JP3805265B2 - 電子線装置及び画像形成装置 - Google Patents

電子線装置及び画像形成装置 Download PDF

Info

Publication number
JP3805265B2
JP3805265B2 JP2002048290A JP2002048290A JP3805265B2 JP 3805265 B2 JP3805265 B2 JP 3805265B2 JP 2002048290 A JP2002048290 A JP 2002048290A JP 2002048290 A JP2002048290 A JP 2002048290A JP 3805265 B2 JP3805265 B2 JP 3805265B2
Authority
JP
Japan
Prior art keywords
oxide
image forming
film
electron
spacer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002048290A
Other languages
English (en)
Other versions
JP2002321306A (ja
Inventor
容子 小坂
宣明 大栗
好真 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2002048290A priority Critical patent/JP3805265B2/ja
Publication of JP2002321306A publication Critical patent/JP2002321306A/ja
Application granted granted Critical
Publication of JP3805265B2 publication Critical patent/JP3805265B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)
  • Vessels, Lead-In Wires, Accessory Apparatuses For Cathode-Ray Tubes (AREA)
  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)

Description

【0001】
【発明の属する技術分野】
本願に係る発明は、帯電を緩和できる膜、特には、電子が当たった時に生じうる帯電の影響を緩和できる膜を用いた電子線装置及び画像形成装置に関する
【0002】
【従来の技術】
奥行きの薄い平面型ディスプレイは省スペースかつ軽量であることから、ブラウン管型ディスプレイに置き変わるものとして注目される。現在平面型ディスプレイには液晶型、プラズマ発光型、マルチ電子源を用いたものがある。プラズマ発光型及びマルチ電子源ディスプレイは視野角が大きく、画質がブラウン管並みであるために高品位な画像の表示が可能である。
【0003】
図14は多数の微小な電子源を使用したディスプレイの断面膜式図であり、51がガラスからなるリアプレート52上に形成された電子源、54は蛍光体等が形成されたガラスからなるフェースプレートである。電子源は高密度化が可能な円錐状あるいは針状の先端から電子を電界放出させる電界放出型電子放出素子あるいは表面伝導型電子放出素子などの冷陰極型電子放出素子が開発されている。この図14は電子源を駆動するための配線は省略してある。ディスプレイの表示面積が大きくなるにしたがい、内部の真空と外部の大気圧差による基板の変形を抑えるためリアプレート及びフェースプレートを厚くする必要がある。これはディスプレイの重量を増加させるのみならず、斜めから見た時に画像のひずみをもたらす。そこで、比較的薄いガラス板を使用して大気圧を支えるためリアプレートとフェースプレートとの間はスペーサあるいはリブと呼ばれる構造支持体が用いられる。電子源が形成されたリアプレートと蛍光体が形成されたフェースプレートとの間は通常サブミリないし数ミリに保たれ、前述したように内部は高真空に保持されている。
【0004】
電子源からの放出電子を加速するために電子源と蛍光体との間には数百V以上の高電圧が不図示のアノード電極(メタルバック)に印加されている。すなわち、蛍光体と電子源との間には電界強度にして1kV/mmを越える強電界が印加されるため、スペーサ部での放電が懸念される。また、スペーサは近傍電子源から放出された電子の一部が当たることにより、あるいは放出電子によりイオン化した正イオンがスペーサに付着することにより帯電を引き起こす。スペーサの帯電により電子源から放出された電子はその軌道を曲げられ、蛍光体上の正規な位置とは異なる場所に到達し、表示画像を前面ガラスを介して見た時、スペーサ近傍の画像がゆがんで表示される。
【0005】
この問題点を解決するために、スペーサに微小電流が流れるようにして帯電を除去する提案がなされている(特開昭57−118355号公報、特開昭61−124031号公報)。そこでは絶縁性のスペーサの表面に高抵抗薄膜を形成することにより、スペーサ表面に微小電流が流れるようにしている。ここで用いられている帯電緩和膜は酸化スズ、あるいは酸化スズと酸化インジウム混晶薄膜や金属膜である。
【0006】
上記従来例に使用された酸化スズ等の薄膜はガスセンサに応用されるほど酸素等のガスに敏感なため雰囲気でその抵抗値が変化しやすい。また、これらの材料や金属膜は比抵抗が小さいために高抵抗化するには島状に成膜したり、極めて薄膜化する必要がある。
【0007】
【発明が解決しようとする課題】
本願に係る発明は、帯電を好適に抑制すること、帯電を好適に低減すること、の少なくともいずれかを実現でき、帯電による影響を緩和できる帯電緩和膜を用いた電子線装置、特には画像形成装置を実現することを目的とする。また本願は、再現性の高い膜を実現すること、安定な膜を実現すること、特には熱工程での抵抗値の変化しにくい膜を実現すること、の少なくともいずれかを目的とする発明も含む。
【0008】
【課題を解決するための手段】
本願に係る電子線装置の発明の一つは以下のように構成される。
【0009】
外囲器内に、電子源と、該電子源に対向する対向部材と、該電子源と対向部材との間に設けられる第1の部材とを有する電子線装置であって、
前記第1の部材は基材と該基材上に設けられた帯電緩和膜とを有し、
前記帯電緩和膜は、酸化鉄、酸化コバルト、酸化銅、酸化ルテニウム、の少なくとも一種又は混合物を含む第1層と、ゲルマニウムの酸化物を少なくとも含む第2層とを有する電子線装置。
【0010】
この構成においては、前記第1の部材が帯電することによる影響を抑制できるので、好適である。
【0011】
ここで、前記基材は絶縁性を有するものであるとよい。
【0012】
また前記第1の部材は、前記電子源と対向部材の間の間隔を維持するスペーサとして好適に用いることができる。
【0013】
また、前記第1の部材の前記電子源側の端部と前記対向部材側の端部との間に印加される電圧をVaとした時の、前記帯電緩和膜の比抵抗が10−7×VaΩm以上10Ωm以下であるとよい。
【0014】
また、前記基材はNaを含有する基材であり、前記基材と前記帯電緩和膜の間にNaブロック層を有するとよい。前記基材と前記帯電緩和膜の間に、酸化珪素層、酸化ジルコニウム層、酸化アルミニウム層の少なくともいずれかを有するようにするとよい。
【0015】
本願に係る画像形成装置の発明の一つは以下のように構成される。
【0016】
外囲器内に、電子源と、該電子源に対向して設けられ電子照射により画像を形成する画像形成部材と、該電子源と画像形成部材との間に設けられる第1の部材とを有する画像形成装置であって、
前記第1の部材は基材と該基材上に設けられた帯電緩和膜とを有し、
前記帯電緩和膜は、酸化鉄、酸化コバルト、酸化銅、酸化ルテニウム、の少なくとも一種又は混合物を含む第1層と、ゲルマニウムの酸化物を少なくとも含む第2層とを有する画像形成装置。
【0017】
この構成によれば、第1の部材が帯電することによる影響を抑制できるため、好適な画像形成が可能となる。
【0018】
ここで、前記第1の部材は、前記外囲器内に配置された電極に接続されているとよく、特には、前記第1の部材は、前記外囲器内に配置され、それぞれ異なる電位が与えられる複数の電極に接続されているとよい。また、前記第1の部材は、前記外囲器内に配置された電極に接続される端部に、該端部に沿って設けられる電極を有していると好適である。
【0019】
また、前記第1の部材は、前記電子源に設けられた電極と前記画像形成部材に設けられた電極とに接続されているとよい。画像形成部材に設けられた電極としては、例えば、電子源からの電子を加速する電位が与えられる加速電極を好適に用いることができる。
【0020】
第1の部材を電子源に設けられた電極に接続する構成において、該電子源に設けられた電極としては、前記電子源が有する電子放出素子を駆動する電位を与える電極を好適に用いることができる。電子放出素子を駆動する電位を与えるための電極とは、例えば配線であったりする。
【0021】
【発明の実施の形態】
本発明の説明に先立って、まず参考例について説明する。
【0022】
参考例1)
以下に詳述される帯電緩和膜は、電子放出素子を用いた画像形成装置のスペーサ表面に適用されるのが本発明において好ましい態様であるが、該画像形成装置と同様に、容器内に電子放出素子を内包する装置で、上述同様の問題を生じるような場合においては、該容器内面あるいは容器内に配置された部材表面に適用することで、上述した帯電による放出電子の軌道への悪影響を低減でき、あるいは、装置の製造時の熱工程による該帯電緩和膜の特性変化を低減することができるといった同様の効果を得ることができる。
【0023】
帯電緩和膜は絶縁性基材の表面を導電性膜で被覆することにより、絶縁性基材表面に蓄積した電荷を除去するものであり、通常、帯電緩和膜の表面抵抗(シート抵抗Rs)1014Ω/□以下であれば帯電を緩和できるが、1012Ω/□以下であることが望ましい。さらに、十分な帯電防止効果を得るためにはより低い抵抗値であればよく1011Ω/□以下であることが好ましく、より低抵抗であれば除電効果が向上する。
【0024】
帯電緩和膜を上記ディスプレイのスペーサに適応した場合においては、スペーサの表面抵抗値Rsは帯電防止及び消費電力からその望ましい範囲に設定される。シート抵抗の下限はスペーサにおける消費電力により制限される。低抵抗であるほどスペーサに蓄積する電荷を速やかに除去することが可能となるが、スペーサで消費される電力が大きくなる。スペーサに使用する帯電緩和膜としては比抵抗が小さい金属膜よりは半導電性の材料であることが好ましい。その理由は比抵抗が小さい材料を用いた場合、表面抵抗Rsを所望の値にするためには帯電緩和膜の厚みを極めて薄くしなければならないからである。薄膜材料の表面エネルギー及び基板との密着性や基板温度によっても異なるが、一般的に10nmより小さい薄膜は島状となり、抵抗が不安定で成膜再現性に乏しい。
【0025】
したがって、比抵抗値が金属導電体より大きく、絶縁体よりは小さい範囲にある半導電性材料が好ましいのであるが、これらは抵抗温度係数が負の材料が多い。抵抗温度係数が負であると、スペーサ表面で消費される電力による温度上昇で抵抗値が減少し、さらに発熱し温度が上昇しつづけ、過大な電流が流れる、いわゆる熱暴走を引き起こす。しかし、発熱量すなわち消費電力と放熱がバランスした状況では熱暴走は発生しない。また、帯電緩和膜材料の抵抗温度係数(TCR)の絶対値が小さければ熱暴走しにくい。
【0026】
TCRが−1%の帯電緩和膜を用いた条件でスペーサ1平方cm当たりの消費電力がおよそ0.1Wを越えるようになるとスペーサに流れる電流が増加しつづけ、熱暴走状態となることが実験で認められた。これはもちろんスペーサ形状とスペーサ間に印加される電圧Va及び帯電緩和膜の抵抗温度係数により左右されるが、以上の条件から、消費電力が1平方cmあたり0.1Wを越えないRsの値は10×Va/hΩ/□以上である。なお、hは該スペーサが配置される部材間距離で、上記ディスプレイにおいては、フェースプレートとリアプレート間の距離である。すなわち、平面型ディスプレイで代表される画像形成装置のhは1cm以下に設定されるので、スペーサ上に形成した帯電緩和膜のシート抵抗Rsは10×VaΩ/□から1011Ω/□の範囲に設定されることが望ましい。
【0027】
上述したように絶縁性基材上に形成された帯電緩和膜の厚みtは10nm以上が望ましい。一方膜厚tが1μmを超えると膜応力が大きくなって膜はがれの危険性が高まり、また成膜時間が長くなるため生産性が悪い。したがって、膜厚は10nm〜1μm、さらに好適には20〜500nmであることが望ましい。
【0028】
比抵抗ρはシート抵抗Rsと膜厚tの積であり、以上に述べたRsとtの好ましい範囲から、帯電緩和膜の比抵抗ρは10−7×VaΩm〜10Ωmであることが望ましい。さらにシート抵抗と膜厚のより好ましい範囲を実現するためには、ρは(2×10−7)VaΩm〜5×10Ωmとするのがよい。
【0029】
ディスプレイにおける電子の加速電圧Vaは100V以上であり、CRTに通常用いられる高速電子用蛍光体を平面型ディスプレイに用いた場合に十分な輝度を得るためには1kV以上の電圧を要する。Va=1kVの条件においては、帯電緩和膜の比抵抗は0.1Ωm〜10Ωmが好ましい範囲である。
【0030】
以上に述べた帯電緩和膜の特性を実現する材料を鋭意検討した結果、特に、ゲルマニウムと遷移金属との窒素化合物が、帯電緩和膜として極めて優れていることを見いだした。遷移金属はTi、V、Cr、Mn、Fe、Co、Ni、Cu、Zr、Nb、Mo、Hf、Ta、W等の中でもから選ばれるものであり、これらを単独で使用してもよいが、2種以上の遷移金属を合わせて用いることも可能である。遷移金属またはその窒化物は良導電体であり、窒化ゲルマニウムは絶縁体である。よって、上記の窒素化合物膜は遷移金属とゲルマニウムとの組成を調整することにより、良導電体から絶縁体まで広い範囲に比抵抗値を制御できる。すなわち、スペーサ用帯電緩和膜として望ましい上述した比抵抗値を遷移金属組成を変えることにより実現することができる。
【0031】
ここで、ゲルマニウムとCr、Ti、Taの窒化化合物では金属組成(遷移金属/ゲルマニウム)に対して比抵抗が変化する。上述した好ましい比抵抗が駆られる遷移金属比率はCrの場合およそ3at.%〜50at.%、Tiは30at.%〜68at.%、Taは35at.%〜80at.%である。また、遷移金属がMoの場合Moの原子比(Mo/Ge)はおよそ3at.%〜50at.%、Wの場合にはおよそ3〜60at.%である。
【0032】
さらに後述する画像形成装置作製の工程においてとりわけ、上述の遷移金属とゲルマニウムとの窒素化合物の帯電緩和膜は、抵抗値の変化が少なく安定な材料であることがわかった。かつ、その抵抗温度係数は負であるが絶対値は1%より小さく熱暴走しにくい材料である。さらに、窒化物は二次電子放出率が小さいことから、電子の照射により帯電しにくく、電子線を利用したディスプレイに適した材料である。
【0033】
本発明の帯電緩和膜である上述の遷移金属とゲルマニウムの窒素化合物膜はスパッタ法、反応性スパッタ法、電子ビーム蒸着法、イオンプレーティング法、イオンアシスト蒸着法、CVD法等の薄膜形成手段により絶縁性基材上に形成することができる。例えばスパッタ法の場合は、ゲルマニウム及び遷移金属のターゲットを窒素あるいはアンモニアの少なくとも一方を含むガス中でスパッタすることにより、スパッタ金属原子を窒化し、上述の遷移金属とゲルマニウムとの窒素化合物膜が得られる。あらかじめ組成を調整したゲルマニウムと遷移金属の合金ターゲットを用いることも可能である。ガス圧、窒素分圧、成膜速度等のスパッタ条件を調整することにより、窒化膜中の窒素量が変化するが、十分窒化させた方が膜の安定性がよい。
【0034】
窒化物の抵抗値は窒化膜中の窒素濃度や欠陥によっても変化するものであるが、欠陥に起因する導電性は熱工程で欠陥が緩和されると変化してしまう。したがって、十分窒化されており、欠陥の少ない窒化膜の方が抵抗値の安定性に優れたものとなりやすい。本発明でスペーサに用いられる帯電緩和膜はゲルマニウムは窒化物を形成し、導電性は遷移金属元素により付与されるために安定性がよいのである。抵抗値が安定な窒素化合物膜を得ることができるという点でゲルマニウム原子の50at.%以上が窒化物であることが好ましく、特に、60%以上が好ましい。
【0035】
酸化を抑制する場合は、スペーサ表面の窒素化合物膜が酸化されない雰囲気で画像形成装置を製造するとよい。化学量論比より少ない窒素含有量の窒化物は酸化されやすく、また本発明で用いられる窒素化合物膜は多結晶であるが、結晶配向がよい方が酸化されにくい傾向がある。帯電に影響する二次電子放出率は表面の数十nmの材質により支配される。
【0036】
高いエネルギーの窒素イオンを薄膜の堆積表面に入射させる作製条件、例えば基体に負のバイアスを印加しながらスパッタ蒸着する条件において、窒化物中の窒素含有量(窒化率)を高くすることができる。この作製条件は結晶配向性がよくなる傾向があり、窒化率の向上は帯電緩和膜の性能向上をもたらすものである。本発明において、窒化率とはゲルマニウム元素に対し、窒化物となっているそれらの原子濃度比であり、XPS(X線光電子分光装置)により測定した値である。
【0037】
ただし、窒化膜の表面が酸化され、酸化層が形成されても表面酸化層の二次電子放出率が低い場合、あるいは低二次電子放出率材料で被覆されていても帯電防止効果が発揮される。
【0038】
以上、帯電緩和膜をディスプレイ用スペーサに用いた場合を説明したが、上述の窒素化合物は高融点材料でかつ硬度が高い性質を有するので、ディスプレイのスペーサ用途のみならず前述したように、容器内に電子放出素子を内包する装置の、容器内面あるいは容器内に配置された部材表面に被覆し、他は以上のスペーサの仕様と同様に用いるならば有用性が高い材料である。
【0039】
ここで本発明において用いられる電子放出素子としては、熱電子型と冷陰極型の2種類が知られている。冷陰極型電子放出素子には既に説明した電界放出型(以下FE型と略す)、表面伝導型電子放出素子や、金属/絶縁層/金属型(以下MIM型と略す)等がある。本発明における電子放出素子の方式は特に限定されないが、特に冷陰極型が好適に用いられる。
【0040】
表面伝導型電子放出素子の例としては、M.I.Elinson、Radio Eng.Electron Pys.、10、(1965)等がある。表面伝導型電子放出素子は基板上に形成された小面積の薄膜に、膜面に平行に電流を流すことにより、電子放出が生ずる現象を利用するものである。この表面伝導型電子放出素子としては、前記エリンソン等によるSnO薄膜を用いたもの、Au薄膜によるもの[G.Dittmer:“Thin Solid Films”、9、317(1972)]、In/SnO薄膜によるもの[M.Hartwell and C.G.Fonstad:“IEEE Trans.ED Conf.”、519(1975)]、カーボン薄膜によるもの[荒木久 他:真空、第26卷、第1号、22頁(1983)]等が報告されている。また、後述する実施形態で説明するような電子放出部等に微粒子膜を用いたものもある。FE型の例としてはW.P.Dyke & W.W.Dolan、“Field emission”、Advance in Electron Physics、8、89(1956)あるいはC.A.Spindt,“PHYSICAL Properties of thin−film field emission cathodes with molybdenium cones.”J.Appl.Phys.,47,5248(1976)等が知られている。MIM型の例としてはC.A.Mead、“The tunnel−emission amplifier”、J.Appl.Phys.,32,646(1961)等が知られている。
【0041】
本発明の画像形成装置は、以下のような形態を有するものであってもよい。
【0042】
(1)画像形成装置は、入力信号に応じて電子放出素子から放出された電子を画像形成部材に照射して画像を形成するものである。特に、前記画像形成部材が蛍光体である画像表示装置を構成することができる。
【0043】
(2)前記電子放出素子は、複数の行方向配線と複数の列方向配線とでマトリクス配線された複数の冷陰極素子を有する単純マトリクス状配置をとることができる。
【0044】
(3)前記電子放出素子は、並列に配置した複数の冷陰極素子の個々を両端で接続した冷陰極素子の行を複数配し(行方向と呼ぶ)、この配線と直交する方向(列方向と呼ぶ)に沿って、冷陰極素子の上方に配した制御電極(グリッドとも呼ぶ)により、冷陰極素子からの電子を制御するはしご状配置をとることができる。
【0045】
(4)また、本発明の思想によれば、画像表示装置に限るものでなく、感光性ドラムと発光ダイオード等で構成された光プリンタの発光ダイオード等の代替の発光源として用いることもできる。またこの際、上述のm本の行方向配線とn本の列方向配線を、適宜選択することで、ライン状発光源だけでなく、2次元状の発光源としても応用できる。この場合、画像形成部材としては、以下の参考例で用いる発光体のような直接発光する物質に限るものではなく、電子の帯電による潜像画像が形成されるような部材を用いることもできる。
【0046】
また、本発明の思想によれば、例えば電子顕微鏡のように、電子源からの放出電子の被照射部材が、蛍光体等の画像形成部材以外のものである場合についても、本発明は適用できる。したがって、本発明は被照射部材を特定しない一般的電子線装置としての形態もとりうる。
【0047】
以下、本発明の帯電緩和膜及びその帯電緩和膜を用いたスペーサを備えた画像形成装置について図面を用いて具体的に述べる。
【0048】
図1はスペーサ10を中心とした画像形成装置の断面模式図である。同図において、1は電子源、2はリアプレート、3は側壁、7はフェースプレートであり、リアプレート2、側壁3、フェースプレート7により表示パネルの内部を真空に維持するための気密容器(外囲器8)を形成している。
【0049】
スペーサ10は絶縁性基材10aの表面に本発明に係る帯電緩和膜10cが形成されている。スペーサ10は外囲器8内を真空にすることにより大気圧を受けて、真空外囲器8が破損あるいは変形するのを避けるために設けられる。スペーサ10の材質、形状、配置、配置本数は外囲器8の形状ならびに熱膨張係数等、外囲器の受ける大気圧、熱等を考慮して決定される。スペーサの形状には、平板型、十字型、L字型等があり、また図15(a)、(b)のように基板に各電子源または複数の電子源に対応して穴を開けた形状でもよく、適宜設定される。スペーサ10の利用は、画像形成装置が大型化するにしたがって効果が顕著になる。
【0050】
絶縁性基材10aはフェースプレート7及びリアプレート2にかかる大気圧を支持する必要からガラス、セラミックス等の機械的強度が高く耐熱性の高い材料が適する。フェースプレート、リアプレートの材質としてガラスを用いた場合、画像形成装置作製工程中の熱応力を抑えるために、スペーサ絶縁性基材10aはできるだけこれらの材質と同じものか、同様の熱膨張係数の材料であることが望ましい。
【0051】
絶縁性基材10aにソーダガラス等アルカリイオンを含むガラスを使用した場合、例えばNaイオンにより帯電緩和膜の導電性等を変化させるおそれがあるが、窒化Si、酸化Al等のNaブロック層10bを絶縁性基材10aと帯電緩和膜10cの中間に形成することでNa等アルカリイオンの帯電緩和膜10cへの侵入を抑制することができる。
【0052】
帯電緩和膜10cはゲルマニウムと遷移金属との窒化化合物膜であり、例えば遷移金属として、Ti、Cr、Taを用いた。
【0053】
スペーサ10はメタルバック6及び電子源を駆動するためのX方向配線9(詳しくは後述する)と電気的に接続することにより、スペーサ10の両端にはほぼ加速電圧Vaが印加される。本例ではスペーサは配線上と接続されているが別途形成した電極に接続させてもよい。さらに、フェースプレート7とリアプレート2との間に電子ビームの整形あるいは基板絶縁部の帯電防止を目的とした中間電極板(グリッド電極等)を設置した構成においては、スペーサが中間電極板等を貫通してもよいし、中間電極板等を介して別々に接続してもよい。
【0054】
Al、Au等良導電性である電極11をスペーサの両端に形成すると、帯電緩和膜とフェースプレート上の電極及びリアプレート上の電極との電気的接続の向上に効果がある。
【0055】
次に、上記スペーサ10を用いた画像形成装置の基本構成について説明する。
【0056】
図2は、上記スペーサを用いた表示パネルの斜視図であり、内部構造を示すためにパネルの一部を切り欠いて示している。
【0057】
図2において、図1と同様に、2はリアプレート、3は側壁、7はフェースプレートであり、リアプレート2、側壁3、フェースプレート7により表示パネルの内部を真空に維持するための気密容器(外囲器8)を形成している。気密容器を組み立てるに当たっては、各部材の接合部に十分な強度と気密性を保持させるため封着する必要があるが、例えばフリットガラスを接合部に塗布し、大気中あるいは窒素雰囲気中で、摂氏400〜500度で10分以上焼成することにより封着するが、窒素等非酸化雰囲気中で行った方がスペーサ表面に形成した窒素化合物膜が酸化しないために好ましい。気密容器内部を真空に排気する方法については後述する。
【0058】
リアプレート2には、基板13が固定されているが、該基板上には冷陰極型電子放出素子1がN×M個形成されている(N、Mは2以上の正の整数であり、目的とする表示画素数に応じて適宜設定される。例えば、高品位テレビジョンの表示を目的とした画像形成装置においては、N=3000、M=1000以上の数を設定することが望ましい。)。前記N×M個の冷陰極型電子放出素子は、M本のX方向配線9とN本のY方向配線12により単純マトリクス配線されている。前記、冷陰極型電子放出素子1、X方向配線9、Y方向配線12、基板13によって構成される部分をマルチ電子ビーム源と呼ぶ。なお、マルチ電子ビーム源の製造方法や構造については、後で詳しく述べる。
【0059】
本実施形態例においては、気密容器のリアプレート2にマルチ電子ビーム源の基板13を固定する構成としたが、マルチ電子ビーム源の基板13が十分な強度を有するものである場合には、気密容器のリアプレートとしてマルチ電子ビーム源の基板13自体を用いてもよい。
【0060】
また、フェースプレート7の下面には、蛍光膜5が形成されている。本実施形態例はカラー画像形成装置であるため、蛍光膜5の部分にはCRTの分野で用いられる赤、緑、青、の3原色の蛍光体が塗り分けられている。各色の蛍光体は、例えば図4(a)に示すようにストライプ状に塗り分けられ、蛍光体のストライプの間には黒色体5bが設けてある。黒色体5bを設ける目的は、電子ビームの照射位置に多少のずれがあっても表示色にずれが生じないようにすることや、外光の反射を防止して表示コントラストの低下を防ぐことなどである。黒色体5bには、黒鉛を主成分として用いたが、上記の目的に適するものであればこれ以外の材料を用いてもよい。または黒色体5bを導電性としてもよい。
【0061】
また、3原色の蛍光体の塗り分け方は前記図4(a)に示したストライプ状の配列に限られるものではなく、例えば図4(b)に示すようなデルタ状配列や、それ以外の配列であってもよい。
【0062】
なお、モノクロームの表示パネルを作成する場合には、単色の蛍光体材料を蛍光膜5に用いればよく、また黒色導電材料は必ずしも用いなくともよい。
【0063】
また、蛍光膜5のリアプレート側の面には、CRTの分野では公知のメタルバック6を設けてある。メタルバック6を設けた目的は、蛍光膜5が発する光の一部を鏡面反射して光利用率を向上させることや、負イオンの衝突から蛍光膜5を保護することや、電子ビーム加速電圧を印加するための電極として作用させることや、蛍光膜5を励起した電子の導電路として作用させることなどである。メタルバック6は、蛍光膜5をフェースプレート基板4上に形成した後、蛍光膜表面を平滑化処理し、その上にAlを真空蒸着する方法により形成した。なお、蛍光膜5に低加速電圧用の蛍光体材料を用いた場合には、メタルバック6は用いない場合がある。
【0064】
また、本実施形態例では用いなかったが、加速電圧の印加用や蛍光膜の導電性向上等を目的として、フェースプレート基板4と蛍光膜5との間に、例えばITOを材料とする透明電極を設けてもよい。
【0065】
また、Dx1〜Dxm及びDy1〜Dyn及びHvは、当該表示パネルと不図示の電気回路とを電気的に接続するために設けた気密構造の電気接続用端子である。Dx1〜Dxmはマルチ電子ビーム源のX方向配線と、Dy1〜Dynはマルチ電子ビーム源のY方向配線と、Hvはフェースプレートのメタルバック6と電気的に接続している。
【0066】
また、気密容器内部を真空に排気するには、気密容器を組み立てた後、不図示の排気管と真空ポンプとを接続し、気密容器内を10−5[Pa]程度の圧力まで排気する。その後、排気管を封止するが、気密容器内の圧力を維持するために、封止の直前あるいは封止後の気密容器内の所定の位置にゲッター膜(不図示)を形成する。ゲッター膜とは、例えばBaを主成分とするゲッター材料をヒーターもしくは高周波加熱により加熱し蒸着して形成した膜であり、該ゲッター膜の吸着作用により気密容器内は10−3ないしは10−5[Pa]の圧力に維持される。
【0067】
次に、前記実施形態例の表示パネルに用いたマルチ電子ビーム源の製造方法について説明する。本発明の画像形成装置に用いるマルチ電子ビーム源は、冷陰極型電子放出素子を単純マトリクス配線した電子源であれば、冷陰極型電子放出素子の材料や形状あるいは製法に制限はない。したがって、例えば表面伝導型電子放出素子やFE型、あるいはMIM型などの冷陰極型電子放出素子を用いることができる。
【0068】
ただし、表示画面が大きくてしかも安価な画像形成装置が求められる状況のもとでは、これらの冷陰極型電子放出素子の中でもでも、表面伝導型電子放出素子が特に好ましい。すなわち、FE型ではエミッタコーンとゲート電極の相対位置や形状が電子放出特性を大きく左右するため、極めて高精度の製造技術を必要とするが、これは大面積化や製造コストの低減を達成するには不利な要因となる。また、MIM型では、絶縁層と上電極の膜厚を薄くてしかも均一にする必要があるが、これも大面積化や製造コストの低減を達成するには不利な要因となる。その点、表面伝導型電子放出素子は、比較的製造方法が単純なため、大面積化や製造コストの低減が容易である。また、本発明者らは、表面伝導型電子放出素子の中でもでも、電子放出部もしくはその周辺部を微粒子膜から形成したものがとりわけ電子放出特性に優れ、しかも製造が容易に行えることを見いだしている。したがって、高輝度で大画面の画像形成装置のマルチ電子ビーム源に用いるには、最も好適であると言える。そこで、上記実施形態例の表示パネルにおいては、電子放出部もしくはその周辺部を微粒子膜から形成した表面伝導型電子放出素子を用いた。そこで、まず好適な表面伝導型電子放出素子について基本的な構成と製法及び特性を説明し、その後で多数の素子を単純マトリクス配線したマルチ電子ビーム源の構成について述べる。
【0069】
[表面伝導型電子放出素子の好適な素子構成と製法]
電子放出部もしくはその周辺部を微粒子膜から形成する表面伝導型電子放出素子の代表的な構成には、平面型と垂直型の2種類が挙げられる。
【0070】
(平面型の表面伝導型電子放出素子)
まず最初に、平面型の表面伝導型電子放出素子の素子構成と製法について説明する。
【0071】
図5(a)は、平面型の表面伝導型電子放出素子の構成を説明するための平面図、図5(b)は図5(a)の断面図である。図中、13は基板、14と15は素子電極、16は導電性薄膜、17は通電フォーミング処理により形成した電子放出部、18は通電活性化処理により形成した薄膜である。
【0072】
基板13としては、例えば、石英ガラスや青板ガラスをはじめとする各種ガラス基板や、アルミナをはじめとする各種セラミックス基板、あるいは上述の各種基板上に例えばSiOを材料とする絶縁層を積層した基板、等を用いることができる。
【0073】
また、基板13上に基板面と平行に対向して設けられた素子電極14と15は、導電性を有する材料によって形成されている。例えば、Ni、Cr、Au、Mo、W、Pt、Ti、Cu、Pd、Ag等をはじめとする金属、あるいはこれらの金属の合金、あるいはIn−SnOをはじめとする金属酸化物、ポリシリコンなどの半導体、等の中でもから適宜材料を選択して用いればよい。電極を形成するには、例えば真空蒸着などの成膜技術とフォトリソグラフィー、エッチングなどのパターニング技術を組み合わせて用いれば容易に形成できるが、それ以外の方法(例えば印刷技術)を用いて形成してもさしつかえない。
【0074】
素子電極14と15の形状は、当該電子放出素子の応用目的に合わせて適宜設計される。一般的にには、電極間隔Lは通常は数十nmから数十μmの範囲から適当な数値を選んで設計されるが、中でも画像形成装置に応用するために好ましいのは数μmより数十μmの範囲である。また、素子電極の厚さdについては、通常は数十nmから数μmの範囲から適当な数値が選ばれる。
【0075】
また、導電性薄膜16の部分には、微粒子膜を用いる。ここで述べた微粒子膜とは、構成要素として多数の微粒子を含んだ膜(島状の集合体も含む)のことをさす。微粒子膜を微視的に調べれば、通常は、個々の微粒子が離間して配置された構造か、あるいは微粒子が互いに隣接した構造か、あるいは微粒子が互いに重なり合った構造が観測される。
【0076】
微粒子膜に用いた微粒子の粒径は、数nmの1/10から数百nmの範囲に含まれるものであるが、中でも好ましいのは1nmから20nmの範囲のものである。また、微粒子膜の膜厚は、以下に述べるような諸条件を考慮して適宜設定される。すなわち、素子電極14あるいは15と電気的に良好に接続するのに必要な条件、後述する通電フォーミングを良好に行うのに必要な条件、微粒子膜自身の電気抵抗を後述する適宜の値にするために必要な条件、等である。具体的には、数nmの1/10から数百nmの範囲の中でもで設定するが、中でも好ましいのは1nmから50nmの間である。
【0077】
また、微粒子膜を形成するのに用いられうる材料としては、例えば、Pd、Pt、Ru、Ag、Au、Ti、In、Cu、Cr、Fe、Zn、Sn、Ta、W、Pb、等をはじめとする金属や、PdO、SnO、In、PbO、Sb3、等をはじめとする酸化物や、HfB、ZrB、LaB、CeB、YB、GdB、等をはじめとする硼化物や、TiC、ZrC、HfC、TaC、SiC、WC、等をはじめとする炭化物や、TiN、ZrN、HfN、等をはじめとする窒化物や、Si、Ge、等をはじめとする半導体や、カーボン、等が挙げられ、これらの中から適宜選択される。
【0078】
以上述べたように、導電性薄膜16を微粒子膜で形成したが、そのシート抵抗値については、10〜10[オーム/sq]の範囲に含まれるよう設定した。
【0079】
なお、導電性薄膜16と素子電極14及び15とは、電気的に良好に接続されるのが望ましいため、互いの一部が重なりあうような構造をとっている。その重なり方は、図5の例においては、下から、基板、素子電極、導電性薄膜の順序で積層したが、場合によっては下から基板、導電性薄膜、素子電極、の順序で積層してもさしつかえない。
【0080】
また、電子放出部17は、導電性薄膜16の一部に形成された亀裂状の部分であり、電気的には周囲の導電性薄膜よりも高抵抗な性質を有している。亀裂は、導電性薄膜16に対して、後述する通電フォーミングの処理を行うことにより形成する。亀裂内には、数nmの1/10から数十nmの粒径の微粒子を配置する場合がある。なお、実際の電子放出部の位置や形状を精密かつ正確に図示するのは困難なため、図5においては模式的に示した。
【0081】
また、薄膜18は、炭素もしくは炭素化合物よりなる薄膜で、電子放出部17及びその近傍を被覆している。薄膜18は、通電フォーミング処理後に、後述する通電活性化の処理を行うことにより形成する。
【0082】
薄膜18は、単結晶グラファイト、多結晶グラファイト、非晶質カーボン、のいずれかか、もしくはその混合物であり、膜厚は50nm以下とするが、30nm以下とするのがさらに好ましい。
【0083】
なお、実際の薄膜18の位置や形状を精密に図示するのは困難なため、図5においては模式的に示した。
【0084】
以上、好ましい素子の基本構成を述べたが、実施形態例においては以下のような素子を用いた。
【0085】
すなわち、基板13には青板ガラスを用い、素子電極14と15にはNi薄膜を用いた。素子電極の厚さdは100nm、電極間隔Lは2μmとした。
【0086】
微粒子膜の主要材料としてPdもしくはPdOを用い、微粒子膜の厚さは約10nm、幅Wは10nmとした。
【0087】
次に、好適な平面型の表面伝導型電子放出素子の製造方法について説明する。
【0088】
図6(a)〜(d)は、表面伝導型電子放出素子の製造工程を説明するための断面図で、各構成部材において図5の構成部材と同一なものは同一符号を付する。
【0089】
1)まず、図6(a)に示すように、基板13上に素子電極14及び15を形成する。形成するに当たっては、あらかじめ基板13を洗剤、純水、有機溶剤を用いて十分に洗浄後、素子電極の材料を堆積させる(堆積する方法としては、例えば、蒸着法やスパッタ法などの真空成膜技術を用いればよい。)。その後、堆積した電極材料を、フォトリソグラフィー・エッチング技術を用いてパターニングし、一対の素子電極14,15を形成する。
【0090】
2)次に、図6(b)に示すように、導電性薄膜16を形成する。形成するに当たっては、まず素子電極14,15が形成された基板13に有機金属溶液を塗布して乾燥し、加熱焼成処理して微粒子膜を成膜した後、フォトリソグラフィー・エッチングにより所定の形状にパターニングする。ここで、有機金属溶液とは、導電性薄膜に用いる微粒子の材料を主要元素とする有機金属化合物の溶液である。具体的には、本実施形態例では主要元素とてPdを用いた。また、実施形態例では塗布方法として、ディッピング法を用いたが、それ以外の例えばスピンナー法やスプレー法を用いてもよい。
【0091】
また、微粒子膜で作られる導電性薄膜の成膜方法としては、本実施形態例で用いた有機金属溶液の塗布による方法以外の、例えば真空蒸着法やスパッタ法、あるいは化学的気相堆積法などを用いる場合もある。
【0092】
3)次に、図6(c)に示すように、フォーミング用電源19から素子電極14と素子電極15との間に適宜の電圧を印加し、通電フォーミング処理を行って、電子放出部17を形成する。
【0093】
通電フォーミング処理とは、微粒子膜で作られた導電性薄膜16に通電を行って、その一部を適宜に破壊、変形、もしくは変質せしめ、電子放出を行うのに好適な構造に変化させる処理のことである。微粒子膜で作られた導電性薄膜のうち電子放出を行うのに好適な構造に変化した部分(すなわち電子放出部17)においては、薄膜に適当な亀裂が形成されている。なお、電子放出部17が形成される前と比較すると、形成された後は素子電極14と素子電極15の間で計測される電気抵抗は大幅に増加する。
【0094】
通電方法をより詳しく説明するために、図7に、フォーミング用電源19から印加する適宜の電圧波形の一例を示す。微粒子膜で作られた導電性薄膜をフォーミングする場合には、パルス状の電圧が好ましく、本実施形態例の場合には同図に示したようにパルス幅T1の三角波パルスをパルス間隔T2で連続的に印加した。その際には、三角波パルスの波高値Vpfを、順次昇圧した。また、電子放出部17の形成状況をモニターするためのモニターパルスPmを適宜の間隔で三角波パルスの間に挿入し、その際に流れる電流を電流計20で計測した。
【0095】
実施形態例においては、例えば10−3Pa程度の真空雰囲気下において、例えばパルス幅T1を1ミリ秒、パルス間隔T2を10ミリ秒とし、波高値Vpfを1パルスごとに0.1Vずつ昇圧した。そして、三角波を5パルス印加するたびに1回の割りで、モニターパルスPmを挿入した。フォーミング処理に悪影響を及ぼすことがないように、モニターパルスの電圧Vpmは0.1Vに設定した。そして、素子電極14と素子電極15の間の電気抵抗が1×10オームになった段階、すなわちモニターパルス印加時に電流計20で計測される電流が1×10−7A以下になった段階で、フォーミング処理に関わる通電を終了した。
【0096】
なお、上記の方法は、本実施形態例の表面伝導型電子放出素子に関する好ましい方法であり、例えば微粒子膜の材料や膜厚、あるいは素子電極間隔Lなど表面伝導型電子放出素子の設計を変更した場合には、それに応じて通電の条件を適宜変更するのが望ましい。
【0097】
4)次に、図6(d)に示すように、活性化用電源21から素子電極14と素子電極15の間に適宜の電圧を印加し、通電活性化処理を行って、電子放出特性の改善を行う。
【0098】
通電活性化処理とは、前記通電フォーミング処理により形成された電子放出部17に適宜の条件で通電を行って、その近傍に炭素もしくは炭素化合物を堆積せしめる処理のことである。図6(d)においては、炭素もしくは炭素化合物よりなる堆積物を部材18として模式的に示した。なお、通電活性化処理を行うことにより、行う前と比較して、同じ印加電圧における放出電流を典型的には100倍以上に増加させることができる。
【0099】
具体的には、10−1ないし10−4Paの範囲内の真空雰囲気中で、電圧パルスを定期的に印加することにより、真空雰囲気中に存在する有機化合物を起源とする炭素もしくは炭素化合物を堆積させる。堆積物18は、単結晶グラファイト、多結晶グラファイト、非晶質カーボン、のいずれかか、もしくはその混合物であり、膜厚は50nm以下、より好ましくは30nm以下である。
【0100】
通電方法をより詳しく説明するために、図8(a)に、活性化用電源21から印加する適宜の電圧波形の一例を示す。本実施形態例においては、一定電圧の矩形波を定期的に印加して通電活性化処理を行ったが、具体的には、矩形波の電圧Vacは14V、パルス幅T3は1ミリ秒、パルス間隔T4は10ミリ秒とした。なお、上述の通電条件は、本実施形態例の表面伝導型電子放出素子に関する好ましい条件であり、表面伝導型電子放出素子の設計を変更した場合には、それに応じて条件を適宜変更するのが望ましい。
【0101】
図6(d)に示す22は該表面伝導型電子放出素子から放出された放出電流Ieを捕捉するためのアノード電極で、直流高電圧電源23及び電流計24が接続されている。なお、基板13を、表示パネルの中でもに組み込んでから活性化処理を行う場合には、表示パネルの蛍光面をアノード電極22として用いる。
【0102】
活性化用電源21から電圧を印加する間、電流計24で放出電流Ieを計測して通電活性化処理の進行状況をモニターし、活性化用電源21の動作を制御する。電流計24で計測された放出電流Ieの一例を図8(b)に示すが、活性化電源21からパルス電圧を印加しはじめると、時間の経過とともに放出電流Ieは増加するが、やがて飽和してほとんど増加しなくなる。このように、放出電流Ieがほぼ飽和した時点で活性化用電源21からの電圧印加を停止し、通電活性化処理を終了する。
【0103】
なお、上述の通電条件は、本実施形態例の表面伝導型電子放出素子に関する好ましい条件であり、表面伝導型電子放出素子の設計を変更した場合には、それに応じて条件を適宜変更するのが望ましい。
【0104】
以上のようにして、図6(e)に示す平面型の表面伝導型電子放出素子を製造した。
【0105】
(垂直型の表面伝導型電子放出素子)
図9は電子放出部もしくはその周辺を微粒子膜から形成した表面伝導型電子放出素子のもうひとつの代表的な構成、すなわち垂直型の表面伝導型電子放出素子である。図9は、垂直型の基本構成を説明するための模式的な断面図であり、図中の25は基板、26と27は素子電極、28は段差形成部材、29は微粒子膜を用いた導電性薄膜、30は通電フォーミング処理により形成した電子放出部、31は通電活性化処理により形成した薄膜である。
【0106】
垂直型が先に説明した平面型と異なる点は、片方の素子電極26が段差形成部材28上に設けられており、導電性薄膜29が段差形成部材28の側面を被覆している点にある。したがって、前記図5の平面型における素子電極間隔Lは、垂直型においては段差形成部材28の段差高Lsとして設定される。なお、基板25、素子電極26及び27、微粒子膜を用いた導電性薄膜29、については、前記平面型の説明中に列挙した材料を同様に用いることが可能である。また、段差形成部材28には、例えばSiOのような電気的に絶縁性の材料を用いる。
【0107】
[画像形成装置に用いた表面伝導型電子放出素子の特性]
以上、平面型と垂直型の表面伝導型電子放出素子について素子構成と製法を説明したが、次に画像形成装置に用いた素子の特性について述べる。
【0108】
図10に、画像形成装置に用いた素子の(放出電流Ie)対(素子印加電圧Vf)特性、及び(素子電流If)対(素子印加電圧Vf)特性の典型的な例を示す。なお、放出電流Ieは素子電流Ifに比べて著しく小さく、同一尺度で図示するのが困難であるうえ、これらの特性は素子の大きさや形状等の設計パラメータを変更することにより変化するものであるため、2本のグラフは各々任意単位で図示した。
【0109】
画像形成装置に用いた素子は、放出電流Ieに関して以下に述べる3つの特性を有している。
【0110】
第一に、ある電圧(これを閾値電圧Vthと呼ぶ)以上の大きさの電圧を素子に印加すると急激に放出電流Ieが増加するが、一方、閾値電圧Vth未満の電圧では放出電流Ieはほとんど検出されない。すなわち、放出電流Ieに関して、明確な閾値電圧Vthを持った非線形素子である。
【0111】
第二に、放出電流Ieは素子に印加する電圧Vfに依存して変化するため、電圧Vfで放出電流Ieの大きさを制御できる。
【0112】
第三に、素子に印加する電圧Vfに対して素子から放出される電流Ieの応答速度が速いため、電圧Vfを印加する時間の長さによって素子から放出される電子の電荷量を制御できる。
【0113】
以上のような特性を有するため、表面伝導型電子放出素子の画像形成装置に好適に用いることができた。例えば多数の素子を表示画面の画素に対応して設けた画像形成装置において、第一の特性を利用すれば、表示画面を順次走査して表示を行うことが可能である。すなわち、駆動中の素子には所望の発光輝度に応じて閾値電圧Vth以上の電圧を適宜印加し、非選択状態の素子には閾値電圧Vth未満の電圧を印加する。駆動する素子を順次切り替えてゆくことにより、表示画面を順次走査して表示を行うことが可能である。
【0114】
また、第二の特性または第三の特性を利用することにより、発光輝度を制御することができるため、諧調表示を行うことが可能である。
【0115】
[多数素子を単純マトリクス配線したマルチ電子ビーム源の構造]
次に、上述の表面伝導型電子放出素子を基板上に配列して単純マトリクス配線したマルチ電子ビーム源の構造について述べる。
【0116】
図11に示すのは、前記図5の表示パネルに用いたマルチ電子ビーム源の平面図である。基板上には、前記図5で示したものと同様な表面伝導型電子放出素子が配列され、これらの素子はX方向配線電極9とY方向配線電極12により単純マトリクス状に配線されている。X方向配線電極9とY方向配線電極12の交差する部分には、電極間に絶縁層(不図示)が形成されており、電気的な絶縁が保たれている。図11のA−A′に沿った断面図を図12に示す。
【0117】
なお、このような構造のマルチ電子源は、あらかじめ基板上にX方向配線電極9、Y方向配線電極12、電極間絶縁層(不図示)、及び表面伝導型電子放出素子の素子電極と導電性薄膜を形成した後、X方向配線電極9及びY方向配線電極12を介して各素子に給電通電フォーミング処理と通電活性化処理を行うことにより製造した。
【0118】
以下、本参考例のスペーサについて図面を用いて説明する。
【0119】
以下、図1を用いて説明する。本参考例では、まず、未フォーミングの複数の表面伝導型電子源1をリアプレート2に形成した。リアプレート2として清浄化した青板ガラスを用い、これに図12に示した表面伝導型電子放出素子を160個×720個マトリクス状に形成した。素子電極14,15はNiスパッタ膜であり、X方向配線9、Y方向配線12はスクリーン印刷法により形成したAg配線である。導電性薄膜16はPdアミン錯体溶液を焼成したPdO微粒子膜である。
【0120】
画像形成部材であるところの蛍光膜5は図4(a)に示すように、各蛍光体5aがY方向にのびるストライプ形状を採用し、黒色体5bとしては各色蛍光体5a間だけでなく、X方向にも設けることでY方向の画素間を分離しかつスペーサ10を設置するための部分を加えた形状を用いた。先に黒色体(導電体)5bを形成し、その間隙部に各色蛍光体5aを塗布して蛍光膜5を作成した。ブラックストライプ(黒色体5b)の材料として通常よく用いられている黒鉛を主成分とする材料を用いた。ガラス基板4に蛍光体5aを塗布する方法はスラリー法を用いた。
【0121】
また、蛍光膜5より内面側(電子源側)に設けられるメタルバック6は、蛍光膜5の作成後、蛍光膜5の内面側表面の平滑化処理(通常フィルミングと呼ばれる)を行い、その後、Alを真空蒸着することで作成した。フェースプレート7には、さらに蛍光膜5の導電性を高めるため、蛍光膜5より外面側(ガラス基板と蛍光膜の間)に透明電極が設けられる場合もあるが、本参考例ではメタルバックのみで十分な導電性が得られたので省略した。
【0122】
スペーサ10は清浄化したソーダライムガラスからなる絶縁性基材10a(高さ3.8mm、板厚200μm、長さ20mm)上に、Naブロック層10bとして窒化シリコン膜を0.5μm成膜し、その上にCrとGeの窒化膜10cを真空成膜法により形成し成膜した。
【0123】
参考例で用いたCrとGe窒化膜はスパッタリング装置を用いてアルゴンと窒素混合雰囲気中でCrとGeのターゲットを同時スパッタすることにより成膜した。
【0124】
スパッタ装置については図13のようになっている。図13において、41はスパッタチャンバーもしくは成膜室、42はスペーサ部材、43,44はそれぞれCr、Geのターゲット、45,47はターゲット43,44にそれぞれ高周波電圧を印加するための高周波電源、46,48はマッチングボックス、49,50にアルゴン、窒素を導入するための導入管である。
【0125】
スパッタチャンバーの背圧は、2×10−5Paであった。スパッタ時には窒素分圧が30%になるように、アルゴンと窒素の混合ガスを流した。スパッタガス全圧は0.45Paであった。Crターゲットに13W、Geターゲットに150Wの高周波電圧を投入し、スパッタ時間を調整することにより、CrとGeの窒化膜を作製した。
【0126】
作製したCrとGeの窒化膜は、膜厚が45nm、成膜後(as depo)の比抵抗が2.5Ωmのもの、膜厚が200nm、成膜後(as depo)の比抵抗は3.5×10Ωmのもの、膜厚が80nm、成膜後(as depo)の比抵抗は5.2×10Ωmのものの3種類である。
【0127】
なお、本明細書中のスペーサ(対大気圧支持体)の抵抗値は以下の方法により測定した。
【0128】
スペーサの両端(フェースプレート側の端部とリアプレート側の端部)もしくはその端部近傍に電極を接触させ、ディスプレイ内に設置した時と同一の方向に電界が印加されるように直流電圧Vi(100V)を印加した。雰囲気は1×10のマイナス5乗torrよりも低い圧力下で、遮光し、温度は20度で行った。スペーサの両端に接触させる電極として、電解研磨により鏡面仕上げを行ったステンレス基板を用いて、スペーサを一対の該ステンレス基板の間に挟んで測定を行うか、もしくはプローブ電極を用い、スペーサの両端もしくはその近傍にプローブ電極を接触させて行った。スペーサを表示装置内に組み込んだ後の測定においては、スペーサ端部は表示装置のパネルに当接するので、スペーサの端部と導通する導電部材である配線もしくはメタルバックの、スペーサ端部近傍にプローブを接触させた。配線もしくはメタルバックはスペーサの抵抗値に比べて十分に抵抗が低いので、スペーサの端部に直接測定用電極を接触させなくても問題はなかった。
【0129】
測定電極間に流れる電流Iiを検出し、以下に示す一般式(1)によりスペーサの抵抗値Riを得る。
【0130】
Ri=Vi/Ii[Ω] ・・・・・(1)
前記のスペーサ抵抗Riをもとにシート抵抗Rsi、体積抵抗ρiは、以下に示す一般式(2)、(3)により算出した。
【0131】
Rsi=Ri×w/d[Ω/□] ・・・・・(2)
ρi=Ri×s/d[Ω/□] ・・・・・(3)
ただし、sはスペーサに流れる電流パスの断面積(cm)であり、高抵抗膜が表面を被覆している場合は高抵抗膜の断面積に一致する。さらにdはスペーサの電流パスの経路長(cm)を示し、スペーサの接合位置に電極が形成されている場合は、スペーサ電極間距離に一致する。
【0132】
さらに、wは電流パス経路の幅(cm)であり、高抵抗膜の膜厚がt(cm)のときs/tに一致する。
【0133】
前述の測定電圧は、測定部材の放電耐圧以下の範囲で、必要に応じて、アノード印加電圧程度(例えば数kV)まで昇圧して測定することにより、実使用状態に近い条件で測定可能となる。
【0134】
また、スペーサ10は、X方向配線9及びメタルバック6との電気的接続を確実にするためにその接続部にAlによる電極11を設けた。この電極11はX方向配線からフェースプレートに向かって50μm、メタルバックからリアプレートに向かって300μmの範囲で外囲器8内に露出するスペーサ10の4面を完全に被覆した。ただし、電極11がなくても十分な電気的接続がとれる場合には電極11を配さなくてもよい。CrとGe窒化膜10cによる帯電緩和膜10cを成膜したスペーサ10を、等間隔でフェースプレート7のX方向配線9上に固定した。
【0135】
その後、電子源1の3.8mm上方にフェースプレート7を支持枠3を介し配置し、リアプレート2、フェースプレート7、支持枠3及びスペーサ10の接合部を固定した。
【0136】
リアプレート2と支持枠3の接合部及びフェースプレート7と支持枠3の接合部はフリットガラスを塗布し(スペーサとフェースプレートとの接合部には導電性フリットを用いた)、スペーサ表面のゲルマニウムと遷移金属との窒化膜が酸化されないように窒素中で430℃で10分以上焼成することで封着した。
【0137】
スペーサ10はフェースプレート7側では黒色体5b(線幅300μm)上に、Auを被覆したシリカ球を含有した導電性フリットガラスを用いることにより、帯電緩和膜とフェースプレートとの導通を確保した。なお、メタルバックとスペーサとが当接する領域においてはメタルバックの一部を除去した。
【0138】
以上のようにして完成した外囲器8内の雰囲気を排気管を通じ真空ポンプにて排気し、十分低い圧力に達した後、容器外端子Dx1〜DxmとDy1〜Dynを通じ電子放出素子1の素子電極14,15間に電圧を印加し、導電性薄膜16を通電処理(フォーミング処理)することにより電子放出部17を形成した。フォーミング処理は、図7に示した波形の電圧を印加することにより行った。
【0139】
次に排気管を通してアセトンを0.133Paとなるように真空容器に導入し、容器外端子Dx1〜DxmとDy1〜Dynに電圧パルスを定期的に印加することにより、炭素、あるいは炭素化合物を堆積する通電活性化処理を行った。通電活性化は図8に示すような波形を印加することにより行った。
【0140】
次に、容器全体を200℃に加熱しつつ10時間真空排気した後、10−4Pa程度の圧力で、排気管をガスバーナーで熱することで溶着し外囲器8の封止を行った。
【0141】
最後に、封止後の圧力を維持するために、ゲッター処理を行った。
【0142】
以上のように完成した画像形成装置において、各電子放出素子1には、容器外端子Dx1〜Dxm、Dy1〜Dynを通じ走査信号及び変調信号を不図示の信号発生手段よりそれぞれ印加することにより電子を放出させ、メタルバック6には、高圧端子Hvを通じて高圧を印加することにより放出電子ビームを加速し、蛍光膜5に電子を衝突させ、蛍光体を励起・発光させることで画像を表示した。なお、高圧端子Hvへの印加電圧Vaは1kV〜5kV、素子電極14,15間への印加電圧Vfは14Vとした。
【0143】
スペーサ10について帯電緩和膜10cの抵抗値を、組み込み前、フェースプレートへの封着後、リアプレート、真空排気後、素子電極通電処理後等各工程で計測したところ全行程を通じてほとんど抵抗値の変動が見られなかった。このことはCrとGe窒化膜が非常に安定であり、帯電緩和膜として適していることを示している。
【0144】
比抵抗3.5×10Ωmのスペーサについてはスペーサに近い位置にある電子放出素子1からの放出電子による発光スポットも含め、二次元状に等間隔の発光スポット列が形成され、鮮明で色再現性のよいカラー画像表示ができた。このことはスペーサ10を設置しても電子軌道に影響を及ぼすような電界の乱れは発生せず、スペーサ10の帯電も起こっていないことを示している。また、本材料の抵抗温度係数は−0.8%であり、Va=5kVにおいても熱暴走は見られなかった。
【0145】
比抵抗2.5ΩmのスペーサについてはVa=2kVでの消費電力がほぼ1Wに達するものの2kVまで印加できた。また、比抵抗が5.2×10 Ωmと大きいスペーサについては、熱暴走はないものの、帯電防止の効果が弱く、電子ビームがスペーサに引き寄せられたために画像は表示できたが、スペーサ近傍の画像に乱れを生じた。
【0146】
本参考例に用いたスペーサの窒化率(窒化ゲルマニウムを構成するゲルマニウムの原子濃度/ゲルマニウムの原子濃度)をXPS(X線光電子分光分析機構)により測定した結果、70,65,58%であった。
【0147】
(比較例1)
比較例として前記と同様な方法で導電性膜にCrとGe窒化膜の代わりにSnOを用いた(as depo抵抗値 6.7×10Ω、膜厚5nm)。スパッタ装置としては図13に示した装置を用い、金属ターゲットの代わりにSnOターゲットを用いてスパッタを行った。スパッタガスはアルゴンで全圧は0.5Pa、投入電圧は500Wで5分成膜を行った。
【0148】
各組立工程において導電性膜10cの抵抗値が大きく変動した。全組立工程通過後には比抵抗は9.2×10−2Ωm、抵抗値で1.8×10Ωになり、Vaを1kVまで印加することができなかった。すなわち、ディスプレイ作製工程で抵抗が大きく変化し、かつその変化量が一定でないため、工程終了後の抵抗のバラツキが大きくなり制御性に乏しい。また、このSnOの比抵抗値では膜厚を1nm以下と極めて薄くしなければならず、さらに抵抗の制御性は難しい。
【0149】
参考例2)
参考例1と異なるのはスペーサ10のCrとGe窒化膜10cの代わりとしてTaとGeの窒化化合物膜を用いた。本参考例で用いたTaとGe窒化膜はスパッタリング装置を用いてアルゴンと窒素混合雰囲気中でTaとGeのターゲットを同時スパッタすることにより成膜した。スパッタ装置は図13の装置を用いた。スパッタチャンバーの背圧は、2×10−5Paであった。スパッタ時には窒素分圧が30%となるように、アルゴンと窒素の混合ガスを流した。スパッタガス全圧は0.45Paであった。Taターゲットに150W、Geターゲットに150Wの高周波電圧を投入し、スパッタ時間を調整することにより、TaとGeの窒化膜を作製した。
【0150】
作製したTaとGeの窒化膜10cの膜厚はおよそ200nm、比抵抗は8.4×10Ωmであった。また、抵抗温度係数は−0.6%であった。
【0151】
上記スペーサ10を用いた画像形成装置を作製し、参考例1と同様の評価を行った。なお、高圧端子Hvへの印加電圧Vaは1kV〜5kV、素子電極14,15間への印加電圧Vfは14Vとした。
【0152】
スペーサの抵抗値を、組み込み前(as depo)、フェースプレートへの封着後、リアプレートへの封着後、真空排気後、素子電極通電処理後等各工程で計測したところ全行程を通じてほとんど抵抗値の変動が見られなかった。
【0153】
また、スペーサ10のリアプレート近傍からフェースプレート近傍まで各微少部分の抵抗値を測定したところ全組立工程を通過した後も場所による抵抗値の違いは生じず、膜全体が均一な抵抗値を持っていた。このときスペーサ10に近い位置にある電子放出素子1からの放出電子による発光スポットも含め、二次元状に等間隔の発光スポット列が形成され、鮮明で色再現性のよいカラー画像表示ができた。このことはスペーサ10を設置しても電子軌道に影響を及ぼすような電界の乱れは発生せず、スペーサ10の帯電も起こっていないことを示している。
【0154】
参考例3)
参考例1のCrとGe窒化膜に代わり、TiとGe窒化膜を用いた。本参考例で用いたTiとGe窒化膜はスパッタリング装置を用いてアルゴンと窒素混合雰囲気中でTiとGeのターゲットを同時スパッタすることにより成膜した。スパッタ装置は図13の装置を用いた。スパッタチャンバーの背圧は、2×10−5Paであった。スパッタ時には窒素分圧が30%になるように、アルゴンと窒素の混合ガスを流した。スパッタガス全圧は0.45Paであった。Tiターゲットに120W、Geターゲットに150Wの高周波電圧を投入し、スパッタ時間を調整することにより、TiとGeの窒化膜を作製した。
【0155】
作製したTiとGeの窒化膜10cは、膜厚がおよそ60nm、比抵抗が7.4×10Ωmのものと、膜厚がおよそ80nm、比抵抗が2.2×10Ωmのものの2種である。また、抵抗温度係数は−0.8%であった。
【0156】
上記スペーサ10を用いた画像形成装置において、各電子放出素子1には、容器外端子Dx1〜Dxm、Dy1〜Dynを通じ、走査信号及び変調信号を不図示の信号発生手段よりそれぞれ印加することにより電子を放出させ、メタルバック6には、高圧端子Hvを通じて高圧を印加することにより放出電子ビームを加速し、蛍光膜5に電子を衝突させ、蛍光体を励起・発光させることで画像を表示した。
【0157】
なお、高圧端子Hvへの印加電圧Vaは1kV〜5kV、素子電極14,15間への印加電圧Vfは14Vとした。
【0158】
スペーサの抵抗値は、組み込み前(as depo)、フェースプレートへの封着後、リアプレートへの封着後、真空排気後、素子電極通電処理後等各工程で計測したところ全行程を通じて増加したものの極端な抵抗値の変動が見られなかった。
【0159】
スペーサ10についてリアプレート近傍からフェースプレート近傍まで各微少部分の抵抗値を測定したところ全組立工程を通過した後も場所による抵抗値の違いは生じず、膜全体が均一な抵抗値を持っていた。比抵抗が7.4×10Ωmのスペーサに対してはスペーサに近い位置にある電子放出素子1からの放出電子による発光スポットも含め、二次元状に等間隔の発光スポット列が形成され、鮮明で色再現性のよいカラー画像表示ができた。このことはスペーサ10を設置しても電子軌道に影響を及ぼすような電界の乱れは発生せず、スペーサ10の帯電も起こっていないことを示している。一方、比抵抗が大きいスペーサ(比抵抗が2.2×10Ωm)ではスペーサ近傍の電子ビームが曲げられわずかに画像の乱れが観察された。
【0160】
参考例4)
参考例1と異なるのはスペーサ10のCrとGe窒化膜10cの代わりとしてMoとGeの化合物膜を用いた。本参考例で用いたMoとGe窒化膜はスパッタリング装置を用いてアルゴンと窒素混合雰囲気中でMoとGeのターゲットを同時スパッタすることにより成膜した。スパッタ装置は図13の装置を用いた。スパッタチャンバーの背圧は、2×10−5Paであった。スパッタ時には窒素分圧が30%になるように、アルゴンと窒素の混合ガスを流した。スパッタガス全圧は0.45Paであった。Moターゲットに15W、Geターゲットに150Wの高周波電圧を投入し、スパッタ時間を調整することにより、MoとGeの窒化膜を作製した。
【0161】
作製したMoとGeの窒化膜10cは、膜厚がおよそ200nm、比抵抗が6.4×10Ωmである。また、抵抗温度係数は−0.6%であった。
【0162】
以上のスペーサ10を使用した画像形成装置を参考例1と同様に作製し、参考例1と同様に画像の評価を行った。
【0163】
なお、高圧端子Hvへの印加電圧Vaは1kV〜5kV、素子電極14,15間への印加電圧Vfは14Vとした。
【0164】
スペーサの抵抗値を、組み込み前(as depo)、フェースプレートへの封着後、リアプレートへの封着後、真空排気後、素子電極通電処理後等各工程で計測したところ全行程を通じてほとんど抵抗値の変動が見られなかった。
【0165】
また、スペーサ10についてリアプレート近傍からフェースプレート近傍まで各微少部分の抵抗値を測定したところ全組立工程を通過した後も場所による抵抗値の違いは生じず、膜全体が均一な抵抗値を持っていた。このときスペーサ10に近い位置にある電子放出素子1からの放出電子による発光スポットも含め、二次元状に等間隔の発光スポット列が形成され、鮮明で色再現性のよいカラー画像表示ができた。このことはスペーサ10を設置しても電子軌道に影響を及ぼすような電界の乱れは発生せず、スペーサ10の帯電も起こっていないことを示している。
【0166】
参考例5)
参考例1と異なるのはスペーサ10のCrとGe窒化膜10cの代わりとしてWとGeの化合物膜を用いた。本参考例で用いたWとGe窒化膜はスパッタリング装置を用いてアルゴンと窒素混合雰囲気中でWとGeのターゲットを同時スパッタすることにより成膜した。スパッタ装置は図13の装置を用いた。スパッタチャンバーの背圧は、2×10−5Paであった。スパッタ時には窒素分圧が30%になるように、アルゴンと窒素の混合ガスを流した。スパッタガス全圧は0.45Paであった。Wターゲットに12W、Geターゲットに150Wの高周波電圧を投入し、スパッタ時間を調整することにより、WとGeの窒化膜を作製した。
【0167】
作製したWとGeの窒化膜10cは、膜厚がおよそ200nm、比抵抗が5.0×10Ωmである。また、抵抗温度係数は−0.4%であった。
【0168】
以上のスペーサ10を使用した画像形成装置を参考例1と同様に作製し、参考例1と同様に画像の評価を行った。
【0169】
なお、高圧端子Hvへの印加電圧Vaは1kV〜5kV、素子電極14,15間への印加電圧Vfは14Vとした。
【0170】
スペーサの抵抗値を、組み込み前(as depo)、フェースプレートへの封着後、リアプレートへの封着後、真空排気後、素子電極通電処理後等各工程で計測したところ全行程を通じてほとんど抵抗値の変動が見られなかった。
【0171】
また、スペーサ10についてリアプレート近傍からフェースプレート近傍まで各微少部分の抵抗値を測定したところ全組立工程を通過した後も場所による抵抗値の違いは生じず、膜全体が均一な抵抗値を持っていた。このときスペーサ10に近い位置にある電子放出素子1からの放出電子による発光スポットも含め、二次元状に等間隔の発光スポット列が形成され、鮮明で色再現性のよいカラー画像表示ができた。このことはスペーサ10を設置しても電子軌道に影響を及ぼすような電界の乱れは発生せず、スペーサ10の帯電も起こっていないことを示している。
【0172】
参考例6)
参考例では電子放出素子として冷陰極型電子放出素子の一種である電界放出素子を用いた。
【0173】
図16は本参考例の画像形成装置のスペーサと電子源部分を中心とした断面模式図である。図16において、62はリアプレート、63はフェースプレート、61は陰極、66はゲート電極、67はゲート/陰極間の絶縁層、68は収束電極、64は蛍光体、69は収束電極/ゲート電極間の絶縁層、70は陰極配線である。65はスペーサであり、絶縁性基体にタングステンとゲルマニウム(Ge)窒素化合物膜がスパッタ法で被覆されている。
【0174】
電子放出素子は、陰極61の先端とゲート電極66間に大きな電界を印加し、陰極61の先端より電子を放出するものである。ゲート電極66は、複数の陰極からの放出電子が通過できるように、電子通過口が設けられている。さらに、ゲート電極口を通過した電子は、収束電極68によって収束され、フェースプレート63に設けられた陽極の電界で加速され、陰極に対応する蛍光体の絵素に衝突し、発光表示するものである。なお、複数のゲート電極68と複数の陰極配線70は、単純マトリクス状に配置され、入力された入力信号によって、該当する陰極が選択され、選択された陰極より電子が放出される。
【0175】
陰極、ゲート電極、収束電極、陰極配線等は公知の方法により作製され、陰極材料はMoである。スペーサ基体は長さ20mm、幅3.8mm、厚み0.2mmの青板ガラスであり、その表面に参考例5と同様の方法によりタングステンとゲルマニウムの窒素化合物膜を200nmの厚み形成した。スペーサ65は収束電極68に導電性フリットにより接着した。スペーサ65の収束電極あるいは蛍光体との接触部には接触抵抗を低くするためにアルミニウムの蒸着膜がそれぞれ100μmの領域に形成されている。
【0176】
参考例におけるタングステンとゲルマニウムの窒素化合物膜の成膜後の比抵抗は7.9×10 Ωmであり、スペーサの抵抗値は3.7×10Ωであった。
【0177】
このスペーサを接着したリアプレート62と蛍光体64を形成したフェースプレート63を位置合わせをし不図示の支持枠を介してフリットガラスにより窒素雰囲気中で封着し、気密容器を作製した。この気密容器内を排気管より真空排気しつつ、250℃、10時間のベーキング処理をした。その後、10−5Paまで排気し、排気管のガスバーナーで溶着することにより気密容器を封止した。最後に封止後の真空度を維持するため、高周波加熱法でゲッター処理を行った。
【0178】
以上のように作製した画像形成装置において、陰極61に容器外端子を通じ、不図示の信号発生手段により信号を印加することにより電子放出させ、フェースプレートに形成されている透明電極に印加された高電圧により蛍光体64に電子を照射することで、画像を表示した。
【0179】
スペーサの抵抗値は画像形成装置の作製工程後で4.2×10Ωと安定であり、スペーサ近傍の電子ビームのずれも認められなかった。
【0180】
以上説明した帯電緩和膜によれば、酸素等の雰囲気でも抵抗値の変動が小さく、高抵抗化する場合でも島状としたり極めて薄膜化する必要がないので、安定性、再現性の優れた帯電緩和膜を形成することができる。また、高融点で、硬度が高いので安定性に優れる長所も有している。さらに、窒化ゲルマニウムは絶縁体で、遷移金属窒化物は良導電体なので、組成を調整することで任意の比抵抗値を得ることができる。本発明の帯電緩和膜は本願の実施形態等で述べた装置の他、CRT、あるいは放電管等の電子管等に用いることができ、その他にも電荷の帯電が問題となる用途に広く用いることができる。
【0181】
また本発明の画像形成装置によれば、素子基板とフェースプレート間に配置された絶縁性部材表面に、遷移金属と、ゲルマニウムとの窒化化合物膜を帯電緩和膜として用いることで、組立工程中に抵抗値の変化がほとんど起こらず、安定した抵抗値を得ることができる。これによりスペーサ近傍でのビームの電位の乱れは抑止され、ビームが蛍光体に衝突する位置と、本来発光するべき蛍光体との位置ずれの発生が防止され、輝度損失を防ぐことができ鮮明な画像表示が可能となった。
【0182】
参考例7)
以下ではさらにAlを加えた帯電緩和膜(帯電防止膜ともいう)を用いた例を説明する。
【0183】
[膜表面組成の較正方法について]
スペーサの表面窒化率などの膜表面組成を求める際には、以下の装置を使用して較正を行った。10−8Pa以下の真空度を保った同一真空室内に、薄膜形成機構及びRHEED(反射高速電子回折パターン計測機構)とXPS(X線光電子分光分析機構)を備えた装置を使用して、まず薄膜形成機構により窒化アルミニウム薄膜を成膜し、RHEED法によりAlNが形成されたことを確認後、XPS測定を行った。この時のAl2pスペクトル及び Nlsスペクトルのピーク面積比を用いて、アルミニウムとゲルマニウムの遷移金属合金窒化膜の表面組成を較正した。
【0184】
参考例7−11においては帯電防止膜10cはアルミニウムとゲルマニウムの遷移金属合金窒化膜であり、例えば遷移金属としてCr、Ti、Ta、Mo、Wを用いた。
【0185】
Cr/(Al+Ge)の比率は5at.%〜18at.%(原子%)、
Ti/(Al+Ge)の比率は24at.%〜40at.%(原子%)、
Ta/(Al+Ge)の比率は36at.%〜50at.%(原子%)、
Mo/(Al+Ge)の比率は3at.%〜18at.%(原子%)、
W/(Al+Ge)の比率は3at.%〜20at.%(原子%)、
とするのが好ましい。
【0186】
以下、本参考例の具体的な構成について説明する。
【0187】
スペーサ10は清浄化したソーダライムガラスからなる平板絶縁性基材10a(高さ3.8mm、板厚200μm、長さ20mm)上に、Naブロック層10bとして窒化シリコン膜を0.5μm成膜し、その上にCrとAlとGeの合金窒化膜10cを真空成膜法により形成し成膜した。
【0188】
参考例で用いたCrとAlとGeの合金窒化膜10cは、スパッタリング装置を用いて、アルゴンと窒素混合雰囲気中で、CrとAlとGeのターゲットを同時スパッタすることにより成膜した。それぞれのターゲットにかける電力を変化することにより組成の調節を行い、最適の抵抗値を得た。
【0189】
詳述すると、各ガス圧と各電力は、Ar=2.4mTorr/N=0.6mTorr、Cr=18W、Al=600W、Ge=45W、であり、基板は室温でアースに接地されている。
【0190】
スパッタ装置については図17のようになっている。図17において、41は成膜室、42はスペーサ部材、43,44,1701はそれぞれCr、Al、Geのターゲット、45,47,1703はターゲット43,44,1701にそれぞれ高周波電圧を印加するための高周波電源、46,48,1702はインピーダンスの整合用マッチングボックス、49,50はアルゴン、窒素を導入するための導入管である。成膜室41にアルゴンと窒素を上記の分圧で導入し、ターゲット43,44,1701と、スペーサ部材42間に高周波電圧を印加して、放電を起こしスパッタを行った。
【0191】
作製したCrとAlとGeの合金窒化膜は、膜厚が200nm、比抵抗が2.4×10Ωmであり、Cr/(Al+Ge)組成比7at.%(原子%)、Ge/Al組成比18at.%(原子%)である。
【0192】
以上のようにして、参考例1と同様に製造した画像形成装置において、各電子放出素子1には、容器外端子Dx1〜Dxm、Dy1〜Dynを通じ、走査信号及び変調信号を不図示の信号発生手段よりそれぞれ印加することにより電子を放出させ、メタルバック6には、高圧端子Hvを通じて高圧を印加することにより、放出電子ビームを加速し、蛍光膜5に電子を衝突させ、蛍光体を励起・発光させることで画像を表示した。なお、高圧端子Hvへの印加電圧Vaは1kV〜5kV、素子電極14,15間への印加電圧Vfは14Vとした。
【0193】
この時、スペーサに近い位置にある電子放出素子1からの放出電子による発光スポットも含め、二次元状に等間隔の発光スポット列が形成され、鮮明で色再現性のよいカラー画像表示ができた。このことはスペーサ10を設置しても電子軌道に影響を及ぼすような電界の乱れは発生せず、スペーサ10の帯電も起こっていないことを示している。また、本材料の抵抗温度係数は−0.5%であり、Va=5kVにおいても熱暴走は見られなかった。
【0194】
また、スペーサ10について帯電防止膜10cの抵抗値は、組み込み前で1.1×10Ω、フェースプレート7、リアプレート2、封着後で、1.0×10Ω、真空排気後で1.3×10Ω、素子電極通電処理後で1.4×10Ωであった。このことはCrとAlとGeの合金窒化膜が非常に安定であり、帯電防止膜として適していることを示している。
【0195】
また、このスペーサ10をとりはずして、XPS(X線光電子分光装置)により表面分析したところ、Cr、Geは表面では酸化物であるが、Alは窒化物と酸化物が混在しており、窒化物として存在する割合([窒化アルミニウムを構成する窒素の原子濃度]/[アルミニウムの原子濃度])が51〜55%であった。
【0196】
(比較例2)
比較例として前記と同様な方法で、導電膜にCrとAlとGeの合金窒化膜の代わりに、SnOを用いたところ、各組立工程において導電膜10cの抵抗値が大きく変動した。全組立工程通過後には、比抵抗は9.5Ωcm、抵抗値で4.1×10Ωになり、Vaを1kVまで印加することができなかった。すなわち、ディスプレイ作製工程で抵抗が大きく変化し、かつその変化量が一定でないため、工程終了後の抵抗のバラツキが大きくなり、制御性に乏しい。また、このSnOの比抵抗値では膜厚を1nm以下と極めて薄くしなければならず、さらに抵抗の制御性は難しい。
【0197】
製造方法は参考例1のスパッタリング装置で酸素とアルゴン混合雰囲気中で、SnOのターゲットをスパッタすることにより成膜した。詳述すると、Ar0.8mTorr/O0.2mTorr、SnO=100W、基板は室温でアースに接地されている。膜厚は2.2nmである。抵抗値は組み込み前で2.7×10Ω、フェースプレート、リアプレート封着後で4.4×10Ω、真空排気後で1.8×10Ω、素子電極通電処理後で4.1×10Ωであった。
【0198】
参考例8)
参考例7と異なるのは、スペーサ10のCrとAlとGeの合金窒化膜10cの代わりとして、TaとAlとGeの合金窒化膜を用いた。成膜方法については参考例7と同様で、そのガス圧と各電力は、Ar=2.4mTorr/N=0.6mTorr、Ta=200W、Al=500W、Ge=50Wである。この時のTaとAlとGeの合金窒化膜10cは膜厚がおよそ230nmであり、比抵抗が5.2×10Ωmである。また、抵抗温度係数は−0.3%であり、Ta/(Al+Ge)組成比41at.%(原子%)、Ge/Al組成比26at.%(原子%)である。
【0199】
上記スペーサ10を用いた画像形成装置を作製し、参考例7と同様の評価を行った。
【0200】
なお、高圧端子Hvへの印加電圧Vaは1kV〜5kV、素子電極14,15間への印加電圧Vfは14Vとした。
【0201】
スペーサ抵抗値を組み込み前、フェースプレートへの封着後、リアプレートへの封着後、真空排気後、素子電極通電処理後等、各工程で計測したところ全行程を通じてほとんど抵抗値の変動が見られなかった。すなわち、抵抗値は組み込み前は2.1×10Ω、フェースプレート・リアプレートへの封着後は1.6×10Ω、真空排気後は2.3×10Ω、素子電極通電処理後は2.5×10Ωであった。
【0202】
また、スペーサ10のリアプレート2近傍からフェースプレート7近傍まで、各微少部分の抵抗値を測定したところ、全組立工程を通過した後も、場所による抵抗値の違いは生じず、膜全体が均一な抵抗値を持っていた。
【0203】
また、このときスペーサ10に近い位置にある電子放出素子1からの放出電子による発光スポットも含め、二次元状に等間隔の発光スポット列が形成され、鮮明で色再現性のよいカラー画像表示ができた。このことはスペーサ10を設置しても電子軌道に影響を及ぼすような電界の乱れは発生せず、スペーサ10の帯電も起こっていないことを示している。
【0204】
また、このスペーサをとりはずしてXPS(X線光電子分光装置)により表面分析したところ、TaとGeは表面では酸化物であるが、Alは窒化物と酸化物が混在しており、窒化物として存在する割合([窒化アルミニウムを構成する窒素の原子濃度]/[アルミニウムの原子濃度])が53〜57%であった。
【0205】
参考例9)
参考例7のCrとAlとGeの合金窒化膜に代わり、TiとAlとGeの合金窒化膜を用いた。成膜方法については参考例7と同様で、Ar=2.4mTorr/N=0.6mTorr、Ti=120W、Al=400W、Ge=100W(RF)である。この時のTiとAlとGeの合金窒化膜10cは膜厚がおよそ190nmであり、比抵抗が4.7×10Ωmである。また、抵抗温度係数は−0.5%であり、Ti/(Al+Ge)組成比31at.%(原子%)、Ge/Al組成比63at.%(原子%)である。
【0206】
上記スペーサ10を用いた画像形成装置を作製し、参考例1と同様の評価を行った。
【0207】
なお、高圧端子Hvへの印加電圧Vaは1kV〜5kV、素子電極14,15間への印加電圧Vfは14Vとした。
【0208】
スペーサ抵抗値を組み込み前、フェースプレートへの封着後、リアプレートへの封着後、真空排気後、素子電極通電処理後等各工程で計測したところ全行程を通じてほとんど抵抗値の変動が見られなかった。抵抗値は組み込み前は2.4×10Ω、フェースプレート・リアプレートへの封着後は1.9×10Ω、真空排気後は2.5×10Ω、素子電極通電処理後は2.7×10Ωであった。
【0209】
また、スペーサ10のリアプレート2近傍からフェースプレート近傍まで各微少部分の抵抗値を測定したところ全組立工程を通過した後も場所による抵抗値の違いは生じず、膜全体が均一な抵抗値を持っていた。
【0210】
このときスペーサ10に近い位置にある電子放出素子1からの放出電子による発光スポットも含め、二次元状に等間隔の発光スポット列が形成され、鮮明で色再現性のよいカラー画像表示ができた。このことはスペーサ10を設置しても電子軌道に影響を及ぼすような電界の乱れは発生せず、スペーサ10の帯電も起こっていないことを示している。
【0211】
また、このスペーサをとりはずしてXPS(X線光電子分光装置)により表面分析したところ、TiとGeは表面では酸化物であるが、Alは窒化物と酸化物が混在しており、窒化物として存在する割合([窒化アルミニウムを構成する窒素の原子濃度]/[アルミニウムの原子濃度])が49〜54%であった。
【0212】
参考例10)
参考例7のCrとAlとGeの合金窒化膜に代わり、MoとAlとGeの合金窒化膜を用いた。成膜方法については参考例7と同様で、Ar=2.4mTorr/N=0.6mTorr、Mo=10W、Al=500W、Ge=25W(RF)である。この時のMoとAlとGeの合金窒化膜10cは膜厚がおよそ250nmであり、比抵抗が5.3×10Ωmである。また、抵抗温度係数は−0.3%であり、Mo/(Al+Ge)組成比6at.%(原子%)、Ge/Al組成比13at.%(原子%)である。
【0213】
上記スペーサ10を用いた画像形成装置を作製し、参考例7と同様の評価を行った。
【0214】
なお、高圧端子Hvへの印加電圧Vaは1kV〜5kV、素子電極14,15間への印加電圧Vfは14Vとした。
【0215】
スペーサ抵抗値を組み込み前、フェースプレートへの封着後、リアプレートへの封着後、真空排気後、素子電極通電処理後等各工程で計測したところ全行程を通じてほとんど抵抗値の変動が見られなかった。すなわち、抵抗値は組み込み前は2.0×10Ω、フェースプレート・リアプレートへの封着後は1.4×10Ω、真空排気後は1.9×10Ω、素子電極通電処理後は2.4×10Ωであった。
【0216】
また、スペーサ10のリアプレート近傍からフェースプレート近傍まで各微少部分の抵抗値を測定したところ全組立工程を通過した後も場所による抵抗値の違いは生じず、膜全体が均一な抵抗値を持っていた。
【0217】
このときスペーサ10に近い位置にある電子放出素子1からの放出電子による発光スポットも含め、二次元状に等間隔の発光スポット列が形成され、鮮明で色再現性のよいカラー画像表示ができた。このことはスペーサ10を設置しても電子軌道に影響を及ぼすような電界の乱れは発生せず、スペーサ10の帯電も起こっていないことを示している。
【0218】
また、このスペーサをとりはずしてXPS(X線光電子分光装置)により表面分析したところ、MoとGeは表面では酸化物であるが、Alは窒化物と酸化物が混在しており、窒化物として存在する割合([窒化アルミニウムを構成する窒素の原子濃度]/[アルミニウムの原子濃度])が56〜61%であった。
【0219】
参考例11)
参考例7のCrとAlとGeの合金窒化膜に代わり、WとAlとGeの合金窒化膜を用いた。成膜方法については参考例7と同様で、Ar=2.4mTorr/N=0.6mTorr、W=18W、Al=200W、Ge=200W(RF)である。
【0220】
この時のWとAlとGeの合金窒化膜10cは膜厚がおよそ210nmであり、比抵抗が6.2×10Ωmである。また、抵抗温度係数は−0.5%であり、W/(Al+Ge)組成比11at.%(原子%)、Ge/Al組成比180at.%(原子%)である。
【0221】
上記スペーサ10を用いた画像形成装置を作製し、参考例7と同様の評価を行った。
【0222】
なお、高圧端子Hvへの印加電圧Vaは1kV〜5kV、素子電極14,15間への印加電圧Vfは14Vとした。
【0223】
スペーサ抵抗値を組み込み前、フェースプレートへの封着後、リアプレートへの封着後、真空排気後、素子電極通電処理後等各工程で計測したところ全行程を通じてほとんど抵抗値の変動が見られなかった。抵抗値は組み込み前は2.8×10Ω、フェースプレート・リアプレートへの封着後は2.2×10Ω、真空排気後は2.9×10Ω、素子電極通電処理後は3.4×10Ωであった。
【0224】
また、スペーサ10のリアプレート近傍からフェースプレート近傍まで各微少部分の抵抗値を測定したところ全組立工程を通過した後も場所による抵抗値の違いは生じず、膜全体が均一な抵抗値を持っていた。
【0225】
このときスペーサ10に近い位置にある電子放出素子1からの放出電子による発光スポットも含め、二次元状に等間隔の発光スポット列が形成され、鮮明で色再現性のよいカラー画像表示ができた。
【0226】
このことはスペーサ10を設置しても電子軌道に影響を及ぼすような電界の乱れは発生せず、スペーサ10の帯電も起こっていないことを示している。
【0227】
また、このスペーサをとりはずしてXPS(X線光電子分光装置)により表面分析したところ、WとGeは表面では酸化物であるが、Alは窒化物と酸化物が混在しており、窒化物として存在する割合([窒化アルミニウムを構成する窒素の原子濃度]/[アルミニウムの原子濃度])が58〜62%であった。
【0228】
以上説明したように、Alを含む帯電防止膜によっても、製造工程での抵抗値の変動が小さく、高抵抗化する場合でも島状としたり極めて薄膜化する必要がなく、熱暴走もしにくく、安定性、再現性の優れた帯電防止膜を形成することができる。また、高融点で、硬度が高いので安定性に優れる長所も有している。さらに、窒化アルミニウムと窒化ゲルマニウムは絶縁体で、遷移金属窒化物は良導電体なので、組成を調整することで任意の比抵抗値を得ることができる。本発明の帯電防止膜は上述の実施形態等で述べた装置の他、CRT、あるいは放電管等の電子管等に用いることができ、その他にも電荷の帯電が問題となる用途に広く用いることができる。
【0229】
また、本発明の画像形成装置によれば、素子基板とフェースプレート間に配置された絶縁性部材表面に、アルミニウムとゲルマニウムと遷移金属との合金窒化膜を帯電防止膜として用いると、組立工程中に抵抗値の変化がほとんど起こらず、安定した値が得られた。これによりスペーサ近傍でのビームの電位の乱れは抑止され、ビームが蛍光体に衝突する位置と、本来発光すべき蛍光体との位置ずれの発生が防止され、輝度損失を防ぐことができ鮮明な画像表示が可能となった。
【0230】
さらに、アルミニウムとゲルマニウムと遷移金属との合金窒化膜を帯電防止膜として用いる場合、表面のアルミニウムの窒化率が高いほど帯電を抑制でき、大気中で封着を行っても35%以上の窒化率([窒化アルミニウムを構成する窒素の原子濃度]/[アルミニウムの原子濃度])を維持することが可能となった。
【0231】
実施例1
以上の参考例では、遷移金属を含むゲルマニウムの窒化物を用いた構成を示したが本実施例では、ゲルマニウムの酸化物を用いた。さらに本実施例では、帯電を好適に低減するために、ゲルマニウム化合物の膜(第2層)と、金属、特には遷移金属を含む膜(第1層)とを積層して設けている。該第1層としては酸化物が好ましく、遷移金属としては、鉄、コバルト、銅、ルテニウムが好ましい。すなわち、第1層としては、酸化鉄、酸化コバルト、酸化銅、酸化ルテニウム、またはこれらと他の遷移金属との混合物が好ましい。また抵抗温度計数を好適に制御するという面からは、酸化鉄、酸化コバルト、酸化銅、酸化ルテニウム、及びこれらと酸化クロム、酸化ジルコニウム、酸化ニオブ、酸化ハフニウム、酸化タンタル、酸化タングステン、酸化ルテニウム、酸化イットリウムの混合物が好ましい。
【0232】
このような積層構成、特には導電性を制御するための第1層をゲルマニウムの化合物層と合わせて用いる構成を採用することにより、ゲルマニウムの化合物層の仕様範囲を広げても好適な帯電抑制構造を実現することができる。
【0233】
本実施例の構成において、第1層、第2層の膜は、真空蒸着法、スパッタ法、CVD法でも成膜できるが、ディッピング法、スピンナー法、スプレー法、ポッティング法等の、簡便な薄膜形成手段により、特には絶縁部材上に形成することができる。例えば、金属酸化物の微粒子、好ましくは200ミクロン以下の微粒子の分散液、または、金属アルコキシド、有機酸金属塩、及びそれらの誘導体などのゾルの溶液を、まず用途に合わせて混合し、塗布し、乾燥後に400度から1000度で焼成し、目的の帯電緩和膜を得ることができる。溶液の安定性を重視する場合は、金属アルコキシドと、有機酸金属塩は混合して用いない方がよい。
【0234】
以下本実施例で用いるスペーサの構成を詳細に述べる。
【0235】
スペーサ10は清浄化したソーダライムガラスからなる絶縁性基材10a(高さ2.8mm、板厚200μm、長さ40mm)上に帯電防止膜10cとして第1層の酸化イットリウムと酸化銅の混合物(ディッピング法で成膜)、及び第2層の酸化ゲルマニウム(スプレー法で成膜)の膜を成膜した。
【0236】
本実施例で用いた酸化イットリウム及び酸化銅の膜は(株)高純度化学研究所のコート剤SYM−Y01及びSYM−CU04の混合物を用いて成膜した。まずSYM−Y01とSYM−CU04の混合物をディッピング(引き上げ速度:2mm/sec)によりスペーサ上に塗布し、120℃で乾燥、450℃で焼成することにより第1層(膜厚100nm)を成膜した後、酸化ゲルマニウム(GeO;SYM−GE03を使用)からなる膜をスプレー法により10nm成膜した。
【0237】
本実施例のスペーサは上記駆動条件において電子放出素子1からの放出電子による発光スポットのスペーサ近傍のずれはほとんどなく、テレビジョン画像として問題のない範囲であった。
【0238】
本実施例の帯電緩和膜の比抵抗値は、成膜後は7.2×10Ωm、組立工程後は8.5×10Ωm、真空排気後は8.3×10Ωm、抵抗温度係数は−0.6%であった。
【0239】
【発明の効果】
以上説明したように、ゲルマニウムの酸化物を用いることにより、帯電しにくい、また、帯電を低減しやすい、帯電緩和膜を実現することができる。また再現性が好適な膜を実現することができる。また安定性がよい膜を実現することができる。それにより電子線装置においては、帯電の影響の少ない構成を実現することができる。
【図面の簡単な説明】
【図1】 本発明の画像形成装置のスペーサ近傍の概略断面図である。
【図2】 本発明の実施形態例である画像形成装置の、表示パネルの一部を切り欠いて示した斜視図である。
【図3】 本発明で用いたスペーサの断面模式図である。
【図4】 表示パネルのフェースプレートの蛍光体配列を例示した平面図である。
【図5】 マルチ電子ビーム源の基板の平面図及び断面図である。
【図6】 平面型表面伝導型電子放出素子の形成工程図である。
【図7】 電子ビーム源のフォーミング形成印加パルス波形図である。
【図8】 通電活性化工程の印加パルス波形図である。
【図9】 垂直型表面伝導型電子放出素子の断面図である。
【図10】 表面伝導型電子放出素子の電流電圧特性の模式図である。
【図11】 単純マトリクスの配線図である。
【図12】 平面型表面伝導型電子放出素子の断面図である。
【図13】 スパッタ装置の概略的構成図である。
【図14】 多数の微小な電子源を使用したディスプレイの断面模式図である。
【図15】 本発明で用いるスペーサの他の形態を示す斜視図である。
【図16】 参考例6の画像形成装置のスペーサと電子源部分を中心とした断面模式図である。
【図17】 参考例7〜11で用いるスパッタ装置の概略的構成図である。
【符号の説明】
1 電子源(電子放出素子)
2 リアプレート
3 側壁(支持枠)
4 ガラス基板
5 蛍光膜
6 メタルバック
7 フェースプレート
8 外囲器
9 X方向配線
10 スペーサ
10a 絶縁性基材
10b Naブロック層
10c 帯電緩和膜
11 良導電性の電極
12 Y方向配線
13 基板

Claims (18)

  1. 外囲器内に、電子源と、該電子源に対向する対向部材と、該電子源と対向部材との間に設けられる第1の部材とを有する電子線装置であって、
    前記第1の部材は基材と該基材上に設けられた帯電緩和膜とを有し、
    前記帯電緩和膜は、酸化鉄、酸化コバルト、酸化銅、酸化ルテニウム、の少なくとも一種又は混合物を含む第1層と、ゲルマニウムの酸化物を少なくとも含む第2層とを有する電子線装置。
  2. 前記基材は絶縁性を有する請求項に記載の電子線装置。
  3. 前記第1の部材は、前記電子源と対向部材の間の間隔を維持するスペーサである請求項1もしくは2に記載の電子線装置。
  4. 前記第1の部材の前記電子源側の端部と前記対向部材側の端部との間に印加される電圧をVaとした時の、前記帯電緩和膜の比抵抗が10−7×VaΩm以上10Ωm以下である請求項1乃至3のいずれかに記載の電子線装置。
  5. 前記基材はNaを含有する基材であり、前記基材と前記帯電緩和膜の間にNaブロック層を有する請求項1乃至4のいずれかに記載の電子線装置。
  6. 前記第1層は、酸化鉄、酸化コバルト、酸化銅、酸化ルテニウムの少なくとも一種と、酸化クロム、酸化ジルコニウム、酸化ニオブ、酸化ハフニウム、酸化タンタル、酸化タングステン、酸化イットリウムの少なくとも一種との混合物である請求項1乃至5のいずれかに記載の電子線装置。
  7. 外囲器内に、電子源と、該電子源に対向して設けられ電子照射により画像を形成する画像形成部材と、該電子源と画像形成部材との間に設けられる第1の部材とを有する画像形成装置であって、
    前記第1の部材は基材と該基材上に設けられた帯電緩和膜とを有し、
    前記帯電緩和膜は、酸化鉄、酸化コバルト、酸化銅、酸化ルテニウム、の少なくとも一種又は混合物を含む第1層と、ゲルマニウムの酸化物を少なくとも含む第2層とを有する画像形成装置。
  8. 前記基材は絶縁性を有する請求項に記載の画像形成装置。
  9. 前記第1の部材は、前記電子源と画像形成部材の間の間隔を維持するスペーサである請求項もしくはに記載の画像形成装置。
  10. 前記第1の部材の前記電子源側の端部と前記画像形成部材側の端部との間に印加される電圧をVaとした時の、前記帯電緩和膜の比抵抗が10−7×VaΩm以上10Ωm以下である請求項7乃至9のいずれかに記載の画像形成装置。
  11. 前記第1の部材は、前記外囲器内に配置された電極に接続されている請求項7乃至10のいずれかに記載の画像形成装置。
  12. 前記第1の部材は、前記外囲器内に配置され、それぞれ異なる電位が与えられる複数の電極に接続されている請求項7乃至11のいずれかに記載の画像形成装置。
  13. 前記第1の部材は、前記外囲器内に配置された電極に接続される端部に、該端部に沿って設けられる電極を有している請求項11もしくは12に記載の画像形成装置。
  14. 前記第1の部材は、前記電子源に設けられた電極と前記画像形成部材に設けられた電極とに接続されている請求項7乃至13のいずれかに記載の画像形成装置。
  15. 前記電子源に設けられた電極は、前記電子源が有する電子放出素子を駆動する電位を与える電極である請求項14に記載の画像形成装置。
  16. 前記画像形成部材に設けられた電極は、前記電子源からの電子を加速する電位が与えられる電極である請求項14もしくは15に記載の画像形成装置。
  17. 前記基材はNaを含有する基材であり、前記基材と前記帯電緩和膜の間にNaブロック層を有する請求項7乃至16のいずれかに記載の画像形成装置。
  18. 前記第1層は、酸化鉄、酸化コバルト、酸化銅、酸化ルテニウムの少なくとも一種と、酸化クロム、酸化ジルコニウム、酸化ニオブ、酸化ハフニウム、酸化タンタル、酸化タングステン、酸化イットリウムの少なくとも一種との混合物である請求項7乃至17のいずれかに記載の画像形成装置。
JP2002048290A 1998-07-02 2002-02-25 電子線装置及び画像形成装置 Expired - Fee Related JP3805265B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002048290A JP3805265B2 (ja) 1998-07-02 2002-02-25 電子線装置及び画像形成装置

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP10-187918 1998-07-02
JP18791898 1998-07-02
JP26050798 1998-09-14
JP30120398 1998-10-22
JP10-301203 1998-10-22
JP10-260507 1998-10-22
JP2002048290A JP3805265B2 (ja) 1998-07-02 2002-02-25 電子線装置及び画像形成装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP18386799A Division JP3302341B2 (ja) 1998-07-02 1999-06-29 帯電緩和膜及び電子線装置及び画像形成装置及び画像形成装置の製造方法

Publications (2)

Publication Number Publication Date
JP2002321306A JP2002321306A (ja) 2002-11-05
JP3805265B2 true JP3805265B2 (ja) 2006-08-02

Family

ID=27475367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002048290A Expired - Fee Related JP3805265B2 (ja) 1998-07-02 2002-02-25 電子線装置及び画像形成装置

Country Status (1)

Country Link
JP (1) JP3805265B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4773812B2 (ja) * 2003-06-06 2011-09-14 キヤノン株式会社 スペーサの製造方法
JP5002950B2 (ja) * 2005-11-29 2012-08-15 ソニー株式会社 平面型表示装置、並びに、スペーサ及びその製造方法
JP2007311093A (ja) * 2006-05-17 2007-11-29 Sony Corp 平面型表示装置、並びに、スペーサ
JP5514421B2 (ja) * 2008-09-19 2014-06-04 ソニー株式会社 平面型表示装置並びにスペーサ

Also Published As

Publication number Publication date
JP2002321306A (ja) 2002-11-05

Similar Documents

Publication Publication Date Title
JP3302341B2 (ja) 帯電緩和膜及び電子線装置及び画像形成装置及び画像形成装置の製造方法
JP3302313B2 (ja) 帯電防止膜、及び、画像形成装置とその製造方法
US6265822B1 (en) Electron beam apparatus, image forming apparatus using the same, components for electron beam apparatus, and methods of manufacturing these apparatuses and components
JP3639785B2 (ja) 電子線装置及び画像形成装置
JP3805265B2 (ja) 電子線装置及び画像形成装置
JP3302298B2 (ja) 画像形成装置と画像表示装置
JP3762032B2 (ja) 帯電防止膜の成膜方法及び画像表示装置の製造方法
JP3099003B2 (ja) 画像形成装置
JP3740296B2 (ja) 画像形成装置
JP3762031B2 (ja) 帯電防止膜と帯電防止基材及び表示装置
JP3745078B2 (ja) 画像形成装置
JP4006110B2 (ja) 帯電防止膜の製造方法と表示装置
JP4481411B2 (ja) 電子線装置
JP3825925B2 (ja) 帯電防止膜及び表示装置
JP2000248267A (ja) 帯電緩和膜、帯電緩和膜の成膜方法、画像形成装置、および画像形成装置の製造方法
JP3478763B2 (ja) 画像形成装置
JP2000082424A (ja) 画像形成装置とスペーサ
JPH10284284A (ja) 帯電防止膜及び表示装置
JP2000154372A (ja) 帯電緩和膜、画像形成装置、およびその製造方法
JP2000248268A (ja) 帯電緩和膜、帯電緩和膜の成膜方法、画像形成装置、および画像形成装置の製造方法
JP2000248269A (ja) 帯電防止膜及び表示装置
JP2000021334A (ja) 画像形成装置
JP2000082422A (ja) 画像表示装置用帯電防止膜
JP2000248266A (ja) 帯電緩和膜、帯電緩和膜の成膜方法、画像形成装置、および画像形成装置の製造方法
JP2000082425A (ja) 画像形成装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060509

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130519

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140519

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees