本発明の第1実施形態を図1〜図7を参照して以下に説明する。図1は本実施形態におけるひずみ測定システムの全体構成を示すブロック図であり、図中、1はひずみに応じた抵抗値変化を生じる抵抗式ひずみゲージ、2はひずみゲージ1を接続するブリッジボックス、3はブリッジボックス2内に収容された回路との間で電源電圧や電気信号の送受を行うひずみ測定器である。
ブリッジボックス2には、固定抵抗値の抵抗体4a,4b,4cを直列に接続してなる抵抗回路が収容されており、この抵抗回路にひずみゲージ1をこれにあらかじめ結線されたリード線1a,1bを介して接続することで、該ひずみゲージ1を一辺に含むブリッジ回路5を構成するようにしている。この場合、抵抗体4a,4b,4cのそれぞれの抵抗値はひずみゲージ1の公称抵抗値(ひずみを生じていない状態での抵抗値)と同一の抵抗値とされている。そして、ブリッジボックス2のケーシングには、ブリッジ回路5の電源電圧ein(交流電圧)を外部から入力するための一対の電源入力端子6a,6bと、ブリッジ回路5の出力電圧信号eoutを外部に取り出すための一対の出力端子6c,6dが設けられ、これらの端子6a〜6dが、ブリッジボックス2内でブリッジ回路5に接続されている。
さらに、ブリッジボックス2の内部では、ブリッジ回路5の一辺、例えば抵抗体4bにより構成された辺に、スイッチ7を介して固定抵抗値の抵抗体8が並列接続されている。このスイッチ7は、本実施形態では、ラッチリレー(自己保持型のリレー)の接点スイッチであり、該スイッチ7をソレノイド9aを介して開閉駆動するリレー駆動回路9がブリッジボックス2に内臓されている。そして、リレー駆動回路8を外部から動作制御するための一対の制御端子6e,6fがスイッチボックス2のケーシングに設けられ、これらの制御端子6e,6fがリレー駆動回路9に導通している。なお、スイッチ7は、初期状態では開成している。
ひずみ測定器3は、前記端子6a〜6fに接続ケーブル10を介して接続されている。この接続ケーブル10は、ブリッジボックス2の電源入力端子6a,6bに接続された一対の信号線10a,10bと、前記出力端子6c,6dに接続された一対の電源線10c,10dと、前記制御端子6e,6fに接続された一対の制御信号線10e,10fを含んでおり、これらの導線10a〜10fを図示しないチューブやバンドにより束ねて構成されている。
前記ひずみ測定器3は、前記ブリッジ回路5の出力電圧信号eoutを入力する交流増幅器11を備えると共に、ブリッジ回路5の電源電圧ein(交流電圧)の周波数と同一周波数の正弦波信号を発生する発振回路12と、その正弦波信号を増幅してなるブリッジ回路5の電源電圧ein(以下、ブリッジ電源電圧einという)を出力するブリッジ電源出力回路13とを備えている。図2では詳細な図示を省略するが、交流増幅器11は、その入力側が前記接続ケーブル10の一対の信号線10c,10d(図1参照)を介して前記ブリッジ回路5に接続され、該信号線10c,10dを介してブリッジ回路5の出力電圧信号eoutが入力される。また、ブリッジ電源出力回路13は、その出力側が、前記接続ケーブル10の一対の電源線10a,10b(図1参照)を介してブリッジ回路5に接続され、該電源線10a,10bを介してブリッジ電源電圧einをブリッジ回路5に付与する。
また、ひずみ測定器3は、交流増幅器11の出力電圧信号から後述する0°基準位相信号と同相の信号成分を抵抗成分(0°位相成分)として検波する0°位相検波回路14と、上記0°基準位相信号に対して90°の位相差(位相遅れ)を有する90°基準位相信号と同相の信号成分を容量成分(90°位相成分)として検波する90°位相検波回路15と、これらの位相検波回路14,15で検波された信号成分からそれぞれブリッジ電源電圧と同一の周波数を含む高周波成分を除去する(直流成分を抽出する)ローパスフィルタ16,17と、0°位相検波回路14側のローパスフィルタ16の出力(直流成分)を増幅する直流増幅器18と、この直流増幅器18の出力をひずみゲージ1のひずみ値(ひずみゲージ1を貼着する測定対象物体のひずみ値)を示すひずみ測定信号として外部に出力する出力回路19と、前記ブリッジ電源出力回路13の出力(ブリッジ電源電圧ein)を基に前記0°基準位相信号を発生する位相調整回路20と、この位相調整回路20が発生する0°基準位相信号の位相を90°ずらす(90°遅らせる)ことで、前記90°基準位相信号を発生する移相回路21とを備えている。
ここで、前記位相調整回路20が発生する0°基準位相信号および移相回路21が発生する90°基準位相信号は、それぞれ図3の2段目、3段目のグラフで示すような矩形波であり、その周波数はブリッジ電源電圧einと同一である。そして、0°位相検波回路14は、0°基準位相信号のレベルが正のレベルである期間では、交流増幅器11の出力電圧信号をそのまま出力し、0°基準位相信号のレベルが負のレベルである期間では、交流増幅器11の出力電圧信号の極性を反転させて出力するようにしている。同様に、90°位相検波回路15は、90°基準位相信号のレベルが正のレベルである期間では、交流増幅器11の出力電圧信号をそのまま出力し、0°基準位相信号のレベルが負のレベルである期間では、交流増幅器11の出力電圧信号の極性を反転させて出力するようにしている。
例えば、図3の1段目(最上段)のグラフで例示する交流増幅器11の出力電圧信号(この例では正弦波)が0°基準位相信号および90°基準位相信号と図示のような位相関係にあるとき(図3の例では、交流増幅器11の出力電圧信号と0°基準位相信号とは同相である)、0°位相検波回路14の出力、90°位相検波回路15の出力はそれぞれ図3の4段目、5段目のグラフで示すような波形の信号となる。また、例えば図4の1段目(最上段)のグラフで例示する交流増幅器11の出力電圧信号(この例では正弦波)が0°基準位相信号および90°基準位相信号と図示のような位相関係にあるとき(図4の例では、交流増幅器11の出力電圧信号は、0°基準位相信号に対して角度α°の位相遅れを生じている)、0°位相検波回路14の出力、90°位相検波回路15の出力はそれぞれ図4の4段目、5段目のグラフで示すような波形の信号となる。
なお、一般的に周期信号の位相は、その信号の角周波数と時間(ある任意の時刻0からの経過時間)との積に、時刻0における初期位相を加算したものであるから、図3の横軸位相の値を表す軸であると共に、時間軸でもある。
補足すると、ひずみ測定器3からブリッジ回路5までの全回路が抵抗成分のみにより構成されており、あるいは、その全回路の容量成分が抵抗成分に比して十分に小さいと仮定した場合、交流増幅器11に入力するブリッジ回路5の出力電圧信号eout(以下、ブリッジ出力eoutということがある)、ひいては交流増幅器11の出力電圧信号は、前記ブリッジ電源出力回路13が発生するブリッジ電源電圧einとほぼ同相の信号になる。従って、位相調整回路20からブリッジ電源電圧einと同相の0°基準位相信号を発生するようにすれば、0°位相検波回路14の出力は、ブリッジ回路5の抵抗値変化に応じた抵抗成分となる。但し、特に、前記ひずみゲージ1とブリッジボックス2との間のリード線1a,1bが長い場合には、そのリード線1a,1b間の浮遊容量がブリッジ回路5に実質的に組み込まれることとなる。また、ブリッジボックス2とひずみ測定器3との間の接続ケーブル10が長い場合には、この接続ケーブル10の信号線10c,10dの間や電源線10a,10bの間にも浮遊容量が組み込まれることとなる。そして、これらの浮遊容量の影響によって、ブリッジ出力eout、ひいては交流増幅器11の出力電圧信号のうちの、ブリッジ回路5の抵抗値変化に応じた抵抗成分は、ブリッジ電源電圧einに対して位相のずれを生じる。従って、交流増幅器11の出力電圧信号から、ブリッジ回路5の抵抗値変化のみに起因する真の抵抗成分(またはそれとほぼ同等の抵抗成分)を0°位相検波回路14で抽出するためには、前記0°基準位相信号の位相をブリッジ電源電圧einの位相に対して適切にずらしてやる必要がある。このため、前記位相調整回路20は、後述する位相コントロール回路28からの指令信号を受けて、ブリッジ電源電圧einに対する0°基準位相信号の位相を調整し得るようになっている。
さらに、ひずみ測定器3は、0°位相検波回路14側のローパスフィルタ16の出力(直流成分)がほぼ0であるか否か(より詳しくは、ローパスフィルタ16の出力レベルが0近傍の所定の範囲内に収まっているか否か)を判断する判別回路22(以下、0°位相側判別回路22という)と、この0°位相側判別回路22の出力と位相調整回路20が発生する0°基準位相信号とを基に、交流増幅器11に付加的に入力する初期不平衡補償信号(詳細は後述する)を発生する0°位相バランス回路23を制御するバランスコントロール回路24と、90°位相検波回路15側のローパスフィルタ17の出力(直流成分)がほぼ0であるか否か(より詳しくは、ローパスフィルタ17の出力レベルが0近傍の所定の範囲内に収まっているか否か)を判断する判別回路25(以下、90°位相側判別回路25という)と、この90°位相側判別回路25の出力と移相回路21が発生する90°基準位相信号とを基に、交流増幅器11に付加的に入力する初期不平衡補償信号(詳細は後述する)を発生する90°位相バランス回路26を制御するバランスコントロール回路27と、90°位相側判別回路25の出力に応じて位相調整回路20に0°基準位相信号の位相を調整するための指令信号を出力する位相コントロール回路28とを備えている。補足すると、0°位相側判別回路22および90°位相側判別回路25がそれぞれバランスコントロール回路24,27に出力する信号には、各ローパスフィルタ16,17の出力レベルを示す信号も含まれる。
また、ひずみ測定器3には、ブリッジボックス2のリレー駆動回路9の制御信号を前記接続ケーブル10の制御信号線10e,10f(図1参照)を介して該リレー駆動回路9に出力するリレー制御回路29と、ひずみ測定器3内の各回路に動作用電源を供給する電源回路30とが備えられている。電源回路30は、外部の交流電源あるいは電池から各回路の動作用電源を生成する。
次に、実施形態の装置の作動を説明する。まず、ひずみ測定を開始しようとするとき、ブリッジ回路5の初期不平衡を補償するための処理(以下、初期不平衡補償処理という)をひずみ測定器3の所要の動作によって行う。ひずみ測定を開始する前のひずみゲージ1が無ひずみ状態であっても、前記リード線1a,1bの抵抗値やこれらのリード線1a,1b間の浮遊容量の影響によって、一般には、ブリッジ回路5が不平衡状態となっており、ブリッジ回路5にブリッジ電源電圧einを付与した状態でのブリッジ出力eoutは一般には0にならない。この場合、ひずみゲージ1が無ひずみ状態であっても、ブリッジ出力eoutからひずみ測定器3の交流増幅器11、0°位相検波回路14およびローパスフィルタ16を介して得られる直流電圧のレベルは0にならないので、この直流電圧から把握されるひずみ測定値に誤差を生じることとなる。このような不具合を解消するための処理が前記初期不平衡補償処理であり、この処理は、本発明における初期不平衡調整ステップに相当するものである。
この初期不平衡補償処理を以下に詳説すると、まず、ひずみ測定を開始しようとするときの、ひずみゲージ1の無ひずみ状態において、ひずみ測定器3の図示しない操作パネル等の所定の操作によって、ブリッジ電源出力回路13からブリッジ電源電圧eoutが出力され、それがブリッジ回路5に付与される。そして、この時のブリッジ出力eout(以下、これを初期不平衡ブリッジ出力eoutということがある)がひずみ測定器3の交流増幅器11で増幅された後、0°位相検波回路14および90°位相検波回路15に入力される。この場合、0°位相検波回路14には、ブリッジ電源出力回路13が出力しているブリッジ電源電圧einと同相の0°基準位相信号が位相調整回路20から与えられ、また、90°位相検波回路15には、0°基準位相信号に対して90°の位相差(位相遅れ)を有する、すなわちブリッジ電源電圧einに対して90°の位相遅れを有する90°基準位相信号が移相回路21から与えられる。従って、0°位相検波回路14は、初期不平衡ブリッジ出力eoutに対応(比例)する交流増幅器11の出力電圧信号のうち、ブリッジ電源電圧einと同相の信号成分を検波し、90°位相検波回路15は、交流増幅器11のうち、ブリッジ電源電圧einに対して90°の位相遅れを有する信号成分を検波することとなる。
この動作を図6の複素平面上のベクトル図で説明すると、初期不平衡ブリッジ出力eoutに対応する交流増幅器11の出力電圧信号を複素表現したときのベクトルは例えば図中のV0で表される。ここで、同図中の実軸1(実数軸1)は、ブリッジ電源電圧einと同相の軸であり、虚軸1(虚数軸1)はブリッジ電源電圧einに対して90°の位相差を有する軸である。ベクトルV0の大きさ(長さ)が初期不平衡ブリッジ出力eoutに対応する交流増幅器11の出力電圧信号の振幅に相当し、実軸1に対するベクトルV0の角度αが交流増幅器11の出力電圧信号のブリッジ電源電圧einに対する位相差(位相の遅れ分)に相当する。位相差αは、主に、前記リード線1a,1bの間の浮遊容量や、前記接続ケーブル10の信号線10c,10dの間の浮遊容量、電源線10a,10bの間の浮遊容量などの容量成分によって発生する位相差である。なお、同図中の実軸2および虚軸2については後述する。
この場合、0°位相基準信号はブリッジ電源電圧einと同相であるので、初期不平衡ブリッジ出力eoutに対応する交流増幅器11の出力電圧信号のうち、前記0°位相検波回路14で検波される信号成分は、ベクトルV0の、実軸1方向の成分ベクトルV0xであり、前記90°位相検波回路15で検波される信号成分は、ベクトルV0の、虚軸1方向の成分ベクトルV0yである。
初期不平衡補償処理では、上述のように初期不平衡ブリッジ出力eoutが交流増幅器11に入力されつつ、バランスコントロール回路24が、判別回路22で判別される0°位相側ローパスフィルタ16の出力(直流成分)のレベルが0になるように、換言すれば、交流増幅器11の出力電圧信号のうち、ブリッジ電源電圧einと同相の信号成分(0°位相成分)、ひいては0°位相検波回路14の出力が定常的に0レベルの信号になるように、0°位相バランス回路23から初期不平衡補償信号(以下、0°位相初期不平衡補償信号という)を交流増幅器11に付加的に入力させる。この動作は、初期不平衡ブリッジ出力eoutに対応する交流増幅器11の出力電圧信号としての図6のベクトルV0の実軸1方向の成分ベクトルV0xと180°位相の異なるベクトルVb0x、すなわち、成分ベクトルV0xと重畳(加算)したときに該成分ベクトルV0xを打ち消すようなベクトルVb0xの出力電圧信号を交流増幅器11の出力側に発生させる信号を、0°位相初期不平衡補償信号として交流増幅器11に付加的に入力することを意味している。この場合、0°位相初期不平衡補償信号の大きさ(振幅)は、判別回路22からバランスコントロール回路24に与えられる0°位相側ローパスフィルタ16の出力レベルに応じて決定され、該補償信号の位相は、0°基準位相信号に対して180°の位相差を有するように決定される。より具体的には、初期不平衡ブリッジ出力eoutに対応する交流増幅器11の出力電圧信号が前記図4に例示したように0°基準位相信号に対して角度αの位相遅れを有する場合、交流増幅器11の出力電圧信号の0°位相成分(ブリッジ電源電圧einと同相の成分)は、図5の第4段目のグラフに実線で示すような波形となる。このとき、0°位相初期不平衡補償信号は、同図の第4段面のグラフに2点鎖線で示すように、実線の波形と180°の位相差を有する波形の信号となる。
なお、本実施形態においては、初期不平衡補償処理では、0°位相側ローパスフィルタ16の出力は、判別回路22にのみ入力され、直流増幅器18には入力されないようになっている。これは後述する位相ずれ補償処理においても同様である。
上記したバランスコントロール回路24の制御処理が実行されるのと並行して、これと同様の制御処理がバランスコントロール回路27でも実行される。すなわち、バランスコントロール回路27は、判別回路25で判別される90°位相側ローパスフィルタ17の出力(直流成分)のレベルが0になるように、換言すれば、交流増幅器11の出力電圧信号のうち、ブリッジ電源電圧einに対して90°の位相遅れを有する信号成分(90°位相成分)、ひいては90°位相検波回路15の出力が定常的に0レベルの信号になるように、90°位相バランス回路26から初期不平衡補償信号(以下、90°位相初期不平衡補償信号という)を交流増幅器11に付加的に入力させる。この動作は、初期不平衡ブリッジ出力eoutに対応する交流増幅器11の出力電圧信号としての図6のベクトルV0の虚軸1方向の成分ベクトルV0yと180°位相の異なるベクトルVb0y、すなわち、成分ベクトルV0yと重畳(加算)したときに該成分ベクトルV0yを打ち消すようなベクトルVb0yの出力電圧信号を交流増幅器11の出力側に発生させる信号を、90°位相初期不平衡補償信号として交流増幅器11に付加的に入力することを意味している。この場合、90°位相初期不平衡補償信号の大きさ(振幅)は、判別回路25からバランスコントロール回路27に与えられる0°位相側ローパスフィルタ17の出力レベルに応じて決定され、該補償信号の位相は、90°基準位相信号に対して180°の位相差を有するように決定される。より具体的には、初期不平衡ブリッジ出力eoutに対応する交流増幅器11の出力電圧信号が前記図4に例示したように0°基準位相信号に対して角度αの位相遅れを有する場合、交流増幅器11の出力電圧信号の90°位相成分(ブリッジ電源電圧einに対して90°の位相遅れを有する成分)は、図5の第5段目のグラフに実線で示すような波形となる。このとき、0°位相初期不平衡補償信号は、同図の第5段面のグラフに2点鎖線で示すように、実線の波形と180°の位相差を有する波形の信号となる。
上記のように0°位相初期不平衡補償信号と90°位相初期不平衡補償信号とを交流増幅器11に付加的に入力することは、0°位相初期不平衡補償信号に対応する図6のベクトルVb0xと90°位相初期不平衡補償信号に対応する図6のベクトルVb0yとを合成してなるベクトルVb0の出力電圧信号を交流増幅器11の出力側に付加的に発生させることと等価である。この場合、このベクトルVb0は初期不平衡ブリッジ出力eoutに対応する交流増幅器11の出力電圧信号を表すベクトルV0と大きさが同じで且つ180°位相が相違するものとなるので、該ベクトルVb0の出力電圧信号がベクトルV0の出力電圧信号に重畳されることで、交流増幅器11の出力電圧信号は定常的に0レベルの信号となる。
これにより、ひずみゲージ1の無ひずみ状態での交流増幅器11の出力電圧信号が0となるように0°位相および90°位相初期不平衡補償信号が決定され、ブリッジ回路5の初期不平衡の影響が補償されることとなる。そして、以後は、バランスコントロール回路24,27は、その決定した初期不平衡補償信号を継続的に各バランス回路23,26から交流増幅器11に入力させるように各バランス回路23,26を動作させる。
なお、交流増幅器11が複数段のアンプを備えるような場合には、0°位相初期不平衡補償信号や90°位相初期不平衡補償信号は、必ずしも初段のアンプに入力する必要はなく、2段目以降のアンプに入力するようにしてもよい。
補足すると、交流増幅器11の出力電圧信号のうち、ブリッジ回路5の抵抗値の平衡状態からのずれに応じた実際の抵抗成分は、特に接続ケーブル10における前記浮遊容量の影響によって、ブリッジ電源出力回路13が発生するブリッジ電源電圧einに対して位相遅れを生じる。例えば図6に示す如く、初期不平衡ブリッジ出力eoutに対応する交流増幅器11の出力電圧信号のベクトルV0のうち、実際の抵抗成分はブリッジ電源電圧einと同相の実軸1に対して角度θの位相遅れを有する成分ベクトルV0rで表される。同様に、ベクトルV0のうち、実際の容量成分(抵抗成分と90°の位相差を有する成分)はブリッジ電源電圧einと90°の位相差を有する虚軸1に対して角度θの位相遅れを有する成分ベクトルV0cで表される。図6に示した実軸2は、交流増幅器11の出力電圧信号のうち、実際の抵抗成分と同相の軸を示しており、虚軸2は、実軸2に対して90°の位相差を有する軸(実際の容量成分と同相の軸)を示している。
従って、前述した初期不平衡補償処理において、0°位相検波回路14および90°位相検波回路15がそれぞれ検波する信号成分は、一般には、初期不平衡ブリッジ出力eoutの実際の抵抗成分、容量成分を表すものとはならない。
但し、初期不平衡補償処理は、結果的に交流増幅器11の出力電圧信号が0になるように0°基準位相信号と同相の0°位相初期不平衡補償信号と90°基準位相信号と同相の90°位相初期不平衡補償信号を決定して、交流増幅器11に付加的に入力する処理であり、これらの初期不平衡補償信号を合成してなる信号、すなわち、図6のベクトルVb0に対応する信号は、初期不平衡ブリッジ出力eoutの実際の抵抗成分、容量成分によらずに、該初期不平衡ブリッジ出力eout(図6のベクトルV0)に対して一義的に定まる。より一般的にいえば、0°基準位相信号および90°基準位相信号がブリッジ電源電圧einに対してどのような位相差を有していても、前記したように0°位相検波回路14の出力が0になるように0°位相初期不平衡補償信号を決定すると共に、90°位相検波回路15の出力が0になるように90°位相初期不平衡補償信号を決定することで、それらの補償信号を合成してなる信号によって交流増幅器11が発生する出力電圧信号は、初期不平衡ブリッジ出力eoutに対応する図6のベクトルV0に対して180°位相の異なるものとして一義的に定まるベクトルVb0となる。
従って、前記した初期不平衡補償処理では、0°基準位相信号の位相をブリッジ電源電圧einと同相にしたが、初期不平衡補償処理で使用する0°基準位相信号は、ブリッジ電源電圧einと同相にする必要はなく、該ブリッジ電源電圧einと任意の位相差を有するものであってもよい。
なお、ブリッジ電源電圧einに対する初期不平衡ブリッジ出力eoutの位相、すなわち、図6の角度αは、リード線1a,1b間の浮遊容量や接続ケーブル10の浮遊容量、リード線1a,1bの抵抗値などが総合的に影響して定まるものであるので、初期不平衡ブリッジ出力eoutの実際の抵抗成分のブリッジ電源電圧einに対する位相差(図6の角度θ)を該初期不平衡ブリッジ出力eoutから把握することは一般にはできない。
上述したように初期不平衡補償処理が実行された後、これに続いて、ブリッジ回路5の抵抗値変化(容量成分の変化を伴わない抵抗値変化)によるブリッジ出力eoutの実際の抵抗成分がブリッジ電源電圧einに対して生じる位相遅れの影響を補償するための処理(以下、位相ずれ補償処理という)がひずみ測定器3の所要の動作によって行われる。精度のよいひずみ測定を行うためには、ブリッジ出力eoutから、ひずみゲージ1の抵抗値変化に伴う実際の抵抗成分を0°位相検波回路14で検波する必要がある。この場合、前記したようにブリッジ回路5の抵抗値変化に応じたブリッジ出力eoutの実際の抵抗成分は、特に接続ケーブル10における前記浮遊容量の影響によって、ブリッジ電源出力回路13が発生するブリッジ電源電圧einに対して位相遅れを生じるので、その位相遅れ分だけ、0°基準位相信号の位相をブリッジ電源電圧einからずらすように決定する必要がある。位相ずれ補償処理は、このように0°基準位相信号の位相(詳しくはブリッジ電源電圧einに対する位相差)を決定する処理であり、本発明における位相ずれ決定処理に相当するものである。
この位相ずれ補償処理を以下に詳説すると、まず、前記リレー制御回路29から、ブリッジボックス2のリレー駆動回路9に制御信号が与えられ、これに応じてリレー駆動回路9がソレノイド9aを介してスイッチ7を開成状態から閉成させる。なお、本実施形態では、ラッチリレーを使用しているので、リレー駆動回路9からソレノイド9aに一時的に通電するだけでスイッチ7は開成状態から閉成し、その閉成状態が維持される。また、ひずみゲージ1は初期不平衡補償処理のときと同様に無ひずみ状態である。
これにより、ブリッジ回路5の一辺(前記抵抗体4bにより構成される辺)に抵抗体8がスイッチ7を介して並列に接続されることとなる。従って、ブリッジ回路5の抵抗値が強制的に変化させられる。この場合、抵抗体8の抵抗値は、それをブリッジ回路5に接続したときのブリッジ回路5の抵抗値変化(ひいてはブリッジ出力eoutの振幅変化)が、ひずみゲージ1の通常的なひずみ(例えばひずみゲージ1で測定可能なひずみ値の範囲内の中間的な値のひずみ)によって生じるブリッジ回路5の抵抗値変化と同程度になるような抵抗値にあらかじめ定めておけばよい。なお、抵抗体8は、実質的に容量成分等を含まない抵抗体として機能するものであれば、その抵抗値は必ずしも高精度なものである必要はない。
そして、上記のように抵抗体8をブリッジ回路5に接続した状態で、ひずみ測定器3のブリッジ電源出力回路13からブリッジ電源電圧einを付与しつつ、ブリッジ出力eoutをひずみ測定器3の交流増幅器11に入力する。また、これと並行して、交流増幅器11には、前記初期不平衡補償処理によって決定された0°位相初期不平衡補償信号と90°位相初期不平衡補償信号とがそれぞれ各バランス回路23,26から付加的に入力される。
この場合、前記初期不平衡補償処理によって、ブリッジ回路5の初期不平衡は補償されているので、この時のブリッジ出力eoutに対応する交流増幅器11の出力電圧信号は、抵抗体8の接続によるブリッジ回路5の抵抗値変化に応じたものとなる。別の言い方をすれば、この時のブリッジ出力eout(以下、位相ずれ補償時ブリッジ出力eoutということがある)に対応(比例)する交流増幅器11の出力電圧信号そのものが、ブリッジ回路5の抵抗値変化に応じた抵抗成分に相当するものとなる。但し、その抵抗成分は、前記接続ケーブル10の浮遊容量の影響で、一般にはブリッジ電源電圧einに対して位相遅れを有するものとなっている。
そこで、位相ずれ補償処理では、0°基準位相信号が前記位相ずれ補償時ブリッジ出力eoutに対応する交流増幅器11の出力電圧信号と同相になるように0°基準位相信号の位相を決定する。
この処理は前記位相コントロール回路28の動作を主体として次にように行われる。すなわち、位相コントロール回路28は、判別回路25の出力を監視しつつ、連続的に、もしくは、微小量ずつ、0°基準位相信号の位相をブリッジ電源電圧einと同一の位相から変化させていくように、位相調整回路20を制御する。なお、これに追従して、移相回路21が発生する90°基準位相信号も、0°基準位相信号との位相差(90°)を維持しながら変化していくこととなる。
この場合、0°基準位相信号が位相ずれ補償時ブリッジ出力eoutに対応する交流増幅器11の出力電圧信号とほぼ同相になる時に、90°位相側ローパスフィルタ17の出力(90°位相検波回路15の出力の直流成分)がほぼ0になる。すなわち、前記図3に例示したように、交流増幅器11の出力電圧信号が、0°基準位相信号と同相であるときには、90°位相検波回路15の出力は、正側と負側とで対称的な波形となるので、90°位相側ローパスフィルタ17の出力がほぼ0になる。そこで、本実施形態における位相コントロール回路28は、0°基準位相信号の位相を変化させていく過程で、90°位相側ローパスフィルタ17の出力がほぼ0になったこと(詳しくは、該出力のレベルが0近傍の所定の範囲内に収まったこと)を判別回路25の出力によって認識した時の0°基準位相信号のブリッジ電源電圧einに対する位相差を位相ずれ補償時ブリッジ出力eoutに対応する交流増幅器11の出力電圧信号のブリッジ電源電圧einに対する位相差として決定する。そして、その位相差分だけブリッジ電源電圧einに対して位相差を有する0°基準位相信号をひずみ測定時に0°位相検波回路14に位相調整回路20から出力させるべき0°基準位相信号として決定する。つまり、90°位相側ローパスフィルタ17の出力がほぼ0になる時の、0°基準位相信号の位相をひずみ測定時に使用すべき0°基準位相信号の位相として決定する。このように決定された0°基準位相信号は、位相ずれ補償時ブリッジ出力eoutに対応する交流増幅器11の出力電圧信号、すなわち、ブリッジ出力eoutの抵抗成分に同相のものとなる。
この動作を図7の複素平面上のベクトル図で説明すると、同図中のベクトルVεが、位相ずれ補償時ブリッジ出力eoutに対応する交流増幅器11の出力電圧信号を表すベクトルである。この場合、0°基準位相信号がブリッジ出力電圧einと同相である状態では、90°位相検波回路15が検波する信号成分は、虚軸1方向の成分ベクトルVεy(≠0ベクトル)である。なお、実軸1および虚軸1は前記図6のものと同じであり、図示のベクトルVεは、ブリッジ出力電圧einと同相の実軸1に対して角度θの位相遅れを有している。また、図示の例では、0°基準位相信号がブリッジ出力電圧einと同相である状態では、0°位相検波回路14で検波される信号成分は、実軸1方向の成分ベクトルVεxである。
そして、この状態から、0°基準位相信号の位相を変化させていくということは、実軸および虚軸を回転させていくことと同等であり、0°基準位相信号の位相がブリッジ電源電圧einに対して角度θの位相遅れを有する位相まで変化したときに、図示の実軸2および虚軸2で示すように、位相ずれ補償時ブリッジ出力eoutに対応するベクトルVεと実軸2とが同相になり、且つ、虚軸2がベクトルVεと90°の位相差を有するものとなる。このため、ベクトルVεの、虚軸2方向の成分ベクトルは0になる。従って、90°位相検波回路15が検波する信号成分が0になるときの、0°基準位相信号の位相が、位相ずれ補償時ブリッジ出力eoutに対応する交流増幅器11の出力電圧信号の位相と同相になる。
なお、位相ずれ補償処理で、前記のように0°基準位相信号の位相を変化させていくとき、0°基準位相信号が位相ずれ補償時ブリッジ出力eoutに対応する交流増幅器11の出力電圧信号と同相になるときに、0°位相側ローパスフィルタ16の出力レベルは、最大となり、0°基準位相信号の位相が交流増幅器11の出力電圧信号からずれるにしたがって、0°位相側ローパスフィルタ16の出力レベルは小さくなる。従って、位相ずれ補償処理で、0°基準位相信号の位相を決定するときには、0°位相側ローパスフィルタ16の出力レベルが最大となるような0°基準位相信号の位相を、ひずみ測定時に位相調整回路20から発生させる0°基準位相信号の位相として決定するようにしてもよい。この場合には、判別回路25の出力に代えて、判別回路22の出力を位相コントロール回路28に入力するようにして、0°位相側ローパスフィルタ16の出力レベルが最大となるときの0°基準位相信号の位相をひずみ測定時に使用すべき0°基準位相信号の位相として決定するようにすればよい。
補足すると、位相ずれ補償時ブリッジ出力eoutのブリッジ電源電圧einに対する位相差は、原理的には、例えばブリッジ電源電圧einのゼロクロス点(einが0となる位相)と、位相ずれ補償時ブリッジ出力eoutのゼロクロス点(eoutが0となる位相)との差分として直接的に検出することも可能である。但し、一般には、ブリッジ出力eoutにはノイズ成分も多少なりとも含まれるため、位相ずれ補償時ブリッジ出力eoutのゼロクロス点を高精度に把握することは困難である。従って、位相ずれ補償時ブリッジ出力eoutと同相になる0°基準位相信号を決定する上では、前記したように0°位相側ローパスフィルタ16の出力レベルが最大となり、あるいは、90°位相側ローパスフィルタ17の出力レベルがほぼ0となるような0°基準位相信号を位相ずれ補償時ブリッジ出力eoutと同相のものとして決定することが好ましい。
以上のようにして、0°基準位相信号の位相を決定することで、位相ずれ補償処理が完了する。
本実施形態では、上記位相ずれ補償処理に続いて、ひずみ測定器3のリレー制御回路29からブリッジボックス2のリレー駆動回路9に制御信号を与え、前記スイッチ7を閉成状態から開成させる。そして、この状態で、再度、前記初期不平衡補償処理を実行した後、ひずみゲージ1を測定対象の物体(図示省略)に貼着した状態(物体のひずみと同じひずみがひずみゲージ1に生じる状態)で、実際のひずみ測定が開始される。この場合、再度の初期不平衡補償処理は、0°基準位相信号の位相を前記位相ずれ補償処理で決定した位相に固定した状態で行われる。そして、これに続くひずみ測定では、0°基準位相信号の位相を位相ずれ補償処理で決定した位相に維持し、また、再度の初期不平衡補償処理で決定された0°位相初期不平衡補償信号と90°位相初期不平衡補償信号とをそれぞれ各バランス回路23,26から交流増幅器11に付加的に入力しつつ、ブリッジ出力eoutが交流増幅器11に入力される。そして、このときの0°位相側ローパスフィルタ16の出力(これはひずみゲージ1の抵抗値変化に応じた実際の抵抗成分の直流成分に相当するものとなる)が直流増幅器18および出力回路19を介して出力され、その出力信号のレベルに基づいてひずみ測定値が求められる。
なお、本実施形態では、位相ずれ補償処理の後に初期不平衡補償処理を再度実行するようにしたが、この再度の初期不平衡補償処理は念のための処理であり、必ずしも実行する必要はない。従って、位相ずれ補償処理の後に直ちにひずみ測定を開始するようにしてもよい。
以上のようにして本実施形態は、ひずみ測定を開始しようとするときに、初期不平衡補償処理と位相ずれ補償処理とを順次実行するようにしたことによって、前記リード線1a,1bの間の浮遊容量や、前記接続ケーブル10の信号線10c,10dの間の浮遊容量、電源線10a,10bの間の浮遊容量の影響を適切に補償して、交流増幅器11の出力電圧信号から、ひずみゲージ1の抵抗値変化に応じた実際の抵抗成分を0°位相検波回路14で検波することができ、ひいては精度のよいひずみ測定を行うことができる。
次に、本発明の第2実施形態を図8を参照して説明する。なお、本実施形態は、ひずみゲージのブリッジ回路への組み込み構成のみが前記第1実施形態と相違するものであるので、第1実施形態と同一部分については、第1実施形態と同一の参照符号を用いて説明を省略する。
前記第1実施形態では、ひずみゲージ1をこれに結線された2つのリード線1a,1bを介してブリッジ回路5に組み込む、いわゆる2線式の測定手法を例にとって説明したが、本発明は、例えばひずみゲージを3つのリード線を介してブリッジ回路に組み込む、いわゆる3線式の測定手法にも適用することができる。第2実施形態は、この3線式の実施形態を示すものである。
この第2実施形態が第1実施形態と相違する点を説明すると、図8に示すように、ひずみゲージ1には、リード線1a,1bが結線されているほか、さらに、該ひずみゲージ1の一端、例えばリード線1a側の一端にリード線1cが結線されている。そして、これらのリード線1a〜1cを介してひずみゲージ1がブリッジボックス2’に接続される。この場合、ブリッジボックス2’の内部では、出力端子6c,6dのうち、出力端子6cは、抵抗体4aには直接的に接続されておらず、リード線1cに接続(導通)されるようになっている。これ以外の構成は、前記第1実施形態とまったく同一である。なお、上記の接続構成でひずみゲージ1をブリッジ回路5に組み込んだとき、リード線1a,1bは、ブリッジ回路5の各別の辺に組み込まれることとなる。
かかる本実施形態の装置では、ひずみ測定を開始しようとするときに、前記第1実施形態とまったく同様に初期不平衡補償処理および位相ずれ補償処理が実行され、これにより、リード線1a〜1cの間の浮遊容量や、接続コード10の浮遊容量の影響を適切に補償することができる。
なお、前記各実施形態では、位相ずれ補償処理において、抵抗体8をブリッジ回路5に接続して、ブリッジ回路5の抵抗値変化を発生させるようにしたが、原理的には、ブリッジ回路5の容量成分を変化させるようにして、その時のブリッジ出力eoutに対して90°の位相差(位相の進み)を有するように、ひずみ測定時に使用すべき0°基準位相信号の位相を決定する(具体的には、ブリッジ回路5の容量成分を変化させた時の0°位相側ローパスフィルタ16の出力レベルがほぼ0になり、もしくは、90°位相側ローパスフィルタ17の出力レベルが最大になるように0°基準位相信号の位相を決定する)ようにしてもよい。但し、一般に容量成分を持つコンデンサは、抵抗成分も持つため、ブリッジ回路5の容量成分を変化させるためにコンデンサを該ブリッジ回路5に接続するようにしても、ブリッジ回路5の容量成分だけを変化させることは難しく、抵抗成分も変化してしまう。従って、位相ずれ補償処理において、ブリッジ回路にコンデンサを接続してブリッジ回路5の容量成分を変化させることは実用的でない。このため、本発明では、位相ずれ補償処理で、ブリッジ回路に抵抗体を接続するようにした。