JP3782246B2 - Bst−ofdm信号生成・分配装置 - Google Patents

Bst−ofdm信号生成・分配装置 Download PDF

Info

Publication number
JP3782246B2
JP3782246B2 JP04025899A JP4025899A JP3782246B2 JP 3782246 B2 JP3782246 B2 JP 3782246B2 JP 04025899 A JP04025899 A JP 04025899A JP 4025899 A JP4025899 A JP 4025899A JP 3782246 B2 JP3782246 B2 JP 3782246B2
Authority
JP
Japan
Prior art keywords
signal
bst
unit
processing unit
ofdm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04025899A
Other languages
English (en)
Other versions
JP2000244443A (ja
Inventor
真 山本
政幸 高田
一彦 渋谷
誠 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Broadcasting Corp filed Critical Japan Broadcasting Corp
Priority to JP04025899A priority Critical patent/JP3782246B2/ja
Publication of JP2000244443A publication Critical patent/JP2000244443A/ja
Application granted granted Critical
Publication of JP3782246B2 publication Critical patent/JP3782246B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、地上デジタル放送の暫定方式であるBST−OFDM(Band Segmented Transmission Orthogonal Frequency Division Multiplexing)信号の生成装置、および基幹放送所や準基幹放送所への分配、配信装置に係り、特に、放送所に設置する信号処理部の規模を小さくし、放送ネットワークにおける放送所の数が多い場合でも、装置コストを押さえることを可能にするとともに、SFN(単一周波数ネットワーク)を構築するときに必要となる各放送所間でのフレーム同期、シンボル同期を容易に確立することのできるBST−OFDM信号生成・分配装置に関する。
【0002】
【従来の技術】
従来、BST−OFDM信号を生成し、各放送所から放送する場合、以下のように2つの方法が考えられる。
1)図12に示すように、演奏所からMPEG−TS(トランスポートストリーム)信号を有線回線またはマイクロ波回線などで各放送所までデジタル伝送し、各放送所では、放送所に設置したBST−OFDM信号生成装置によってアナログIF信号を生成し、送信周波数に周波数変換した後、電力増幅して送信アンテナに供給する。
2)図13に示すように、演奏所にBEST−OFDM信号生成装置を設置し、出力されるアナログIF信号を有線回線またはマイクロ回線などで各放送所までアナログ伝送し、各放送所では、その受信したアナログIF信号を送信周波数に周波数変換した後、電力増幅して送信アンテナに供給する。
なお、図12、13においては、BST−OFDM信号生成装置を二重枠のブロックで示し、両者の違いを明確にした。
【0003】
【発明が解決しようとする課題】
しかし、これらの方法には以下のような問題点がある。
まず、1)の方法では、地理的に離れた複数の放送所を用いて、放送ネットワークを構成する場合、各放送所毎に別々のBST−OFDM信号生成装置を設置する必要があり、そのため放送所の数が増えるとコストが大きくなってしまう。また、各放送所にMPEG−TS信号をデジタル伝送で分配するため、放送所から放送される電波の品質を高くすることができる反面、各放送所でTMCC(Transmission and Multiplexing Configuration Control)などの制御信号を付加するため、編成情報などを、別の伝送手段で各放送所に伝送する必要がある。また、各放送所間でSFNを構成する場合には、各放送所から放送されるBST−OFDM信号のフレームタイミング、シンボルタイミングおよび送信周波数を一致させる必要があり、そのために各放送所に設置するBST−OFDM信号生成装置の動作プロセスの完全な同一化、および共通な参照信号の分配が必要となるなど、技術的制約が多い。
【0004】
次に、2)の方法では、BST−OFDM信号生成装置は演奏所に1台設置すればよく、すでに、変調波となったBST−OFDM信号を各放送所に分配するため、フレームタイミング、シンボルタイミングなどは各放送所で自動的に同一となる。また、TMCC信号を作成するために、各放送所へ編成情報を伝送する必要もない。しかし、変調波となったBST−OFDM信号をアナログ伝送で各放所に分配する場合には、分配系での雑音や歪みによる劣化を小さく抑えるために、受信増幅器や電力増幅器等に高い性能が要求され、伝送装置が高価なものになる。仮に、変調波となったBST−OFDM信号をデジタル伝送しようとすると、高いビットレートが必要で、マイクロ波回線で送る場合には、広い伝送帯域幅を必要とし、有線系では、設備コストや回線借用のための費用が問題となる。
【0005】
本発明の目的は、放送所から放送される電波の質を低下させることなく放送ネットワーク全体での装置の規模を小さくし、かつ、SFNを構築するときに必要となる各放送所間でのフレーム同期、シンボル同期を容易に確立することのできるBST−OFDM信号生成・分配装置を提供することにある。
【0006】
【課題を解決するための手段】
上記目的を達成するために、本発明BST−OFDM信号生成・分配装置は、演奏所で入力されるプログラム信号に基づいて、少なくとも1箇所の放送所からBST−OFDM信号の変調波で放送を行うBST−OFDM信号生成・分配装置において、前記BST−OFDM信号を生成する信号処理部を、逆FFT処理以降の信号処理部Bとそれ以前の信号処理部Aとに切り分け、該信号処理部Aを前記演奏所に、前記信号処理部Bを前記放送所に設置するようにしたことを特徴とするものである。
【0007】
また、本発明BST−OFDM信号生成・分配装置は、前記信号処理部Aからの出力信号が、シンボル毎、キャリア毎のI軸、Q軸ぞれぞれ複素振幅値を表す信号データが、複素平面上の信号点の位置に対応した符号に変換された符号化信号であることを特徴するものである。
【0008】
また、本発明BST−OFDM信号生成・分配装置は、前記信号処理部Aからの符号化出力信号のビットレート、キャリアレートまたはシンボルレートと前記放送所に送信する際のデジタル変調波のシンボルレートとの比を整数比にし、前記放送所においては、PLL回路を使用することで再生シンボルロック信号からビットクロック信号、逆FFTクロック信号およびシンボルクロック信号を生成するようにしたことを特徴とするものである。
【0009】
【発明の実施の形態】
以下に添付図面を参照し、発明の実施の形態に基づいて本発明を詳細に説明する。
図1は、本発明BST−OFDM信号生成・分配装置の一実施形態をブロック図にて示している。
上述したように、本発明装置においては、BST−OFDM信号生成装置を演奏所または放送所のいずれか一方の側に設置することをしないで(従来は、いずれか一方の側に設置していた。)、BST−OFDM信号生成装置を、同装置における信号処理の中間段階である逆FTT(IFFT)への入力まで、すなわち、シンボル毎、キャリア毎の複素振幅値を表す信号データを、切り分け点として、これ以前の処理を行う信号処理部Aと、IFFT以降、アナログIF形式のBST−OFDM信号を発生させるまでの処理を行う信号処理部Bとに分離し、前者を演奏所側に、後者を放送者側にぞれぞれ設置している。なお、図1においては、上記信号処理部Aと信号処理Bとを二重枠のブロックで示している。
【0010】
上述したように、本発明装置においては、BST−OFDM信号生成装置を、図1に示すように、MPEG−2信号が入力されてフレーム化処理までを行う演奏所に設置する信号処理部Aと、IFFT処理からアナログIF信号を得るまでの信号処理を行う放送所側に設置する信号処理部Bとに分離するとともに、通常のBST−OFDM信号生成装置ではシンボル毎、キャリア毎のI軸、Q軸それぞれ16bit程度で表現される複素振幅値として出力されているフレーム化処理後の信号を複素平面上の信号点に対応する7bitの符号化信号に変換し、光ファイバーなどの有線回線や、マイクロ波回線などを用いて、演奏所から各放送所にデジタル伝送で分配するようにする。
【0011】
このようにすることで、放送所に設置する信号処理部の規模を小さくし、放送ネットワークにおける放送所の多い場合でも、装置コストを押さえることを可能にし、また、本発明では、すでにTMCC信号が付加されフレーム化処理が終わった後の信号を伝送分配するようにしていることから、各放送所にTMCC信号を生成するための編成情報や、フレーム同期タイミングやシンボル同期タイミングを放送所間で同一にするのに必要な基準信号の伝送が不要であり、さらに、各放送所までデジタル伝送で信号分配してるため、放送される電波の質を高く維持することができる。加えて、通常I軸、Q軸それぞれ16bit程度(合計32bit)、例えば、12bit乃至20bitで表現されているフレーム化処理後の信号を、複素平面上の信号点の位置に対応した7bitの符号に変換して伝送しているため、所要伝送ビットレートが低く、多値QAM(Quadrature Amplitude Modulation)を用いることで、適切な誤り訂正符号化を施した上で、アナログNTSC信号のFPU(Field Pickup Unit)やSTL(Studio to TransmitterLink)で用いている1チャンネル当たり17MHz帯域幅の既存のマイクロ波回線を用いて伝送分配することができ、また、光ファイバーなどの有線回線を用いる場合には回線借用のための費用を節減することができる。
【0012】
信号処理部Aについて説明する。
図2は、図1中の演奏所に設置された信号処理部Aの一例の構成をブロック図にて示している。
図2において、MPEG−2形式で、圧縮、多重された映像、音声信号(MPEG−TS信号)は、信号処理部Aに入力され、まず、TS再多重部1で、ヌルTSパケットが付加されて、フレーム化された一定のレートの信号に変換された後、外符号2として、バイト訂正ブロック符号であるリードソロモン符号化RS(204,188)処理が行われる。外符号化処理後、編成情報などにしたがって、データを各階層に分割3する。階層は最大3階層までである。階相分割されたバイト単位のデータは各階層別にビットシリアル形式の信号に変換4され、PN符号によりエネルギー拡散5を施された後、各階層間で遅延を一致させるための遅延補正処理6がなされる。遅延補正後のバイト単位に変換7された信号データはバイトインターリーブ8され、再び、ビットシリアル形式の信号に変換9された後、内符号である畳み込み符号化10が行われ、ビットシリアル形式の信号データは、ビットインターリーブ処理後11後、符号化マッピング12され、複素平面上の信号点に割り振られる。ここで、従来技術では、マッピング処理後の信号はI軸、Q軸それぞれ16ビット程度の準アナログ的なデータに変換されて、後段の処理回路に送られていた。
【0013】
これに対し、本発明では、マッピング処理後の信号はI軸、Q軸それぞれについて、従来のように16ビット程度の準アナログ的なデータに変換するのでなく、複素平面上の信号点に対応する番号に変換(符号化)して、後段の処理回路へ入力する。本発明では、この処理を符号化マッピッング処理(図2において、2重枠で示す)と称している。BST−OFDM信号では、変調形式として、64QAM,16QAM,QPSK,π/4シフトDQPSKが選択できるように規定されている。したがって、64点(64QAM(図3参照))+16点(16QAM(図4参照))+4点(QPSK(図5参照))+8点(π/4シフトDQPSK(図6参照))=92点の番号で、全ての信号点を表現することができる。さらに、後段で追加するSP(Scattered Pilot)TMCC、AC(Auxiliary Channel)があり、DBPSK(図7参照)で、さらに、シンボル方向に一定の位相をもつ、CP(Continues Pilot)があり、これらの信号の位相点を表現するのに、2つ番号が必要であるから、合計で94点(異なる番号で同じ信号点を表現している重複はあり得る)について番号を付加して表現することができればよく、そのために7bit符号化とする(図2参照)。このようにすることで、シンボル毎、キャリア毎に32bit必要としていたデータが7bitで済み、以降の階層合成、時間インターリーブ、周波数インターリーブ、OFDMフレーム構成の各処理回路の規模を大幅に削減することができる。
【0014】
符号化マッピッングされたシンボル毎、キャリア毎の信号データは、階層合成13されて、3つの階層のデータが1系統になり、時間インターリーブ14、周波数インターリーブ15の処理のよって、キャリア単位で入れ替えが行われた後、CP、SP、TMCC信号が付加されて、OFDMフレームが構成16され、信号処理部Aから出力される。このときパイロット信号17や、TMCC信号18は、データキャリアと同様に7bitで符号化19された信号として付加される。
【0015】
信号処理部Aから出力されたデジタル信号の放送所側への伝送には、図1に示すように、マイクロ波を用いて伝送するルートと光ファイバを介して伝送するルートがあるが、ここではマイクロ波を用いて伝送する場合について説明する。
【0016】
図8は、図1中の演奏所側のマイクロ回線用送信部と、同じく図1中の放送所側のマイクロ回線用受信部の一例の構成をブロック図にて示している。
演奏所側では、信号処理部Aから出力され、マイクロ回線用送信部に入力されたデジタル信号は、まず、放送所側でIFFT用タイミング信号を容易に再生可能なようにするために、総シンボル数とIFFTサンプル数との比が整数比となるようにダミーデータとIFFT同期用データを付加20する。その後、例えば、リードソロモン符号などを用いて誤り訂正外符号が符号化21され、バイトインターリーブ22が施される。バイトインターリーブ後の信号は、ビットストリームに変換23され、PN信号付加によるエネルギー拡散24が施される。エネルギー拡散処理後の信号は、畳込み符号などによる誤り訂正内符号が符号化25され、さらに、ビットインターリーブ処理26で処理される。
【0017】
ここで、総シンボル数とIFFTサンプル数の比を整数比にして、マイクロ波回線用送信部を構成した場合について、処理ブロックの接続、および各ブロックの出力における信号の形態a〜fをそれぞれ示す図9(A),(B)参照して説明する。なお、図9(A)中、図8と同一処理部分については同一符号を付して示している。
【0018】
図9においてモード1(IFFTサンプル数2048、総シンボル数1405)の場合aを例にとり、マイクロ波回線用送信部における伝送路用信号レート(処理速度) の変換、ここでは、シンボル数をIFFTサンプル数の11/16とするようにIFFT同期用データとダミーデータで合計3個のデータを付加し、総シンボル数1408とするbとともに、信号レートを11/16に変換し、さらに、後段の誤り訂正内符号(リードソロモン符号)に整合させるために7ビットのシンボルに1ビットの冗長ビットを加え8ビットのシンボルに変換cしている。
【0019】
その後、1408シンボルを8個の176シンボルのグループに分割し、RS(192,176)の符号化dを行い、バイト・ビット変換eした後、誤り訂正内符号として、2/3の畳み込み符号化fを行っている。この例に示すような処理を行うことにより、伝送される信号レートはもとの信号処理部AのIFFTクロックに対し整数比になるため、放送側では受信信号から容易にIFFTクロックを再生することが可能になる。表1に各モード(モデル1,2,3)の各場合について、符号化マッピング処理によるビットレートと伝送所要ビットレートおよびそのIFFTクロックに対する比の例を示している。
【0020】
【表1】
Figure 0003782246
【0021】
次に、放送所側での差動復号を可能にするための差動符号化27を行い、変調多値数に応じたビット数単位で直列・並列変換28を行い、複素平面上の信号点へのマッピング処理29を施す。マッピング処理で得られるI軸、Q軸それぞれ、16bit程度の複素ベースバンド信号は、ロールオフフィルタなどにより波形整形30がなされ、直交変調31後、D/A変換32され、さらにBPF33により補間処理され、アナログIF信号となる。図8に示す例では、直交変復調をデジタル信号処理で行う場合を示している。得られたアナログIF信号は、IF増幅34後、周波数変換35によってマイクロ波帯の信号に周波数変換し、送信RF増幅で所要の電力まで増幅36した後、送信アンテナから放射する。
【0022】
放送所側では、受信アンテナからの受信RF信号をマイクロ波受信部へ入力する。マイクロ波受信部では、まず、入力された受信RF信号を、受信RF増幅37で増幅後、周波数変換38してIF周波数とし、IF増幅39にて所定の信号レベルまで増幅する。得られたIF信号はBPF40で不要な信号成分が除去され、AD変換器41でデジタルIF信号となる。デジタルIF信号は、直交復調42されてI軸、Q軸の複素ベースバンド信号となり、ロールオフフィルタなどで波形整形43される。波形整形された、複素ベースバンド信号は、後段の等化器44に入力されるほか、キャリア再生処理45、クロック再生処理46にも供される。キャリア再生処理45では、周波数、位相誤差を検出し、発振周波数を修正して、直交復調処理42へ帰還させる。クロック再生処理46では複素振幅値に含まれるシンボル周波数成分を抽出し、PLLで安定化して、各種タイミング信号の発生47に用いる。
【0023】
次に、等化器44で、伝送歪みが除去され、デマッピング処理48により複素平面上の信号点が特定され、対応する複数ビットのデータが生成される。このデータは並列・直列変換処理49によってビットストリーム信号に変換され、差動復号化処理50で差動復号化される。差動復号化後のビットストリームは、ビットデインターリーブ処理51がなされ、さらに、ビタビ復号器などを用いて内符号誤り訂正処理52が行われビット誤りが訂正される。誤り訂正後のビットストリームは、エネルギー逆拡散処理53された後、ビット・バイト変換処理54でバイト単位のデータ列に変換され、さらにバイトデインターリーブ処理55がなされる。デインターリーブされた信号は、外符号誤り訂正処理56され、バイト単位で誤り訂正が行われる。また、マイクロ波回線用送信部で挿入したIFFT同期データを用いたIFFT用タイミング信号を得ると同時に、IFFT同期データとダミーデータを除去57した信号がマイクロ波回線用受信部から出力され以下に説明する信号処理部Bに送られる。これと同時に、IFFT用タイミング信号発生部58で発生したタイミング信号も信号処理部Bに送られる。
【0024】
放送所側におけるBST−OFDM信号生成装置の信号処理部Bについて説明する。
図10は、図1中の放送所側に設置された信号処理部Bの一例の構成をブロック図にて示している。
図10において、前述したマイクロ波回線用受信部(図8参照)から入力されるシンボル毎、キャリア毎の7bit単位のデータ列(信号1)をI軸、Q軸それぞれ16bit程度の信号に変換59し、IFFT処理60して時間軸信号(信号2、信号3)に変換(図11参照)後、I軸、Q軸それぞれについてガードインターバル付加61を行う。ガードインターバルを付加した複素ベースバンド信号は、オーバーサンプル処理62よってIFFT処理のクロックの4倍の周波数にサンプリング周波数を変換後、直交変調63して、デジタルIF信号にする。このデジタルIF信号をDA変換64してアナログIF信号に変換し、BPF65で補間処理を行った後に、図1に示す周波数変換、電力増幅して、例えば、UHFの電波により一般視聴者を対象に放送される。
【0025】
【発明の効果】
本発明によれば、BST−OFDM信号の生成過程であるフレーム化処理の後、IFFT処理の前の信号点をインターフェースポイントとして、装置を演奏所側に設置する信号処理部Aと放送所側に設置する信号処理部Bとに分離するとともに、光ファイバーなどの有線回線や、マイクロ波回線などを用いて、演奏所から各放送所にデジタル伝送で信号を分配し、信号処理部BでIFFT以降の処理を行うことで、放送所に設置する信号処理部の規模を小さくし、放送ネットワークにおける放送所の数が多い場合でも、装置コストを抑えることを可能にし、また、SFNで必要となる放送所間の各種同期を同一にするのに必要な基準信号や編成情報の伝送を不要にすることができる。
【0026】
また、本発明によれば、各放送所までデジタル伝送で信号分配するようにしたため、放送される電波の質を高く維持でき、加えてI軸、Q軸それぞれ16bit程度で表現される複素振幅値として出力されるフレーム化処理後の信号を、複素平面上の信号点に対応する7bitの符号化信号に変換、伝送し、放送所側において、符号化された信号を、再び、I軸、Q軸それぞれ16bit程度の複素振幅値を表す信号に復号することで、伝送所要ビットレートが低く抑えられ、既存のアナログNTSC信号のFPUやSTLで用いられている1チャンネル当たり17MHz帯域幅のマイクロ波回線を用いて伝送分配することができ、光ファイバーなどの有線回線を用いる場合には回線借用の費用を節減することができる。
【図面の簡単な説明】
【図1】 本発明BST−OFDM信号生成・分配装置の一実施形態をブロック図にて示している。
【図2】 図1中の演奏所に設置された信号処理部Aの一例の構成をブロック図にて示している。
【図3】 64QAMの複素平面上の信号点の配置を示している。
【図4】 16QAMの複素平面上の信号点の配置を示している。
【図5】 QPSKの複素平面上の信号点の配置を示している。
【図6】 π/4シフトDQPSKの複素平面上の信号点の配置を示している。
【図7】 DBPSKの複素平面上の信号点の配置を示している。
【図8】 図1中の演奏所側のマイクロ波回線用送信部と、同じく図1中の放送所側のマイクロ波回線用受信部の一例の構成をブロック図にて示している。
【図9】 マイクロ波回線用送信部における信号レートの変換例を示している。
【図10】 図1中の放送所に設置された信号処理部Bの一例の構成をブロック図にて示している。
【図11】 信号処理部Bにおけるシンボル毎、キャリア毎の変調データから複素ベースバンド信号データへの変換例を示している。
【図12】 従来のBST−OFDM信号生成・分配装置をブロック図にて示している。
【図13】 同じく従来のBST−OFDM信号生成・分配装置をブロック図にて示している。
【符号の説明】
1 TS再多重部
2 外符号化部
3 階層分割部
4 バイト・ビット変換部
5 エネルギー拡散部
6 遅延補正部
7 ビット・バイト変換部
8 バイトインターリーブ部
9 バイト・ビット変換部
10 畳み込み符号化部
11 ビットインターリーブ部
12 符号化マッピング部
13 階層合成部
14 時間インターリーブ部
15 周波数インターリーブ部
16 OFDMフレーム構成部
17 パイロット信号生成部
18 TMCC信号生成部
19 符号化部
20 同期/ダミーデータ付加部
21 誤り訂正外符号符号化部
22 バイトインターリーブ部
23 バイト・ビット変換部
24 エネルギー拡散部
25 誤り訂正内符号符号化部
26 ビットインターリーブ部
27 差動符号化部
28 直列・並列変換部
29 マッピング部
30 波形整形部
31 直交変調部
32 D/A変換部
33 BPF
34 IF増幅部
35 周波数変換部
36 RF増幅部
37 RF増幅部
38 周波数変換部
39 IF増幅部
40 BPF
41 A/D変換部
42 直交復調部
43 波形整形部
44 等化器
45 キャリア再生部
46 クロック再生部
47 タイミング信号発生部
48 デマッピング部
49 並列・直列変化部
50 差動復号化部
51 ビットデインターリーブ部
52 誤り訂正内符号訂正部
53 エネルギー逆拡散部
54 ビット・バイト変換部
55 バイトデインターリーブ部
56 誤り訂正外符号訂正部
57 同期/ダミーデータ除去部
58 IFFT用タイミング信号発生部
59 復号処理部
60 IFFT部
61 ガードインターバル付加部
62 オーバーサンプリング部
63 直交変調部
64 D/A変換部
65 BPF

Claims (3)

  1. 演奏所で入力されるプログラム信号に基づいて、少なくとも1箇所の放送所からBST−OFDM信号の変調波で放送を行うBST−OFDM信号生成・分配装置において、
    前記BST−OFDM信号を生成する信号処理部を、逆FFT処理以降の信号処理部Bとそれ以前の信号処理部Aとに切り分け、該信号処理部Aを前記演奏所に、前記信号処理部Bを前記放送所に設置するようにしたことを特徴とするBST−OFDM信号生成・分配装置。
  2. 請求項1記載のBST−OFDM信号生成・分配装置において、
    前記信号処理部Aからの出力信号は、シンボル毎、キャリア毎のI軸、Q軸ぞれぞれ複素振幅値を表す信号データが、複素平面上の信号点の位置に対応した符号に変換された符号化信号であることを特徴するBST−OFDM信号生成・分配装置。
  3. 請求項1または2記載のBST−OFDM信号生成・分配装置において、
    前記信号処理部Aからの符号化出力信号のビットレート、キャリアレートまたはシンボルレートと前記放送所に送信する際のデジタル変調波のシンボルレートとの比を整数比にし、前記放送所においては、PLL回路を使用することで再生シンボルロック信号からビットクロック信号、逆FFTクロック信号およびシンボルクロック信号を生成するようにしたことを特徴とするBST−OFDM信号生成・分配装置。
JP04025899A 1999-02-18 1999-02-18 Bst−ofdm信号生成・分配装置 Expired - Fee Related JP3782246B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04025899A JP3782246B2 (ja) 1999-02-18 1999-02-18 Bst−ofdm信号生成・分配装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04025899A JP3782246B2 (ja) 1999-02-18 1999-02-18 Bst−ofdm信号生成・分配装置

Publications (2)

Publication Number Publication Date
JP2000244443A JP2000244443A (ja) 2000-09-08
JP3782246B2 true JP3782246B2 (ja) 2006-06-07

Family

ID=12575662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04025899A Expired - Fee Related JP3782246B2 (ja) 1999-02-18 1999-02-18 Bst−ofdm信号生成・分配装置

Country Status (1)

Country Link
JP (1) JP3782246B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008300945A (ja) * 2007-05-29 2008-12-11 Energia Communications Inc Fm放送波伝送システム、fm放送波送信装置、fm放送波受信装置、fm放送波伝送方法
JP5220553B2 (ja) * 2008-10-28 2013-06-26 日本無線株式会社 放送システム
JP5944811B2 (ja) * 2012-10-30 2016-07-05 日本電信電話株式会社 デジタルコヒーレント光伝送方法、送信装置及び受信装置

Also Published As

Publication number Publication date
JP2000244443A (ja) 2000-09-08

Similar Documents

Publication Publication Date Title
Le Floch et al. Coded orthogonal frequency division multiplex [TV broadcasting]
EP0732832B1 (en) Signal transmitter, signal receiver, and signal transmitting-receiving method
US7426246B2 (en) Dual layer signal processing in a layered modulation digital signal system
JP4527864B2 (ja) デジタルオーディオ放送(dab)システムにおけるデジタル信号の送受信方法
JP4864263B2 (ja) デジタル音声放送システムにおけるデータ送信及び受信方法
KR20020031009A (ko) 동일대역 인접채널 방식의 디지털 오디오 방송 전송 시스템
KR100532422B1 (ko) 동일 심볼을 다수의 채널에 중복적으로 전송하여 통신거리를 확장시킨 무선 랜 시스템의 직교 주파수 분할다중화 송수신 장치 및 그 송수신 방법
JPH09130362A (ja) 受信装置および受信方法
EP1278323A1 (en) Ofdm modem system
JP6753508B2 (ja) 放送用送信システム、放送用受信システム、放送用送受信システム、放送用送信方法および放送用送信プログラム
CN102394714A (zh) 调频广播频段数字广播信号接收方法和接收系统
JP5127813B2 (ja) 放送信号伝送システム、送信装置、受信装置、および放送信号伝送方法
CN1972391A (zh) 兼容数字音频广播的地面移动多媒体广播接收机
JP3782246B2 (ja) Bst−ofdm信号生成・分配装置
JP2008098852A (ja) スケルチ装置及びスケルチ制御方法
JP4018925B2 (ja) 信号構成および送信装置ならびに受信装置
CN1319353C (zh) 能够降低信号失真的单载波传输系统及其方法
JP7168001B2 (ja) 放送用送信システム、放送用送受信システム、放送用送信方法および放送用送信プログラム
CN100576783C (zh) 能够改善发送效率的多载波发送系统及其方法
JPWO2020137744A1 (ja) 放送用送信システム、放送用受信システム、放送用送受信システム、放送用送信方法および放送用送信プログラム
JP4031355B2 (ja) Ofdm変調信号伝送方法及びその送信側装置と受信側装置
JP2002237797A (ja) 直交周波数分割多重信号生成装置、及び直交周波数分割多重信号復号装置
Scalise et al. A prototype VLSI solution for digital terrestrial TV receivers conforming to the DVB-T standard
KR20110068806A (ko) 티디엠비 시스템의 계층변조 방법, 계층복조 방법 및 이를 지원하는 송수신기
KR101127968B1 (ko) 채널 왜곡 보상장치

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040113

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060309

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees