JP3784346B2 - I / O terminal and semiconductor element storage package and semiconductor device - Google Patents

I / O terminal and semiconductor element storage package and semiconductor device Download PDF

Info

Publication number
JP3784346B2
JP3784346B2 JP2002146274A JP2002146274A JP3784346B2 JP 3784346 B2 JP3784346 B2 JP 3784346B2 JP 2002146274 A JP2002146274 A JP 2002146274A JP 2002146274 A JP2002146274 A JP 2002146274A JP 3784346 B2 JP3784346 B2 JP 3784346B2
Authority
JP
Japan
Prior art keywords
input
semiconductor element
output terminal
flat plate
line conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002146274A
Other languages
Japanese (ja)
Other versions
JP2003338572A (en
Inventor
信幸 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002146274A priority Critical patent/JP3784346B2/en
Publication of JP2003338572A publication Critical patent/JP2003338572A/en
Application granted granted Critical
Publication of JP3784346B2 publication Critical patent/JP3784346B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)
  • Optical Couplings Of Light Guides (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高周波信号で作動する半導体素子を収納するための半導体素子収納用パッケージの信号入出力部に使用される入出力端子およびそれを用いた半導体素子収納用パッケージならびに半導体装置に関する。
【0002】
【従来の技術】
従来のマイクロ波帯やミリ波帯等の高周波信号を伝送する入出力端子、および半導体素子を気密に収容する半導体素子収納用パッケージ(以下、半導体パッケージともいう)について、それぞれ図3,図4に示す。
【0003】
図3において、104aはアルミナ(Al23)セラミックス,窒化アルミニウム(AlN)セラミックス,ムライト(3Al23・2SiO2)セラミックス等の誘電体から成る平板部であり、その上面に、一辺から対向する他辺にかけて形成され、タングステン(W),モリブデン(Mo)等のメタライズ層から成る線路導体104cを有するとともに、下面にはその全面に線路導体104cと同様のメタライズ層から成る下部接地導体104dを有する。この平板部104aの上面には、線路導体104cを狭持して接合されるとともに、上面に上部接地導体104eを有するAl23セラミックス,AlNセラミックス,3Al23・2SiO2セラミックス等の誘電体から成る立壁部104bが設置される。平板部104aと立壁部104bの側面には線路導体104cと同様のメタライズ層から成る側面接地導体104fを有する。
【0004】
線路導体104cで伝送される高周波信号の周波数に応じて、平板部104aの厚さを適宜調整することによって、線路導体104cと下部接地導体104dとの間の距離を調整し、線路導体104cを特性インピーダンスに整合させる。このように、線路導体104cを特性インピーダンスに整合させることによって、線路導体104cを伝送する高周波信号の伝送効率を良好なものとできる。
【0005】
このように、入出力端子104は、平板部104aと立壁部104bとから構成され、半導体パッケージ内外を気密に遮断し、その内部を封止している。
【0006】
また、半導体パッケージの1種である光半導体パッケージは、図4に示すように、上面にLD(半導体レーザ),PD(フォトダイオード)等の光半導体素子109が載置される載置部101aを有するとともに、外部電気回路基板(図示せず)にトルクをかけてネジ止めされるネジ止め孔101bが形成された、鉄(Fe)−ニッケル(Ni)−コバルト(Co)合金や銅(Cu)−タングステン(W)合金等の金属から成る略長方形の基体101を有する。また、載置部101aを囲繞するようにして基体101の上面に銀(Ag)ロウ等のロウ材を介して接合されるとともに、長辺側の両側部に光半導体素子109と外部電気回路(図示せず)とを電気的に接続する入出力端子104嵌着用の取付部102aが形成され、また短辺側の一側部に光半導体素子109と光結合するための光伝送路である貫通孔102bが形成された、Fe−Ni−Co合金等の金属から成る略長方形の枠体102を有する。貫通孔102bには、光ファイバ108固定用でFe−Ni−Co合金等の金属から成る円筒状の光ファイバ固定部材(以下、固定部材ともいう)103がAgロウ等のロウ材により接合される。
【0007】
取付部102aに、図3に示す入出力端子104をAgロウ等のロウ材を介して接合し、線路導体104cの枠体102外側の先端部にリード端子105をAgロウ等のロウ材で接合する。また、光半導体素子109を載置部101aに載置固定するとともに、線路導体104cの枠体102内側の先端部付近と光半導体素子109とをボンディングワイヤ(図示せず)で電気的に接続し、光ファイバ108と光半導体素子109との光軸を調整した後、固定部材103の枠体102外側の端面に、光ファイバ108を樹脂等の接着剤で取着した金属ホルダ107をシーム溶接等により接合する。さらに、枠体102および入出力端子104の上面にFe−Ni−Co合金等の金属から成るシールリング106をAgロウ等のロウ材を用いて接合し、その上面に蓋体(図示せず)をシーム溶接等により接合することにより、製品としての光半導体装置となる。
【0008】
このような光半導体装置は、外部電気回路基板にトルクをかけてネジ止めされた後、外部電気回路から供給される駆動信号によって光半導体素子109を光励起させ、励起したレーザ光等の光を光ファイバ108に授受させるとともに、光ファイバ108内を伝送させることにより、大容量の情報を高速に伝送できる光電変換装置として機能するとともに、光通信分野等に多く用いられる。
【0009】
【発明が解決しようとする課題】
しかしながら、上記従来の入出力端子104において、線路導体104cを伝送する高周波信号が10GHz以上の高周波帯域のものになると、線路導体104cの枠体102外側の先端部にリード端子105をAgロウ等のロウ材で接合し、線路導体104cの枠体102内側の先端部付近と光半導体素子109とをボンディングワイヤで接続すると、線路導体104cのリード端子105接続部とボンディングワイヤ接続部において、伝搬遅延や透過損失等の高周波信号の伝送損失が大きくなり、入出力端子104において高周波信号を効率良く入出力できなくなる場合があった。
【0010】
即ち、平板部104aの下面にはメタライズ層から成る下部接地導体104dが形成されているが、メタライズ層から成る下部接地導体104dは厚さが数μm〜数10μmのオーダーと薄いため、その電気抵抗が大きくなり、線路導体104cに対する接地電位が不安定になり易い。そのため、線路導体104cを伝送する高周波信号に伝搬遅延や透過損失等の伝送損失が発生し、半導体素子に誤動作が生じるという問題点があった。
【0011】
また、このような入出力端子104を用いた光半導体パッケージは、入出力端子104と枠体102、および入出力端子104とシールリング106との熱膨張差により、基体101の底面が反る場合があり、このような光半導体パッケージを光半導体装置とし、外部電気回路基板にトルクをかけてネジ止めした際、基体101の反り変形が矯正され、光半導体パッケージ全体が歪むこととなる。その結果、光ファイバ108と光半導体素子109との光軸がずれて、光結合効率が損なわれ、半導体素子109の光信号の作動性を良好なものとできないという問題点を有していた。
【0012】
従って、本発明は上記問題点に鑑み完成されたもので、その目的は、高周波信号の伝送損失を有効に防止するとともに、基体の歪みを有効に防止することにより、光半導体素子の高周波信号や光信号の作動性を良好なものとすることにある。
【0013】
【課題を解決するための手段】
本発明の入出力端子は、上面に一辺から対向する他辺にかけて形成された線路導体を有する誘電体から成る平板部と、該平板部の上面に前記線路導体の一部を間に挟んで接合された誘電体から成る立壁部と、前記平板部の下面に接合された、該下面と略同じ大きさの略四角形で四隅に切欠き部を有する金属板とを具備したことを特徴とする。
【0014】
本発明の入出力端子は、半導体素子収納用パッケージに用いた際に、平板部下面に金属板が接合されていることから接地電位が強化され、線路導体の枠体外側の先端部にリード端子を接合し、線路導体の枠体内側の先端部付近にボンディングワイヤを接続しても、線路導体のリード端子接続部とボンディングワイヤ接続部において、伝搬遅延や透過損失等の高周波信号の伝送損失が発生するのを抑制することができ、入出力端子において高周波信号を効率良く入出力し得る。即ち、金属板は従来のメタライズ層から成る下部接地導体に比べて電気抵抗が小さくなり、線路導体に対する接地電位が強化されて、高周波信号の伝送特性が向上することとなる。
【0015】
また、本発明の入出力端子が半導体素子収納用パッケージの金属製の枠体の取付部に嵌着され、シールリングおよび枠体で挟持されても、それらの熱膨張係数差による金属製の基体の底面の反りを発生させることはなく、この半導体素子収納用パッケージを光半導体装置と成し、基体を外部電気回路基板にトルクをかけてネジ止めしても、半導体素子収納用パッケージが歪むことがない。その結果、光ファイバと光半導体素子との光結合効率が損なわれて半導体素子の光信号の作動性が損なわれることはない。
【0016】
さらに、金属板の四隅に切欠き部が形成されていることから、平板部の四隅に金属板との熱膨張差による応力が加わるのを抑制し、平板部にクラック等の破損が生ずるのを有効に防止できるとともに、切欠き部の間の幅狭部において良好なロウ材のメニスカスが形成され、平板部と金属板との接合を強固なものとすることができる。
【0017】
本発明の半導体素子収納用パッケージは、上面に半導体素子が載置される載置部を有する金属製の基体と、該基体の上面に前記載置部を囲繞するように取着された金属製の枠体と、該枠体の側部に形成された貫通孔または切欠きから成る入出力端子の取付部と、該取付部に嵌着された請求項1記載の入出力端子とを具備したことを特徴とする。
【0018】
本発明の半導体素子収納用パッケージは、上記の構成により、上記したように、入出力端子における高周波信号の伝送特性に優れ、基体の反りの発生が防止され、また入出力端子の平板部にクラック等の破損が生ずるのを有効に防止でき、さらに平板部に金属板を強固に接合できるという作用効果を有する。
【0019】
本発明の半導体装置は、上記本発明の半導体素子収納用パッケージと、前記載置部に載置されるとともに前記入出力端子に電気的に接続された半導体素子と、前記枠体の上面に接合された蓋体とを具備したことを特徴とする。
【0020】
本発明の半導体装置は、上記の構成により、上記本発明の半導体素子収納用パッケージを用いた信頼性の高いものとなる。
【0021】
【発明の実施の形態】
本発明の入出力端子および半導体素子収納用パッケージを図1,図2に示す。図1(a)は本発明の入出力端子の斜視図、(b)は本発明の入出力端子の平板部の下面図、(c)は本発明の入出力端子について実施の形態の他の例を示し、平板部の下面図、図2は図1の入出力端子を用いた半導体パッケージの斜視図である。これらの図において、1は基体、2は枠体、3は光ファイバ8が取着された金属ホルダ7を固定する筒状の固定部材、4は入出力端子、6はシールリングである。これら基体1と枠体2と固定部材3と入出力端子4とシールリング6とで、内部に半導体素子としてのLD,PD等の光半導体素子9を収納し、シールリング6上面に蓋体を取着することにより容器が構成される。
【0022】
基体1は、その上面に光半導体素子9を載置する載置部1aを有しており、光半導体素子9を支持する支持部材として機能するとともに、光半導体素子9の作動時に発する熱を外部に効率良く放散する機能を有する。また、基体1はネジ止め孔1bを有しており、このネジ止め孔1bを介して外部電気回路基板にトルクをかけてネジ止めされる。
【0023】
この基体1は、略長方形であり、Fe−Ni−Co合金やCu−W合金等の金属から成る。また基体1は、Fe−Ni−Co合金等のインゴットに圧延加工やプレス加工等の金属加工を施すことにより所定形状に成形される。
【0024】
なお、基体1は、その表面に耐蝕性に優れかつロウ材との濡れ性に優れる金属、具体的には厚さ0.5〜9μmのNi層と、厚さ0.5〜5μmのAu層とを順次メッキ法により被着させておくのがよく、基体1が酸化腐食するのを有効に防止できるとともに、基体1上面に光半導体素子9を強固に接着固定できる。
【0025】
また、基体1の上面には、載置部1aを囲繞するようにして基体1の上面にAgロウ等のロウ材を介して接合されるとともに、長辺側の両側部に光半導体素子9と外部電気回路とを電気的に接続する入出力端子4嵌着用の貫通孔または切欠きから成る取付部2aが形成され、さらに短辺側の一側部に光半導体素子9と光結合するための光伝送路である貫通孔2bが形成された、Fe−Ni−Co合金等の金属から成る略長方形の枠体2を有する。
【0026】
この枠体2は、基体1と同様の合金のインゴットに圧延加工やプレス加工等の金属加工を施すことにより所定形状に成形される。
【0027】
なお、枠体2の基体1への接合は基体1上面と枠体2下面とを、基体1上面に敷設したプリフォーム状のAgロウ等のロウ材を介して接合される。さらに、枠体2表面には、基体1と同様に0.5〜9μmのNi層や厚さ0.5〜5μmのAu層等の金属層をメッキ法により被着させておくと良い。
【0028】
また、枠体2の取付部2aには光半導体素子9と外部電気回路との高周波信号の入出力を行う機能を有するとともに、光半導体パッケージの内外を遮断する機能を有する入出力端子4がAgロウ等のロウ材で接合される。
【0029】
この入出力端子4は、略長方形の平板部4aの上面に、横倒しにされた四角柱状の立壁部4bが積層されて成るとともに、平板部4aの下面に金属板4gが接合されている。平板部4aはAl23セラミックス,AlNセラミックス,3Al23・2SiO2セラミックス等の誘電体から成り、平板部4aの上面には、一辺から対向する他辺にかけて形成され、W,Mo等のメタライズ層から成る線路導体4cが形成されており、下面にはその全面に線路導体4cと同様のメタライズ層から成る下部接地導体4dが形成されている。
【0030】
平板部4aの上面には、線路導体4cの一部を狭持して接合されるとともに、上面に上部接地導体4eを有するAl23セラミックス,AlNセラミックス,3Al23・2SiO2セラミックス等の誘電体から成る立壁部4bが設置される。平板部4aと立壁部4bの側面には線路導体4cと同様のメタライズ層から成る側面接地導体4fが形成されている。下部接地導体4d表面に、Agロウ等のロウ材を介してFe−Ni−Co合金等から成る金属板4gが接合されている。
【0031】
この金属板4gは、取付部2aに入出力端子4をロウ付けした際に発生する、基体1底面の反りの発生を抑制する機能を有するとともに、線路導体4cの接地電位を強化し、高周波信号の伝送損失の劣化を抑制する機能を有する。
【0032】
金属板4gは平板部4aの下面と略同じ大きさの略四角形である。具体的には、金属板4gは平面視形状が平板部4aと略同じ長さおよび略同じ幅の略四角形(略長方形)であり、四隅に切欠き部を有しており、金属板4gの長手方向の両端が幅狭部4g−Aとなっている。好ましくは、幅狭部4g−Aの大きさは、長手方向の長さAがA=1〜5mmであり、幅BがB=0.5〜2.5mmであるとともに、幅Bを枠体2の厚さよりも大きくするのが良い。この幅狭部4g−Aによって、平板部4aの四隅に金属板4gとの熱膨張差による応力が加わるのを抑制し、平板部4aにクラック等の破損が生ずるのを有効に防止できるとともに、幅狭部4g−Aにおいて良好なロウ材のメニスカスを形成し、平板部4aと金属板4gとの接合を強固にすることができる。また、幅Bが枠体2の厚さよりも小さい場合、ロウ付け時の入出力端子4の熱膨張を基体1や枠体2の熱膨張に近づけることができなくなり、基体1底面の反りの発生を抑制できない。
【0033】
また、金属板4gの厚さは0.1〜2mmが良く、0.1mm未満の場合、厚さが薄いためロウ付け時の入出力端子4の熱膨張を金属製の基体1や枠体2の熱膨張に近づけることができなくなり、基体1の底面の反りの発生を抑制できなくなるとともに、線路導体4cに対する接地電位を十分に強化することができない。一方、2mmを超える場合、平板部4aと金属板4gとの間の熱膨張差により平板部4aに加わる応力が非常に大きくなり、入出力端子4にクラック等の破損が発生し易くなる。
【0034】
さらに好ましくは、図1(c)に示すように、金属板4gの幅狭部4g−Aの先端の幅方向の両端に、それぞれ2つの突起部4g−Bが設けられており、隣り合う突起部4g−B間の間隔Cは枠体2の厚さと略同じであり、突起部4g−Bの長さC1,幅C2はC1,C2とも0.2〜1mmであるのが良い。この構成により、突起部4g−Bで金属板4gを枠体2の取付部2aに対して位置合わせが容易となって取り付け易くなるとともに、取付部2aに入出力端子4が傾くことなく取り付けることができる。
【0035】
従って、入出力端子4を光半導体パッケージに用い、線路導体4cと光半導体素子9とをボンディングワイヤにより接合しても、ボンディングワイヤの長さが所定長さより長くなることがなく、ボンディングワイヤの長さが長くなることによる高周波信号の伝送損失の発生を防止し、光半導体素子9の高周波信号による作動性を損なうことを防止できる。
【0036】
C1,C2<0.2mmの場合、突起部4g−Bが小さすぎて金属加工による形成が困難になるとともに、変形したり、欠けやすくなって、取付部2aに位置合わせするのが困難となる。C1,C2>1mmの場合、突起部4g−Bが大きくなり、枠体2の内側に光半導体素子9等を実装する際や、基体1をネジ止めにより外部電気回路基板に実装する際に障害となる場合がある。
【0037】
この金属板4gは、例えばFe−Ni−Co合金等のインゴットに圧延加工やプレス加工等の金属加工を施すことにより所定形状に成形される。また、基体1と同様に厚さ0.5〜9μmのNi層や厚さ0.5〜5μmのAu層等の金属層をメッキ法により被着させておくと金属板4g表面の酸化を有効に防止できる。
【0038】
また、金属板4gは、図1(b)の構成において、幅狭部4g−Aの先端の角部を面取りして円弧状等の曲線状にしたり、幅狭部4g−Aの先端を全体的に円弧状等の曲線状にするのがよい。この場合、平板部4aの四隅に金属板4gとの熱膨張差による応力が加わるのをより有効に抑制し、平板部4aにクラック等の破損が生ずるのをより有効に防止できる。
【0039】
このように、入出力端子4は下面に金属板4gが設けられていることにより、入出力端子4を光半導体パッケージに用い、線路導体4cに光半導体素子9を駆動させるための高周波信号を伝送させても、高周波信号に伝送損失が生じて光半導体素子9の作動性が損なわれることはない。また、入出力端子4が取付部2aに嵌着され、シールリング6および枠体2で挟持されても、それらの熱膨張係数差によって基体1の底面に反りが発生するのを防ぐことができる。従って、光半導体パッケージを光半導体装置と成し、外部電気回路基板にトルクをかけてネジ止めしても、光半導体パッケージが歪むことがない。そのため、光ファイバ8と光半導体素子9との光結合効率が損なわれ、光半導体素子9の光信号の作動性が損なわれることはない。
【0040】
このような入出力端子4の平板部4a上面には、1辺から相対向する他辺にかけて、W,Mo−Mn等のメタライズ層から成る線路導体4cが形成されており、例えばW,Mo等の粉末に有機溶剤、溶媒を添加混合して得た金属ペーストを、平板部4a用のセラミックグリーンシートに、予め従来周知のスクリーン印刷法により所定パターンに印刷塗布しておき、焼成することにより形成される。
【0041】
また、平板部4aの上面には立壁部4bが積層される。即ち、この立壁部4bは、平板部4aの上面に線路導体4cの一部を間に挟んで接合された誘電体から成る。
【0042】
線路導体4cの枠体2外側の部位には、外部電気回路と入出力端子3との高周波信号の入出力を行い、Fe−Ni−Co合金等の金属から成るリード端子5がAgロウ等のロウ材で接合される。
【0043】
また、枠体2の短辺の一側部には貫通孔2bが形成されており、貫通孔2bの枠体2外側開口の周囲に筒状の固定部材3の一端がAgロウ等のロウ材で接合される。固定部材3の他方の端面には、光ファイバ8を樹脂等の接着剤で取着した金属ホルダ7がAu−Sn等の低融点ロウ材で接合される。この固定部材3は、基体1や枠体2と同様の金属を同様の加工法で所望の形状に加工することによって作製され、その表面には厚さ0.5〜9μmのNi層や厚さ0.5〜5μmのAu層等の金属層をメッキ法により被着させておくと良い。
【0044】
このように入出力端子4および固定部材3が取着される枠体2の上面には、シールリング6がAgロウ等のロウ材で接合される。シールリング6は、枠体2の上面にAgロウ等のロウ材で接合されて入出力端子4を挟持するとともに、その上面に光半導体素子9を封止するための蓋体をシーム溶接等により接合するための接合媒体として機能する。
【0045】
本発明の入出力端子4は、上面に一辺から対向する他辺にかけて形成された線路導体4cを有する誘電体から成る平板部4aと、平板部4aの上面に線路導体4cの一部を間に挟んで接合された誘電体から成る立壁部4bとを具備しており、平板部4aの下面に金属板4gが接合されている。また、本発明の半導体パッケージとしての光半導体パッケージは、金属から成る基体1と、その上面に光半導体素子9の載置部1aを囲繞するように接合され、取付部2a,貫通孔2bを有する枠体2と、貫通孔2bに嵌着された入出力端子4とを具備している。
【0046】
上記の構成により、線路導体4cに高周波信号を伝送させた際、伝送損失の発生を有効に防止できるとともに、基体1の歪みを有効に防止できる。そのため、光半導体素子9の高周波信号や光信号の作動性が良好となる。
【0047】
このような光半導体パッケージに、光半導体素子9を載置部1aにSn−Pb半田等の低融点ロウ材で載置固定するとともに、線路導体4cと光半導体素子9とをボンディングワイヤで電気的に接続し、さらに固定部材3に、光ファイバ8を樹脂等の接着剤で取着した金属ホルダ7を、Au−Sn等の低融点ロウ材で接合した後、シールリング6上面に蓋体をシーム溶接等により接合することにより、製品としての光半導体装置となる。
【0048】
この光半導体装置は、外部電気回路基板にトルクをかけてネジ止めされた後、外部電気回路から供給される駆動信号によって光半導体素子9を光励起させ、励起したレーザ光等の光を光ファイバ8に授受させるとともに、光ファイバ8内を伝送させることにより、大容量の情報を高速に伝送できる光電変換装置として機能するものであり、光通信分野等に多く用いられる。
【0049】
かくして、本発明は高周波信号や光信号によって作動する光半導体素子を長期にわたり正常かつ安定なものとできる。
【0050】
【実施例】
本発明の入出力端子の実施例を以下に説明する。
【0051】
図1(a),(b)の入出力端子を以下のように構成した。Al23セラミックスから成る略長方形の平板部4a上面の中央に、Wのメタライズ層から成る線路導体4cを形成し、下面の全面にWのメタライズ層から成る下部接地導体4dを設けた。また、平板部4aの上面に、Wのメタライズ層から成る上部接地導体4eを有したAl23セラミックスから成る略直方体の立壁部4bを、線路導体4cの一部を間に挟んで積層した。平板部4aおよび立壁部4bの線路方向に略平行な両側面には、線路導体4cと同様のメタライズ層から成る側面接地導体4fを設けた。また、平板部4aの下面に、Fe−Ni−Co合金から成り平板部4aと略同じ大きさの四角形で四隅に切欠き部を有する金属板4gをAgロウで接合することにより、入出力端子4を作製した。この本発明の入出力端子4をサンプルPとした。
【0052】
サンプルPにおいて、図1(b)のA,BについてA=1.6mm,B=0.15mmとし、平板部4aおよび金属板4gの平面視形状における幅を3.5mm、長さを17mmとし、平板部4aの厚さを1.5mm、金属板4gの厚さを0.5mmとし、線路導体4cの幅を0.5mmとした。
【0053】
また、比較例として、四隅に切欠き部がない金属板4gが接合された入出力端子を作成し、これをサンプルQとした。また、図3に示すような金属板が接合されていない入出力端子を作成し、これをサンプルRとした。
【0054】
これらのサンプルP,Q,Rにおいて、常温(25℃)で、Al23セラミックスについて、ヤング率は478Gpa(ギガパスカル)、ポアソン比は0.25、線膨張係数は5.74×10-6/℃であり、Fe−Ni−Co合金について、ヤング率は128Gpa、ポアソン比は0.37、線膨張係数は5.95×10-6/℃であり、Agロウについて、ヤング率は87Gpa、ポアソン比は0.37、線膨張係数は18×10-6/℃である。
【0055】
そして、サンプルP,Q,Rについて、線路導体4cに1〜25GHzの高周波信号を入力してその透過損失を測定した結果を図5に示す。図5より、サンプルP,QはサンプルRに比べて1〜25GHzの全周波帯域で透過損失が改善された。特に、10GHz以上のより高周波の帯域で透過損失が低減されており、より大容量の情報を高速で処理する半導体装置に対して有効なものとなった。なお、サンプルP,Qの透過損失にはほとんど差が見られなかった。
【0056】
次に、サンプルP,Qについて、平板部4aに金属板4gをロウ付けした後の図1(a)のX点(平板部4aの両端における立壁部4bと角を成す部位)における応力値を測定した。その結果、サンプルPでは5Mpa(メガパスカル)、サンプルQでは13.5Mpaとなり、サンプルQではX点を起点に入出力端子4にクラックが発生した。従って、入出力端子4を破損することなく金属板4gを接合するためには、サンプルPが有効であることが判った。
【0057】
なお、本発明は上記実施の形態および実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲内であれば種々の変更を施すことは何等差し支えない。
【0058】
【発明の効果】
本発明の入出力端子は、上面に一辺から対向する他辺にかけて形成された線路導体を有する誘電体から成る平板部と、平板部の上面に線路導体の一部を間に挟んで接合された誘電体から成る立壁部と、平板部の下面に接合された、下面と略同じ大きさの略四角形で四隅に切欠き部を有する金属板とを具備したことにより、半導体素子収納用パッケージに用いた際に、平板部下面に金属板が接合されていることから接地電位が強化され、線路導体の枠体外側の先端部にリード端子を接合し、線路導体の枠体内側の先端部付近にボンディングワイヤを接続しても、線路導体のリード端子接続部とボンディングワイヤ接続部において、反射損失や透過損失等の高周波信号の伝送損失が発生するのを抑制することができ、入出力端子において高周波信号を効率良く入出力し得る。
【0059】
また、本発明の入出力端子が半導体素子収納用パッケージの金属製の枠体の取付部に嵌着され、シールリングおよび枠体で挟持されても、それらの熱膨張係数差による金属製の基体の底面の反りを発生させることはなく、半導体素子収納用パッケージを光半導体装置と成して基体を外部電気回路基板にトルクをかけてネジ止めしても、半導体素子収納用パッケージが歪むことがない。その結果、光ファイバと光半導体素子との光結合効率が損なわれて半導体素子の光信号の作動性が損なわれることはない。さらに、金属板の四隅に切欠き部が形成されていることから、平板部の四隅に金属板との熱膨張差による応力が加わるのを抑制し、平板部にクラック等の破損が生ずるのを有効に防止できるとともに、切欠き部の間の幅狭部において良好なロウ材のメニスカスが形成され、平板部と金属板との接合を強固なものとすることができる。
【0060】
本発明の半導体素子収納用パッケージは、上面に半導体素子が載置される載置部を有する金属製の基体と、基体の上面に載置部を囲繞するように取着された金属製の枠体と、枠体の側部に形成された貫通孔または切欠きから成る入出力端子の取付部と、取付部に嵌着された本発明の入出力端子とを具備したことにより、入出力端子における高周波信号の伝送特性に優れ、基体の反りの発生が防止され、また入出力端子の平板部にクラック等の破損が生ずるのを有効に防止でき、さらに平板部に金属板を強固に接合できるという作用効果を有する。
【0061】
本発明の半導体装置は、上記本発明の半導体素子収納用パッケージと、載置部に載置されるとともに入出力端子に電気的に接続された半導体素子と、枠体の上面に接合された蓋体とを具備したことにより、上記本発明の半導体素子収納用パッケージを用いた信頼性の高いものとなる。
【0062】
【図面の簡単な説明】
【図1】(a)は本発明の入出力端子について実施の形態の例を示す斜視図、(b)は(a)の入出力端子の下面図、(c)は本発明の入出力端子について実施の形態の他の例を示す下面図である。
【図2】図1の入出力端子を用いた本発明の半導体素子収納用パッケージの斜視図である。
【図3】従来の入出力端子の斜視図である。
【図4】図3の入出力端子を用いた従来の半導体素子収納用パッケージの斜視図である。
【図5】従来の入出力端子と本発明の入出力端子について高周波信号の透過損失を測定した結果のグラフである。
【符号の説明】
1:基体
1a:載置部
2:枠体
2a:取付部
4:入出力端子
4a:平板部
4b:立壁部
4c:線路導体
4g:金属板
9:半導体素子
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an input / output terminal used for a signal input / output portion of a package for housing a semiconductor element for housing a semiconductor element that operates with a high-frequency signal, a package for housing a semiconductor element using the input / output terminal, and a semiconductor device.
[0002]
[Prior art]
A conventional input / output terminal for transmitting a high frequency signal such as a microwave band and a millimeter wave band, and a semiconductor element housing package (hereinafter also referred to as a semiconductor package) for hermetically housing a semiconductor element are shown in FIGS. Show.
[0003]
In FIG. 3, 104a is alumina (Al 2 O Three ) Ceramics, aluminum nitride (AlN) ceramics, mullite (3Al 2 O Three ・ 2SiO 2 ) A flat plate portion made of a dielectric material such as ceramics, which has a line conductor 104c formed on its upper surface from one side to the other opposite side and made of a metallized layer such as tungsten (W), molybdenum (Mo), etc. Has a lower ground conductor 104d made of a metallized layer similar to the line conductor 104c. The upper surface of the flat plate portion 104a is joined by sandwiching the line conductor 104c, and has an upper ground conductor 104e on the upper surface. 2 O Three Ceramics, AlN ceramics, 3Al 2 O Three ・ 2SiO 2 A standing wall portion 104b made of a dielectric material such as ceramic is provided. Side surfaces of the flat plate portion 104a and the standing wall portion 104b have side ground conductors 104f made of a metallized layer similar to the line conductor 104c.
[0004]
The distance between the line conductor 104c and the lower ground conductor 104d is adjusted by appropriately adjusting the thickness of the flat plate portion 104a in accordance with the frequency of the high-frequency signal transmitted through the line conductor 104c, and the line conductor 104c is characterized. Match to impedance. Thus, by matching the line conductor 104c to the characteristic impedance, the transmission efficiency of the high-frequency signal transmitted through the line conductor 104c can be improved.
[0005]
As described above, the input / output terminal 104 includes the flat plate portion 104a and the standing wall portion 104b, and hermetically blocks the inside and outside of the semiconductor package and seals the inside.
[0006]
In addition, as shown in FIG. 4, an optical semiconductor package, which is a kind of semiconductor package, has a mounting portion 101a on which an optical semiconductor element 109 such as an LD (semiconductor laser) or PD (photodiode) is mounted. And an iron (Fe) -nickel (Ni) -cobalt (Co) alloy or copper (Cu) in which a screwing hole 101b is formed to be screwed by applying torque to an external electric circuit board (not shown). -It has the substantially rectangular base | substrate 101 which consists of metals, such as a tungsten (W) alloy. Further, it is joined to the upper surface of the base 101 via a brazing material such as silver (Ag) brazing so as to surround the mounting portion 101a, and the optical semiconductor element 109 and an external electric circuit ( A mounting portion 102a for fitting the input / output terminal 104 to be electrically connected to the optical semiconductor element 109 is formed on one side of the short side, and a through-hole serving as an optical transmission path for optical coupling to the optical semiconductor element 109 is formed. It has a substantially rectangular frame 102 made of a metal such as an Fe—Ni—Co alloy in which holes 102b are formed. A cylindrical optical fiber fixing member (hereinafter also referred to as a fixing member) 103 for fixing the optical fiber 108 and made of a metal such as an Fe—Ni—Co alloy is joined to the through hole 102b by a brazing material such as Ag brazing. .
[0007]
The input / output terminal 104 shown in FIG. 3 is joined to the mounting portion 102a via a brazing material such as Ag brazing, and the lead terminal 105 is joined to the tip end outside the frame body 102 of the line conductor 104c using a brazing material such as Ag brazing. To do. Further, the optical semiconductor element 109 is mounted and fixed on the mounting portion 101a, and the optical semiconductor element 109 is electrically connected to the vicinity of the tip portion inside the frame body 102 of the line conductor 104c by a bonding wire (not shown). After adjusting the optical axes of the optical fiber 108 and the optical semiconductor element 109, a metal holder 107 having the optical fiber 108 attached with an adhesive such as a resin is seam welded to the outer end surface of the frame 102 of the fixing member 103. To join. Further, a seal ring 106 made of a metal such as an Fe-Ni-Co alloy is joined to the upper surfaces of the frame body 102 and the input / output terminal 104 using a brazing material such as Ag brazing, and a lid (not shown) is attached to the upper surfaces thereof. Are joined by seam welding or the like to provide an optical semiconductor device as a product.
[0008]
In such an optical semiconductor device, the external electric circuit board is screwed with torque, and then the optical semiconductor element 109 is optically excited by a drive signal supplied from the external electric circuit, and the excited laser light or the like is emitted. By transmitting / receiving to / from the fiber 108 and transmitting through the optical fiber 108, it functions as a photoelectric conversion device capable of transmitting a large amount of information at high speed, and is often used in the field of optical communication.
[0009]
[Problems to be solved by the invention]
However, in the conventional input / output terminal 104, when the high-frequency signal transmitted through the line conductor 104c is in a high-frequency band of 10 GHz or more, the lead terminal 105 is attached to the distal end portion of the line conductor 104c on the outer side of the frame 102. When joining the brazing material and connecting the optical semiconductor element 109 and the vicinity of the inner end of the frame 102 of the line conductor 104c with a bonding wire, a propagation delay or a delay occurs at the lead terminal 105 connecting portion and the bonding wire connecting portion of the line conductor 104c. In some cases, transmission loss of high-frequency signals such as transmission loss increases, and high-frequency signals cannot be input / output efficiently at the input / output terminals 104.
[0010]
That is, a lower ground conductor 104d made of a metallized layer is formed on the lower surface of the flat plate portion 104a, but the lower ground conductor 104d made of a metallized layer has a thickness on the order of several μm to several tens of μm. And the ground potential with respect to the line conductor 104c tends to become unstable. Therefore, there is a problem that a transmission loss such as a propagation delay or a transmission loss occurs in the high-frequency signal transmitted through the line conductor 104c, and a malfunction occurs in the semiconductor element.
[0011]
Further, in such an optical semiconductor package using the input / output terminal 104, the bottom surface of the base 101 is warped due to a difference in thermal expansion between the input / output terminal 104 and the frame body 102 and between the input / output terminal 104 and the seal ring 106. When such an optical semiconductor package is used as an optical semiconductor device and the external electric circuit board is screwed with torque, the warp deformation of the base 101 is corrected and the entire optical semiconductor package is distorted. As a result, the optical axes of the optical fiber 108 and the optical semiconductor element 109 are shifted, the optical coupling efficiency is impaired, and the operability of the optical signal of the semiconductor element 109 cannot be improved.
[0012]
Accordingly, the present invention has been completed in view of the above problems, and its object is to effectively prevent transmission loss of a high-frequency signal and effectively prevent distortion of the substrate, thereby preventing the high-frequency signal of the optical semiconductor element. It is to improve the operability of the optical signal.
[0013]
[Means for Solving the Problems]
The input / output terminal of the present invention is joined to a flat plate portion made of a dielectric having a line conductor formed on one side of the upper surface from one side to the other side, and a part of the line conductor is sandwiched between the upper surface of the flat plate portion. And a metal plate joined to the lower surface of the flat plate portion and having a substantially rectangular shape of the same size as the lower surface and having cutout portions at four corners.
[0014]
When the input / output terminal of the present invention is used in a package for housing a semiconductor element, a metal plate is bonded to the lower surface of the flat plate portion, so that the ground potential is strengthened, and the lead terminal is connected to the tip portion outside the frame body of the line conductor. Even if a bonding wire is connected near the tip of the inside of the line conductor frame, the transmission loss of high-frequency signals such as propagation delay and transmission loss is lost at the lead terminal connection portion and the bonding wire connection portion of the line conductor. Generation | occurrence | production can be suppressed and a high frequency signal can be input / output efficiently in an input / output terminal. That is, the metal plate has a lower electrical resistance than the lower ground conductor made of a conventional metallized layer, and the ground potential with respect to the line conductor is strengthened, thereby improving the transmission characteristics of the high-frequency signal.
[0015]
Further, even if the input / output terminal of the present invention is fitted to the mounting portion of the metal frame of the semiconductor element storage package and is sandwiched between the seal ring and the frame, the metal base due to the difference in thermal expansion coefficient between them The semiconductor element storage package is distorted even if the semiconductor element storage package is formed as an optical semiconductor device and the base is screwed by applying torque to the external electric circuit board. There is no. As a result, the optical coupling efficiency between the optical fiber and the optical semiconductor element is not impaired, and the operability of the optical signal of the semiconductor element is not impaired.
[0016]
Furthermore, since the notches are formed at the four corners of the metal plate, it is possible to suppress the stress due to the difference in thermal expansion from the metal plate at the four corners of the flat plate portion, and to prevent breakage such as cracks in the flat plate portion. In addition to being effectively prevented, a good meniscus of brazing material is formed in the narrow portion between the notches, and the bonding between the flat plate portion and the metal plate can be strengthened.
[0017]
A semiconductor element storage package according to the present invention includes a metal base having a placement portion on which a semiconductor element is placed on an upper surface, and a metal attached to the upper surface of the base so as to surround the placement portion. And a mounting portion of the input / output terminal comprising a through hole or a notch formed in a side portion of the frame body, and the input / output terminal according to claim 1 fitted to the mounting portion. It is characterized by that.
[0018]
As described above, the semiconductor element storage package of the present invention has excellent high-frequency signal transmission characteristics at the input / output terminals, prevents the substrate from warping, and cracks in the flat portions of the input / output terminals. It is possible to effectively prevent the occurrence of breakage and the like, and further, there is an effect that the metal plate can be firmly joined to the flat plate portion.
[0019]
A semiconductor device according to the present invention includes a semiconductor element storage package according to the present invention, a semiconductor element mounted on the mounting portion and electrically connected to the input / output terminal, and an upper surface of the frame body. And a covered lid.
[0020]
The semiconductor device of the present invention has high reliability using the semiconductor element storage package of the present invention due to the above-described configuration.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
An input / output terminal and a package for housing a semiconductor element of the present invention are shown in FIGS. 1A is a perspective view of an input / output terminal of the present invention, FIG. 1B is a bottom view of a flat plate portion of the input / output terminal of the present invention, and FIG. 1C is another embodiment of the input / output terminal of the present invention. FIG. 2 is a bottom view of the flat plate portion, and FIG. 2 is a perspective view of a semiconductor package using the input / output terminals of FIG. In these drawings, 1 is a base, 2 is a frame, 3 is a cylindrical fixing member for fixing a metal holder 7 to which an optical fiber 8 is attached, 4 is an input / output terminal, and 6 is a seal ring. The base body 1, the frame body 2, the fixing member 3, the input / output terminals 4, and the seal ring 6 accommodate therein an optical semiconductor element 9 such as an LD or PD as a semiconductor element, and a lid body on the upper surface of the seal ring 6. The container is configured by attachment.
[0022]
The base body 1 has a mounting portion 1a for mounting the optical semiconductor element 9 on its upper surface, functions as a support member for supporting the optical semiconductor element 9, and generates heat generated when the optical semiconductor element 9 is activated. It has a function to dissipate efficiently. The base body 1 has a screwing hole 1b, and is screwed by applying torque to the external electric circuit board through the screwing hole 1b.
[0023]
The substrate 1 has a substantially rectangular shape and is made of a metal such as an Fe—Ni—Co alloy or a Cu—W alloy. The substrate 1 is formed into a predetermined shape by subjecting an ingot such as an Fe—Ni—Co alloy to metal processing such as rolling or pressing.
[0024]
The base 1 is successively plated with a metal having excellent corrosion resistance and wettability with the brazing material, specifically, a Ni layer having a thickness of 0.5 to 9 μm and an Au layer having a thickness of 0.5 to 5 μm. The substrate 1 is preferably deposited by a method, and the base 1 can be effectively prevented from being oxidatively corroded, and the optical semiconductor element 9 can be firmly bonded and fixed to the upper surface of the base 1.
[0025]
Further, the upper surface of the base body 1 is joined to the upper surface of the base body 1 with a brazing material such as Ag brazing so as to surround the mounting portion 1a, and the optical semiconductor element 9 and the both side portions on the long side side. A mounting portion 2a formed of a through hole or a notch for fitting the input / output terminal 4 to be electrically connected to an external electric circuit is formed, and is further optically coupled to the optical semiconductor element 9 on one side of the short side. It has a substantially rectangular frame 2 made of a metal such as an Fe—Ni—Co alloy in which a through-hole 2b that is an optical transmission line is formed.
[0026]
The frame 2 is formed into a predetermined shape by subjecting an ingot of the same alloy as that of the base 1 to metal processing such as rolling or pressing.
[0027]
The frame body 2 is joined to the base body 1 by joining the upper surface of the base body 1 and the lower surface of the frame body 2 through a brazing material such as preformed Ag brazing laid on the upper surface of the base body 1. Furthermore, a metal layer such as a Ni layer having a thickness of 0.5 to 9 μm or an Au layer having a thickness of 0.5 to 5 μm may be deposited on the surface of the frame body 2 by a plating method in the same manner as the substrate 1.
[0028]
The mounting portion 2a of the frame 2 has an input / output terminal 4 having a function of inputting and outputting a high-frequency signal between the optical semiconductor element 9 and an external electric circuit, and a function of blocking the inside and outside of the optical semiconductor package. Joined with brazing material such as brazing.
[0029]
The input / output terminal 4 is formed by laminating a rectangular column-like standing wall portion 4b on the upper surface of a substantially rectangular flat plate portion 4a, and a metal plate 4g is bonded to the lower surface of the flat plate portion 4a. The flat plate portion 4a is made of Al. 2 O Three Ceramics, AlN ceramics, 3Al 2 O Three ・ 2SiO 2 It is made of a dielectric material such as ceramics, and is formed on the upper surface of the flat plate portion 4a from one side to the opposite other side, and a line conductor 4c made of a metallized layer such as W or Mo is formed on the entire surface on the lower surface. A lower ground conductor 4d made of a metallized layer similar to the line conductor 4c is formed.
[0030]
The upper surface of the flat plate portion 4a is joined by sandwiching a part of the line conductor 4c and has an upper ground conductor 4e on the upper surface. 2 O Three Ceramics, AlN ceramics, 3Al 2 O Three ・ 2SiO 2 A standing wall portion 4b made of a dielectric material such as ceramic is installed. Side surface grounding conductors 4f made of a metallized layer similar to the line conductor 4c are formed on the side surfaces of the flat plate portion 4a and the standing wall portion 4b. A metal plate 4g made of an Fe—Ni—Co alloy or the like is joined to the surface of the lower ground conductor 4d via a brazing material such as Ag brazing.
[0031]
The metal plate 4g has a function of suppressing the warpage of the bottom surface of the base 1 that occurs when the input / output terminal 4 is brazed to the mounting portion 2a, and enhances the ground potential of the line conductor 4c, thereby generating a high-frequency signal. Has a function of suppressing deterioration of transmission loss.
[0032]
The metal plate 4g is a substantially quadrangular shape that is approximately the same size as the lower surface of the flat plate portion 4a. Specifically, the metal plate 4g has a substantially quadrangular shape (substantially rectangular shape) in plan view having substantially the same length and width as the flat plate portion 4a, and has cutout portions at four corners. Both ends in the longitudinal direction are narrow portions 4g-A. Preferably, the size of the narrow portion 4g-A is such that the length A in the longitudinal direction is A = 1 to 5 mm, the width B is B = 0.5 to 2.5 mm, and the width B is the thickness of the frame body 2. It is better to make it larger. By this narrow portion 4g-A, it is possible to suppress the stress due to the difference in thermal expansion from the metal plate 4g at the four corners of the flat plate portion 4a, and to effectively prevent breakage such as cracks in the flat plate portion 4a. A good meniscus of brazing material can be formed in the narrow portion 4g-A, and the bonding between the flat plate portion 4a and the metal plate 4g can be strengthened. Further, when the width B is smaller than the thickness of the frame body 2, the thermal expansion of the input / output terminals 4 at the time of brazing cannot be brought close to the thermal expansion of the base body 1 or the frame body 2, and warping of the bottom surface of the base body 1 occurs. Can not be suppressed.
[0033]
Further, the thickness of the metal plate 4g is preferably 0.1 to 2 mm. When the thickness is less than 0.1 mm, the thickness of the metal plate 4g is so thin that the thermal expansion of the input / output terminal 4 during brazing is caused by the thermal expansion of the metal base 1 and frame 2. Thus, it becomes impossible to suppress the occurrence of warping of the bottom surface of the base 1, and the ground potential for the line conductor 4c cannot be sufficiently strengthened. On the other hand, if it exceeds 2 mm, the stress applied to the flat plate portion 4a due to the difference in thermal expansion between the flat plate portion 4a and the metal plate 4g becomes very large, and breakage such as cracks is likely to occur in the input / output terminal 4.
[0034]
More preferably, as shown in FIG. 1C, two protrusions 4g-B are provided at both ends in the width direction of the tip of the narrow part 4g-A of the metal plate 4g, respectively, and adjacent protrusions The interval C between the parts 4g-B is substantially the same as the thickness of the frame body 2, and the length C1 and the width C2 of the protrusions 4g-B are preferably 0.2 to 1 mm for both C1 and C2. With this configuration, the protrusion 4g-B facilitates the positioning of the metal plate 4g with respect to the attachment portion 2a of the frame 2 and facilitates attachment, and the input / output terminal 4 is attached to the attachment portion 2a without tilting. Can do.
[0035]
Therefore, even when the input / output terminal 4 is used for an optical semiconductor package and the line conductor 4c and the optical semiconductor element 9 are joined by the bonding wire, the length of the bonding wire does not become longer than the predetermined length. It is possible to prevent the transmission loss of the high-frequency signal due to the increase in the length and to impair the operability of the optical semiconductor element 9 due to the high-frequency signal.
[0036]
In the case of C1, C2 <0.2 mm, the protrusion 4g-B is too small to be difficult to form by metal processing, and is easily deformed or chipped, making it difficult to align with the mounting portion 2a. When C1 and C2> 1 mm, the protrusion 4g-B becomes large, which is an obstacle when mounting the optical semiconductor element 9 or the like inside the frame 2 or when mounting the base body 1 on the external electric circuit board by screwing. It may become.
[0037]
The metal plate 4g is formed into a predetermined shape by applying metal processing such as rolling or pressing to an ingot such as an Fe-Ni-Co alloy. Similarly to the substrate 1, if a metal layer such as a Ni layer having a thickness of 0.5 to 9 μm or an Au layer having a thickness of 0.5 to 5 μm is deposited by a plating method, oxidation of the surface of the metal plate 4g can be effectively prevented.
[0038]
In addition, the metal plate 4g has a curved portion such as an arc shape by chamfering the corner of the tip of the narrow portion 4g-A in the configuration of FIG. 1B, or the entire tip of the narrow portion 4g-A. In general, it is preferable to use a curved shape such as an arc. In this case, it can suppress more effectively that the stress by the thermal expansion difference with the metal plate 4g is added to the four corners of the flat plate part 4a, and it can prevent more effectively that damage, such as a crack, arises in the flat plate part 4a.
[0039]
As described above, since the input / output terminal 4 is provided with the metal plate 4g on the lower surface, the input / output terminal 4 is used for an optical semiconductor package and a high-frequency signal for driving the optical semiconductor element 9 to the line conductor 4c is transmitted. Even if it does, transmission loss will arise in a high frequency signal, and the operativity of the optical semiconductor element 9 will not be impaired. Further, even when the input / output terminal 4 is fitted to the mounting portion 2a and is sandwiched between the seal ring 6 and the frame body 2, it is possible to prevent the bottom surface of the base body 1 from being warped due to the difference in thermal expansion coefficient between them. . Therefore, even if the optical semiconductor package is formed as an optical semiconductor device and torque is applied to the external electric circuit board and screwed, the optical semiconductor package will not be distorted. Therefore, the optical coupling efficiency between the optical fiber 8 and the optical semiconductor element 9 is not impaired, and the operability of the optical signal of the optical semiconductor element 9 is not impaired.
[0040]
On the upper surface of the flat plate portion 4a of the input / output terminal 4, a line conductor 4c made of a metallized layer such as W, Mo-Mn, etc. is formed from one side to the other side opposite to each other. A metal paste obtained by adding and mixing an organic solvent and a solvent to the above powder is printed and applied in advance to a ceramic green sheet for the flat plate portion 4a in a predetermined pattern by a conventionally known screen printing method, and then fired. Is done.
[0041]
Further, the standing wall portion 4b is laminated on the upper surface of the flat plate portion 4a. That is, the standing wall portion 4b is made of a dielectric material joined to the upper surface of the flat plate portion 4a with a part of the line conductor 4c interposed therebetween.
[0042]
A high-frequency signal is input / output between the external electric circuit and the input / output terminal 3 at a portion outside the frame 2 of the line conductor 4c, and a lead terminal 5 made of a metal such as an Fe—Ni—Co alloy is provided such as Ag solder. Joined with brazing material.
[0043]
Further, a through hole 2b is formed on one side of the short side of the frame 2, and one end of the cylindrical fixing member 3 is disposed around the outer opening of the frame 2 in the through hole 2b. Are joined together. A metal holder 7 having an optical fiber 8 attached with an adhesive such as a resin is bonded to the other end surface of the fixing member 3 with a low melting point brazing material such as Au—Sn. The fixing member 3 is manufactured by processing the same metal as the base body 1 and the frame body 2 into a desired shape by the same processing method, and has a Ni layer having a thickness of 0.5 to 9 μm and a thickness of 0.5 to 5 on the surface thereof. A metal layer such as a 5 μm Au layer may be deposited by plating.
[0044]
Thus, the seal ring 6 is joined to the upper surface of the frame 2 to which the input / output terminal 4 and the fixing member 3 are attached by a brazing material such as Ag brazing. The seal ring 6 is joined to the upper surface of the frame body 2 with a brazing material such as Ag brazing to sandwich the input / output terminal 4, and a lid for sealing the optical semiconductor element 9 is formed on the upper surface thereof by seam welding or the like. It functions as a bonding medium for bonding.
[0045]
The input / output terminal 4 of the present invention includes a flat plate portion 4a made of a dielectric having a line conductor 4c formed from one side to the opposite side on the upper surface, and a part of the line conductor 4c on the upper surface of the flat plate portion 4a. And a standing wall portion 4b made of a dielectric material sandwiched and sandwiched, and a metal plate 4g is joined to the lower surface of the flat plate portion 4a. An optical semiconductor package as a semiconductor package of the present invention is joined to a base 1 made of metal so as to surround the mounting portion 1a of the optical semiconductor element 9 on the upper surface thereof, and has a mounting portion 2a and a through hole 2b. A frame 2 and an input / output terminal 4 fitted in the through hole 2b are provided.
[0046]
With the above configuration, when a high frequency signal is transmitted to the line conductor 4c, transmission loss can be effectively prevented and distortion of the substrate 1 can be effectively prevented. Therefore, the operability of the high-frequency signal and the optical signal of the optical semiconductor element 9 is improved.
[0047]
In such an optical semiconductor package, the optical semiconductor element 9 is mounted and fixed on the mounting portion 1a with a low melting point solder such as Sn-Pb solder, and the line conductor 4c and the optical semiconductor element 9 are electrically connected with bonding wires. The metal holder 7 having the optical fiber 8 attached to the fixing member 3 with an adhesive such as a resin is joined to the fixing member 3 with a low melting point brazing material such as Au—Sn. By joining by seam welding or the like, an optical semiconductor device as a product is obtained.
[0048]
In this optical semiconductor device, a torque is applied to an external electric circuit board and screwed, and then the optical semiconductor element 9 is optically excited by a drive signal supplied from the external electric circuit, and excited light such as laser light is transmitted to the optical fiber 8. In addition to being transferred to and from the optical fiber 8, it functions as a photoelectric conversion device capable of transmitting a large amount of information at a high speed by being transmitted through the optical fiber 8, and is often used in the field of optical communications.
[0049]
Thus, according to the present invention, an optical semiconductor element operated by a high-frequency signal or an optical signal can be made normal and stable for a long time.
[0050]
【Example】
Examples of the input / output terminals of the present invention will be described below.
[0051]
The input / output terminals shown in FIGS. 1A and 1B are configured as follows. Al 2 O Three A line conductor 4c made of a W metallized layer was formed at the center of the upper surface of a substantially rectangular flat plate portion 4a made of ceramics, and a lower ground conductor 4d made of a W metallized layer was provided on the entire lower surface. Further, Al having an upper ground conductor 4e made of a W metallization layer on the upper surface of the flat plate portion 4a. 2 O Three A substantially rectangular parallelepiped standing wall portion 4b made of ceramics was laminated with a part of the line conductor 4c interposed therebetween. Side surface grounding conductors 4f made of a metallized layer similar to the line conductors 4c were provided on both side surfaces of the flat plate part 4a and the standing wall part 4b substantially parallel to the line direction. Further, by joining a metal plate 4g made of Fe-Ni-Co alloy and having a square shape substantially the same size as the flat plate portion 4a to the lower surface of the flat plate portion 4a and having notches at four corners by Ag brazing, an input / output terminal is obtained. 4 was produced. The input / output terminal 4 of the present invention was designated as sample P.
[0052]
In sample P, A = 1.6 mm and B = 0.15 mm for A and B in FIG. 1 (b), the width of the flat plate portion 4 a and the metal plate 4 g in a plan view shape is 3.5 mm, and the length is 17 mm. The thickness of 4a was 1.5 mm, the thickness of the metal plate 4g was 0.5 mm, and the width of the line conductor 4c was 0.5 mm.
[0053]
Further, as a comparative example, an input / output terminal in which metal plates 4g having no notches at the four corners were joined was prepared, and this was used as sample Q. In addition, an input / output terminal to which a metal plate as shown in FIG.
[0054]
In these samples P, Q, and R, at room temperature (25 ° C.), Al 2 O Three For ceramics, Young's modulus is 478 Gpa (Giga Pascal), Poisson's ratio is 0.25, linear expansion coefficient is 5.74 × 10 -6 / ° C., Fe—Ni—Co alloy, Young's modulus is 128 Gpa, Poisson's ratio is 0.37, linear expansion coefficient is 5.95 × 10 -6 / ° C. For Ag low, Young's modulus is 87 Gpa, Poisson's ratio is 0.37, and linear expansion coefficient is 18 × 10 -6 / ° C.
[0055]
And about the samples P, Q, and R, the result of having input the high frequency signal of 1-25 GHz into the line conductor 4c and measuring the transmission loss is shown in FIG. From FIG. 5, the transmission loss of samples P and Q was improved compared to sample R in the entire frequency band of 1 to 25 GHz. In particular, the transmission loss is reduced in a higher frequency band of 10 GHz or higher, which is effective for a semiconductor device that processes a large amount of information at high speed. Note that there was almost no difference in the transmission loss between the samples P and Q.
[0056]
Next, for the samples P and Q, the stress value at the point X in FIG. 1 (a) after brazing the metal plate 4g to the flat plate portion 4a (the portion forming an angle with the standing wall portion 4b at both ends of the flat plate portion 4a). It was measured. As a result, the sample P was 5 Mpa (megapascal), the sample Q was 13.5 Mpa, and the sample Q cracked at the input / output terminal 4 starting from the X point. Therefore, it was found that the sample P is effective for joining the metal plate 4g without damaging the input / output terminal 4.
[0057]
The present invention is not limited to the above-described embodiments and examples, and various modifications may be made without departing from the scope of the present invention.
[0058]
【The invention's effect】
The input / output terminal of the present invention is joined to a flat plate portion made of a dielectric having a line conductor formed from one side to the opposite side on the upper surface, and a part of the line conductor sandwiched between the upper surface of the flat plate portion. By using a standing wall portion made of a dielectric and a metal plate joined to the lower surface of the flat plate portion and having a substantially quadrangular shape having substantially the same size as the lower surface and having cutout portions at four corners, it is used for a package for housing semiconductor elements. The ground potential is strengthened because the metal plate is bonded to the lower surface of the flat plate portion, the lead terminal is bonded to the tip portion outside the frame body of the line conductor, and near the tip portion inside the frame body of the line conductor. Even when bonding wires are connected, it is possible to suppress transmission loss of high-frequency signals such as reflection loss and transmission loss at the lead terminal connection portion and bonding wire connection portion of the line conductor, and high frequency at the input / output terminals. Trust The can be efficiently input and output.
[0059]
Further, even if the input / output terminal of the present invention is fitted to the mounting portion of the metal frame of the semiconductor element storage package and is sandwiched between the seal ring and the frame, the metal base due to the difference in thermal expansion coefficient between them The semiconductor element storage package may be distorted even if the semiconductor element storage package is formed as an optical semiconductor device and the base is screwed by applying torque to the external electric circuit board. Absent. As a result, the optical coupling efficiency between the optical fiber and the optical semiconductor element is not impaired, and the operability of the optical signal of the semiconductor element is not impaired. Furthermore, since the notches are formed at the four corners of the metal plate, it is possible to suppress the stress due to the difference in thermal expansion from the metal plate at the four corners of the flat plate portion, and to prevent breakage such as cracks in the flat plate portion. In addition to being effectively prevented, a good meniscus of brazing material is formed in the narrow portion between the notches, and the bonding between the flat plate portion and the metal plate can be strengthened.
[0060]
The semiconductor element storage package of the present invention includes a metal base having a mounting portion on which a semiconductor element is mounted, and a metal frame attached to the upper surface of the base so as to surround the mounting portion. And an input / output terminal mounting portion formed of a through hole or a notch formed in a side portion of the frame body, and the input / output terminal of the present invention fitted to the mounting portion. Excellent high-frequency signal transmission characteristics, prevents warping of the substrate, can effectively prevent breakage such as cracks in the flat plate portion of the input / output terminals, and can firmly bond a metal plate to the flat plate portion It has the effect of.
[0061]
A semiconductor device according to the present invention includes a semiconductor element storage package according to the present invention, a semiconductor element mounted on a mounting portion and electrically connected to an input / output terminal, and a lid bonded to an upper surface of a frame. By providing the body, the semiconductor device housing package of the present invention is highly reliable.
[0062]
[Brief description of the drawings]
1A is a perspective view showing an example of an embodiment of an input / output terminal of the present invention, FIG. 1B is a bottom view of the input / output terminal of FIG. 1A, and FIG. 1C is an input / output terminal of the present invention; It is a bottom view which shows the other example of embodiment about.
2 is a perspective view of a package for housing a semiconductor element of the present invention using the input / output terminals of FIG. 1. FIG.
FIG. 3 is a perspective view of a conventional input / output terminal.
4 is a perspective view of a conventional package for housing a semiconductor element using the input / output terminals of FIG. 3. FIG.
FIG. 5 is a graph showing a result of measuring transmission loss of a high-frequency signal for a conventional input / output terminal and the input / output terminal of the present invention.
[Explanation of symbols]
1: Substrate
1a: Placement part
2: Frame
2a: Mounting part
4: Input / output terminal
4a: Flat plate part
4b: Standing wall
4c: Line conductor
4g: Metal plate
9: Semiconductor element

Claims (3)

上面に一辺から対向する他辺にかけて形成された線路導体を有する誘電体から成る平板部と、該平板部の上面に前記線路導体の一部を間に挟んで接合された誘電体から成る立壁部と、前記平板部の下面に接合された、該下面と略同じ大きさの略四角形で四隅に切欠き部を有する金属板とを具備したことを特徴とする入出力端子。A flat plate portion made of a dielectric having a line conductor formed from one side to the other side facing the upper surface, and a standing wall portion made of a dielectric bonded to the upper surface of the flat plate portion with a part of the line conductor interposed therebetween An input / output terminal comprising: a metal plate joined to the lower surface of the flat plate portion and having a substantially quadrangular shape substantially the same size as the lower surface and having cutout portions at four corners. 上面に半導体素子が載置される載置部を有する金属製の基体と、該基体の上面に前記載置部を囲繞するように取着された金属製の枠体と、該枠体の側部に形成された貫通孔または切欠きから成る入出力端子の取付部と、該取付部に嵌着された請求項1記載の入出力端子とを具備したことを特徴とする半導体素子収納用パッケージ。A metal base having a placement portion on which a semiconductor element is placed on an upper surface; a metal frame attached on the upper surface of the base so as to surround the placement portion; and a side of the frame A package for housing a semiconductor device, comprising: an input / output terminal mounting portion comprising a through hole or a notch formed in the portion; and the input / output terminal of claim 1 fitted into the mounting portion. . 請求項2記載の半導体素子収納用パッケージと、前記載置部に載置されるとともに前記入出力端子に電気的に接続された半導体素子と、前記枠体の上面に接合された蓋体とを具備したことを特徴とする半導体装置。A package for housing a semiconductor element according to claim 2, a semiconductor element mounted on the mounting portion and electrically connected to the input / output terminal, and a lid bonded to the upper surface of the frame body A semiconductor device comprising the semiconductor device.
JP2002146274A 2002-05-21 2002-05-21 I / O terminal and semiconductor element storage package and semiconductor device Expired - Fee Related JP3784346B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002146274A JP3784346B2 (en) 2002-05-21 2002-05-21 I / O terminal and semiconductor element storage package and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002146274A JP3784346B2 (en) 2002-05-21 2002-05-21 I / O terminal and semiconductor element storage package and semiconductor device

Publications (2)

Publication Number Publication Date
JP2003338572A JP2003338572A (en) 2003-11-28
JP3784346B2 true JP3784346B2 (en) 2006-06-07

Family

ID=29705310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002146274A Expired - Fee Related JP3784346B2 (en) 2002-05-21 2002-05-21 I / O terminal and semiconductor element storage package and semiconductor device

Country Status (1)

Country Link
JP (1) JP3784346B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4511385B2 (en) * 2005-02-24 2010-07-28 京セラ株式会社 Ceramic member joining structure, electronic component storage package and electronic device using the same
JP5905728B2 (en) * 2012-01-31 2016-04-20 京セラ株式会社 Device storage package and mounting structure
JP6849558B2 (en) * 2017-08-29 2021-03-24 京セラ株式会社 Electronic component storage packages and electronic devices

Also Published As

Publication number Publication date
JP2003338572A (en) 2003-11-28

Similar Documents

Publication Publication Date Title
JP4822820B2 (en) Semiconductor element storage package and semiconductor device
JP3784346B2 (en) I / O terminal and semiconductor element storage package and semiconductor device
JP2009283898A (en) Electronic part container, package for storing electronic part using the same and electronic device
JP5153682B2 (en) Semiconductor element storage package and optical semiconductor device
JP3981645B2 (en) I / O terminal and semiconductor element storage package and semiconductor device
JP3850344B2 (en) I / O terminal and semiconductor element storage package and semiconductor device
JP2002184888A (en) Input/output terminal and semiconductor element housing package
JP4009169B2 (en) Semiconductor element storage package and semiconductor device
JP3670574B2 (en) I / O terminal and semiconductor element storage package
JP3771853B2 (en) I / O terminal and semiconductor element storage package
JP7196249B2 (en) Packages for semiconductor devices and semiconductor devices
JP4139165B2 (en) Input / output terminal for semiconductor element storage package, semiconductor element storage package, and semiconductor device
JP2002280473A (en) I/o terminal, package for containing semiconductor element and semiconductor device
JP3615697B2 (en) Package for storing semiconductor elements
JP2002314186A (en) Package for storing optical semiconductor element and optical semiconductor device
JP2006128267A (en) I/o terminal, package for storing electronic component using same, and electronic device
JP3598059B2 (en) Package for storing semiconductor elements
JP2004259962A (en) Package for optical semiconductor element and optical semiconductor device
JP2006128261A (en) I/o terminal, package for storing electronic component using same, and electronic device
JP3696817B2 (en) Optical semiconductor element storage package and optical semiconductor device
JP2003046180A (en) Input-output terminal, package for housing optical semiconductor element, and optical semiconductor device
JP3638528B2 (en) Package for storing semiconductor elements
JP4070181B2 (en) Semiconductor element storage package and semiconductor device
JP4041327B2 (en) Semiconductor element storage package and semiconductor device
JP3612292B2 (en) Semiconductor element storage package and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060314

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090324

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120324

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120324

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130324

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130324

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140324

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees