JP3759117B2 - I/v変換回路およびdaコンバータ - Google Patents

I/v変換回路およびdaコンバータ Download PDF

Info

Publication number
JP3759117B2
JP3759117B2 JP2003091282A JP2003091282A JP3759117B2 JP 3759117 B2 JP3759117 B2 JP 3759117B2 JP 2003091282 A JP2003091282 A JP 2003091282A JP 2003091282 A JP2003091282 A JP 2003091282A JP 3759117 B2 JP3759117 B2 JP 3759117B2
Authority
JP
Japan
Prior art keywords
current
node
voltage
circuit
bias
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003091282A
Other languages
English (en)
Other versions
JP2004304234A (ja
Inventor
雅之 植野
昌利 ▲高▼田
寛 小笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Microelectronics Inc
Original Assignee
Kawasaki Microelectronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Microelectronics Inc filed Critical Kawasaki Microelectronics Inc
Priority to JP2003091282A priority Critical patent/JP3759117B2/ja
Priority to US10/801,812 priority patent/US6917322B2/en
Publication of JP2004304234A publication Critical patent/JP2004304234A/ja
Application granted granted Critical
Publication of JP3759117B2 publication Critical patent/JP3759117B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/06Continuously compensating for, or preventing, undesired influence of physical parameters
    • H03M1/0602Continuously compensating for, or preventing, undesired influence of physical parameters of deviations from the desired transfer characteristic
    • H03M1/0604Continuously compensating for, or preventing, undesired influence of physical parameters of deviations from the desired transfer characteristic at one point, i.e. by adjusting a single reference value, e.g. bias or gain error
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/66Digital/analogue converters
    • H03M1/74Simultaneous conversion
    • H03M1/742Simultaneous conversion using current sources as quantisation value generators

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Analogue/Digital Conversion (AREA)
  • Amplifiers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電流を電圧に変換するI/V(電流/電圧)変換回路およびこれを用いたDAコンバータに関するものである。
【0002】
【従来の技術】
従来のDAコンバータ(以下、DACという)は、電流発生回路により、アナログ信号に変換すべきデジタル信号の値に対応した合計電流を発生し、I/V変換回路により、合計電流を電圧に変換することによって、デジタル信号の値に対応する電圧を有するアナログ信号を発生する。
【0003】
しかし、従来のDACでは、電流発生回路として、MOSトランジスタが用いられているため、アナログ信号の電圧に応じてリニアリティ不良が発生するという問題があった。また、DACにより発生されるアナログ信号の電圧は、これを利用する後段回路の入出力特性に応じてシフトしておかないと、後段回路において、DACから出力されるアナログ信号を使用することができないという問題があった。
【0004】
これに対し、本出願人は、特許文献1において、アナログ信号のリニアリティ不良を解消し、後段回路の入出力特性に応じて、アナログ信号の電圧をレベルシフトすることができるI/V変換回路とこれを用いたDACを提案している。
【0005】
図4は、特許文献1に開示のI/V変換回路の構成回路図である。同図に示すI/V変換回路40は、カレントミラー回路となるN型MOSトランジスタ(以下、NMOSという)42,44と、オペアンプ46,48と、P型MOSトランジスタ(以下、PMOSという)50と、抵抗値Rの抵抗素子52とを備えている。また、同図には、DACから供給される電流に相当する、アナログ信号Voutに変換すべきデジタル信号の値に対応する合計電流Isigを発生する電流源54と、バイアス電流Ibを発生する電流源56とが示されている。
【0006】
特許文献1に開示のI/V変換回路40では、オペアンプ46により、ノードAの電圧がバイアス電圧Vbと同じ電圧となるように、カレントミラー回路のNMOS42,44が制御され、オペアンプ48により、ノードBの電圧がバイアス電圧Vbと同じ電圧となるようにPMOS50が制御される。そして、抵抗素子52により、バイアス電圧Vbを基準として、NMOS42からNMOS44へカレントミラーされた電流(Isig+Ib)が電圧に変換される。
【0007】
特許文献1のI/V変換回路40によれば、ノードAの電圧、すなわち電流源54のMOSトランジスタのソース・ドレイン間の電圧を一定電圧に固定できるため、アナログ信号Voutのリニアリティ不良を解消することができる。また、バイアス電流Ib、バイアス電圧Vb、抵抗素子52の抵抗値Rの設定を適宜変更し、後段回路の入出力特性に応じて、アナログ信号Voutの出力レベルを変換することにより、後段回路へのアナログ信号Voutの伝達を容易にすることができる。
【0008】
特許文献1のI/V変換回路40からは、下記式により算出されるアナログ信号Voutが出力される。
Figure 0003759117
ここで、R・Isigは信号成分であり、R・Ib+Vbはクランプ成分である。
【0009】
すなわち、アナログ信号Voutの電圧は、R・Ib+Vbでクランプされ、そのクランプレベルは、R、Ib、Vbの値を変えることによって任意の値に設定可能である。ところが、Rの値を変えると信号成分の振幅が変わってしまうし、Vbの値を動的に変えると、リニアリティ不良が発生してDAコンバータの性能が劣化する。そのため、クランプレベルの制御は、RおよびVbの値を固定し、Ibの値を変えることによって行われている。
【0010】
しかし、Ibの値を小さくすると、インピーダンスが上昇して回路の通過帯域が狭くなり、高速動作には不向きとなるため、Ibの値を信号の最大周波数に応じた一定値以上に設定する必要がある。一方、Ibの値を大きくすると消費電流が増大するため、消費電流の点では、Ibの値を極力小さい値に設定する必要がある。従って、従来のI/V変換回路40には、適切なIbの値を決定するために、Ibの値を制御する手段が必要であった。
【0011】
【特許文献1】
特開2002−118468号公報
【0012】
【発明が解決しようとする課題】
本発明の目的は、前記従来技術に基づく問題点を解消し、信号の通過帯域を広くとることができ、消費電流も削減することができるI/V変換回路およびDAコンバータを提供することにある。
【0013】
【課題を解決するための手段】
上記目的を達成するために、本発明は、I入力端子から電流が供給される第1ノードとグランドとの間に接続された第1素子、および前記第1ノードに供給される電流がカレントミラーされる第2ノードとグランドとの間に接続された第2素子を有するカレントミラー回路と、
前記第1ノードに第1のバイアス電流を供給し、前記第1ノードに供給される電流量を調整する第1のバイアス電流発生回路と、
前記第1ノードの電圧とバイアス電圧とをその入力とし、前記第1ノードの電圧が前記バイアス電圧と略等しい電圧となるように、前記カレントミラー回路の第1素子および第2素子を制御する第1の制御回路と、
前記第2ノードに第2のバイアス電流を供給し、前記第2ノードに供給される電流量を調整する第2のバイアス電流発生回路と、
前記第2ノードとV出力端子との間に接続され、前記バイアス電圧を基準として、自分自身に流れる電流を電圧に変換する第3素子と、
前記第2ノードの電圧と前記バイアス電圧とをその入力とし、前記第2ノードの電圧が前記バイアス電圧と略等しい電圧となるように、前記V出力端子から出力される電圧を制御する第2の制御回路とを備えることを特徴とするI/V変換回路を提供するものである。
【0014】
ここで、前記第2のバイアス電流は前記第1のバイアス電流のm倍であり、前記カレントミラー回路の第2素子を介して流れる電流は第1素子を介して流れる電流のm倍であるのが好ましい。
【0015】
また、前記カレントミラー回路の第1素子および第2素子はN型MOSトランジスタ、前記第3素子は抵抗素子、前記第1の制御回路および前記第2の制御回路はオペアンプであるのが好ましい。
【0016】
また、前記バイアス電圧の値を変更する手段を備えるのが好ましい。
【0017】
また、本発明は、アナログ信号に変換すべきデジタル信号の値に対応する合計電流を発生する電流発生回路と、上記のいずれかに記載のI/V変換回路とを備え、
前記電流発生回路によって発生される合計電流が、前記I/V変換回路のI入力端子から第1ノードに供給されることを特徴とするDAコンバータを提供する。
【0018】
【発明の実施の形態】
以下に、添付の図面に示す好適実施形態に基づいて、本発明のI/V変換回路およびこれを用いたDAコンバータを詳細に説明する。
【0019】
図1は、本発明のI/V変換回路の一実施形態の構成回路図である。同図に示すI/V変換回路10は、本発明のDAコンバータ(以下、DACという)の出力段に用いられる電流/電圧変換回路であり、N型MOSトランジスタ(以下、NMOSという)12,14と、オペアンプ16,18と、抵抗素子20と、電流源22,24とを備えている。なお、同図には、電流源26、負荷CLも示されている。
【0020】
ここで、NMOS12,14は、そのゲートに共通の信号(オペアンプ16の出力信号)が入力されており、カレントミラー回路を構成する。すなわち、後述するように、NMOS12,14には常に同量の電流Isig+Ib1が流れる。NMOS12はノードAとグランドとの間に接続され、NMOS14はノードBとグランドとの間に接続されている。
【0021】
また、オペアンプ16,18は、その端子+と端子−に入力される電圧が等しくなるように、その出力信号の電圧を調整する制御回路である。オペアンプ16は、その端子+にノードAの電圧Vb1、端子−にバイアス電圧Vbが入力され、その出力信号はNMOS12,14のゲートに共通に入力されている。オペアンプ18は、その+端子にノードBの電圧Vb2、端子−にバイアス電圧Vbが入力され、その出力信号は、アナログ信号VoutとしてV出力端子から出力されている。
【0022】
抵抗素子20は、ノードBの電圧Vb2を基準として、自分自身に流れる電流Iを電圧Vに変換する素子であり、アナログ信号VoutとノードBとの間に接続されている。抵抗素子20の抵抗値はRとする。
【0023】
電流源22は、電流量を微調整するためのバイアス電流Ib1を発生し、ノードAに供給する電流発生回路であり、電源とノードAとの間に接続されている。同様に、電流源24は、電流量を微調整するためのバイアス電流Ib2を発生し、ノードBに供給する電流発生回路であり、電源とノードBとの間に接続されている。
【0024】
なお、電流源26は、本発明のDACにおいて、アナログ信号Voutに変換すべきデジタル信号の値に対応する合計電流Isigを発生する電流発生回路であり、電源とノードAとの間に接続されている。電流源26が発生する合計電流Isigは、I/V変換回路10のI入力端子からノードAに供給される。本発明のDACは、基本的に、この電流発生回路と、図1に示すI/V変換回路10とによって構成される。
【0025】
以下、I/V変換回路10の動作を説明する。
【0026】
電流源26からは、I入力端子を介してノードAに合計電流Isigが供給される。この合計電流Isigは、本発明のDACがアナログ信号Voutに変換すべきデジタル信号の値に応じて変化する。
【0027】
I/V変換回路10では、ノードAの電圧Vb1が、合計電流Isigの変化に関わらず、バイアス電圧Vbと常に同じ電圧となるように、オペアンプ16の出力信号の電圧が変化する。オペアンプ16の出力信号はNMOS12のゲートに入力され、NMOS12のオン抵抗が変化する。これにより、ノードAの電圧Vb1は、合計電流Isigの変化に関わらず、常にバイアス電圧Vbと同じ電圧となるように制御される。
【0028】
このように、I/V変換回路10では、ノードAの電圧Vb1、すなわち本発明のDACにおいて、デジタル信号の値に応じた合計電流Isigを発生する電流源26となるMOSトランジスタのソース・ドレイン間の電圧Vdsが、常に一定電圧となるように制御されるため、DACのリニアリティ不良を解消することができる。
【0029】
NMOS12,14は、前述のようにカレントミラー回路を構成する。NMOS12には、電流源26から供給される合計電流Isigと電流源22から供給されるバイアス電流Ib1とを加算した電流Isig+Ib1が流れる。従って、NMOS12と同様に、オペアンプ16の出力信号に応じてNMOS14のオン抵抗が変化し、NMOS14には、常にNMOS12と同量の電流Isig+Ib1が流れる。
【0030】
V出力端子から出力されるアナログ信号Voutの電圧、すなわちオペアンプ18の出力信号の電圧は、ノードBの電圧Vb2とバイアス電圧Vbとが常に同じ電圧となるように変化する。前述のように、NMOS14を介して流れる電流はIsig+Ib1であるから、抵抗素子20を流れる電流は、Isig+Ib1−Ib2となる。ここで、Ib1≒Ib2であれば、抵抗素子20を流れる電流はIsigとなる。
【0031】
抵抗素子20を流れる電流Isigは抵抗素子RによりI/V変換され、アナログ信号Vout=Isig・R+Vb2として出力される。ここで、Vb1≒Vb2≒Vbであるから、アナログ信号Vout=Isig・R+Vbとなる。
【0032】
すなわち、アナログ信号Voutの電圧は、ノードBの電圧Vb2≒バイアス電圧Vbにクランプされる。このため、DACのアナログ信号Voutを利用する後段回路の入出力特性に応じてバイアス電圧Vbを適宜設定することにより、アナログ信号Voutの出力レベルを変換することができ、後段回路へのアナログ信号Voutの伝達を容易にすることができる。
【0033】
また、アナログ信号Voutの電圧は、バイアス電流Ib1,Ib2の値に依存しない。従って、バイアス電流Ib1,Ib2の値を制御する回路が不要であり、回路規模を削減することができるため、コストダウンが可能である。また、バイアス電流Ib1,Ib2は、信号の最大周波数に応じた一定値以上の最小値に設定することができるため、消費電流の削減も可能である。さらに、負荷CLは、オペアンプ18により直接駆動されるため、例えばIsig=0となり、抵抗素子20に電流が流れない場合であっても、インピーダンスが高くなることはなく、従って通過帯域が狭くなることもない。
【0034】
次に、図1に示すI/V変換回路10において、出力増幅率を変更する場合を説明する。
【0035】
図2は、本発明のI/V変換回路の別の実施形態の構成回路図である。同図に示すI/V変換回路30は、図1に示すI/V変換回路10において、電流源24およびNMOS14の代わりに、それぞれ流れる電流がm倍の電流源24’およびNMOS14’を用いて構成されている。I/V変換回路30のこれ以外の構成は、I/V変換回路10と同じであるから、同一要素に同一符号を付してその繰り返しの説明は省略する。
【0036】
図3は、電流源の一実施形態の構成回路図である。同図に示すように、電流源22,24’は、例えばP型MOSトランジスタ(以下、PMOSという)32,34によって構成される。ここで、PMOS32は、電源とノードAとの間に接続され、PMOS34は、電源とノードBとの間に接続されている。また、PMOS32,34のゲートには信号Vgateが共通に入力され、カレントミラー回路が構成されている。
【0037】
ここで、PMOS34のトランジスタサイズはPMOS32のトランジスタサイズのm倍である。従って、電流源22によって発生されるバイアス電流をIbとすると、電流源24’によって発生されるバイアス電流はmIbとなる。
【0038】
同様に、カレントミラー回路を構成するNMOS14’のトランジスタサイズはNMOS12のトランジスタサイズのm倍である。従って、NMOS12を流れる電流がIsig+Ibであるから、NMOS14’を流れる電流はm(Isig+Ib)となる。
【0039】
従って、V出力端子から出力されるアナログ信号Voutは下記式で表される。すなわち、
Figure 0003759117
従って、出力増幅率をm倍にした場合も、アナログ信号Voutは、バイアス電流Ibの値に全く依存しないことが分かる。
【0040】
なお、図1および図2に示す実施形態では、カレントミラー回路としてNMOS12,14を、また、制御回路としてオペアンプ16,18をそれぞれ用いて、I/V変換回路を実現する具体例を挙げて説明している。しかし、本発明はこれに限定されず、同じ機能を実現する他の手段を用いて本発明のI/V変換回路を実現してもよい。また、バイアス電圧Vbの設定手段を備え、後段回路の入出力特性に応じてVbを可変に設定可能とするのが好ましい。
【0041】
また、本発明のDACは、電流発生回路の出力段に、図1および図2に一例を示す本発明のI/V変換回路を用いたものである。電流発生回路は、アナログ信号に変換すべきデジタル信号の値に対応した合計電流を発生するものであれば何ら制限はなく、従来公知のものがいずれも利用可能である。
【0042】
本発明は、基本的に以上のようなものである。
以上、本発明のI/V変換回路およびこれを用いたDAコンバータについて詳細に説明したが、本発明は上記実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしてもよいのはもちろんである。
【0043】
【発明の効果】
以上詳細に説明した様に、本発明によれば、DACのリニアリティ不良を解消し、後段回路の入出力特性に応じて、アナログ信号の出力レベルを変換することができるのはもちろん、アナログ信号Voutの電圧がバイアス電流の値に依存しないため、バイアス電流の値を制御する回路が不要であり、回路規模を削減することができるため、コストダウンが可能である。また、バイアス電流は、信号の最大周波数に応じた一定値以上の最小値に設定することができるため、同時に消費電流の削減も可能である。さらに、負荷が、第2の制御回路により直接駆動されるため、第3素子に電流が流れない場合であっても、アナログ信号の通過帯域が狭くなるのを防ぐことができる。
【図面の簡単な説明】
【図1】 本発明のI/V変換回路の一実施形態の構成回路図である。
【図2】 本発明のI/V変換回路の別の実施形態の構成回路図である。
【図3】 電流源の一実施形態の構成回路図である。
【図4】 従来のI/V変換回路の一例の構成回路図である。
【符号の説明】
10,30,40 I/V変換回路
12,14,14’,42,44 N型MOSトランジスタ
16,18,46,48 オペアンプ
20,52 抵抗素子
22,24,24’,26,54,56 電流源
32,34 P型MOSトランジスタ

Claims (5)

  1. I入力端子から電流が供給される第1ノードとグランドとの間に接続された第1素子、および前記第1ノードに供給される電流がカレントミラーされる第2ノードとグランドとの間に接続された第2素子を有するカレントミラー回路と、
    前記第1ノードに第1のバイアス電流を供給し、前記第1ノードに供給される電流量を調整する第1のバイアス電流発生回路と、
    前記第1ノードの電圧とバイアス電圧とをその入力とし、前記第1ノードの電圧が前記バイアス電圧と略等しい電圧となるように、前記カレントミラー回路の第1素子および第2素子を制御する第1の制御回路と、
    前記第2ノードに第2のバイアス電流を供給し、前記第2ノードに供給される電流量を調整する第2のバイアス電流発生回路と、
    前記第2ノードとV出力端子との間に接続され、前記バイアス電圧を基準として、自分自身に流れる電流を電圧に変換する第3素子と、
    前記第2ノードの電圧と前記バイアス電圧とをその入力とし、前記第2ノードの電圧が前記バイアス電圧と略等しい電圧となるように、前記V出力端子から出力される電圧を制御する第2の制御回路とを備えることを特徴とするI/V変換回路。
  2. 前記第2のバイアス電流は前記第1のバイアス電流のm倍であり、前記カレントミラー回路の第2素子を介して流れる電流は第1素子を介して流れる電流のm倍である請求項1に記載のI/V変換回路。
  3. 前記カレントミラー回路の第1素子および第2素子はN型MOSトランジスタ、前記第3素子は抵抗素子、前記第1の制御回路および前記第2の制御回路はオペアンプである請求項1または2に記載のI/V変換回路。
  4. 前記バイアス電圧の値を変更する手段を備える請求項1〜3のいずれかに記載のI/V変換回路。
  5. アナログ信号に変換すべきデジタル信号の値に対応する合計電流を発生する電流発生回路と、請求項1〜4のいずれかに記載のI/V変換回路とを備え、
    前記電流発生回路によって発生される合計電流が、前記I/V変換回路のI入力端子から第1ノードに供給されることを特徴とするDAコンバータ。
JP2003091282A 2003-03-28 2003-03-28 I/v変換回路およびdaコンバータ Expired - Fee Related JP3759117B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003091282A JP3759117B2 (ja) 2003-03-28 2003-03-28 I/v変換回路およびdaコンバータ
US10/801,812 US6917322B2 (en) 2003-03-28 2004-03-17 I/V converter circuit and D/A converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003091282A JP3759117B2 (ja) 2003-03-28 2003-03-28 I/v変換回路およびdaコンバータ

Publications (2)

Publication Number Publication Date
JP2004304234A JP2004304234A (ja) 2004-10-28
JP3759117B2 true JP3759117B2 (ja) 2006-03-22

Family

ID=32985311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003091282A Expired - Fee Related JP3759117B2 (ja) 2003-03-28 2003-03-28 I/v変換回路およびdaコンバータ

Country Status (2)

Country Link
US (1) US6917322B2 (ja)
JP (1) JP3759117B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2467184A1 (en) * 2004-05-12 2005-11-12 Sirific Wireless Corporation Im3 cancellation using cmos elements
KR100564630B1 (ko) * 2004-08-06 2006-03-29 삼성전자주식회사 디지털 입력 신호의 변화에 무관하게 고정적인 오프셋을가지는 아날로그 신호를 출력하는 d/a 컨버터
US7426684B2 (en) * 2005-04-29 2008-09-16 Hewlett-Packard Development Company, L.P. Lost-cycle measurement using cycle counter
JP4823765B2 (ja) * 2006-05-30 2011-11-24 ローム株式会社 電流出力型デジタルアナログ変換器ならびにそれを用いた負荷駆動装置および電子機器
CN102497194A (zh) * 2011-11-22 2012-06-13 奇瑞汽车股份有限公司 电压采样方法及电压采样电路
US20130257484A1 (en) * 2012-03-30 2013-10-03 Mediatek Singapore Pte. Ltd. Voltage-to-current converter
TWI639299B (zh) * 2017-08-02 2018-10-21 立積電子股份有限公司 電流補償電路
CN107422178B (zh) * 2017-08-05 2019-06-14 海鹰企业集团有限责任公司 一种将电流转至电压的变送器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0646709B2 (ja) * 1985-02-28 1994-06-15 キヤノン株式会社 デジタル・アナログ変換器
JP2725718B2 (ja) * 1993-08-25 1998-03-11 日本電気株式会社 差動増幅器の同相帰還回路
US5694033A (en) * 1996-09-06 1997-12-02 Lsi Logic Corporation Low voltage current reference circuit with active feedback for PLL
JP3497708B2 (ja) * 1997-10-09 2004-02-16 株式会社東芝 半導体集積回路
US6259302B1 (en) * 1998-10-22 2001-07-10 National Semiconductor Corporation Gain control signal generator that tracks operating variations due to variations in manufacturing processes and operating conditions by tracking variations in DC biasing
US6605993B2 (en) * 2000-05-16 2003-08-12 Fujitsu Limited Operational amplifier circuit
JP3408788B2 (ja) 2000-10-10 2003-05-19 川崎マイクロエレクトロニクス株式会社 I/v変換回路およびdaコンバータ
JP4248773B2 (ja) * 2001-07-26 2009-04-02 富士通マイクロエレクトロニクス株式会社 電流電圧変換装置

Also Published As

Publication number Publication date
US20040189497A1 (en) 2004-09-30
US6917322B2 (en) 2005-07-12
JP2004304234A (ja) 2004-10-28

Similar Documents

Publication Publication Date Title
US7750738B2 (en) Process, voltage and temperature control for high-speed, low-power fixed and variable gain amplifiers based on MOSFET resistors
US7253685B2 (en) Class AB amplifier having adjustable quiescent current and output current
US9130582B2 (en) Systems and methods for correcting an offset at an output of a digital to analog converter
KR100748462B1 (ko) 반도체 메모리 장치의 리시버 회로
US7525359B2 (en) Duty cycle correction amplification circuit
TWI354449B (en) Current steering dac and voltage booster for curre
JP3832943B2 (ja) 定電流源回路とそれを用いたディジタル/アナログ変換回路
JP3759117B2 (ja) I/v変換回路およびdaコンバータ
US7701370B2 (en) Current output circuit with bias control and method thereof
US8723593B2 (en) Bias voltage generation circuit and differential circuit
JP3408788B2 (ja) I/v変換回路およびdaコンバータ
JP2019216346A (ja) トランスインピーダンス増幅回路、及び利得可変増幅器
JP2019036817A (ja) トランスインピーダンス増幅回路、及び利得可変増幅器
JP4719044B2 (ja) 増幅回路
US7956784B2 (en) DA converter including conversion amplifier having output voltage with improved linearity
US7501873B2 (en) Digitally controlled threshold adjustment circuit
JP4537840B2 (ja) 電流源セルおよびそれを用いたd/aコンバータ
US20100039175A1 (en) Driving amplifier circuit with digital control and dc offset equalization
KR20080081858A (ko) 레일-투-레일형 증폭 회로 및 반도체 장치
KR100821122B1 (ko) 씨모스형 가변이득 증폭 장치
JP3853911B2 (ja) 定電流回路及びそれを用いた差動増幅回路
JPH09219629A (ja) 演算増幅器
CN113381704B (zh) 可编程增益放大器及可编程增益放大电路
WO2022264716A1 (ja) 高電圧増幅器
KR100353837B1 (ko) 향상된 전류구동능력 및 출력전압레벨을 가진 전압레벨쉬프트 회로

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051227

R150 Certificate of patent or registration of utility model

Ref document number: 3759117

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140113

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees