JP3758276B2 - 放電灯点灯装置 - Google Patents

放電灯点灯装置 Download PDF

Info

Publication number
JP3758276B2
JP3758276B2 JP4121897A JP4121897A JP3758276B2 JP 3758276 B2 JP3758276 B2 JP 3758276B2 JP 4121897 A JP4121897 A JP 4121897A JP 4121897 A JP4121897 A JP 4121897A JP 3758276 B2 JP3758276 B2 JP 3758276B2
Authority
JP
Japan
Prior art keywords
circuit
current
resonance
preheating
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4121897A
Other languages
English (en)
Other versions
JPH10241879A (ja
Inventor
忠博 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP4121897A priority Critical patent/JP3758276B2/ja
Publication of JPH10241879A publication Critical patent/JPH10241879A/ja
Application granted granted Critical
Publication of JP3758276B2 publication Critical patent/JP3758276B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は放電灯を高周波で点灯させる放電灯点灯装置に関するものである。
【0002】
【従来の技術】
従来の放電灯点灯装置(特願昭60−138655号)を図15に示す。この放電灯点灯装置は、商用交流電源VsをダイオードブリッジDBにより整流して成る直流電源4と、コンデンサC11,C12、トランジスタQ1 ,Q2 、ダイオードD1 ,D2 よりなる他励式のインバータ回路5を含む高周波電源6の出力端、すなわちインバータ回路5の出力端a,b間に、蛍光ランプなどの放電ランプLA及びコンデンサC2 の並列回路とインダクタL1 との直列回路から成る点灯用共振回路1を直流カット用のコンデンサC3 を介して接続し、この点灯用共振回路1と並列に、コンデンサC4 とトランスT2 の1次巻線の直列回路を接続すると共にトランスT2 の2次巻線を放電ランプLAのフイラメントに接続して成る予熱用共振回路2を設けている。インバータ回路5のトランジスタQ1 ,Q2 は、ドライブ回路7を介して発振回路8の出力により他励駆動されており、動作周波数は可変抵抗VRにより調整される。
【0003】
図16は図15の回路の各部の電圧変化をインバータ回路5の動作周波数を横軸にとって示したものである。f0 はインダクタL1 とコンデンサC2 により決まる点灯用共振回路1の共振周波数で、f0 ’はコンデンサC4 とトランスT2 の1次巻線のインダクタンスL2 とで決まる予熱用共振回路2の共振周波数で、それぞれ
0 =1/2π√(L1 ・C2 ) 〔Hz〕
0 ’=1/2π√(L2 ・C4 ) 〔Hz〕
である。f1 はインバータ回路5の最低動作周波数、f2 はインバータ回路5の最高動作周波数であり、共振周波数f0 ’はインバータ回路5の最高動作周波数f2 より高い周波数に設定している。実線X1 は放電ランプLAの不点灯時のコンデンサC2 の両端電圧の変化を示し、破線X2 は放電ランプLAの点灯時のコンデンサC2 の両端電圧の変化を示し、一点鎖線X3 はトランスT2 の1次巻線の両端電圧の変化を示している。
【0004】
以下、図16を参照して動作説明を行うことにする。この放電灯点灯装置は、電源投入すると、発振回路8及びドライブ回路7によってトランジスタQ1 、Q2 が交互にオン・オフして、インバータ回路5の出力端a,b間に矩形波の高周波電圧が生じる。この高周波電圧が点灯用共振回路1のインダクタL1 及びコンデンサC2 の直列回路による共振作用により昇圧されて放電ランプLAの両端間に印加され、放電ランプLAが点灯する。放電ランプLAへの点灯前の印加電圧は、インバータ回路5の動作周波数に応じて決まる図16中の実線X1 上のいずれかの値となる。放電ランプLAが点灯すると、インダクタL1 及びコンデンサC2 による共振条件が崩れて、インダクタL1 によって決まるランプ電圧、すなわち動作周波数に応じて決まる図16の破線X2 上のいずれかの電圧が放電ランプLAに加えられ、インダクタL1 で決まるランプ電流が流れることになる。この際、始動時の動作周波数はインダクタL1 、コンデンサC2 の共振周波数f0 に近い周波数に選ばれる。
【0005】
放電ランプLAの点灯後、インバータ回路5の可変抵抗VRを調整して動作周波数をf1 〜f2 の範囲で変化させると、インダクタL1 のインピーダンスが変化し、これによってコンデンサC2 の両端電圧(図16の破線X2 )、すなわちランプ電圧が変化し、放電ランプLAが調光されることになる。
【0006】
一方、図15のa’,b点間の電圧としては、放電ランプLAの点灯、不点灯にかかわらず、矩形波の一定電圧が現われており、放電ランプLAが点灯してもコンデンサC4 とトランスT2 の1次巻線のインダクタンスL2 とによる共振条件は維持され、トランスT2 の1次巻線の両端電圧は、放電ランプLAの点灯、不点灯にかかわらず、インバータ回路5の動作周波数の変化に応じて、図16の一点鎖線X3 のように変化する。そして、このトランスT2 によって常時予熱される放電ランプLAのフィラメントの予熱電圧は、周波数f1 〜f2 の範囲では動作周波数が高くなるにつれて高くなる。したがって、動作周波数をf1 からf2 に徐々に高めて行くにつれてランプ電圧が低下し、逆に予熱電圧は上昇して予熱電流が増加することになる。
【0007】
以上から、この従来例は放電ランプLAの予熱を予熱用共振回路2で行うようにし、かつ、この予熱用共振回路2の共振周波数をインバータ回路5の最高動作周波数より高い値に設定したため、定格点灯時には動作周波数が予熱用共振回路2の共振周波数から遠ざかることになって予熱電流を減少させることができる。この結果、定格点灯時の予熱電流を少なくして電力ロスを低減できる。
【0008】
【発明が解決しようとする課題】
本従来例において、定格点灯時、つまりインバータ回路5の動作周波数がf1近傍で放電ランプを点灯している場合について考えてみる。インバータ回路5の出力端a,b間に出力される矩形波の高周波電圧を受けてインダクタL1 、放電ランプLA及びコンデンサC2 で構成される点灯用共振回路1に流れる電流をI1 とし、また、コンデンサC4 、トランスT2 で構成される予熱用共振回路2に流れる電流をI2 とすると、点灯用共振回路1に流れる電流I1 は図16の破線X2 と同傾向の周波数特性をとり、動作周波数f1 で点灯させる場合には放電ランプLAに流れるランプ電流も含んだ大きな電流を流すことになる。また、この点灯用共振回路1に流れる電流I1 はインバータ回路5から出力される矩形波電圧よりも遅れ位相の電流であり、矩形波電源に対して力率は1とならず、放電ランプLAに流れるランプ電流よりも大きな電流を流さなければならない。
【0009】
一方、予熱用共振回路2に流れる電流I2 は図16の1点鎖線X3 と同傾向の周波数特性をとり、動作周波数f1 で点灯させる場合には、トランスT2 の1次巻線の両端電圧が低くなり、したがって、予熱用共振回路2に流れる電流I2 も点灯用共振回路1に流れる電流I1 に比べて極めて小さくなる。また、予熱用共振回路2に流れる電流I2 はインバータ回路5から出力される矩形波電圧よりも進み位相の電流である。以上の説明から言えることは以下のことである。
【0010】
まず、点灯用共振回路1に流れる電流I1 と予熱用共振回路2に流れる電流I2 の合成電流I0 がスイッチング素子であるトランジスタQ1 ,Q2 、ダイオードD1 ,D2 に流れるが、その合成電流I0 は電流I1 が支配的であるため、トランジスタQ1 ,Q2 、ダイオードD1 ,D2 には大きな電流を流すことになり、スイッチング損失も大きいという問題があり、電流定格の大きい素子を使わねばならず、コストが高くなる。また、点灯用共振回路1に流れる電流I1 は矩形波電圧よりも遅れ位相、予熱用共振回路2に流れる電流I2 は略進み位相であるため、本来であれば、電流の位相差によるキャンセル効果により、合成電流I0 は低減されるが、本従来例では電流I2 は電流I1 に比べて極めて小さいことが考えられるため、その効果は期待できない。
【0011】
次に、予熱電流に注目すると、動作周波数f1 で点灯している場合、確かに予熱電流は小さいものの、全くゼロという訳ではないため、常時予熱電流による電力ロスが多少とも存在することは確かであり、回路効率も悪くなる。
【0012】
本発明は上述のような点に鑑みてなされたものであり、その目的とするところは、スイッチング素子に流れる電流を低減して電流定格の小さいスイッチング素子の使用を可能とし、結果としてコストを下げるとともに、常時予熱電流を全く無くして回路効率を向上させた放電灯点灯装置を提供することにある。
【0013】
【課題を解決するための手段】
本発明にあっては、上記の課題を解決するために、図に示すように、交流電源Vsを整流器DB及び平滑コンデンサC1 により整流平滑して得られる直流電源と、直流電源に接続されてスイッチング素子を高周波でオン・オフして高周波電圧を出力するインバータ回路INVと、高周波出力電圧に接続されて放電灯LAを含んだインバータ負荷回路で構成された第1共振回路1と、第1共振回路と並列に接続され放電灯フィラメント予熱巻線を含んだ第2共振回路2とを備え、第1共振回路1の共振周波数f1 と第2共振回路2の共振周波数f2 の大小関係をf1 <f2 として、共振周波数f 3 がf 3 >f 1 である第3共振回路を第1及び第2共振回路と並列に接続し、放電灯点灯時に第1共振回路に流れる電流と略逆位相の第3共振回路に流れる電流との合成電流の位相を高周波出力電圧に対して同相又は略遅相となるようにした放電灯点灯装置であって、第2及び第3共振回路2,3にそれぞれ共振電流を遮断するための第1及び第2のスイッチSW2,SW3を接続し、予熱時・始動時には第1のスイッチSW2はオン状態、第2のスイッチSW3はオフ状態とし、点灯時には第1のスイッチSW2はオフ状態、第2のスイッチSW3はオン状態となるように設定したことを特徴とするものである。
【0014】
【発明の実施の形態】
図1は本発明の原理を説明するためのブロック回路図である。図中、Vsは交流電源、DBは全波整流器、C1 は平滑コンデンサ、INVはインバータ回路、Vは矩形波高周波電源、LAは放電ランプ、I0 はインバータ回路電流、I1 は点灯用共振回路1に流れる電流、I2 は予熱用共振回路2に流れる電流、Ilaはランプ電流である。交流電源Vsを整流器DB及び平滑コンデンサC1 により整流平滑して得られる直流電源をインバータ回路INVを介して矩形波の高周波電源Vに変換し出力する。その矩形波高周波電源Vは、放電ランプLAを含む点灯用共振回路1と、予熱用共振回路2との並列回路に印加され、インバータ回路INVからこれらの回路にインバータ回路電流I0 が供給される。点灯用共振回路1に流れる電流I1 は矩形波の高周波電源Vに対して遅れた位相の電流であり、力率は1とならないため、放電ランプLAの点灯時に、点灯用共振回路1に流れる電流I1 はランプ電流Ilaよりも大きな電流となっている。一方、予熱用共振回路2に流れる電流I2 は、点灯用共振回路1に流れる電流I1 とほぼ逆位相の電流となるようにする。これによって、点灯用共振回路1に流れる電流I1 と予熱用共振回路2に流れる電流I2 の合成電流であるインバータ回路電流I0 は点灯用共振回路1に流れる電流I1 よりも小さくなり、また、点灯用共振回路1に流れるI1 に比べて力率が高くなる。したがって、インバータ回路INVのスイッチング素子に流れる電流が小さくなり、スイッチングロスも小さくなるので、電流定格の小さい素子を使用することができ、コストが安くなる。各部の波形を図2に示す。
【0015】
ところで、インバータ回路電流I0 が最も小さく、また、力率も1あるいは1に限りなく近づけるためにはどうすれば良いか、ということについて考えてみると、インバータ回路電流I0 を矩形波の高周波電源Vに対して同相又は略同相となるようにすることである。ただし、インバータ回路電流I0 は矩形波の高周波電源Vに対して進相であってはならない。それは、インバータ回路電流I0 が進相の場合、インバータ回路INVのスイッチング素子に過大な電流ストレスを与えるためである。
【0016】
以上により、矩形波の高周波電源Vに対して遅相の電流I1 と、進相の電流I2 の合成電流I0 が同相又は略遅相となるような条件により、矩形波の高周波電源Vに対するインバータ回路電流I0 の力率が1又は1に近づき、結果として、インバータ回路電流I0 が低減されてインバータ回路のスイッチング素子に流れる電流が小さくなり、スイッチングロスも小さくなるという効果がある。
【0017】
最後に、放電ランプLAが予熱から点灯するまでの過程を図3を参照して説明する。これは一例である。図3は図1の回路の各部の電流変化をインバータ回路INVの動作周波数を横軸にとって示したものである。図中、I1 ’は放電ランプLA点灯前の点灯用共振回路1に流れる電流特性、I1 は放電ランプLA点灯後の点灯用共振回路1に流れる電流特性、I2 は予熱用共振回路2に流れる電流特性、f1 は点灯用共振回路1の共振周波数、f2 は予熱用共振回路2の共振周波数である。
【0018】
まず、予熱用共振回路2の共振周波数f2 の近傍にインバータ回路INVの第1動作周波数faを設定し、予熱を行う。この時点では、放電ランプLAが点灯していないため、インバータ回路電流I0 は、放電ランプLA点灯前の点灯用共振回路1に流れる電流I1 ’と予熱用共振回路2に流れる電流I2 の合成電流である。インバータ回路電流I0 が矩形波の高周波電源Vに対して進み位相になることは前記より好ましくないため、電流I1 ’とI2 の関係は少なくともfaからfbにおいてI1 ’≧I2 である。
【0019】
次に、放電ランプLAを点灯させるために、インバータ回路INVの第2動作周波数fbを点灯用共振回路1の共振周波数f1 の近傍に設定する。放電ランプLAが点灯すると、点灯用共振回路1の共振条件が崩れて、点灯用共振回路1に流れる電流はI1 の曲線に乗り、インバータ回路電流I0 はI1 とI2 の合成電流になる。
【0020】
点灯中のインバータ回路電流I0 が矩形波の高周波電源Vに対して同相又は略遅相となるためには、例えば点灯用共振回路1に流れる電流I1 と予熱用共振回路2に流れる電流I2 が略同等であることが望ましく、インバータ回路INVの第2動作周波数fbにおいて、I1 ≒I2 であれば良いということが言える。以上のような過程、条件で予熱、始動、点灯を行うことにより、前記のようなインバータ回路電流I0 の低減が可能となる。
【0021】
なお、図3において、予熱用共振回路2の共振系が有限のピーク値を持つ理由としては、放電灯のフィラメントが抵抗値を持つために、無負荷共振(純粋なLC共振)ではなくなるからであり、この特性もインバータ回路の動作周波数を広範囲に設定することを可能にする有効な特性である。つまり、無負荷共振系ならば、共振周波数近傍において過大な電流が流れることになる。このことは、インバータ回路の動作周波数の範囲も制限してしまう可能性がある。
【0022】
図5は本発明の第2の実施の形態を示す原理説明図である。回路構成は図1の回路に新たに第3共振回路3を点灯用共振回路1及び予熱用共振回路2に対して並列に接続し、また、予熱用共振回路2、第3共振回路3にそれぞれスイッチSW2、SW3を接続したものである。本実施形態の特徴の1つは共振周波数f3 (>f1 )の第3共振回路2を、点灯用共振回路1(共振周波数f1 )、及び予熱用共振回路2(共振周波数f2 )に対して並列に接続し、点灯時において点灯用共振回路1に流れる電流I1 と第3共振回路3に流れる電流I3 との合成電流I0 の位相を、高周波の矩形波電圧Vに対して同相又は略遅相となるようにしたことである。
【0023】
つまり、点灯用共振回路1に流れるI1 は図1の回路と同様に、高周波の矩形波電圧Vに対して遅れ位相の電流であるために、力率は1とはならず、負荷LAに流れる電流Ilaよりも大きな電流であるのに対し、第3共振回路3に流れる電流I3を高周波の矩形波電圧Vに対して進み位相の電流とし、かつ、例えば、I1 ≒I3 と設定することで、電流I1 とI3 の合成電流I0 は、点灯用共振回路I1 よりも小さくなり、また、力率も高くなる。各部波形を図6に示す。
【0024】
これにより、インバータ回路INVのスイッチング素子に流れる電流が小さくなり、スイッチングロスも小さくなるので、電流定格の小さい素子を使用することができ、小型化が可能となると共に、コストも安くなる。また、本実施形態のもう一つの特徴は、予熱用共振回路2、第3共振回路3にそれぞれスイッチSW2、SW3を接続し、予熱時、始動時にはスイッチSW2はオン、スイッチSW3はオフ状態とし、また、点灯時にはスイッチSW2はオフ、スイッチSW3はオン状態としたことである。この特徴の意味するところは、予熱から点灯へ移行する際のスイッチング素子への過大ストレスの防止と、点灯時に負荷LA(放電ランプ)のフィラメントに流れる常時予熱電流を遮断したことによる電力ロスの低減にある。詳細を以下に示す。
【0025】
図7を参照して放電ランプLAが予熱から点灯するまでの過程を一例として説明する。まず、予熱用共振回路2の共振周波数f2 近傍にインバータの第1動作周波数faを設定し、予熱を行う。この予熱時においては、予熱用共振回路2から放電ランプLAのフィラメントに予熱電流を供給する必要があるため、スイッチSW2はオン状態にしなければならない。一方、合成電流I0 は高周波の矩形波電圧Vに対して遅れ位相の電流でなければならないため、動作周波数faで過大な電流が流れることになる第3共振回路3は、スイッチSW3をオフ状態とすることにより、第3共振回路3に電流I3 を流さないようにすべきである。
【0026】
よって、予熱時の合成電流I0 は放電ランプLA点灯前の点灯用共振回路1に流れる電流I1 ’と予熱用共振回路2に流れる電流I2 の合成であり、I1 ’>I2 に設定しなければならない。次に、放電ランプLAを点灯させるために、インバータの第2動作周波数fbを点灯用共振回路1の共振周波数f1 近傍に設定する。
【0027】
動作周波数をfaからfbまで連続して移行させるようなインバータ回路INVの場合を考えてみると、移行の途中で第3共振回路3の共振周波数f3 を通過することになる(始動時)。この場合、第3共振回路3の電流I3 は過大な電流となるため、インバータ回路INVのスイッチング素子の過大なストレスを防ぐためにも、始動時にはスイッチSW3はオフ状態にするべきである。そして、放電ランプLAを点灯すると、点灯用共振回路1の共振条件が崩れて、点灯用共振回路1に流れる電流はI1 ’からI1 の曲線に移行する。この点灯時には、合成電流I0 を高周波の矩形波電圧Vに対して同相又は略遅相とするために、スイッチSW3をオン状態として進相電流I3 を流し、遅相電流I1 とで合成電流I0 となるようにする。
【0028】
一方、ランプLAが一旦点灯すると、フィラメントへの予熱電流は必要ないどころか、予熱電流の存在は電力ロスとして回路効率を悪くする。そこで、点灯後にはスイッチSW2をオフ状態として、予熱用共振回路2に流れる電流I2 を遮断して常時予熱電流を流さないようにするべきである。
【0029】
以上をまとめると、予熱時、始動時には少なくともスイッチSW2をオン状態として予熱を行い、一方、スイッチSW3はオフ状態として第3共振回路3の電流I3 を流さない方が望ましい。また、点灯時には少なくともスイッチSW3をオン状態として点灯用共振回路1に流れる電流I1 と第3共振回路3に流れる電流I3 の合成電流I0 を高周波の矩形波電圧Vに対して同相又は略遅相の電流とし、一方、スイッチSW2はオフ状態として、予熱用共振回路2の電流I2 を流さないようにして、フィラメントに供給される予熱電流を遮断することが望ましい。これにより、点灯時にスイッチング素子に流れる電流を低減して電流定格の小さいスイッチング素子の使用を可能とし、結果としてコストを下げるとともに、常時予熱電流を削除して回路効率を向上することができる。
【0030】
【実施例】
図4は本発明の第1の実施例の回路図である。本実施例はハーフブリッジインバータであり、Vは矩形波電圧、1はインバータ負荷回路(点灯用共振回路)、2は予熱用共振回路である。スイッチング素子Q1 ,Q2 にはバイポーラトランジスタを用いており、それぞれにダイオードD1 ,D2 が逆並列接続されている。交流電源VsをダイオードブリッジDBにより全波整流し、コンデンサC1 により平滑して得た直流電圧Vdcを受けて、スイッチング素子Q1 ,Q2 が高周波でオン・オフすることにより、インバータ出力Vには高周波の矩形波電圧が発生する。高周波の矩形波電圧Vに接続されたインバータ負荷回路1には高周波電流I1 が流れる。インバータ負荷回路1に流れる高周波電流I1 は、高周波の矩形波電圧Vに対して遅れ位相になっており、負荷LAに供給される電流より大きい。また、予熱用共振回路2をインバータ負荷回路1に並列に接続する。予熱用共振回路2は予熱トランスT2 、コンデンサC4 、そして予熱トランスT2 の2次側にコンデンサC5 ,C6 を介して負荷LAのフィラメント抵抗を接続した構成となっており、その共振周波数は矩形波電圧Vの周波数より高く設定しておく。
【0031】
すると、予熱用共振回路2に流れる電流I2 は高周波の矩形波電圧Vに対して進み位相の電流となる。ここで、予熱用共振回路2に流れる電流I2 を、例えばI2 ≒I1 とすることにより、合成電流I0 が高周波の矩形波電圧Vに対して同相又は略遅相の電流で且つ最小となるようにする。これにより、合成電流I0 は図2のような台形波に近く力率の高い電流となる。したがって、スイッチング素子Q1 ,Q2 に流れる電流の実効値がインバータ負荷回路1に流れる高周波電流I1 に比べて小さくなり、さらに、スイッチング素子Q1 ,Q2 のオン時、オフ時の電流値も低くなって、スイッチングロスも小さくなる。よって、スイッチング素子Q1 ,Q2 には電流定格の小さな素子を使用することができ、小型化、低コスト化が図れる。
【0032】
図8は本発明の第2の実施例の回路図である。この回路は図4の回路図において、予熱用共振回路2にスイッチSW2を直列接続するとともに、第3共振回路3として、インダクタL3 、コンデンサC5 、スイッチSW3から成る直列回路を、点灯用共振回路1、予熱用共振回路2と並列に接続したものである。
【0033】
インバータの動作は第1の実施例と同じである。予熱時及び始動時にはスイッチSW2をオンとする。これにより、予熱用共振回路2に電流I2 が流れ、予熱トランスT2 の2次側巻線から放電ランプLAのフィラメントへ予熱電流を供給する。また、スイッチSW3はオフ状態として電流I3 は流さないようにする。次に、点灯時にはスイッチSW3をオン状態とすることで、高周波の矩形波電圧Vに対して進相の電流I3 が流れ、点灯用共振回路1に流れる略遅相の電流I1 との合成電流I0 を高周波の矩形波電圧Vに対して同相又は略遅相の電流とし、点灯用共振回路1に流れる電流I1 よりも力率の高い電流が流れる。この合成電流I0 はスイッチング素子Q1 ,Q2 に流れるスイッチング電流であり、上記効果からスイッチングロスが低減され、電流定格の小さい素子が使用できる。また、スイッチSW2をオフ状態とすれば、予熱トランスT2 の2次巻線からの予熱電流供給が遮断され、常時予熱電流による電力ロスを解消することができ、回路効率も向上させることができる。なお、本実施例ではスイッチング素子Q1 ,Q2 としてMOSFETを用い、D1 ,D2 は内蔵ダイオードを利用することで省略している。
【0034】
図9は本発明の第3の実施例の回路図である。本実施例は図8の変形である。図8においては、予熱用共振回路2に設けたスイッチSW2を共振要素である予熱トランスT2 、コンデンサC4 と直列に接続、つまり、予熱トランスT2 の1次側に接続していたが、本実施例では、そのスイッチSW2を予熱トランスT2 の2次側の各巻線にそれぞれスイッチSW21,SW22として設けたものである。
【0035】
本実施例においても、インバータの動作は第1の実施例と同じである。また、予熱時、始動時と点灯時の予熱用共振回路2及び第3共振回路3中の各スイッチの動作は、第2の実施例と同じである。これにより、第2の実施例よりも部品点数は多くなるものの、スイッチング素子Q1 ,Q2 のスイッチングロス低減と、点灯時の常時予熱電流による電力ロス解消という効果は、第2の実施例と同じである。なお、本実施例では、点灯時に点灯用共振回路1、予熱用共振回路2、第3共振回路3に電流が流れるため、これらの合成電流が高周波の矩形波電圧Vに対して同相か略遅相になるようにする必要がある。
【0036】
図10は本発明の第4の実施例の回路図である。本実施例は図8の変形である。図8においては、予熱用共振回路2と第3共振回路3とがそれぞれ別個の回路として共振要素のインダクタンス要素とコンデンサで構成されているが、本実施例では、共振要素のコンデンサを1つにまとめて兼用したものである。つまり、予熱用共振回路2は予熱トランスT2 とコンデンサC4 で構成し、スイッチSW2は予熱時、始動時に少なくともオン状態であり、第3共振回路3はインダクタL3 とコンデンサC4 で構成し、スイッチSW3は点灯時に少なくともオン状態である。ただし、スイッチSW2とSW3が同時にオン状態であることは好ましくない。それはスイッチSW2とSW3が同時オン状態の場合、予熱トランスT2 とインダクタL3 の並列接続となり、それらの合成のインダクタンスとして共振系が崩れるためである。
【0037】
本実施例においても、インバータの動作は第1の実施例と同じである。また、効果は第2の実施例と同じであるが、第2の実施例に比べて、コンデンサが1つ減り、回路の小型化が図れる。
【0038】
図11は本発明の第5の実施例の回路図である。本実施例は図10の変形である。図10では、予熱用共振回路2と第3共振回路3とでコンデンサC4 を兼用化したものであったが、本実施例では、さらに両回路のスイッチSW2とSW3を1つにまとめ、予熱トランスT2 と直列に接続して兼用化したものである。このスイッチSW2の動作は予熱時、始動時にはオン状態であり、点灯時にはオフ状態とする。
【0039】
まず、予熱時、始動時にはスイッチSW2をオン状態とすることで、この回路の共振周波数f2 は、
2 =1/2π√(C4 ・T2 ・L3 /(T2 +L3 )) 〔Hz〕
となる。このときは、予熱トランスT2 の2次側に放電ランプLAのフィラメント抵抗があるために、共振点(f2 )では、有限の電流がコンデンサC4 に流れ、また、予熱トランスT2 の2次巻線を通じて予熱電流がフィラメントに供給される。
【0040】
次に、点灯時には、スイッチSW2をオフ状態とすることで、予熱トランスT2 は開放状態となり、この回路の共振周波数f3 は、
3 =1/2π(L3 ・C4 ) 〔Hz〕
となる。このとき、回路は第3共振回路として動作する。また、予熱トランスT2 は開放のため、常時予熱電流は流れない。
【0041】
本実施例においても、インバータの動作は第1の実施例と同じである。また、効果は第2の実施例と同じであるが、第2の実施例に比べて、コンデンサとスイッチが1つずつ減り、回路の小型化が図れる。
【0042】
図12は本発明の第6の実施例の回路図である。本実施例は図10の変形である。本実施例は、第5の実施例と同様に、スイッチを1つにまとめて兼用化したものであるが、第5の実施例5と異なるところは、予熱トランスT2 、インダクタL3 、コンデンサC4 を直列接続し、スイッチSW3をインダクタL3 と並列に接続したことである。このスイッチSW3の動作は、予熱時、始動時にはオン状態、点灯時にはオフ状態である。まず、予熱時、始動時にはスイッチSW3をオン状態とすることで、インダクタL3 は短絡され、この回路の共振周波数f2 は、
2 =1/2π(T2 ・C4 ) 〔Hz〕
となる。このとき、予熱トランスT2 の2次巻線から予熱電流が供給される。
【0043】
次に、点灯時にはスイッチSW3をオフ状態とすることで、この回路の共振周波数f3 は、
3 =1/2π((T2 +L3 )・C4 ) 〔Hz〕
となり、第3共振回路として機能する。ただし、本実施例では点灯時でも予熱トランスT2 には共振電圧が印加され、常時予熱電流が流れる。しかし、その共振電圧は予熱トランスT2 とインダクタL3 とで分圧されるため、例えば、T2 <L3 のように設計すれば、予熱トランスT2 の2次側の電圧も小さくなり、常時予熱電流は少なくすることができる。本実施例においても、インバータの動作は第1の実施例と同じである。また、効果は、スイッチング素子のスイッチングロスの低減と、点灯時の常時予熱電流の低減による電力ロスの低減である。
【0044】
図13は本発明の第7の実施例の回路図である。本実施例は図12の変形である。図12では、予熱用共振回路2と第3共振回路3の合併回路において、予熱トランスT2 とインダクタL3 が別々に存在していたが、本実施例では、予熱トランスT2 とインダクタL3 を1つにまとめ、予熱トランスT2 をリーケージトランス化したものである。予熱トランスT2 の構成は、1次側に1次巻線n1 を巻き、一方、2次側には図15のような巻方向で2次巻線n2 を巻いて、巻線n1 ,n2 の片方の端子同士を接続する。また、2次巻線n2 と並列にスイッチSW2を接続する。その他、予熱トランスT2 の2次側には予熱巻線としてn3 ,n4 を巻いている。
【0045】
ここで、スイッチSW2がオン状態のときの予熱トランスT2 のインダクタンスをT21、オフ状態のときをT20とする(T21<T20)。スイッチSW2の動作は予熱時、始動時がオン状態、点灯時がオフ状態である。
【0046】
まず、予熱時、始動時はスイッチSW2がオンなので、この回路の共振周波数f2 は、
2 =1/2π(T21・C4 ) 〔Hz〕
となり、予熱用共振回路として機能する。
【0047】
次に、点灯時はスイッチSW2をオフとすることで、共振周波数f3
3 =1/2π(T20・C4 ) 〔Hz〕
となり、第3共振回路として機能する。
【0048】
本実施例では、点灯時でも予熱トランスT2 に共振電圧が印加されるため、常時予熱電流が流れる。本実施例においても、インバータの動作は第1の実施例と同じである。また、効果は、スイッチング素子のスイッチングロスの低減と、予熱から点灯へ移行する際のスイッチング電流の過電流防止である。
【0049】
図14は本発明の第8実施例の回路図である。図において、Vsは商用電源、DBはダイオードブリッジ、LAは放電ランプ、T1 はリーケージトランス、T2 は予熱トランス、N1 ,n1 は1次巻線、N2 ,n2 ,n3 は2次巻線、L4 はチョッパーチョークコイル、L3 はインダクタ、C1 〜C9 はコンデンサ、D3 〜D6 はダイオード、SW2はスイッチ、Q1 ,Q2 はスイッチング素子である。
【0050】
以下、本実施例の回路構成について説明する。本実施例では、商用電源VsをダイオードブリッジDBに接続し、ダイオードブリッジDBにより商用電源Vsを全波整流している。ダイオードブリッジDBの出力端には、コンデンサC8 とダイオードD6 ,D5 が直列接続されている。ダイオードD6 の両端間には、コンデンサC9 が並列接続されている。コンデンサC8 の両端間には、スイッチング素子Q1 ,Q2 の直列回路が接続されている。スイッチング素子Q1 ,Q2 の接続点とダイオードD1 ,D2 の接続点との間にコンデンサC3 とリーケージトランスT1 の1次巻線N1 との直列回路が接続されている。さらに、リーケージトランスT1 の2次巻線N2 には負荷回路として、コンデンサC2 と放電ランプLAの並列回路が接続されている。スイッチング素子Q1 ,Q2 は高周波で交互にオン・オフ動作する。ここに、リーケージトランスT1 、コンデンサC2 、放電ランプLAで点灯用共振回路1が構成される。
【0051】
また、コンデンサC8 の両端間にはチョッパーチョークコイルL4 と、コンデンサC1 と、逆方向に挿入されたダイオードD4 との直列回路が接続され、コンデンサC1 とダイオードD4 の接続点とスイッチング素子Q1 ,Q2 の接続点との間にダイオードD3 が順方向に挿入されている。ここに、スイッチング素子Q2 とダイオードD3 ,D4 とコンデンサC1 、チョッパーチョークコイルL4 によって降圧チョッパー回路が構成されている。
【0052】
また、コンデンサC3 とリーケージトランスT1 の1次巻線N1 との接続点と、ダイオードD6 とD4 との接続点との間に、予熱トランスT2 の1次巻線n1 とスイッチSW2の直列回路と、インダクタL3 の並列回路にコンデンサC4 を直列接続した回路が接続されている。予熱トランスT2 の2次巻線n2 及びn3 はそれぞれコンデンサC5 ,C6 を介して放電ランプLAのフィラメントに接続される。ここに、予熱トランスT2 、スイッチSW2、コンデンサC4 により予熱用共振回路2が構成される。この予熱用共振回路2は、第3共振回路3としても兼用される。
【0053】
次に、基本動作について説明する。この放電灯点灯装置は、インバータ回路と降圧チョッパー回路とに分けることができる。まず、インバータ回路の動作について説明する。スイッチング素子Q1 がオン、スイッチング素子Q2 がオフのとき、コンデンサC8 、スイッチング素子Q1 、コンデンサC3 、リーケージトランスT1 (の1次巻線N1 )、コンデンサC9 、C8 の経路で電流が流れる。この動作により、コンデンサC9 が充電される。また、入力側よりダイオードブリッジDB、スイッチング素子Q1 、コンデンサC3 、リーケージトランスT1 (の1次巻線N1 )、ダイオードD5 、ダイオードブリッジDBの経路で電流が流れる。この電流が流れる条件は、コンデンサC8 の両端電圧とコンデンサC9 の両端電圧の和の方がダイオードブリッジDBの両端電圧より低くなったときである。
【0054】
次に、スイッチング素子Q1 がオフ、スイッチング素子Q2 がオンのとき、コンデンサC9 、リーケージトランスT1 (の1次巻線N1 )、コンデンサC3 、スイッチング素子Q2 、コンデンサC9 の経路で電流が流れる。この動作により、コンデンサC9 は放電し、放電し終わると、次に、ダイオードD6 を通して電流が流れ、ダイオードD6 、リーケージトランスT1 (の1次巻線N1 )、コンデンサC3 、スイッチング素子Q2 、ダイオードD6 のループで電流が流れる。このように動作させることにより、リーケージトランスT1 の1次側の両端には高周波電圧が発生し、放電灯LAが点灯する。
【0055】
次に、降圧チョッパー回路の動作について説明する。スイッチング素子Q2 がオンのときには、ダイオードブリッジDB、チョッパーチョークコイルL4 、コンデンサC1 、ダイオードD3 、スイッチング素子Q2 、ダイオードD6 (クランプ動作時)、ダイオードD5 、ダイオードブリッジDBの経路で電流が流れる。この動作により、コンデンサC1 は充電される。また、コンデンサC9 の放電時には、コンデンサC8 、チョッパーチョークコイルL4 、コンデンサC1 、ダイオードD3 、スイッチング素子Q2 、コンデンサC8 の経路で電流が流れる。この動作により、コンデンサC1 はコンデンサC8 より充電される。
【0056】
次に、スイッチング素子Q2 がオフのときには、チョッパーチョークコイルL4 、コンデンサC1 、ダイオードD3 、スイッチング素子Q1 の逆方向ダイオード、チョッパーチョークコイルL4 の経路でチョッパーチョークコイルL4 のエネルギーが回生電流として放出される。以上の動作により、コンデンサC1 の両端には降圧チョッパー動作による電圧が発生する。
【0057】
本実施例において、予熱用共振回路2の構成は、第5の実施例(図11)と同じであり、したがって、効果も第5の実施例と同様である。また、図14において、インバータの電源は、電解コンデンサ1つから成る完全平滑回路であっても良い。また、負荷としてもリーケージトランスを用いる必要は無い。
【0058】
【発明の効果】
本発明は、点灯用共振回路と並列に予熱用共振回路及び第3共振回路を設け、位相の異なる電流同士による合成電流の低減効果により、スイッチング素子のスイッチングロスを低減し、電流定格の小さいスイッチング素子を使用可能とすることで、小型化と低コスト化が図れる。また、予熱用共振回路第3共振回路にスイッチを設けることにより、常時予熱電流の遮断又は低減による回路効率の向上と、予熱から点灯への移行時の過電流防止によりインバータ制御回路の設計を容易化することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態を示す原理説明のための回路図である。
【図2】図1の回路の各部の動作波形を示す波形図である。
【図3】図1の回路の共振作用を説明するための周波数特性図である。
【図4】本発明の第1の実施例の回路図である。
【図5】本発明の第2の実施の形態を示す原理説明のための回路図である。
【図6】図5の回路の各部の動作波形を示す波形図である。
【図7】図5の回路の共振作用を説明するための周波数特性図である。
【図8】本発明の第2の実施例の回路図である。
【図9】本発明の第3の実施例の回路図である。
【図10】本発明の第4の実施例の回路図である。
【図11】本発明の第5の実施例の回路図である。
【図12】本発明の第6の実施例の回路図である。
【図13】本発明の第7の実施例の回路図である。
【図14】本発明の第8の実施例の回路図である。
【図15】従来例の回路図である。
【図16】図15の回路の共振作用を説明するための周波数特性図である。
【符号の説明】
1 点灯用共振回路
2 予熱用共振回路
3 第3共振回路
LA 放電ランプ
INV インバータ回路

Claims (5)

  1. 交流電源を整流器及び平滑コンデンサにより整流平滑して得られる直流電源と、直流電源に接続されてスイッチング素子を高周波でオン・オフして高周波電圧を出力するインバータ回路と、高周波出力電圧に接続されて放電灯を含んだインバータ負荷回路で構成された第1共振回路と、第1共振回路と並列に接続され放電灯フィラメント予熱巻線を含んだ第2共振回路とを備え、第1共振回路の共振周波数f1 と第2共振回路の共振周波数f2 の大小関係をf1 <f2 として、共振周波数f 3 がf 3 >f 1 である第3共振回路を第1及び第2共振回路と並列に接続し、放電灯点灯時に第1共振回路に流れる電流と略逆位相の第3共振回路に流れる電流との合成電流の位相を高周波出力電圧に対して同相又は略遅相となるようにした放電灯点灯装置であって、第2及び第3共振回路にそれぞれ共振電流を遮断するための第1及び第2のスイッチを接続し、予熱時・始動時には第1のスイッチはオン状態、第2のスイッチはオフ状態とし、点灯時には第1のスイッチはオフ状態、第2のスイッチはオン状態となるように設定したことを特徴とする放電灯点灯装置。
  2. 請求項において、第2及び第3共振回路の各コンデンサを1つのコンデンサで兼用したことを特徴とする放電灯点灯装置。
  3. 請求項において、第2及び第3共振回路のスイッチを1つのスイッチで兼用したことを特徴とする放電灯点灯装置。
  4. 前記インバータ回路は、前記整流器の出力から、インピーダンス素子、前記インバータ負荷回路の振動要素、及び前記スイッチング素子を介して交流電源から入力電流を通電する電流経路とを備えたことを特徴とする請求項1乃至のいずれかに記載の放電灯点灯装置。
  5. 前記インバータ回路は、第1の動作周波数と第2の動作周波数を有すると共に、前記第1の動作周波数は予熱巻線を含む第2共振回路の共振周波数近傍で予熱を行う周波数、前記第2の動作周波数は第1共振回路の共振周波数近傍で点灯を行う周波数であることを特徴とする請求項1乃至のいずれかに記載の放電灯点灯装置。
JP4121897A 1997-02-25 1997-02-25 放電灯点灯装置 Expired - Fee Related JP3758276B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4121897A JP3758276B2 (ja) 1997-02-25 1997-02-25 放電灯点灯装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4121897A JP3758276B2 (ja) 1997-02-25 1997-02-25 放電灯点灯装置

Publications (2)

Publication Number Publication Date
JPH10241879A JPH10241879A (ja) 1998-09-11
JP3758276B2 true JP3758276B2 (ja) 2006-03-22

Family

ID=12602267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4121897A Expired - Fee Related JP3758276B2 (ja) 1997-02-25 1997-02-25 放電灯点灯装置

Country Status (1)

Country Link
JP (1) JP3758276B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4755228B2 (ja) * 2003-07-16 2011-08-24 三菱電機株式会社 放電灯点灯装置及び電球形蛍光灯
JP4704029B2 (ja) * 2004-12-06 2011-06-15 日立アプライアンス株式会社 放電灯点灯装置
JP4774419B2 (ja) * 2008-04-11 2011-09-14 株式会社リコー 磁性体検知装置、これを用いた画像形成装置又はディジタル複写機、トナー濃度検知装置、導体検知装置

Also Published As

Publication number Publication date
JPH10241879A (ja) 1998-09-11

Similar Documents

Publication Publication Date Title
US6075715A (en) Power source device
JP2003520407A (ja) 多ランプ動作用の電力帰還力率修正方式
US7084584B2 (en) Low frequency inverter fed by a high frequency AC current source
JP2001112253A (ja) Dc−dcコンバータ
JP3312369B2 (ja) インバータ装置
JP3758276B2 (ja) 放電灯点灯装置
JP2001211658A (ja) 相補形スイッチを有するハロゲン電力変換器
JPH11308879A (ja) 中性点形インバータ
JPH10106784A (ja) 放電灯点灯装置
JP3517899B2 (ja) 電源装置
JP3493940B2 (ja) 電源装置
JP3757577B2 (ja) 放電灯点灯装置
JP3614011B2 (ja) インバータ装置
JP4547847B2 (ja) 放電灯点灯装置
JP3493943B2 (ja) 電源装置
JPH11164552A (ja) 電源装置
EP2206413A1 (en) Starting fluorescent lamps with a voltage fed inverter
JPH10271846A (ja) 電源装置
JP3654067B2 (ja) 電源装置
JP3654035B2 (ja) 電源装置
JP3235295B2 (ja) 電源装置
KR200177679Y1 (ko) 형광등용 전자식 안정기
JP3397012B2 (ja) 電源装置
JP2002153072A (ja) インバータ式電源装置
JP3692871B2 (ja) 電源装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051226

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090113

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090113

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees