JP3787556B2 - 保持装置、露光装置及びデバイス製造方法 - Google Patents

保持装置、露光装置及びデバイス製造方法 Download PDF

Info

Publication number
JP3787556B2
JP3787556B2 JP2003037565A JP2003037565A JP3787556B2 JP 3787556 B2 JP3787556 B2 JP 3787556B2 JP 2003037565 A JP2003037565 A JP 2003037565A JP 2003037565 A JP2003037565 A JP 2003037565A JP 3787556 B2 JP3787556 B2 JP 3787556B2
Authority
JP
Japan
Prior art keywords
optical member
holding device
optical
holding
adjustment unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003037565A
Other languages
English (en)
Other versions
JP2004247619A (ja
JP2004247619A5 (ja
Inventor
直記 村里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2003037565A priority Critical patent/JP3787556B2/ja
Priority to US10/781,412 priority patent/US7031082B2/en
Publication of JP2004247619A publication Critical patent/JP2004247619A/ja
Publication of JP2004247619A5 publication Critical patent/JP2004247619A5/ja
Application granted granted Critical
Publication of JP3787556B2 publication Critical patent/JP3787556B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • G02B27/0068Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration having means for controlling the degree of correction, e.g. using phase modulators, movable elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/023Mountings, adjusting means, or light-tight connections, for optical elements for lenses permitting adjustment

Description

【0001】
【発明の属する技術分野】
本発明は、一般には、光学部材を搭載する精密機械、特に、露光装置等の投影光学系に関し、更に詳細には、半導体素子、撮像素子(CCD等)又は薄膜磁気ヘッド等を製造するためのリソグラフィー工程に使用される露光装置において、原版(例えば、マスク及びレチクル(なお、本出願ではこれらの用語を交換可能に使用する。))の像を被処理体(例えば、半導体ウェハ用の単結晶基板、液晶ディスプレイ(LCD)用のガラス基板)に投影露光する際、より正確な結像関係を得るための光学部材の保持装置に関する。
【0002】
【従来の技術】
フォトリソグラフィー技術を用いてデバイスを製造する際に、マスクに描画された回路パターンを投影光学系によってウェハ等に投影して回路パターンを転写する投影露光装置が従来から使用されている。投影光学系は回路パターンからの回折光をウェハの上に干渉させて結像させる。
【0003】
近年の電子機器の小型化及び薄型化への要請を実現するためには、電子機器に搭載されるデバイスを高集積化する必要があり、転写される回路パターンの微細化、即ち、高解像度化がますます要求されている。高解像力を得るためには、光源の波長を短くすること、及び、投影光学系の開口数(NA)を上げることが有効であり、同時に投影光学系の収差を極めて小さく抑えなくてはならない。
【0004】
投影光学系を構成する光学部材(例えば、レンズ、ミラーなど)に変形が生じると、変形前後で光路が屈折し、一点に結像するべき光線が一点に収束せずに収差を生じる。収差は位置ずれを招いてウェハ上の回路パターンの短絡を招く。一方、短絡を防止するためにパターン寸法を広くすれば微細化の要求に反する。従って、収差が小さい投影光学系を実現するためには、投影光学系を構成する光学部材の形状を変化させることなく投影光学系内に保持して、光学部材が有する本来の光学的性能を最大限に引き出す必要がある。特に、近年の投影光学系の高NA化により、投影レンズは大口径化しているのでレンズ容積も大きくなり、自重による変形が発生しやすくなっている。また、最近盛んに研究が進められている回折光学素子も、その特徴の一つである薄さのために形状が変化しやすくなっている。
【0005】
そこで、光学部材の保持装置として、金枠などによって全周を支持された光学部材の上方からネジ環(「玉押し」とも呼ばれる。)によって押圧固定したり、光学部材を円周方向に等間隔な3点で支持したりするものが従来から用いられている。
【0006】
また、光学部材の円周方向に沿って3箇所にほぼ等間隔で光学部材支持部を設け、かかる支持部に支持された光学部材の円周部を重力に抗して押し上げるように弾性部材を用いて支持する保持装置が提案されている(例えば、特許文献1参照。)。
【0007】
【特許文献1】
特開平11−149029号公報
【0008】
【発明が解決しようとする課題】
しかし、金枠によって光学部材の全周を支持する場合、光学部材と接触する金枠の支持面にはうねりがあり、光学部材の接触する面形状と一致しないため実際には不規則な角度の3点で光学部材と接触(支持)することが多く、従って、光学部材の面形状が変化してしまい、光学部材の光学性能を劣化させる要因となる。
【0009】
また、光学部材を円周方向に等間隔な3点で支持する場合は、光学部材の自重により支持部の3点にならって光学部材の変形を生じる。特に、大口径のレンズでは自重変形量が大きくなり光学性能が劣化する要因となり好ましくない。
【0010】
更に、特許文献1で提案されている保持装置は、重力に抗して押し上げる弾性部材に作用する力(即ち、光学部材に直接作用させる力)は、材料の物性や寸法によって変化し、各弾性部材に作用する力の相対精度を高精度に管理することが困難である。従って、各弾性部材に作用する荷重が不均一となり、光学部材に変形を発生させてしまう。
【0011】
即ち、従来の光学部材の保持装置は、結像性能の劣化となる光学部材の変形を防止し、微細化の要求に答える高解像力を達成する収差の少ない投影光学系を提供するには至っていない。
【0012】
そこで、本発明は、結像性能の劣化となる光学部材の変形による収差を低減することで所望の光学性能をもたらし、高解像力を有する投影光学系を実現することができる保持装置、露光装置及びデバイス製造方法を提供することを例示的目的とする。
【0013】
【課題を解決するための手段】
上記目的を達成するために、本発明の一側面としての保持装置は、光学部材を保持するための保持装置であって、前記光学部材の形状の変形量を検出する検出手段と、前記変形量に基づいて、前記光学部材の形状を調整する調整ユニットとを有し、前記調整ユニットは、重力方向の力を前記光学部材に与えるための弾性部材と、一端が前記光学部材の径方向に伸びており、他端が前記弾性部材に取り付けられた調整ネジとを備え、前記調整ネジを回転させることによって前記弾性部材を上下方向に変位可能であることを特徴とする。
本発明の別の側面としての保持装置は、光学部材を保持するための保持装置であって、前記光学部材の下面に接触するフックと、前記フックの変形量を検出する検出手段とを有し、前記検出手段による検出結果に基づいて、前記フックに取り付けられた弾性部材を上下に変位させることによって、前記光学部材の形状を調整することを特徴とする。
本発明の更に別の側面としての露光装置は、上述の保持装置と、前記保持装置に保持された光学部材を介してマスク又はレチクルに形成されたパターンを被処理体に露光する光学系とを有することを特徴とする。
本発明の更に別の側面としてのデバイス製造方法は、上述の露光装置を用いて被処理体を露光するステップと、露光された前記被処理体に所定のプロセスを行うステップとを有することを特徴とする。
【0014】
本発明の他の目的及び更なる特徴は、以下添付図面を参照して説明される好ましい実施例によって明らかにされるであろう。
【0015】
【発明の実施の形態】
以下、図面を参照して、本発明の例示的な保持装置100及び露光装置200について説明する。但し、本発明は、これらの実施例に限定するものではなく、本発明の目的が達成される範囲において、各構成要素が代替的に置換されてもよい。例えば、本実施形態では、保持装置100を例示的に露光装置200の投影光学系230に適用しているが、露光装置200の照明光学系214、その他周知のいかなる光学系に適用してもよい。
【0016】
ここで、図1及び図2は、露光装置200の投影光学系230に適用される本発明の保持装置100を示す概略斜視図であって、図1は、光学部材110を保持した場合の保持装置100を示す図、図2は、光学部材110を除いた場合の保持装置100を示す図である。重力方向は、光学部材110の光軸方向と一致し、図面矢印方向である。重力方向と光学部材110の光軸方向とが一致した場合が、光学部材110の自重変形が大きくなり、光学性能に大きな影響を与える場合が多いので、本実施形態においては、重力方向と光学部材110の光軸方向とが一致する場合に対して本発明を適用した。なお、各図において、同一の部材については、同一の参照番号を付し、重複する説明は省略する。
【0017】
保持装置100は、図1及び図2に示すように、保持部材120と、調整ユニット130とを有し、光学部材110を保持すると共に光学部材110の3θ成分の変形をコントロールする。
【0018】
光学部材110は、後述する保持部材120に搭載され、反射、屈折及び回折等を利用して光を結像させる。光学部材110は、保持部材120の支持部122で支持され、その円周に亘って接合部214を介して保持部材120と接合している。光学部材110は、例えば、レンズ、平行平板ガラス、プリズム、ミラー及びフレネルゾーンプレート、キノフォーム、バイナリーオプティックス、ホログラム等の回折光学素子を含む。
【0019】
保持部材120が光学部材110を保持する構造は、まず重力方向について、光学部材110の光学的に使用する有効領域外で最外周部に120度ピッチで3箇所に光学部材110を重力方向に支持する支持部122を設けてあり、かかる支持部122に光学部材110を載置する。保持部材120は、光軸を中心とする円環状板部材であり、例えば、真鍮などの銅合金、ステンレス鋼、鉄、低熱膨張金属であるインバ、炭素鋼などの金属、セラミック等を材料とする。
【0020】
保持部材120に設けられている支持部122の支持面(即ち、光学部材110と当接する面)122aの大きさは、光学部材110を保持部材120に載置する際に、光学部材110にキズなどが入らない程度の小さな面積にすることが好ましい。これは、光学部材110を保持部材120に載置後、光学部材110の自重によって発生する光学部材110の変形量を見積もる際に、シミュレーションで計算した値と実質等しくなるようにする必要があるためである。
【0021】
接合部124は、保持部材120の内側面に配置され、光学部材110と保持部材120を光学部材110の円周に亘って接合固定する。接合は、本実施例では、接着剤を用いているが、メカニカルな接合、例えば、板バネ等を用いて接合してもよい。
【0022】
接着剤は、接着硬化後のゴム硬度70以下が好ましく、更に、接着硬化時の硬化収縮が実質的に光学部材110の変形を与えない程度の硬化収縮特性を有し、且つ、接着剤からの脱ガスが光学部材110に光学特性の劣化を与えないものが好ましい。
【0023】
接着剤からの脱ガスによる光学部材110の光学特性の劣化とは、脱ガスの光学部材110への付着が原因で起こる透過率劣化や、脱ガスが露光光に反応して光学部材110へ付着することで生じる透過率劣化等を示す。かかる透過率劣化は、例えば、露光装置のスループットを低減させるため、このような影響のない接着剤を選択しなければならず、本実施形態では、接着剤としてスリーボンド社TB1230を使用する。
【0024】
調整ユニット130は、保持部材120に載置された光学部材110の面形状のコントロールを行う。調整ユニット130は、光学部材110を保持する保持部材120の3箇所に設けられた支持部122の配置に対して、支持部122と同一円周上の中間位置に等間隔で3箇所に配置されている。
【0025】
図3は、図1に示す調整ユニット130の一例を示す概略断面図である。調整ユニット130は、図3に示すように、フック131と、弾性部材132と、スペーサー133と、歪みゲージ134とを有する。
【0026】
フック131は、光学部材110の下面と保持部材120の下面に接触し、光学部材110に所望の変位を与えるための力を伝達する。
【0027】
弾性部材132は、光学部材110に所望の変位を与えるための力を発生させる。弾性部材132は、本実施形態では、引っ張りコイルバネを用いたが、板バネなどの他のバネ要素を用いてもよい。
【0028】
スペーサー133は、保持部材120に取り付けられる。弾性部材132の両端のうち一方は保持部材120の上にあるスペーサー133に連結され、もう一方はフック131に連結されており、スペーサー133の高さを調整することで弾性部材132に所望の力を発生させることが可能である。この際、弾性部材132に発生した力は、フック131を介して光学部材110に伝達され、所望の変位量を光学部材110に与えることが可能となる。
【0029】
歪みゲージ134は、図3においては、フック131の上面及び下面に接着固定されている。歪みゲージ134は、本実施形態において、フック131が光学部材110に伝達する力を正確に知るために設けられ、光学部材110に与える変形量を変位として計測することが困難な位微小量を想定しているため、所望の変位を与える力を測定することで変位と置き換えている。
【0030】
歪みゲージ134の接着固定に用いる接着剤は、光学性能の劣化を考慮して脱ガスの少ないものが好ましい。また、測定面(即ち、フック131との接着面)の微小な歪みが歪みゲージ134に伝わりやすいように接着剤は弾性の少ないものが好ましい。
【0031】
歪みゲージ134は、図4に示すように、フック131の上面及び下面に複数の歪みゲージ134a及び134bを接着固定することで、更に微小な変形量でも計測することが可能となる。ここで、図4は、図1に示す調整ユニット130の一例を示す概略断面図である。
【0032】
図5は、歪みゲージ134のブリッジ回路を示す回路図である。図5を参照するに、歪みゲージ134は、120Ωの抵抗Rでブリッジ回路を構成し、更に、図示しない変換器に接続され出力を読み取る。歪みゲージ134から得られた値と保持部材120にかかる力をあらかじめ求めておくことによって、光学部材110にかける荷重を高精度に検知することができる。
【0033】
以下にブリッジ回路のメカニズムについて説明する。Rは固定抵抗、Rmは図3のフック131の上面部に接着固定された歪みゲージ134、Rmはフック131の下面部に接着固定された歪みゲージ134である。Eは所定のブリッジ電圧、eはブリッジ回路の出力電圧を示す。また、歪みゲージのゲージ率をKsとし、歪み量εから出力電圧eを求めると、以下の数式1で示される。
【0034】
【数1】
Figure 0003787556
【0035】
例えば、歪み量εが100×10−6ひずみ、ブリッジ電圧Eが10V、ゲージ率Ks=2とすると、数式1より出力電圧e=1mVを得る。このように歪みゲージの歪み量に応じて出力電圧を得ることができ、数式1より歪み量と出力電圧は線形の関係である。図5のブリッジ回路を更に精度よく測定するために、固定抵抗Rの2箇所を図4に示す保持部材120側歪みゲージ134aにそれぞれ置き換えることで、計4枚の歪みゲージのブリッジ回路を構成することができる。これにより歪み量に対する出力電圧の敏感度が2倍になり、更に高精度な測定を行うことができる。
【0036】
ここで、光学部材110を保持部材120に接着接合する手順を説明する。まず、光学部材110を保持部材120に設けられた3箇所の支持部122に載置する。この時、接合部124が光学部材110と保持部材120の隙間に均等な厚さとなるように、光学部材110と保持部材120の中心位置は所望の真円度に納めておく。
【0037】
光学部材110を保持部材120の支持部122に載置した後、光学部材110と保持部材120とを嵌合する際のクリアランス量が全周略一定となるように、保持部材120と光学部材110の芯合わせを行う。光学部材110と保持部材120とを嵌合する際のクリアランス量が一定となったところで、ディスペンサーなどの注入量を管理できるものを用いて、接合部124に接着剤を注入する。なお、接合部124に注入する接着剤の注入量を最適化することによって、常に光学部材110と保持部材120の間を繋ぐ弾性体としての接合部124の機械剛性を管理することが可能となる。
【0038】
本実施形態において、光学部材110に調整ユニット130を介して所望の変形量を与えようとする場合、保持部材120から光学部材110に力を伝達する際に、接合部124も変形させる必要があり、接合部124の変形を制御可能とするためには、接合部124の弾性体としての弾性定数を所望の値に管理しなくてはならない。板バネなどを用いて光学部材110を保持部材120に締結接合する場合には、かかる板バネの弾性定数を管理すればよい。
【0039】
光学部材110が保持部材120に接着固定された後、保持部材120の3箇所に配置された調整ユニット130を用い、スペーサー133の厚みを所望の厚さに変更して、光学部材110に力を付与する。この際、歪みゲージ134の出力をモニターすることで、光学部材110に付与している力を正確に読み取ることができる。従って、光学部材110の3箇所それぞれに所望の変位を与えることができ、光学部材110が保持部材120に保持されることで発生する自重による3θ成分の変形を打ち消すような変位を光学部材110に与えることによって光学部材110の光学特性に悪影響を及ぼす光学部材110の変形を低減することができる。
【0040】
保持装置100を、例えば、露光装置の投影光学系を構成する光学部材の保持に用いることで、光学部材の3点支持による光学部材の自重変形の影響を低減することができる。従って、露光装置の高NA化とともに大口径化された光学部材の自重変形を低減させて保持することが可能となり、光学部材の変形が起因である露光性能を大幅に向上することができる。
【0041】
次に、図6乃至図8を参照して、調整ユニット130の変形例である調整ユニット130Aについて説明する。図6は、図1に示す調整ユニット130の変形例である調整ユニット130Aの一例を示す概略断面図である。調整ユニット130Aは、調整ユニット130が弾性部材132の発生する力を調整するためにスペーサー133で高さを調整していたのに対して、保持部材120の外部から弾性部材132の発生する力を調整可能としたものである。調整ユニット130Aは、図6に示すように、フック131と、弾性部材132と、歪みゲージ134と、調整ネジ135とを有する。
【0042】
調整ネジ135は、先端に円錐で螺旋形状の螺旋部135aを有し、螺旋部135aに弾性部材132の一方の端部が取り付けられる。調整ネジ135を回転させると調整ネジ135が直進するため、螺旋部135aに取り付けられた弾性部材132の端部の位置を図中上下方向に可変とすることができる。従って、保持部材120の外部から調整ネジ135を回転させることで弾性部材132の長さを調整することができ、光学部材110に所望の力を付与することが可能となる。また、調整ネジ135は、弾性部材132の長さをネジ回転角度に対して均等に調整するために、保持部材120と接合する調整ネジ135の軸135bと螺旋部135aの軸を同軸の形状にする必要がある。なお、調整ネジ135の螺旋部135aを円錐形状としても、弾性部材132がすべりながら上下方向に可変することで同様の機能を得ることができる。
【0043】
光学部材110に接するフック131が水平にずれた場合、光学部材110にかかる荷重が変化して光学部材110のバランスが崩れて面形状に悪影響を与えたり、設計値と一致しなかったりすることがある。従って、図7に示すように、保持部材120とフック131の接する領域128に固定部材136を取り付けることで、フック131を固定し、水平方向のずれを防止することもできる。ここで、図7は、保持部材120とフック131の接する領域128を改良した調整ユニット130Aの一例を示す概略断面図である。
【0044】
固定部材136は、フック131を水平方向に固定し、例えば、薄板などで構成される。固定部材136は、光学部材110の形状のコントロールには悪影響を与えないように、固定部材136の曲げ応力を弾性部材132の発生する力に比べてはるかに小さくなるように固定部材136の厚さを設計する。
【0045】
また、図8に示すように、フック131の保持部材120に接する端部131aを鋭角の形状とし、フック131の端部131aを受ける保持部材120の領域(即ち、保持部材120とフック131の接する領域)128にコーン形状又はV字形状の溝128aを設けることで、フック131の位置を固定し、水平方向のずれを防止することができる。この際、大きな横からの力でもフック131が水平方向にずれないように、フック131の端部131aの鋭角形状の傾斜及び保持部材120に設けられた溝128aの傾斜とも角度は剛性の保てる範囲で鋭い方がよい。ここで、図8は、保持部材120とフック131の接する領域128を改良した調整ユニット130Aの一例を示す概略断面図である。
【0046】
調整ユニット130Aは、保持部材120の外部から弾性部材132の発生する力を調整し(即ち、弾性部材132の長さを調整し)、光学部材110の3θ成分の変形をコントロールすることができるため、例えば、光学部材110の鏡筒の外側から光学部材110の形状をコントロールすることが可能となる。
【0047】
鏡筒全体の観点からみると、複数の光学部材110の3θ成分の変形、組み立て誤差、ホモジニティー等の組み合わせである波面収差が発生する。この際、鏡筒の外部から、調整ユニット130Aの弾性部材132に発生させる力を調整することで波面収差を最小限に抑えることが可能となる。なお、波面収差を打ち消しあう目的で光学部材110の3θ成分の変形を強制的に増加させることも考えられる。更に、複数の光学部材110の3θ成分をそれぞれ独立に調整し、組み合わせることで、より広い範囲で波面収差を変化させることができる。波面収差への敏感度が大きな光学部材110は、波面収差を広範囲で調整することができ、波面収差への敏感度が小さな光学部材110は、波面収差を高分解能で調整することができる。
【0048】
また、調整ネジ135を回すためのアクチュエーター等の電動器具を装着することで鏡筒の外部から直接アクセスすることなく、調整ネジ135を回すことが可能である。これによって、鏡筒内部にアクセスするための孔を鏡筒に設ける必要もなく、しかも調整ネジ135の回転を高精度、高分解能で回すことができる。従って、フック131に接着固定された歪みゲージ134の出力をモニターし、かかる値を基に調整ネジ135の回転を操作することで光学部材110を所望の形状に変形させることができる。
【0049】
次に、保持装置100を用いてフィードバック制御により光学部材110の形状をアクティブにコントロールする方法について説明する。図9は、保持装置100に保持された光学部材110の形状を調整する調整法方1000を説明するためのフローチャートである。
【0050】
まず、光学部材110の形状が変形すると、保持部材120に添付された歪みゲージ134の出力の変化により、変形後の光学部材110の形状が得られる(ステップ1002)。次に、取得した変形後の光学部材110の形状を所望の形状にするために必要な、弾性部材132が光学部材110に与える力を算出する(ステップ1004)。弾性部材132が算出した力を生じるように、弾性部材132の長さを調整し(ステップ1006)、光学部材110に算出した力を与える(ステップ1008)。光学部材110に力を付与した後、歪みゲージ134によって光学部材110の形状を計測し、光学部材110の形状が所望の形状となっているか判断する(ステップ1010)。光学部材110の形状が所望の形状となっていれば、光学部材110の形状のコントロールを終了し(ステップ1012)、光学部材110の形状が所望の形状となっていなければ、ステップ1004以下を繰り返す。なお、光学部材110の形状と歪みゲージ134の出力は予め知っておく必要がある。このように、光学部材110の形状を検出する手段として歪みゲージ134を用いることで光学部材110の形状のフィードバック制御が可能となる。
【0051】
また、光学部材110は、自重変形、面形状誤差、ホモジニティー等のエラーによって波面収差を発生する。光学部材110の組み込み(組み立て)、検査時では、この波面収差を所望の規格内に収める必要がある。かかる場合は、光学部材110の波面収差を直接測定する波面収差測定装置を用いて、光学部材110の波面収差を検出し(ステップ1014)、検出した波面収差が規格内となるように弾性部材132の長さを調整する(ステップ1006)ことでフィードバック制御が可能となる。
【0052】
更に、光学部材110を保持した保持装置100を搭載した露光装置において、ウェハパターンを検出する手段を用いて、常にウェハを検出し(ステップ1016)、検出したウェハ情報に基づいて弾性部材132の長さを調整する(ステップ1006)ことでフィードバック制御が可能となる。かかるフィードバック制御により、所望のウェハパターンを得るために常にウェハパターンを検出し、所望の規格内に入るように常に光学部材110の形状をコントロールできるアクティブレンズ(ミラー)を実現することができる。
【0053】
また、フック131の歪み量を測定し、その測定された歪み量とその歪み量が発生した時に光学部材110に付加すべき力との関係を演算する演算装置、或いはその関係を記憶する記憶装置を備えるようにしておくようにしても構わない。その際、フック131の歪み量の大きさが許容範囲内であるか、許容範囲外であるかを判断し、許容範囲内なら光学部材に付加する力は変化させないようにしてもよい。
【0054】
また、図1及び図2においては、3箇所の支持部122の間隔それぞれに調整ユニット130及び歪みゲージ(検出手段)134を配置しているが、この限りではない。光学部材の偏心、傾き等が大きくない限り、3箇所の支持部のそれぞれの間隔(3つ)において光学部材はほぼ同じように変形するものと考えられる。つまり、1つの間隔における光学部材の変形(量)、もしくは1つの間隔における歪みゲージ(検出手段)により測定される歪み(量)が分かれば、その他の間隔における光学部材の変形(量)や歪みゲージにより測定される歪み(量)は容易に推定することができる(大抵の場合は3つの間隔において同じ変形や同じ歪みが測定される)。従って、歪みゲージ(検出手段)を3箇所の支持部の間の3つの間隔のうち少なくとも1つの間隔に配置し、その歪みゲージで測定された歪みに基づいてその他の間隔に配置された調整ユニットが光学部材に付加する力を制御するようにしてもよい。
【0055】
次に、図10を参照して、保持装置100の変形例である保持装置100Aについて説明する。図10は、図1に示す保持装置100の変形例である保持装置100Aを示す概略斜視図である。
【0056】
保持装置100Aは、図10に示すように、光学部材110に直接歪みゲージ134を接着固定することで光学部材110の変形を測定する。即ち、保持部材120に保持された光学部材110において、光学部材110の上面又は下面の有効半径外の部分に歪みゲージ134を接着固定することで、光学部材110の変形を歪みゲージ134で検出することが可能である。なお、光学部材110の保持方法は、3点支持、全周接着、メカ的な保持方法などいずれであってもよい。
【0057】
ここで、光学部材110に接着固定した歪みゲージ134の使用方法について説明する。まず、光学設計値規格内の面形状に加工された光学部材110がまだ保持部材120に接着固定されていない状態で、光学部材110に歪みゲージ134を接着する。このとき、歪みゲージ134の出力値を読み取る。
【0058】
次に、光学部材110の保持部材120への載置及び調整ユニット130の配置を行い、最終的に光学部材110を保持した保持装置100を装置に搭載する段階の前後で歪みゲージ134の出力値を読み取る。このときの出力値が初期値(即ち、光学部材110がまだ保持部材120に接着固定されていない状態のときの出力値)とどのくらい異なるのかを読み取ることで光学部材110を保持することで生じた変形(即ち、光学部材110の自重変形)を測定することができる。
【0059】
そして、調整ユニット130を用いて歪みゲージ134の出力値を初期値に近づけることで光学部材110を保持することで生じた変形を打ち消すことができる。
【0060】
また、光学部材110に接着固定した歪みゲージ134の別の使用方法について説明する。まず、保持部材120に保持された光学部材110に歪みゲージ134を接着固定する。そして、調整ユニット130で光学部材110の形状を段階的に変化させて各段階の歪みゲージ134の出力値から光学部材110の変形量を測定する。この光学部材110の変形量と歪みゲージ134の出力値の相関関係を予め調べておくことで、光学部材110を保持した保持装置100が組み込まれた鏡筒の外側から調整ユニット130を調整するだけで所望の形状に変形させることができる。かかる方法は、歪みゲージ134の取り付け誤差や、調整ユニット130の組み立て加工誤差などを考慮することなく、実現することができる。
【0061】
歪みゲージ134を接着固定する位置として、図10に示すように、等間隔に3箇所の位置に接着固定した場合、主に、光学部材110の3θ成分の変形を検出することが可能である。また、等間隔に6箇所の位置に歪みゲージ134を接着固定した場合は、光学部材110の6θ成分の変形を検出することが可能である。このように、歪みゲージ134を接着固定する位置は、検出したい光学部材110の変形の成分によって決定し、それらの組み合わせとして多くの位置にゆがみゲージ134を接着固定することも可能である。
【0062】
また、光学部材110がミラーの場合であっても、同様に、歪みゲージ134を光学部材110に直接接着固定することが可能であり、図11に示すように、ミラーである光学部材110の反射面110aの裏側の面110bに歪みゲージ134を接着することで大きな歪みを検出することができ、高精度な測定として有効である。ここで、図11は、光学部材110がミラーである場合の保持装置100Aを示す概略断面図である。
【0063】
以下、図12を参照して、本発明の保持装置100を適用した例示的な投影光学系230及び投影光学系230を有する露光装置100について説明する。ここで、図12は、本発明の一側面としての露光装置200の例示的一形態を示す概略ブロック図である。露光装置200は、図12に示すように、回路パターンが形成されたマスク220を照明する照明装置210と、照明されたマスクパターンから生じる回折光をプレート240に投影する投影光学系230と、プレート240を支持するステージ245とを有する。
【0064】
露光装置200は、例えば、ステップ・アンド・スキャン方式やステップ・アンド・リピート方式でマスク220に形成された回路パターンをプレート240に露光する投影露光装置である。かかる露光装置は、サブミクロンやクオーターミクロン以下のリソグラフィー工程に好適であり、以下、本実施形態では、ステップ・アンド・スキャン方式の露光装置(「スキャナー」とも呼ばれる。)を例に説明する。ここで、「ステップ・アンド・スキャン方式」とは、マスクに対してウェハを連続的にスキャン(走査)してマスクパターンをウェハに露光すると共に、1ショットの露光終了後、ウェハをステップ移動して、次の露光領域に移動する露光方法である。「ステップ・アンド・リピート方式」とは、ウェハの一括露光ごとにウェハをステップ移動して次のショットの露光領域に移動する露光方法である。
【0065】
照明装置110は、転写用の回路パターンが形成されたマスク220を照明し、光源部212と、照明光学系とを有する。
【0066】
光源部212は、例えば、光源としては、波長約193nmのArFエキシマレーザー、波長約248nmのKrFエキシマレーザーなどを使用することができる。但し、レーザーの種類はエキシマレーザーに限定されず、例えば、YAGレーザーを使用してもよいし、そのレーザーの個数も限定されない。また、波長約157nmのFレーザーや波長10nm乃至20nm程度の極端紫外線(EUV:Extreme ultraviolet)光源等を用いてもよい。例えば、独立に動作する2個の固体レーザーを使用すれば固定レーザー間相互のコヒーレンスはなく、コヒーレンスに起因するスペックルはかなり低減する。さらにスペックルを低減させるために光学系を直線的又は回転的に揺動させてもよい。また、光源部212にレーザーが使用させる場合、レーザー光源からの平行光束を所望のビーム形状に整形する光束整形光学系、コヒーレントなレーザー光束をインコヒーレント化するインコヒーレント化光学系を使用することが好ましい。また、光源部212に使用可能な光源はレーザーに限定されるものではなく、一又は複数の水銀ランプやキセノンランプなどのランプも使用可能である。
【0067】
照明光学系214は、マスク120を照明する光学系であり、レンズ、ミラー、オプティカルインテグレーター、絞り等を含む。例えば、コンデンサーレンズ、ハエの目レンズ、開口絞り、コンデンサーレンズ、スリット、結像光学系の順で整列する等である。照明光学系214は、軸上光、軸外光を問わずに使用することができる。オプティカルインテグレーターは、ハエの目レンズや2組のシリンドリカルレンズアレイ(又はレンチキュラーレンズ)板を重ねることによって構成されるインテグレーター等を含むが、光学ロッドや回折素子に置換される場合もある。開口絞りは解像度を向上させる変形照明用の輪帯照明絞りや4重極照明絞りとして構成されてもよい。かかる照明光学系214のレンズなどの光学部材の保持に本発明の保持装置200を使用することができる。
【0068】
マスク220は、例えば、石英製で、その上には転写されるべき回路パターン(又は像)が形成され、図示しないマスクステージに支持及び駆動される。マスク220から発せられた回折光は、投影光学系230を通りプレート240上に投影される。マスク220とプレート240は、光学的に共役の関係にある。本実施形態の露光装置200はスキャナーであるため、マスク220とプレート240を縮小倍率比の速度比でスキャンすることによりマスク220のパターンをプレート240上に転写する。なお、ステップ・アンド・リピート方式の露光装置(「ステッパー」とも呼ばれる。)の場合は、マスク220とプレート240を静止させた状態で露光が行われる。
【0069】
投影光学系230は、複数のレンズ素子のみからなる光学系、複数のレンズ素子と少なくとも一枚の凹面鏡とを有する光学系(カタディオプトリック光学系)、複数のレンズ素子と少なくとも一枚のキノフォームなどの回折光学素子とを有する光学系、全ミラー型の光学系等を使用することができる。色収差の補正が必要な場合には、互いに分散値(アッベ値)の異なるガラス材からなる複数のレンズ素子を利用したり、回折光学素子をレンズ素子と逆方向の分散が生じるように構成したりする。
【0070】
かかる投影光学系230のレンズなどの光学部材の保持に本発明の保持装置100を使用することができる。保持装置100は、図13に示すように、保持部材120に設けられた半径方向の変形を吸収することができる吸収部材によって投影光学系230の鏡筒232に連結されている。このような構成にすることによって装置輸送時などの温度環境変動時に、線膨張率の違いから生じる鏡筒232と保持部材120の相対変位により、保持部材120が鏡筒232に対して偏芯することを防止することができる。ここで、図13は、露光装置200の鏡筒232内部の概略断面斜視図である。
【0071】
なお、保持装置100は、上述した構成であり、ここでの詳細な説明は省略する。従って、投影光学系230は、結像性能の劣化となる光学部材の変形による収差を低減することができ、所望の光学性能を達成することができる。
【0072】
プレート240は、ウェハや液晶基板などの被処理体でありフォトレジストが塗布されている。フォトレジスト塗布工程は、前処理と、密着性向上剤塗布処理と、フォトレジスト塗布処理と、プリベーク処理とを含む。前処理は、洗浄、乾燥などを含む。密着性向上剤塗布処理は、フォトレジストと下地との密着性を高めるための表面改質(即ち、界面活性剤塗布による疎水性化)処理であり、HMDS(Hexamethyl−disilazane)などの有機膜をコート又は蒸気処理する。プリベークは、ベーキング(焼成)工程であるが現像後のそれよりもソフトであり、溶剤を除去する。
【0073】
ステージ245は、プレート240を支持する。ステージ245は、当業界で周知のいかなる構成をも適用することができるので、ここでは詳しい構造及び動作の説明は省略する。例えば、ステージ245は、リニアモーターを利用してXY方向にプレート245を移動することができる。マスク220とプレート240は、例えば、同期走査され、ステージ245と図示しないマスクステージの位置は、例えば、レーザー干渉計などにより監視され、両者は一定の速度比率で駆動される。ステージ245は、例えば、ダンパを介して床等の上に支持されるステージ定盤上に設けられ、マスクステージ及び投影光学系230は、床等に載置されたベースフレーム上にダンパ等を介して支持される図示しない鏡筒定盤上に設けられる。
【0074】
露光において、光源部212から発せられた光束は、照明光学系214によりマスク220を、例えば、ケーラー照明する。マスク220を通過してマスクパターンを反映する光は、投影光学系230により投影倍率(例えば、1/4、1/5)でプレート240に結像される。露光装置200が使用する投影光学系230(及び/又は照明光学系214)は、本発明の保持装置100で保持された光学部材を含んで、光学部材の変形による収差を抑えることができるので、高いスループットで経済性よく従来よりも高品位なデバイス(半導体素子、LCD素子、撮像素子(CCDなど)、薄膜磁気ヘッドなど)を提供することができる。
【0075】
次に、図14及び図15を参照して、上述の露光装置200を利用したデバイス製造方法の実施例を説明する。図14は、デバイス(ICやLSIなどの半導体チップ、LCD、CCD等)の製造を説明するためのフローチャートである。ここでは、半導体チップの製造を例に説明する。ステップ1(回路設計)では、デバイスの回路設計を行う。ステップ2(マスク製作)では、設計した回路パターンを形成したマスクを製作する。ステップ3(ウェハ製造)では、シリコンなどの材料を用いてウェハを製造する。ステップ4(ウェハプロセス)は、前工程と呼ばれ、マスクとウェハを用いてリソグラフィー技術によってウェハ上に実際の回路を形成する。ステップ5(組み立て)は、後工程と呼ばれ、ステップ4によって作成されたウェハを用いて半導体チップ化する工程であり、アッセンブリ工程(ダイシング、ボンディング)、パッケージング工程(チップ封入)等の工程を含む。ステップ6(検査)では、ステップ5で作成された半導体デバイスの動作確認テスト、耐久性テストなどの検査を行う。こうした工程を経て半導体デバイスが完成し、これが出荷(ステップ7)される。
【0076】
図15は、ステップ4のウェハプロセスの詳細なフローチャートである。ステップ11(酸化)では、ウェハの表面を酸化させる。ステップ12(CVD)では、ウェハの表面に絶縁膜を形成する。ステップ13(電極形成)では、ウェハ上に電極を蒸着などによって形成する。ステップ14(イオン打ち込み)では、ウェハにイオンを打ち込む。ステップ15(レジスト処理)では、ウェハに感光剤を塗布する。ステップ16(露光)では、露光装置200によってマスクの回路パターンをウェハに露光する。ステップ17(現像)では、露光したウェハを現像する。ステップ18(エッチング)では、現像したレジスト像以外の部分を削り取る。ステップ19(レジスト剥離)では、エッチングが済んで不要となったレジストを取り除く。これらのステップを繰り返し行うことによってウェハ上に多重に回路パターンが形成される。本実施例のデバイス製造方法によれば、従来よりも高品位のデバイスを製造することができる。このように、露光装置200を使用するデバイス製造方法、並びに結果物としてのデバイスも本発明の一側面を構成する。
【0077】
以上、本発明の好ましい実施例を説明したが、本発明はこれらに限定されずその要旨の範囲内で様々な変形や変更が可能である。例えば、本発明の保持装置は、レンズやミラーやフィルター等の様々な光学部材を保持するために用いることができる。更に、本発明の保持装置をマスクやウェハを支持するために用いてもよい。
【0102】
【発明の効果】
本発明の保持装置によれば、光学部材又は光学部材を直接保持する保持部材に光学部材の形状を検出する歪みゲージを設けることにより、光学部材の形状を容易に知ることができ、歪みゲージの出力に基づいて光学部材の形状を調整することができる。よって、結像性能の劣化となる光学部材の変形による収差を低減することで所望の光学性能をもたらし、高解像力を有する投影光学系を実現することができる。
【図面の簡単な説明】
【図1】 光学部材を保持した場合の本発明の保持装置を示す概略斜視図である。
【図2】 光学部材を除いた場合の本発明の保持装置を示す概略斜視図である。
【図3】 図1に示す調整ユニットの一例を示す概略断面図である。
【図4】 図1に示す調整ユニットの一例を示す概略断面図である。
【図5】 歪みゲージのブリッジ回路を示す回路図である。
【図6】 図1に示す調整ユニットの変形例である調整ユニットの一例を示す概略断面図である。
【図7】 保持部材とフックの接する領域を改良した調整ユニットの一例を示す概略断面図である。
【図8】 保持部材とフックの接する領域を改良した調整ユニットの一例を示す概略断面図である。
【図9】 図1に示す保持装置に保持された光学部材の形状を調整する調整法方を説明するためのフローチャートである
【図10】 図1に示す保持装置の変形例である保持装置を示す概略斜視図である。
【図11】 光学部材がミラーである場合の保持装置を示す概略断面図である。
【図12】 本発明の一側面としての露光装置の例示的一形態を示す概略ブロック図である。
【図13】 本発明の露光装置の鏡筒内部の概略断面斜視図である。
【図14】 本発明の露光装置を有するデバイス製造方法を説明するためのフローチャートである。
【図15】 図14に示すステップ4のウェハプロセスの詳細なフローチャートである。
【符号の説明】
100 保持装置
110 光学部材
120 保持部材
128a 溝
130 調整ユニット
131 フック
132 弾性部材
133 スペーサー
134 歪みゲージ
135 調整ネジ
135a 螺旋部
135b 軸
136 固定部材
200 露光装置
210 照明装置
220 マスク
230 投影光学系
232 鏡筒
240 プレート
245 ステージ

Claims (20)

  1. 光学部材を保持するための保持装置であって、
    前記光学部材の形状の変形量を検出する検出手段と、
    前記変形量に基づいて、前記光学部材の形状を調整する調整ユニットとを有し、
    前記調整ユニットは、
    重力方向の力を前記光学部材に与えるための弾性部材と、
    一端が前記光学部材の径方向に伸びており、他端が前記弾性部材に取り付けられた調整ネジとを備え、
    前記調整ネジを回転させることによって前記弾性部材を上下方向に変位可能であることを特徴とする保持装置。
  2. 前記検出手段は、歪みゲージであることを特徴とする請求項1記載の保持装置。
  3. 前記検出手段は、前記光学部材上に配置されることを特徴とする請求項1記載の保持装置。
  4. 前記検出手段は、ピッチ120°で同一円周上に配置されることを特徴とする請求項3記載の保持装置。
  5. 前記調整ユニットは、前記光学部材にかかる荷重を均等にすることを特徴とする請求項1記載の保持装置。
  6. 前記調整ユニットは、前記光学部材の収差を低減させるように前記光学部材にかかる荷重を調整することを特徴とする請求項1記載の保持装置。
  7. 前記調整ユニットは、コイルバネを有することを特徴とする請求項5又は6記載の保持装置。
  8. 前記調整ユニットは、ピッチ120°で同一円周上に配置されることを特徴とする請求項1記載の保持装置。
  9. 前記光学部材を略3点で支持する支持部を有することを特徴とする請求項1記載の保持装置。
  10. 前記検出手段を3つ有し、該3つの検出手段はそれぞれ前記3つの支持部の間に配置されていることを特徴とする請求項9記載の保持装置。
  11. 前記調整ユニットを3つ有し、該3つの調整ユニットはそれぞれ前記3つの支持部の間に配置されていることを特徴とする請求項9又は10記載の保持装置。
  12. 前記調整ユニットの数は前記検出手段の数より多く、前記検出手段からの検出結果に基づいて前記調整ユニットを駆動することを特徴とする請求項1乃至11のうちいずれか1項記載の保持装置。
  13. 前記光学素子を略3点で支持する支持部を有しており、前記調整ユニットは前記3点の支持部の(前記光学部材の円周方向の)間隔ごとに設けられており、前記検出手段は前記3点の支持部の間隔のうち少なくとも1つの間隔に設けられていることを特徴とする請求項1乃至12のうちいずれか1項記載の保持装置。
  14. 前記検出手段と前記調整ユニットとが一体的に設けられていることを特徴とする請求項1乃至13のうちいずれか1項記載の保持装置。
  15. 前記調整ユニットは、前記弾性部材に取り付けられたフックを更に備え、
    前記フックの一部が前記光学部材の下面に接触することによって、前記光学部材に力を伝達することを特徴とする請求項1記載の保持装置
  16. 前記検出手段は、前記フックに接着された歪みゲージであることを特徴とする請求項15記載の保持装置
  17. 光学部材を保持するための保持装置であって、
    前記光学部材の下面に接触するフックと、
    前記フックの変形量を検出する検出手段とを有し、
    前記検出手段による検出結果に基づいて、前記フックに取り付けられた弾性部材を上下に変位させることによって、前記光学部材の形状を調整することを特徴とする保持装置。
  18. 前記光学部材を略3点で支持する支持部を有しており、前記フックの接触点は、前記略3点の支持部の間隔それぞれに配置されていることを特徴とする請求項17記載の保持装置。
  19. 請求項1乃至18のうちいずれか1項記載の保持装置と、
    前記保持装置に保持された光学部材を介してマスク又はレチクルに形成されたパターンを被処理体に露光する光学系とを有することを特徴とする露光装置。
  20. 請求項19記載の露光装置を用いて被処理体を露光するステップと、
    露光された前記被処理体に所定のプロセスを行うステップとを有することを特徴とするデバイス製造方法。
JP2003037565A 2003-02-17 2003-02-17 保持装置、露光装置及びデバイス製造方法 Expired - Fee Related JP3787556B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003037565A JP3787556B2 (ja) 2003-02-17 2003-02-17 保持装置、露光装置及びデバイス製造方法
US10/781,412 US7031082B2 (en) 2003-02-17 2004-02-17 Retainer, exposure apparatus, and device fabrication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003037565A JP3787556B2 (ja) 2003-02-17 2003-02-17 保持装置、露光装置及びデバイス製造方法

Publications (3)

Publication Number Publication Date
JP2004247619A JP2004247619A (ja) 2004-09-02
JP2004247619A5 JP2004247619A5 (ja) 2005-04-14
JP3787556B2 true JP3787556B2 (ja) 2006-06-21

Family

ID=32866368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003037565A Expired - Fee Related JP3787556B2 (ja) 2003-02-17 2003-02-17 保持装置、露光装置及びデバイス製造方法

Country Status (2)

Country Link
US (1) US7031082B2 (ja)
JP (1) JP3787556B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190124645A (ko) * 2018-04-26 2019-11-05 캐논 가부시끼가이샤 보유 지지 장치 및 광학 장치

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007266511A (ja) * 2006-03-29 2007-10-11 Nikon Corp 光学系、露光装置、及び光学特性の調整方法
WO2008122313A1 (en) * 2007-04-05 2008-10-16 Carl Zeiss Smt Ag Optical element module with imaging error and position correction
JP2010062394A (ja) * 2008-09-04 2010-03-18 Canon Inc 保持装置及び露光装置
CN101685192B (zh) * 2008-09-26 2011-02-16 中国科学院西安光学精密机械研究所 抑制大镜面像散变形的支撑装调方法
JP5556155B2 (ja) * 2009-12-04 2014-07-23 株式会社ニコン 光学部材変形装置、光学系、露光装置、デバイスの製造方法
US9188714B2 (en) * 2011-02-16 2015-11-17 Toyota Motor Engineering & Manufacturing North America, Inc. Method and apparatus to control a focal length of a curved reflector in real time
JP2015079221A (ja) * 2013-10-18 2015-04-23 三菱電機株式会社 光学素子支持装置及び光学素子支持装置の調整方法
JP2016139015A (ja) * 2015-01-28 2016-08-04 セイコーエプソン株式会社 ミラーデバイス、ミラーデバイスの製造方法、及び画像表示装置
DE102015106184B4 (de) * 2015-04-22 2021-09-02 Friedrich-Schiller-Universität Jena Verfahren zur Formgebung und/oder Formkorrektur mindestens eines optischen Elements
CN105739248B (zh) * 2016-04-01 2018-01-09 中国科学院长春光学精密机械与物理研究所 光学元件支撑结构、单元镜组、曝光光学系统及光刻机
CN106772881B (zh) * 2016-12-09 2019-03-08 中国科学院长春光学精密机械与物理研究所 一种主动式展开锁定机构
JP2021067925A (ja) * 2019-10-21 2021-04-30 キヤノン株式会社 支持装置、投影光学系、露光装置、支持装置の調整方法および物品製造方法
CN110955058B (zh) * 2019-12-17 2021-08-10 中国工程物理研究院应用电子学研究所 一种三自由度应力释放器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100259151B1 (ko) * 1997-08-26 2000-06-15 윤종용 비대칭강성구조를 갖는 광 경로 변환 액츄에이터 및 그의 구동방법
JP3956454B2 (ja) 1997-11-18 2007-08-08 株式会社ニコン レンズ支持装置、支持方法および投影露光装置
US6275326B1 (en) * 1999-09-21 2001-08-14 Lucent Technologies Inc. Control arrangement for microelectromechanical devices and systems
US6411426B1 (en) * 2000-04-25 2002-06-25 Asml, Us, Inc. Apparatus, system, and method for active compensation of aberrations in an optical system
DE10062786A1 (de) * 2000-12-15 2002-06-20 Zeiss Carl System zur Dämpfung von Schwingungen
US6386714B1 (en) * 2001-05-04 2002-05-14 Lucent Technolgies Inc. Controlling mirror shape for generating interference patterns and the like
US6840638B2 (en) * 2002-07-03 2005-01-11 Nikon Corporation Deformable mirror with passive and active actuators
US6842277B2 (en) * 2002-07-23 2005-01-11 Nikon Corporation Deformable mirror with high-bandwidth servo for rigid body control

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190124645A (ko) * 2018-04-26 2019-11-05 캐논 가부시끼가이샤 보유 지지 장치 및 광학 장치
KR102493919B1 (ko) 2018-04-26 2023-02-01 캐논 가부시끼가이샤 보유 지지 장치 및 광학 장치

Also Published As

Publication number Publication date
US20040165287A1 (en) 2004-08-26
JP2004247619A (ja) 2004-09-02
US7031082B2 (en) 2006-04-18

Similar Documents

Publication Publication Date Title
KR100791161B1 (ko) 광학장치 및 그것을 구비한 노광장치
US7221431B2 (en) Exposure apparatus
US7746575B2 (en) Support mechanism, exposure apparatus having the same, and aberration reducing method
JP4552337B2 (ja) 投影光学系の製造方法及び露光装置の製造方法
JP3787556B2 (ja) 保持装置、露光装置及びデバイス製造方法
US20040042094A1 (en) Projection optical system and production method therefor, exposure system and production method therefor, and production method for microdevice
EP1564593A2 (en) Exposure apparatus and exposure method
JPH1054932A (ja) 投影光学装置及びそれを装着した投影露光装置
JP3944095B2 (ja) 保持装置
JP4833211B2 (ja) マイクロリソグラフィ用の投影対物レンズ
JP4692862B2 (ja) 検査装置、該検査装置を備えた露光装置、およびマイクロデバイスの製造方法
JP2004062091A (ja) 保持装置、露光装置及びデバイス製造方法
JP2008112756A (ja) 光学素子駆動装置及びその制御方法、露光装置、並びにデバイス製造方法
JP2004347814A (ja) 保持装置、露光装置及びデバイス製造方法
US6982841B2 (en) Mirror holding mechanism in exposure apparatus, and device manufacturing method
US20030086078A1 (en) Projection exposure apparatus and aberration measurement method
JPWO2002042728A1 (ja) 投影光学系の収差計測方法及び装置、並びに露光方法及び装置
JP2007093498A (ja) 測定方法及び装置、露光装置、並びに、デバイス製造方法
US20030179470A1 (en) Correction member, retainer, exposure apparatus, and device fabrication method
JP2011035102A (ja) 光学素子の保持装置、それを用いた露光装置、及びデバイスの製造方法
JP2006156713A (ja) 光学系及び露光装置
JP4250439B2 (ja) 収差測定装置
JP4566722B2 (ja) 測定方法及び測定装置
JP6226525B2 (ja) 露光装置、露光方法、それらを用いたデバイスの製造方法
JP7446096B2 (ja) 照明光学系、および物品製造方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040604

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060327

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110331

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120331

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130331

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130331

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140331

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees