JP3779666B2 - 磁気再生ヘッド及び磁気再生装置 - Google Patents

磁気再生ヘッド及び磁気再生装置 Download PDF

Info

Publication number
JP3779666B2
JP3779666B2 JP2002284958A JP2002284958A JP3779666B2 JP 3779666 B2 JP3779666 B2 JP 3779666B2 JP 2002284958 A JP2002284958 A JP 2002284958A JP 2002284958 A JP2002284958 A JP 2002284958A JP 3779666 B2 JP3779666 B2 JP 3779666B2
Authority
JP
Japan
Prior art keywords
magnetic
layer
reproducing head
conductive region
ferromagnetic layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002284958A
Other languages
English (en)
Other versions
JP2004118988A (ja
Inventor
志保 中村
裕一 大沢
茂 羽根田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002284958A priority Critical patent/JP3779666B2/ja
Publication of JP2004118988A publication Critical patent/JP2004118988A/ja
Application granted granted Critical
Publication of JP3779666B2 publication Critical patent/JP3779666B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Heads (AREA)
  • Hall/Mr Elements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、磁気再生ヘッド及び磁気再生装置に関し、特に高記録密度で高効率な再生が可能な磁気再生ヘッド及び磁気再生装置に関する。
【0002】
【従来の技術】
強磁性層/非磁性層/強磁性層からなる積層構造において面内に電流を流した場合に、巨大磁気抵抗効果(Giant Magnetoresistance effect)が発現することが見出されて以来、大きな磁気抵抗変化率を持つ系が探索されてきた。これまでに、強磁性トンネル接合や、電流を多層膜に垂直方向へ流すCPP(Current Perpendicular to Plane)型の磁気抵抗効果素子(MR素子)が提案され、これらは磁気記録の再生素子として有望視されている。特に、CPP‐MR素子は、低い抵抗と大きなMRが利点となり200Gbpsi(Gigabit per square inch)以降の記録密度媒体の再生手段の候補となっている。
【0003】
CPP−MR素子では、電流が流れる距離が短いため、通電パスを制御することがポイントである。この点に関して、フリー層の磁区制御のためのハードマグネットとして高抵抗のものを使用するなどでセンス電流のGMR以外へのリークを防止する構造が提案されている(例えば、特許文献1参照)。
【0004】
また、上側の電極サイズをGMR素子よりも小さくすることで通電領域を絞り、ハードマグネットからのバイアスの影響による検出効率低下を防ぐ構造が提案されている(例えば、特許文献2参照)。
【0005】
【特許文献1】
特開2000‐228002号公報
【特許文献2】
特開2001‐312803号公報
さらに、下側の電極サイズも小さくすることで通電領域は小さくできると考えられる。
【発明が解決しようとする課題】
しかしながら、電極を絞っても抵抗の小さなGMR膜内の非磁性層(Cu層)で通電領域が膨らむという問題がある。また、上下2つの電極を絞った場合には、加工した下地が有する凹凸の上にGMR膜を形成することとなり、均一な平坦膜を得ることが難しい。さらに、上下の電極の位置合わせが容易でない。
【0006】
すなわち、通電パスを正確にコントロールすることで検出効率を高くし、かつ作製容易な簡略な構造をもつ新たな素子構造が望まれる。
【0007】
また一方、一つの素子でマルチ処理できるようになれば、より高速の信号再生が可能となる。しかし、CPP−MR素子が大きな検出効率を示すためには、ハードマグネットによる不感応領域を十分に避けるように通電領域を制御した構造が必要である。また、並列信号処理を行なうためには、これまではヘッドを複数並べる必要があり、構造が複雑となるという問題があった。
【0008】
本発明は、かかる課題の認識に基いてなされたものであり、その目的は、高効率かつ微細な磁区構造が検出可能で、かつ作製が容易な構造の磁気再生ヘッド及びこのヘッドを用いた磁気再生装置を提供することにある。
【課題を解決するための手段】
上記目的を達成するため、本発明の関連技術にかかる磁気再生ヘッドは、磁化方向が外部磁界に応じて変化する第1の強磁性層と、磁化方向が実質的に一方向に固定された第2の強磁性層と、前記第1及び第2の強磁性層の間に形成された非磁性中間層と、前記第1及び第2の強磁性層の膜面に対して略垂直な方向にセンス電流を通電可能とする、前記磁気抵抗効果膜に電気的に接続された一対の電極と、前記第1の強磁性層の両端に設けられた一対の硬磁性層と、を備え、
前記非磁性中間層は、前記センス電流が流れる導電領域と、前記センス電流を遮断する高抵抗領域と、を有し、前記第1の強磁性層の交換距離をdeとした時に、前記導電領域と前記硬磁性層との間隔がde/2 以上であることを特徴とする。
【0009】
上記構成によれば、一対の電極から流されるセンス電流を高抵抗領域により狭窄して導電領域に集中させ、硬磁性膜からのバイアス磁界により第1の強磁性層に形成される不感応領域にセンス電流を流さないようにすることができる。その結果として、第1の強磁性層のうちで外部磁場に対する感度が高い領域のみにセンス電流を流し、高感度の磁気検出が可能となる。
【0010】
ここで、前記導電領域と前記硬磁性層との間隔がde以上であるものとすれば、硬磁性膜からのバイアス磁界による不感応領域をさらに確実に避けてセンス電流を流すことができる。
【0011】
本発明の一態様によれば、
複数の磁性粒子がSiO あるいはMgOからなる非磁性材料により分離されてなり前記複数の磁性粒子のそれぞれの磁化方向が外部磁界に応じて変化する第1の強磁性層と、
磁化方向が実質的に一方向に固定された連続的な強磁性体からなる第2の強磁性層と、
前記第2の強磁性層の前記磁化を固着する反強磁性層と、
前記第1及び第2の強磁性層の間に形成された非磁性中間層と、
前記第1及び第2の強磁性層の膜面に対して略垂直な方向にセンス電流を通電可能とする、前記磁気抵抗効果膜に電気的に接続された一対の電極と、
を備え、
前記非磁性中間層は、前記センス電流が流れる導電領域と、前記センス電流を遮断する高抵抗領域と、を有し、
前記磁性粒子のサイズは、前記第1の強磁性層に前記外部磁界を与える記録媒体のトラック幅よりも小さく、トラック幅方向に複数個の前記磁性粒子が存在し、
前記第1の強磁性層は、その一端面を前記記録媒体の主面に近接させつつ前記主面に対して略垂直に設けられ、
前記第1の強磁性層を共有し、前記第2の強磁性層と前記導電領域及び前記高抵抗領域を含む前記非磁性中間層とからなる複数の積層構造が前記一端面に沿って並列に設けられ
前記複数の積層構造のそれぞれにおいて、前記導電領域は前記積層構造の中心よりも前記記録媒体に接近した位置に設けられたことを特徴とする磁気再生ヘッドが提供される。
【0012】
上記構成によれば、第1の強磁性層における磁性粒子同士の磁気的な結合が、それらの間に介在する非磁性材料により弱められるので、外部磁場の分布に対して敏感な磁化反転を形成することが有利となる。その結果として、連続磁性体膜を用いた場合よりも検出分解能を高くし、マルチ化させた場合にもそれぞれの検出部による独立した検出を確実なものとすることができる。
【0014】
またここで、前記導電領域のサイズは、前記第1の強磁性層に前記外部磁界を与える記録媒体の記録ピッチに対応したサイズであるものとすれば、隣接トラックまたは隣接ビットからのクロストークを抑制した読み出しが容易となる。
【0015】
またさらに、前記導電領域のサイズは、前記記録ピッチ以下であるものとすれば、隣接トラックまたは隣接ビットからのクロストークをさらに確実に抑制した読み出しが可能となる。
【0016】
一方、本発明の磁気再生装置は、上記いずれかの磁気再生ヘッドを備え、磁気記録媒体に磁気的に記録された情報の読み取りを可能としたことを特徴とし、高密度記録再生が可能な磁気記録再生システムが可能なる。
【0017】
または、本発明の磁気再生装置は、上記いずれかの磁気再生ヘッドを備え、試験体の表面における磁場の分布を検出可能としたことを特徴とし、高い分解能を有する磁気顕微鏡などの磁気再生装置を実現できる。
【発明の実施の形態】
以下、図面を参照しつつ本発明の実施の形態について説明する。
【0018】
図1は、本発明の関連技術にかかる磁気再生ヘッドの要部を例示する一部断面斜視図である。すなわち、同図は、磁気記録媒体200とその上に再生状態におかれた磁気再生ヘッドの磁気検出部を表す。
【0019】
また、図2は、この磁気再生ヘッドの磁気検出部の断面図である。すなわち、同図は、再生ヘッドの磁気検出部を記録媒体200に対して平行に切断して記録媒体200の側から眺めた断面を表す。
【0020】
これらの図面に表した再生ヘッドは、磁性体からなる第1の磁性層1と、第2の磁性層2と、これらの間に設けられた非磁性体からなる非磁性中間層3と、を有する。第1の磁性層1は、外部の磁界に対応してその磁化M1の方向が変化する「フリー層」あるいは「磁化自由層」として作用する。第2の磁性層2は、その磁化M2の方向が実質的に一方向に固着された「ピン層」あるいは「磁化固着層」として作用する。
【0021】
ここで、磁性層1、2の材料としては、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、または、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、マンガン(Mn)及びクロム(Cr)よりなる群から選択された少なくともいずれかの元素を含む合金、「パーマロイ」と呼ばれるNiFe系合金、あるいはCoNbZr系合金、FeTaC系合金、CoTaZr系合金、FeAlSi系合金、FeB系合金、CoFeB系合金などの軟磁性材料、ホイスラー合金、磁性半導体、CrO、Fe、La1―XSrMnOなどのハーフメタル磁性体酸化物(あるいはハーフメタル磁性体窒化物)のいずれかを用いることができる。
【0022】
一方、非磁性中間層3は、第1の磁性層1と第2の磁性層2との間の磁気的な結合を遮断する役割を有する。第1の磁性層1、非磁性中間層3及び第2の磁性層1からなる積層体に対しては、一対の電極10、20が接続されている。これら電極10、20から磁性層の膜面に対して略垂直方向にセンス電流が流され、磁気抵抗効果を利用した磁気検出が行われる。すなわち、第1の磁性層1と第2の磁性層の磁化Mの方向の相対的な変化を、磁気抵抗の変化として検出することができる。
【0023】
一方、第1の磁性層(フリー層)1の両端には、硬磁性(hard magnetic)材料からなる磁気バイアス層30が設けられている。磁気バイアス層は、第1の磁性層(フリー層)1にバイアス磁界を印加してその磁区構造を制御することより、いわゆる「バルクハウゼンノイズ(barkhausen noise)」を抑制する役割を有する。
【0024】
そして、本発明においては、非磁性中間層3に、電気抵抗が低い導電領域3Aと、電気抵抗が高い高抵抗領域3Bとが設けられている。すなわち、センス電流は、非磁性中間層3のうちの、導電領域3Aに集中するようにされている。
【0025】
導電領域3Aは、電気抵抗が相対的に低い非磁性材料からなる。そのような材料としては、例えば、銅(Cu)、金(Au)、銀(Ag)、あるいはこれらのいずれか一種以上を含む合金など挙げることができる。
【0026】
一方、高抵抗領域3Bは、電気抵抗が相対的に高い非磁性材料からなる。そのような材料としては、例えば、アルミニウム(Al)、タンタル(Ta)及びシリコン(Si)よりなる群から選択された少なくともいずれかの元素を含む酸化物あるいは窒化物、フッ化物などを挙げることができる。さらに具体的には、酸化アルミニウムや酸化シリコン、あるいは窒化シリコンなどを挙げることができる。
【0027】
このように、非磁性中間層3においてセンス電流を狭窄すると、第1の磁性層(フリー層1)のうちで、外部からの磁界に対して感度が高い感応領域にセンス電流を集中することができるため、ヘッドの検出効率をあげることができる。
【0028】
図3は、磁気バイアス層による影響を説明するための模式図である。すなわち、磁性層(フリー層)1の磁区構造の制御のために磁気バイアス層30を設けた場合、フリー層1の中で磁気バイアス層30に近い領域1Zは、磁化が磁気バイアス層30により規定される方向に強制されるため、不感応領域となっている。つまり、この領域1Zの磁化は、記録媒体200からの信号磁界に対して敏感でなくなる。従って、このような不感応領域1Zにまでセンス電流を流すと、磁気抵抗変化の検出感度が低下することとなる。
【0029】
これに対して、本実施形態によれば、非磁性中間層3に導電領域3Aと高抵抗領域3Bとを設けることにより、センス電流を狭窄する。そして、磁性層(フリー層)1のうちで、外部磁界に対して感度が高い領域のみに集中してセンス電流を流すことにより、再生ヘッドの磁気検出感度を向上させることができる。
【0030】
本関連技術において、磁気バイアス層30からのバイアス磁界の影響を回避するためには、導電領域3Aを磁性層(フリー層)1の交換距離deの半分以上、磁気バイアス層30から離すことが望ましい。さらに、導電領域3Aを磁気バイアス層30から、交換距離deあるいはそれ以上離すことが、より望ましい。
【0031】
図4は、交換距離deを説明するための概念図である。
【0032】
本願明細書において「交換距離」とは、磁性層(フリー層)1の磁化M1が、磁気バイアス層30のバイアス磁界の方向から90度回転する部分までの距離をいうものとする。
【0033】
すなわち、磁性層(フリー層)1の端に設けられた磁気バイアス層30は、同図において横方向に表した磁化Mを有する。そして、磁気バイアス層30の磁化Mによって磁性層1にバイアス磁界が印加されている。
【0034】
これに対して、垂直方向(図4においては、下向きの方向)の均一な外部磁場EFを印加する。この外部磁場は、磁気バイアス層30の磁化が反転しない程度に十分に印加する。
【0035】
すると、磁性層(フリー層)1の磁化M1は、磁気バイアス層30から遠ざかるにつれてバイアス磁界の影響が希薄となり、外部磁界EFの方向に反転する。本願明細書においては、この場合に磁性層1において磁気バイアス層30の端部から、磁性層1の磁化M1が外部磁場EFの方向に回転した部分までの距離を、「交換距離de」と定義する。
【0036】
この交換距離deは、実験的に求めることもできるし、シュミレーションにより求めることも可能である。
【0037】
そして、本関連技術においては、導電領域3Aを交換距離deの半分以上、さらに望ましくは、交換距離de以上、磁気バイアス層30から離すように設ける。つまり、図1あるいは図3に表したように、磁性層1の両端に一対の磁気バイアス層30、30を設けた場合に、その間隔dhとして、導電領域3Aのサイズは、(dh−de)以下とすることが望ましく、(dh−2de)以下とすることがより望ましい。
【0038】
また、本実施形態によれば、電極サイズを微細化することによりセンス電流を狭窄する構造と比較して、加工上も有利である。すなわち、本実施形態によれば、上下電極の「位置合わせ」が不要となる。また、本実施形態によれば、電極サイズを絞る必要がないため、下側の磁性層1(または2)を、それと同程度のサイズの平坦な電極の上に成長できる。このため、凹凸の上に磁性層を形成した場合に生じやすいMR特性劣化を防ぐこともできる。
【0039】
一方、本実施形態によれば、磁気再生ヘッドにおける磁気検出の空間的な分解能を大きく改善することも可能となる。すなわち、非磁性中間層3の導電領域3のサイズや配置に応じて、所定の限られた領域における信号磁界のみを選択的に検出することが可能となる。
【0040】
例えば、図1に例示した再生系の場合、磁気記録媒体200の記録トラック幅TWのサイズに応じて導電領域3Aのサイズを決定することにより、隣接トラックからの信号磁界を排除した再生が容易となる。
【0041】
この場合に、隣接トラックからの信号磁界を検出する、いわゆる「クロストーク」を防ぐためには、例えば、導電領域3Aのサイズをトラック幅TW程度あるいはそれ以下とすることで、記録媒体200上の目的とする記録ビットに反応したフリー層の領域のみにおいて磁気検出することが可能となる。
【0042】
ただし、この場合でも導電領域3Aの最適なサイズは、記録媒体200からの距離などに応じて適宜決定することができる。
【0043】
また、この場合、導電領域3Aを記録媒体200に接近させて設けると、検出効率の点で有利である。
【0044】
図5は、本発明の関連技術にかかる磁気再生ヘッドの具体例を表す断面図である。すなわち、同図は、磁気記録媒体200のトラックの長手方向に沿って切断した断面図である。本具体例の再生ヘッドは、磁性層(フリー層)1、非磁性中間層3、磁性層(ピン層)2、非磁性中間層3、磁性層(フリー層)1を積層した構造を有する。そして、導電領域3Aは、これら積層体の中心よりも記録媒体200の方向に接近した位置に設けられている。そして、一対の電極10、20を介して、センス電流Iがこの導電領域3Aを流れる。このようにすると、記録媒体200からの信号磁界をより高い効率で検出することができる。
【0045】
なお、同様の効果は、磁性層(フリー層)1を1層のみ、あるいは3層以上有する再生ヘッドにおいても得られる。
【0046】
図6は、本実施形態の再生ヘッドの変形例を表す要部断面図である。すなわち、同図は、再生ヘッドの磁気検出部を記録媒体に対して平行に切断した断面を表す。
【0047】
このように、非磁性中間層3を挟む両側の磁性層1、2は、サイズが同一である必要はない。なお、図6の場合、上下の磁性層1、2は、いずれも導電領域3Aよりサイズが大きく、磁性層(フリー層)1が上側であっても、磁性層(ピン層)2が上側であってもよい。
【0048】
図7は、図6に表した変形例において、磁気バイアス層30を付加して表した概念図である。なお、同図においては、磁性層(フリー層)1を下側に配置した場合を例示した。
【0049】
磁気バイアス層30を設けることにより、磁性層1の両側には、不感応領域1Zが形成される。しかし、非磁性中間層3の導電領域3Aは、この不感応領域1Zに重ならないように設けられている。このようにすれば、磁性層1のうちで、外部磁場に対する感度の高い部分のみにセンス電流を集中することができ、検出効率をあげることができる。また、導電領域3Aを規定することにより、外部磁場の検出の空間的な分解能をあげることもできる。
【0050】
図8は、本実施形態の再生ヘッドのさらなる変形例を表す要部断面図である。すなわち、同図も、再生ヘッドの磁気検出部を記録媒体に対して平行に切断した断面を表す。
【0051】
本変形例の場合、第1の磁性層(フリー層)1のサイズに対して、非磁性中間層3の導電領域3Aのサイズが小さく、さらに、第2の磁性層(ピン層)2のサイズも、導電領域3Aのサイズと同程度とされている。
【0052】
このようにしても、磁性層1のうちで、外部磁場に対する感度の高い部分のみにセンス電流を集中することができ、検出効率をあげることができる。また、導電領域3Aを規定することにより、外部磁場の検出の空間的な分解能をあげることもできる。
【0053】
さて、本発明においては、第1の磁性層(フリー層)を「孤立粒子系磁性膜」により形成することで、さらに再生ヘッドの検出効率を上げることができる。本願明細書において「孤立粒子系磁性膜」とは、孤立した磁性体粒子が非磁性体の中に分散した膜をいうものとする。「孤立粒子系磁性膜」の場合、磁性体粒子間の交換相互作用は、連続的な強磁性体膜(連続磁性体膜)におけるそれよりも小さくなる。
【0054】
図9は、連続磁性体膜を用いた場合のフリー層の磁化方向の変位を表した模式図である。フリー層1の下方には、記録媒体200が設けられ、その記録ビットRBから信号磁界Fが印加される。この記録ビットRBのサイズは、記録媒体200のトラック幅TWまたはビットサイズBSに等しい。
【0055】
フリー層1の両端には磁気バイアス層30が設けられてバイアス磁界が印加ざている。従って、フリー層1の磁化回転には、磁化反転を起こすための交換長が必要である。つまり、フリー層1の膜内で外部磁界Fに対応して急峻に磁化方向を変化させることはできず、磁化M1はなだらかに変化する。
【0056】
図10は、孤立粒子系磁性膜を用いた場合のフリー層の磁化方向の変位を表した模式図である。
【0057】
孤立粒子系磁性膜をフリー層1に用いると、交換長の影響がないため、図10(b)に表したように、外部磁界Fに対し、急峻な磁化方向変化が可能である。すなわち、磁性粒子間の磁気的相互作用が希薄であり、それぞれの磁性粒子が独立して外部磁界Fに反応しやすい。
【0058】
外部磁界Fに対する、連続磁性体膜と孤立粒子系磁性膜の磁化の反応は、図10(a)に表した如くであり、連続磁性体膜の場合、外部磁界Fに対する磁化の変位は緩やかであるのに対して、孤立粒子系磁性膜の磁化の反応は急峻で敏感である。
【0059】
このような孤立粒子系磁性膜を用いたフリー層1に対して、電流を狭窄させる導電領域3Aを設けることで、外部磁界Fに応答した領域のみに選択的にセンス電流を流すことが可能となる。このため、検出効率がさらに向上する。
【0060】
孤立粒子系磁性膜の材料としては、例えば、CoCr、CoCrPtB、CoCrPtTaなどのCoCrをベースにしたスパッタ膜を挙げることができる。これらの膜は、Crが粒界に偏析した構造をもつため、粒子間の交換相互作用が小さく、磁気的に孤立化させることができる。このほかに、SiOあるいはMgOなどからなるマトリックス中に、CoあるいはCo基合金からなる磁性体粒子を析出させたものも用いることができる。
【0061】
孤立粒子系磁性膜としては、基本的には孤立した磁性体粒子が非磁性マトリックス中に存在すればよいので、パターンド媒体のような材料も適応することができる。また、いわゆる「グラニュラー構造」と称される各種の材料も同様に用いることができる。
【0062】
フリー層1として孤立粒子系磁性膜を使った場合、図1に例示したような単一検出型の再生ヘッドとして用いることも可能であるが、複数同時検出を行なうことも可能である。
【0063】
図11は、複数同時検出が可能な再生ヘッドの構造を例示する模式図である。すなわち、同図(a)は磁性層1の膜面に対して平行な方向からみた図、同図(b)はこれに垂直な断面図である。
【0064】
また、図12は、この再生ヘッドの記録媒体面に平行な方向の断面図である。
【0065】
この再生ヘッドにおいては、磁性層(フリー層)1として孤立粒子系磁性膜を用い、さらに、非磁性中間層3に導電領域3と高抵抗領域3Bとを設けてセンス電流を狭窄した検出部が、複数並列して設けられている。
【0066】
非磁性中間層3に導電領域3Aを規定してセンス電流を狭窄することにより、磁界の検出部を空間的に規定することができる。孤立粒子系磁性膜を用いることにより、フリー層1においても、外部磁場に対する反応が局所的且つ敏感に得られる。そして、このように高分解能化、高感度化させることにより、複数の検出部を並列させた「マルチ化」が容易となる。このようなマルチ型の磁気再生ヘッドを用いることにより、複数のビットを同時に読むことが可能となる。
【0067】
なお、磁性層(フリー層)1として孤立粒子系磁性膜を用いた磁気再生ヘッドは、並列化したマルチ型のものには限定されず、図1乃至図8に例示したような単一型の磁気再生ヘッドにおいても、同様の効果が得られる。すなわち、孤立粒子系磁性膜を用いることにより、フリー層1による磁束の検出の分解能と感度が向上し、狭窄した導電領域3Aと組み合わせることにより、検出箇所の細かな場所選択が可能となり検出効率を向上させることができる。
【0068】
【実施例】
以下、実施例及び参考例を参照しつつ、本発明の実施の形態についてさらに詳細に説明する。
【0069】
(第1の参考例)
まず、本発明の第1の参考例として、図1及び図2に表した構造の磁気再生ヘッドを製作した。また、比較例として、非磁性中間層3の全体を導電材料により形成した磁気再生ヘッドも作製した。
【0070】
図13は、本参考例の磁気再生ヘッドの製造工程の要部を表す工程断面図である。本参考例の磁気再生ヘッドは、非磁性中間層3の導電領域3Aを構成する材料の成膜を行なったのち、その周辺の不要な部分を除去することにより作製した。
【0071】
すなわちまず、下側の磁気シールド層(図示せず)の上に、タンタル(Ta)と銅(Cu)からなる下側電極膜10を形成した。
【0072】
次に、図13(a)に表した積層構造を下側電極10の上に形成した。具体的には、反強磁性層6として膜厚20nmのPtMn、磁性層(ピン層)2として膜厚1nmのCoFe、そして導電領域3Aの材料として膜厚2nmのCuを形成した。
【0073】
次に、図13(b)に表したように、この積層体の上にEB(electron beam)レジストを塗布してEB露光し、リフトオフすることにより、直径70nmの円盤状のマスク26を形成した。
【0074】
次に、イオンミリングによりマスク26に被覆されない領域をエッチングして、図13(c)に表したように導電領域3Aをパターニングした。ここで、エッチング深さの判定は、スパッタされた粒子を差動排気した四重極分析器(QMS)に導入して質量分析することで、正確に把握できた。すなわち、スパッタ粒子に磁性層2を構成するコバルト(Co)あるいは鉄(Fe)が検出されたら、イオンミリングを停止する。
【0075】
エッチング後、マスク26を剥離した後に、SiOを成膜し、表面をイオンミリングにより平滑化して、導電領域3Aを構成する銅(Cu)の面の頭だしを行なうことにより、図13(d)に表したように、高抵抗領域3Bを形成した。また、このCu面に対して、スパッタにより表面の酸化層を取り除いたのちにアニールを行い、その結晶性を回復させた。
【0076】
次に、図13(e)に表したように、磁性層1として、膜厚1nmのCoFeを堆積した。そして、その上に、タンタル(Ta)と銅(Cu)とからなる上側電極20(図示せず)を形成した。
【0077】
このようにして、狭窄したCu層3Aを有する多層膜を形成し、これをフォトリソグラフにより図1の形状に加工した。この上にさらにSiOを形成し、磁気バイアス層30に対応する部分のSiO2を反応性イオンエッチングにより除去した。そして、この除去した部分に、磁気バイアス層30の材料を堆積して、さらに上面を平滑化したのち、上側のシールド層(図示せず)を形成した。
【0078】
一方、非磁性中間層3の全体を銅(Cu)のみにより形成した以外は同様の構造を有す比較例の磁気再生ヘッドを同様の製造手順により形成した。
【0079】
このようにして製作した磁気再生ヘッドの評価は、30nm〜200nmの各種ビット直径および間隔をもつパターンド(patterned)媒体を用いて行った。すなわち、形成した磁気再生ヘッドをXYZ駆動機能をもつピエゾ素子にマウントし、パターンド媒体の上を走査して再生信号の大きさを調べた。
【0080】
その結果、本参考例の再生ヘッドは、ビット直径と間隔を加えたビット周期が導電領域3Aの直径(すなわち70nm)と同等程度の場合に、比較例の再生ヘッドに比べて、約2倍近く大きな再生信号が得られた。すなわち、非磁性中間層3の導電領域3Aを規定することにより、微細な記録ビットからの信号磁界を高い感度で検出することができる。
【0081】
なお、本参考例においては、図13(b)に表した工程でレジストマスクをEB露光にて作製したが、本発明はこれに限定されず、導電領域3Aのパターニングの方法としては、要求されるサイズに応じて光露光などを用いることもできる。
【0082】
(第2の参考例)
次に、本発明の第2の参考例として、高抵抗領域3Bを形成した後に導電領域3Aを埋め込み形成した磁気再生ヘッドについて説明する。
【0083】
本参考例においても、図1及び図2に例示した磁気再生ヘッドを製作した。ただし、高抵抗領域3Bを構成する絶縁層に対する開口の形成を反応性ガス中で電子線で直描することにより実施した。
【0084】
図14は、本参考例の磁気再生ヘッドの製造工程の要部を表す工程断面図である。
【0085】
まず、図示しない下地膜(膜厚5nmのタンタル(Ta))上に反強磁性層6として膜厚15nmのPtMnを形成し、その上に、磁性層(ピン層)2として、CoFeを成長させ、さらにその上に、高抵抗領域3Bを構成する膜厚3nmのSiO層を形成した(図14(a))。
【0086】
こうして形成したSiO層3Bの表面に、加速電圧10kVの電子線(EB)を反応ガスXeFを吹き付けながら照射した。すると、SiO層3Bは、ガスと反応してSiフッ化物となり蒸発するが、CoFe磁性膜2は揮発性反応物を形成しないため、揮発反応はSiO層3Bのみで止まる(図14(b))。ここで用いる反応性ガスとしては、CHFガスや他のフレオン系ガスでも効果がある。さらに、電子線照射の際のチャージアップ対策として、SiO層の上にニオブ(Nb)などの金属膜を形成しても良い。
【0087】
このようにしてSiO層3BにCu層のサイズに対応した穴を形成した後、導電領域3Aを構成する銅(Cu)を蒸着し、さらにこれを平坦化し(図14(c))たのち、フリー層1となる磁性膜としてCoFeを5nm堆積し(図14(e))、さらにその上に、Taを5nm形成(図示せず)した。
【0088】
以上説明したプロセスにより、狭窄した導電領域3Aを有する磁気再生ヘッドが得られる。
【0089】
なお、ここではSiO層3Bへの穴の形成を反応性ガス中のEB直接描画により行なったが、本発明はこれには限定されない。例えば、他の方法として、SiO層3Bの上にレジスト塗布しEB露光あるいは光露光プロセスによりレジストに穴を形成し、CHFガス等による反応性イオンエッチングにより穴の底に露出しているSiOをエッチングする方法によっても、SiO層3Bに穴を形成することができる。
【0090】
さらにまた、収束イオンビーム(FIB)を用いて、SiO層3Bに穴を直接形成してもよい。
【0091】
(第1の実施例)
次に、本発明の第1の実施例として、図11に表したようにGMR検出部を並列にならべ、並列再生を可能とした磁気再生ヘッドを作製した。このようにマルチ化すれば、1つの再生ヘッドで並列再生処理することが可能となり、再生の高速化が図れる。
【0092】
本実施例においては、フリー層1として、CoCrPtTa系のスパッタ膜からなる孤立粒子系磁性膜を用いた。この材料膜は、いわゆる面内媒体として知られているものであり、強磁性結晶粒どうしの間は非磁性の領域である。従って、粒子ごとに磁気的に孤立している。ただし、磁気記録媒体ではなく、本実施例においてはフリー層1として用いるため、組成および膜作製条件を調節することによって、保磁力を数100エルステッド(Oe)以下に下げた。
【0093】
結晶粒のサイズは、作製条件により5nm〜15nmと分布したが、いずれも記録媒体のトラック幅よりも小さく、トラック幅方向に複数個の粒子が存在するため、結晶粒の磁気特性の個体差による素子の特性バラツキを防ぐことができた。
【0094】
本実施例の磁気再生ヘッドの製造工程ついて概説すると以下の如くである。
【0095】
まず、下側の電極を成膜しパターニングして、複数の電極の周囲がSiO層により埋め込まれたパターン状電極を形成した。この上に、フリー層1として、孤立粒子系磁性膜を形成した。さらにその上に、SiO層3Bを形成し、第2参考例と同様の方法でSiO層3Bに穴を形成したのちに、Cu層3Aを埋め込んだ。そして、その上に、さらにもう1つの強磁性層(ピン層)2としてCoFe層を成長させた。そして、その上に反強磁性層6としてPtIrMn層を形成するとにより、ピン層の磁化を固着した。そして、反強磁性層6の上に電極を形成した。
【0096】
(第2の実施例)
次に、本発明の第2の実施例として、本発明の磁気再生ヘッドを搭載した磁気再生装置について説明する。すなわち、図1乃至図14に関して以上説明した本発明の実施形態の磁気再生ヘッドは、例えば、記録再生一体型の磁気ヘッドアセンブリに組み込まれ、磁気記録媒体を用いた磁気記録再生装置に搭載することができる。
【0097】
図15は、このような磁気記録再生装置の概略構成を例示する要部斜視図である。すなわち、本発明の実施形態の磁気記録再生装置150は、ロータリーアクチュエータを用いた形式の装置である。同図において、記録用媒体ディスク200は、スピンドル152に装着され、図示しない駆動装置制御部からの制御信号に応答する図示しないモータにより矢印Aの方向に回転する。本発明の実施形態の磁気記録再生装置150は、複数の媒体ディスク200を備えたものとしてもよい。
【0098】
媒体ディスク200に格納する情報の記録再生を行うヘッドスライダ153は、薄膜状のサスペンション154の先端に取り付けられている。ここで、ヘッドスライダ153は、例えば、前述したいずれかの実施の形態にかかる磁気抵抗効果素子あるいは磁気ヘッドをその先端付近に搭載している。
【0099】
媒体ディスク200が回転すると、ヘッドスライダ153の媒体対向面(ABS)は媒体ディスク200の表面から所定の浮上量をもって保持される。あるいはスライダが媒体ディスク200と接触するいわゆる「接触走行型」であってもよい。
【0100】
サスペンション154は、図示しない駆動コイルを保持するボビン部などを有するアクチュエータアーム155の一端に接続されている。アクチュエータアーム155の他端には、リニアモータの一種であるボイスコイルモータ156が設けられている。ボイスコイルモータ156は、アクチュエータアーム155のボビン部に巻き上げられた図示しない駆動コイルと、このコイルを挟み込むように対向して配置された永久磁石および対向ヨークからなる磁気回路とから構成される。
【0101】
アクチュエータアーム155は、スピンドル157の上下2箇所に設けられた図示しないボールベアリングによって保持され、ボイスコイルモータ156により回転摺動が自在にできるようになっている。
【0102】
図16は、アクチュエータアーム155から先の磁気ヘッドアセンブリをディスク側から眺めた拡大斜視図である。すなわち、磁気ヘッドアッセンブリ160は、例えば駆動コイルを保持するボビン部などを有するアクチュエータアーム155を有し、アクチュエータアーム155の一端にはサスペンション154が接続されている。
【0103】
サスペンション154の先端には、図1乃至図14に関して前述したいずれかの磁気再生ヘッドを具備するヘッドスライダ153が取り付けられている。サスペンション154は信号の書き込みおよび読み取り用のリード線164を有し、このリード線164とヘッドスライダ153に組み込まれた磁気ヘッドの各電極とが電気的に接続されている。図中165は磁気ヘッドアッセンブリ160の電極パッドである。
【0104】
本実施例によれば、図1乃至図14に関して前述したような本発明の実施形態の磁気再生ヘッドを具備することにより、従来よりも高い記録密度で媒体ディスク200に磁気的に記録された情報を確実に読み取ることが可能となる。
【0105】
また、図11及び図12に例示したようなマルチ型の磁気再生ヘッドを用いることにより、複数トラックの同時読み出しが可能となり、再生速度を飛躍的に向上することもできる。
【0106】
(第3の実施例)
次に、本発明の第3の実施例として、本発明の磁気再生ヘッドを搭載した磁気再生装置のもうひとつの具体例について説明する。すなわち、図1乃至図14に関して以上説明した本発明の実施形態の磁気再生ヘッドは、磁気顕微鏡の捜査プローブの先端に搭載することができる。
【0107】
図17は、本実施例の磁気顕微鏡の構成を表す概念図である。
【0108】
磁気再生ヘッド310は、ピエゾスキャナ320にマウントされ、試料Sの表面上を走査可能とされている。ピエゾスキャナー320の動作および、磁気再生ヘッド310からの再生信号は、制御・信号処理部330によりそれぞれ制御され処理される。
【0109】
ピエゾスキャナー320によって、試料S表面をXY方向に走査し、それぞれの位置での磁気再生ヘッドからの出力信号を2次元的に画像化して表すことができる。なお、試料Sの表面からの磁気再生ヘッドの高さ設定としては、ここでは接触型とし、制御は、走査プローブ顕微鏡で通常使用するような、図示していない光テコを用いた検出に拠った。なお、ヘッドの高さ設定は、この方法以外にも、トンネル電流を検出したり、あるいは応力を検出するなどの方法でも設定が可能である。
【0110】
磁気再生ヘッドとしては、図2に例示したような構造のものを用い、ここで導電領域3Aのサイズ10nm、フリー層1としてはサイズ80nmのパーマロイを使用した。磁気再生ヘッドには一定電流を流して、その時の位置における電圧変化を検出し、画像化した。
【0111】
この磁気顕微鏡を用いて直径20nmのCoパターンド媒体を観察したところ、Coパターンの上向き磁化、下向き磁化に対応する信号変化を2次元のコントラストとして表示することができた。すなわち、20nmという微細な磁気パターンを十分に検出できる高い分解能を有することが分かった。
【0112】
以上、具体例を参照しつつ、本発明の実施の形態について説明した。しかし、本発明は、これらの具体例に限定されるものではない。例えば、磁気再生ヘッドまたはこれを搭載した磁気再生装置を構成する各要素の具体的な寸法関係や材料、その他、磁性材料、非磁性材料、電極、パッシベーション、絶縁構造などの形状や材質に関しては、当業者が公知の範囲から適宜選択することにより本発明を同様に実施し、同様の効果を得ることができる限り、本発明の範囲に包含される。
【0113】
例えば、本発明の磁気再生ヘッドにおける反強磁性層6、磁性層1及び2、導電領域3A、高抵抗領域3Bなどの構成要素は、それぞれ単層として形成してもよく、あるいは2以上の層を積層した構造としてもよい。
【0114】
さらに具体的には、例えば、磁性層(ピン層)2の磁化を固着するために、反強磁性層を設けて交換バイアスを印加する方法の他に、ルテニウム(Ru)や銅(Cu)などの非磁性層と強磁性層、そして反強磁性層を積層して交換バイアスを印加すると、磁化方向制御および磁気抵抗効果の大きな信号出力を得るのに有用である。
【0115】
そのための反強磁性材料としては、鉄マンガン(FeMn)、白金マンガン(PtMn)、パラジウム・マンガン(PdMn)、パラジウム白金マンガン(PdPtMn)などを用いることが望ましい。
【0116】
また、磁気再生ヘッドの上下に磁気シールドを付与することにより、磁気ヘッドの検出分解能をさらに規定することができる。
【0117】
また、本発明は、長手磁気記録方式のみならず垂直磁気記録方式の磁気再生ヘッドあるいは磁気再生装置についても同様に適用して同様の効果を得ることができる。
【0118】
さらに、本発明の磁気再生装置は、特定の記録媒体を定常的に備えたいわゆる固定式のものでも良く、一方、記録媒体が差し替え可能ないわゆる「リムーバブル」方式のものでも良い。
【0119】
その他、本発明の実施の形態として上述した磁気再生ヘッド及び磁気再生装置を基にして、当業者が適宜設計変更して実施しうるすべての磁気再生ヘッド及び磁気再生装置も同様に本発明の範囲に属する。
【0120】
【発明の効果】
以上詳述したように、本発明によれば、素子化が容易で高検出効率かつ微細磁区構造または微細な信号磁場を高い分解能且つ好感度に検出可能な磁気再生ヘッド及び磁気再生装置を提供することができ産業上のメリットは多大である。
【図面の簡単な説明】
【図1】 本発明の関連技術にかかる磁気再生ヘッドの要部を例示する一部断面斜視図である。
【図2】 図1の磁気再生ヘッドの磁気検出部の断面図である。
【図3】 磁気バイアス層による影響を説明するための模式図である。
【図4】 交換距離deを説明するための概念図である。
【図5】 本発明の関連技術の磁気再生ヘッドの具体例を表す断面図である。
【図6】 本発明の実施形態の再生ヘッドの変形例を表す要部断面図である。
【図7】 図6に表した変形例において、磁気バイアス層30を付加して表した概念図である。
【図8】 本発明の実施形態にかかる磁気再生ヘッドのさらなる変形例を表す要部断面図である。
【図9】 連続磁性体膜を用いた場合のフリー層(第1の磁性層)の磁化方向の変位を表した模式図である。
【図10】 孤立粒子系磁性膜を用いた場合のフリー層(第1の磁性層)の磁化方向の変位を表した模式図である。
【図11】 複数同時検出が可能な再生ヘッドの構造を例示する模式図である。
【図12】 図11の再生ヘッドの記録媒体面に平行な方向の断面図である。
【図13】 本発明の第1参考例の磁気再生ヘッドの製造工程の要部を表す工程断面図である。
【図14】 本発明の第2参考例の磁気再生ヘッドの製造工程の要部を表す工程断面図である。
【図15】 本発明の実施例の磁気記録再生装置の概略構成を例示する要部斜視図である。
【図16】 アクチュエータアーム155から先の磁気ヘッドアセンブリをディスク側から眺めた拡大斜視図である。
【図17】 本発明の実施例の磁気顕微鏡の構成を表す概念図である。
【符号の説明】
1 第1の磁性層(フリー層)
1Z 不感応領域
2 第2の磁性層(ピン層)
3 非磁性中間層
3A 導電領域
3B 高抵抗領域
6 反強磁性層
10 下側電極
20 上側電極
26 マスク
30 磁気バイアス層
150 磁気記録再生装置
152 スピンドル
153 ヘッドスライダ
154 サスペンション
155 アクチュエータアーム
156 ボイスコイルモータ
157 スピンドル
160 磁気ヘッドアッセンブリ
164 リード線
200 磁気記録媒体ディスク
310 磁気再生ヘッド
320 ピエゾスキャナ
320 ピエゾスキャナー
330 信号処理部

Claims (8)

  1. 複数の磁性粒子がSiO あるいはMgOからなる非磁性材料により分離されてなり前記複数の磁性粒子のそれぞれの磁化方向が外部磁界に応じて変化する第1の強磁性層と、
    磁化方向が実質的に一方向に固定された連続的な強磁性体からなる第2の強磁性層と、
    前記第2の強磁性層の前記磁化を固着する反強磁性層と、
    前記第1及び第2の強磁性層の間に形成された非磁性中間層と、
    前記第1及び第2の強磁性層の膜面に対して略垂直な方向にセンス電流を通電可能とする、前記磁気抵抗効果膜に電気的に接続された一対の電極と、
    を備え、
    前記非磁性中間層は、前記センス電流が流れる導電領域と、前記センス電流を遮断する高抵抗領域と、を有し、
    前記磁性粒子のサイズは、前記第1の強磁性層に前記外部磁界を与える記録媒体のトラック幅よりも小さく、トラック幅方向に複数個の前記磁性粒子が存在し、
    前記第1の強磁性層は、その一端面を前記記録媒体の主面に近接させつつ前記主面に対して略垂直に設けられ、
    前記第1の強磁性層を共有し、前記第2の強磁性層と前記導電領域及び前記高抵抗領域を含む前記非磁性中間層とからなる複数の積層構造が前記一端面に沿って並列に設けられ
    前記複数の積層構造のそれぞれにおいて、前記導電領域は前記積層構造の中心よりも前記記録媒体に接近した位置に設けられたことを特徴とする磁気再生ヘッド。
  2. 前記導電領域のサイズは、前記第1の強磁性層に前記外部磁界を与える記録媒体の記録ピッチに対応したサイズであることを特徴とする請求項1記載の磁気再生ヘッド。
  3. 前記導電領域のサイズは、前記記録ピッチ以下であることを特徴とする請求項2記載の磁気再生ヘッド。
  4. 前記反強磁性層は、鉄マンガン、白金マンガン、パラジウム・マンガン、パラジウム白金マンガン及び白金イリジウム・マンガンよりなる群から選択されたいずれかからなることを特徴とする請求項1〜3のいずれか1つに記載の磁気再生ヘッド。
  5. 前記第1の強磁性層は、CoCr、CoCrPtB及びCoCrPtTaよりなる群から選択されたいずれかを主成分としたスパッタ膜であることを特徴とする請求項1〜4のいずれか1つに記載の磁気再生ヘッド。
  6. 前記導電領域は、Cuからなり、
    前記高抵抗領域は、SiOからなることを特徴とする請求項1〜5のいずれか1つに記載の磁気再生ヘッド。
  7. 請求項1〜6のいずれか1つに記載の磁気再生ヘッドを備え、磁気記録媒体に磁気的に記録された情報の読み取りを可能としたことを特徴とする磁気再生装置。
  8. 請求項1〜6のいずれか1つに記載の磁気再生ヘッドを備え、試験体の表面における磁場の分布を検出可能としたことを特徴とする磁気再生装置。
JP2002284958A 2002-09-30 2002-09-30 磁気再生ヘッド及び磁気再生装置 Expired - Lifetime JP3779666B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002284958A JP3779666B2 (ja) 2002-09-30 2002-09-30 磁気再生ヘッド及び磁気再生装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002284958A JP3779666B2 (ja) 2002-09-30 2002-09-30 磁気再生ヘッド及び磁気再生装置

Publications (2)

Publication Number Publication Date
JP2004118988A JP2004118988A (ja) 2004-04-15
JP3779666B2 true JP3779666B2 (ja) 2006-05-31

Family

ID=32278377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002284958A Expired - Lifetime JP3779666B2 (ja) 2002-09-30 2002-09-30 磁気再生ヘッド及び磁気再生装置

Country Status (1)

Country Link
JP (1) JP3779666B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060114620A1 (en) * 2004-11-30 2006-06-01 Tdk Corporation Granular type free layer and magnetic head

Also Published As

Publication number Publication date
JP2004118988A (ja) 2004-04-15

Similar Documents

Publication Publication Date Title
JP3300291B2 (ja) シールド型磁気トンネル接合磁気抵抗読取りヘッド及びアセンブリ
JP3177199B2 (ja) 磁気トンネル接合装置及び磁気抵抗読取りヘッド
JP3462832B2 (ja) 磁気抵抗センサ並びにこれを用いた磁気ヘッド及び磁気記録再生装置
US6985338B2 (en) Insulative in-stack hard bias for GMR sensor stabilization
JP2592216B2 (ja) 二重スピン・バルブ磁気抵抗センサ
US6870718B2 (en) Magnetoresistive sensor including magnetic domain control layers having high electric resistivity
JP3657916B2 (ja) 磁気抵抗効果ヘッドおよび垂直磁気記録再生装置
KR100379978B1 (ko) 자기 저항 효과 헤드 및 이를 이용한 자기 기억 장치
JP4231068B2 (ja) 磁気ヘッド及び磁気記録装置
JPH07210832A (ja) 多層磁気抵抗センサ
JPH11353621A (ja) 縦方向及び横方向バイアスを有する磁気トンネル接合型磁気抵抗読取りヘッド
JPH06236527A (ja) 非磁性背部層を有する磁気抵抗センサ
JPH05347013A (ja) 磁気記録再生装置
US20040145835A1 (en) Differential CPP GMR head
JP2001325704A (ja) 磁気抵抗効果センサ、磁気抵抗効果センサの製造方法、磁気抵抗検出システム、および磁気記憶システム
JP3675712B2 (ja) 磁気抵抗センサ、磁気抵抗ヘッド、および磁気記録/再生装置
JP2001052316A (ja) 磁気抵抗効果ヘッド、その製造方法、及びそれを用いた磁気記録装置
JP3989368B2 (ja) 磁気ヘッド及び磁気記録装置
JP3367477B2 (ja) 磁気抵抗効果素子、磁気抵抗効果ヘッド及び磁気抵抗検出システム並びに磁気記憶システム
JP2001351209A (ja) スピンバルブヘッド及びその製造方法ならびに磁気ディスク装置
US6452762B1 (en) Magneto-resistive element and production method thereof, magneto-resistive head, and magnetic recording/reproducing apparatus
US8049998B2 (en) Magnetoresistance effect device and method for manufacturing same, magnetic memory, magnetic head, and magnetic recording apparatus
JP3779666B2 (ja) 磁気再生ヘッド及び磁気再生装置
JP2001056908A (ja) 磁気抵抗効果素子、磁気抵抗効果ヘッド及び磁気抵抗検出システム並びに磁気記憶システム
JP3730976B2 (ja) 薄膜磁気ヘッド、ヘッドジンバルアセンブリ、及び、ハードディスク装置

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060302

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7