分だけ変化する。そして、排水用突起乃至排水溝の前記設け方にもよるが、このレドームの厚さの変化が大きいと、レドームを通過する電波の波面に影響を与えるので、この点も考慮することが好ましい。
【0045】
今、レドームの材質の誘電率をεとすると、内部での波長に関連する屈折率は√εである。屈折率√εの媒質中では、その媒質中の電波の波長λg は、λg = λ/ √ε(λは真空中の波長≒空気中の波長)となる。厚さd のレドーム材を電波が通過すると、それはd / λg 波長に相当し、空気中の長さに換算すると(d /λg ) ×λ=√ε×d となる(空気中の波長=真空中の波長とした)。一方、その間が空気中の場合はd となり、両者の差が行路差であり、電波の波面の乱れである。この行路差は√ε×d −d= (√ε−1)×d となる。
【0046】
通常、電波の波面の乱れは、使用波長の1/4 以下であれば、アンテナの特性に影響しないとされている。この条件を与えると、空気中では (√ε−1)×d <λ/4であるから、d <λ/[4(√ε−1)] であれば、突起あるいは溝の大きさの影響は無視してよい。この点、レドームに汎用されるABS 樹脂のεは約2.7 であるから、d <0.4 λである。このため、26GHz の電波ではd<4.6mm となる。
したがって、これより使用波長が短い電波、あるいはレドーム誘電率εが大きい場合は、条件が厳しくなり、レドームの厚さの変化が大きいと、レドームを通過する電波の波面に影響を与える。その場合は以下に説明する対策を行うことが好ましい。
【0047】
図7 、8 、9 はこの対策例を各々示す、レドーム部分の部分断面図である。先ず、図7 は、図7 (a) のレドーム外表面 (外側) に設けた突起3aの各高さa 、あるいは図7 (b) の溝3bの各深さb を、それらによって生じる前記行路差が波長の整数倍(m倍) になるように、[m / (√ε−1)] λとしたものである。即ち、前記請求項2 のように、突起および/ または溝を設けたアンテナレドーム部分と、前記突起および/ または溝を設けていないアンテナレドーム部分との、電波通過方向に測った電波行路差を、使用する電波の波長の整数倍としたものである。
【0048】
この結果、突起あるいは溝の部分を通る電波は、それがない部分を通る電波と2πの整数倍だけ位相が異なり、同位相と見なせる。この場合、行路差は前記した通り、 (√ε−1)d であったから、m を整数として、 (√ε−1)d=m λ、即ちd= mλ/(√ε−1)である。
【0049】
これらの突起あるいは溝を、前記請求項3 のように、レドームの両側に設け、その合計の効果が上記を満たすことも可能である。図8 (a) 、(b) 、(c) は各々この態様をレドームの断面図で示す。図8 (a) は突起3dと突起3eとを各々レドームの両側に設けた場合、図8 (b) は溝4bと溝4cとを各々レドームの両側に設けた場合、図8 (c) は溝4dをレドームの内表面に、突起3fをレドームの外表面に、各々設けた場合を示す。
【0050】
そして、図8 (a) では突起3dと突起3eの各高さa 、b との合計a +b が、m λ/(√ε−1)として、前記行路差が波長の整数倍(m倍) になるようにしている。
図8 (b) も、溝4bと溝4cの各深さa 、b との合計a +b が、m λ/(√ε−1)として、前記行路差が波長の整数倍(m倍) になるようにしている。一方、図8 (c) の場合は、レドームの外表面突起3fの各高さb とレドームの内表面溝4dの各深さa との差、b −a がm λ/(√ε−1)として、前記行路差が波長の整数倍(m倍) になるようにしている。
【0051】
次に、特別な場合として、図9 に、レドーム外表面(外側)の突起、あるいは溝の大きさだけ、これに対応する位置のレドーム内表面 (内側、裏面) を、溝あるいは突起にした態様を断面図で示す。この図9 において、図9 (a) はレドーム外表面を突起3gとし、対応するレドーム内側裏面に、前記突起3gの大きさ分だけ、溝4eを各々設けている。図9 (b) はレドーム外表面を溝4fとし、対応するレドーム内側裏面に、前記溝4fの大きさ分だけ、突起3hを各々設けている。これらの態様では、レドーム外表面に突起あるいは溝を設けても、レドーム厚みをどの場所でも同じとして、突起あるいは溝がないのと同じ効果を持たせている。即ち、前記請求項4 のように、前記突起および/ または溝による、レドームの厚み変化を打ち消すように、レドーム内側に、レドーム外側のものとは逆形状の溝、あるいは突起を設けた態様を示している。
【0052】
なお、前記したように、突起の場合に、電波波面の制約条件を制御しやすくする材質を選定し、上記した図8 、9 などの手段と適宜組み合わせて、あるいは、それのみで、電波の波面の乱れを制御しても良い。更に、レドーム表面に溝を設ける場合でも、溝内に電波の波面の乱れを制御する材質のものを配置することも可能である。
【0053】
【発明の効果】
以上述べたように、本発明によれば、セクタアンテナやオムニアンテナなど、レドームの電波通過部分が小さく、実際の雨滴挙動により電波の減衰影響を受けやすいアンテナレドームに対し、水膜付着防止性に優れたアンテナレドームを提供できる。この結果、降雨による濡れに起因する電波の減衰を防止したアンテナレドームを提供できる。
【図面の簡単な説明】
【図1】本発明の1実施態様を示し、図1(a)はレドームの斜視図、図1(b)はレドームの左側面図、図1(c)はレドームの右側面図である。
【図2】本発明の1実施態様を示し、図2(a)は図1 の断面図、図2(b)は別の実施態様を示す断面図である。
【図3】本発明の効果を模式的に示し、図3(a)は降雨時における図1 のレドーム外表面を、図3(b)は降雨時における従来のレドーム外表面を模式的に示す説明図である。
【図4】降雨を模擬した際の図1 の本発明実施態様の効果を示す説明図である。
【図5】本発明の別の実施態様を示し、図5(a)はレドームの斜視図、図5(b)はレドームの左側面図、図5(c)はレドームの右側面図である。
【図6】本発明の別の実施態様を示し、オムニアンテナのレドームを示す斜視図である。
【図7】各々本発明の別の実施態様を示し、図7(a)、図7(b)は各々レドームの部分断面図である。
【図8】各々本発明の別の実施態様を示し、図8(a)、図8(b)、図8(c)は各々レドームの部分断面図である。
【図9】各々本発明の別の実施態様を示し、図9(a)、図9(b)は各々レドームの部分断面図である。
【図10】従来のセクタアンテナを例示する斜視図である。
【図11】図10のセクタアンテナの水平面内の放射特性を示す説明図である。
【図12】図10のセクタアンテナの水平面内断面を示す要部断面図である。
【図13】降雨を模擬した際の、図10のセクタアンテナの電波を測定した例を示す説明図である。
【図14】従来のアンテナの水平面内断面を示す要部断面図である。
【符号の説明】
1 …アンテナ、2 …レドーム、3 …突起、 4…溝、
5 …レドームの電波通過部分、 6 …水滴、 7…水流、

Claims (4)

  1. アンテナを収容するレドームの少なくとも外表面に、レドーム下方に向けて傾斜させた筋状の突起および/ または筋状の溝が垂直方向に間隔を開けて複数本設けられ、かつ、これら突起および/ または溝が、レドームの電波通過部分を横断するように設けられたことを特徴とする水膜付着防止性に優れたアンテナレドーム。
  2. 前記レドームの電波通過部分における、前記突起および/ または溝を設けた部分と前記突起および/ または溝を設けていない部分との、電波通過方向に測った電波行路差が使用する電波の波長の整数倍である請求項1に記載の水膜付着防止性に優れたアンテナレドーム。
  3. 前記レドームの電波通過部分において、前記突起および/ または溝が、レドームの外表面と内表面との両面に設けられている請求項1または2に記載の水膜付着防止性に優れたアンテナレドーム。
  4. 前記レドームの電波通過部分において、前記突起および/ または溝による、レドームの厚み変化を打ち消すように、レドーム内表面に、レドーム外表面とは逆形状の溝、あるいは突起を設けた請求項3に記載の水膜付着防止性に優れたアンテナレドーム。
JP2002178649A 2002-06-19 2002-06-19 水膜付着防止性に優れたアンテナレドーム Expired - Fee Related JP3816027B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002178649A JP3816027B2 (ja) 2002-06-19 2002-06-19 水膜付着防止性に優れたアンテナレドーム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002178649A JP3816027B2 (ja) 2002-06-19 2002-06-19 水膜付着防止性に優れたアンテナレドーム

Publications (2)

Publication Number Publication Date
JP2004023645A JP2004023645A (ja) 2004-01-22
JP3816027B2 true JP3816027B2 (ja) 2006-08-30

Family

ID=31176308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002178649A Expired - Fee Related JP3816027B2 (ja) 2002-06-19 2002-06-19 水膜付着防止性に優れたアンテナレドーム

Country Status (1)

Country Link
JP (1) JP3816027B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3659951B2 (ja) * 2002-10-21 2005-06-15 三菱電機株式会社 車載レーダ装置
JP4610448B2 (ja) * 2005-08-31 2011-01-12 Dxアンテナ株式会社 アンテナケースの水抜き構造
CN101595394B (zh) 2007-01-23 2012-07-25 三菱电机株式会社 标志
JP4872886B2 (ja) * 2007-11-15 2012-02-08 豊田合成株式会社 電波レーダ装置のビーム経路に配置される樹脂成形品
WO2021015015A1 (ja) * 2019-07-23 2021-01-28 コニカミノルタ株式会社 飲食料供給装置

Also Published As

Publication number Publication date
JP2004023645A (ja) 2004-01-22

Similar Documents

Publication Publication Date Title
DE60103484T2 (de) Ein Verfahren zur Herstellung einer Antenne mit reduziertem Effekt von Mehrwegereflektionen
US10224640B2 (en) Radome for an antenna with a concave-reflector
JP4549265B2 (ja) 電波吸収体
US20100039339A1 (en) Radio wave lens antenna device
EP3734753B1 (en) Concealment systems and wireless communication equipment installations and methods including same
EP2810339A1 (en) Subreflector of a dual-reflector antenna
JP3816027B2 (ja) 水膜付着防止性に優れたアンテナレドーム
CN102098066A (zh) 毫米波接收装置、毫米波接收装置的安装结构以及毫米波收发装置
KR20180121372A (ko) 차량용 안테나 장치
US5317328A (en) Horn reflector antenna with absorber lined conical feed
US4282530A (en) Cylindrical paraboloid weather cover for a horn reflector antenna with wave absorbing means
WO2011099183A1 (ja) 電波吸収体、及びパラボラアンテナ
JP2012511856A (ja) 広帯域パラボラアンテナのレーダド−ム
EP0678930B1 (en) Broadband omnidirectional microwave antenna
US6008753A (en) Low radar cross-section (RCS) measurement chamber and associated measurement system
EP1425821B1 (en) Low radar cross section radome
CN110676562B (zh) 一种扼流型gnss卫星天线
JP4031444B2 (ja) アンテナレドーム
US4866457A (en) Covered inverted offset cassegrainian system
KR101877228B1 (ko) 복합재 결합 안테나
US6933908B1 (en) Protective cover for satellite dishes
JP4937876B2 (ja) アンテナ装置およびそれを備えた通信機器
KR102405344B1 (ko) 밀리미터파 수신을 위한 옥외 설치형 안테나 장치
JP7258217B2 (ja) ミリ波レーダ装置
KR102215659B1 (ko) 안테나 어셈블리 및 주파수 적응성 그라운드 레이어

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060606

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees