JP3749948B2 - 電子回路 - Google Patents

電子回路 Download PDF

Info

Publication number
JP3749948B2
JP3749948B2 JP2003110416A JP2003110416A JP3749948B2 JP 3749948 B2 JP3749948 B2 JP 3749948B2 JP 2003110416 A JP2003110416 A JP 2003110416A JP 2003110416 A JP2003110416 A JP 2003110416A JP 3749948 B2 JP3749948 B2 JP 3749948B2
Authority
JP
Japan
Prior art keywords
electronic circuit
bus
bits
bit
bus lines
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003110416A
Other languages
English (en)
Other versions
JP2004320344A (ja
Inventor
研二 谷口
俊匡 松岡
新策 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Original Assignee
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC filed Critical Osaka University NUC
Priority to JP2003110416A priority Critical patent/JP3749948B2/ja
Publication of JP2004320344A publication Critical patent/JP2004320344A/ja
Application granted granted Critical
Publication of JP3749948B2 publication Critical patent/JP3749948B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、情報伝送方式としてCDMA(Code Division Multiple Access)方式を採用し、バスラインを通じて他の電子回路とデータ通信を行う電子回路に関する。
【0002】
【従来の技術】
周知のように、集積回路、とりわけ、大規模集積回路装置(LSI)では、一本又は複数本のバスラインを介して、多数の回路ブロック間でデータ信号の転送が行われるが、そのデータ信号の処理ビット数が増大するに連れて、ボード上で使用するバスラインの数が増大し、バスラインがボード面積の多くを占めるようになる。
【0003】
このような、バスラインの増加、あるいはボード上でのバスライン占有面積の増大は、高密度実装の障害になるだけでなく、回路ブロック間の距離が長くなり、バスラインを駆動する駆動電力も増大する。
【0004】
これに対して、少数のバスラインによって、多数のデータ信号を複数の回路ブロック間で転送することを可能にした符号分割多元接続(CDMA:Code Division Multiple Access)方式によるデータ転送検出装置および集積回路装置の提案もある(例えば、非特許文献1参照)。これによると、バスラインがボード面積の多くを占めることは回避される。
【0005】
しかしながら、このような装置の場合、高集積化に伴って、配線間ノイズの増大があり、さらには高速化により、伝播遅延の影響が大きくなると、近年のシステム・オン・チップ技術への対応にとっては、その影響が無視できないという問題がある。
【0006】
【非特許文献1】
吉村隆治、Tan Boon Keat、小川徹、谷口研二:“CDMA方式を用いた有線インタフェース”、電子情報通信学会論文誌 C-II Vol.J82-C-II,No.11,pp.631-636,1999 。
【0007】
【発明が解決しようとする課題】
従来の電子回路では、バスラインを通じたデータ通信で符号分割多元接続方式を採用することにより、バスラインが占めるボード面積を縮小できるが、高集積化に伴って、配線間ノイズの増大があり、さらには高速化により、伝播遅延の影響が大きくなるという問題があった。
【0008】
この発明は上記の問題を解決すべくなされたもので、バスラインを通じたデータ通信で符号分割多元接続方式を採用する場合でも、高集積化に伴って増大しうる配線間ノイズや、高速化による伝播遅延の影響を極小にすることが可能な電子回路を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記の目的を達成するために、請求項1に係わる本発明は、n本(nは2以上の自然数)のバスラインを有するバスを通じて他の電子回路とデータ通信を行う電子回路において、nビットで構成される拡散符号をビット毎にデータ信号に乗算し、これによって得られるn個の乗算結果をそれぞれ各ビットに対応するバスラインを通じて他の電子回路に並列伝送する送信手段と、n本のバスラインを通じて他の電子回路から並列伝送される各信号に、nビットで構成される拡散符号のうち対応するビットをそれぞれ乗算して、この乗算結果からデータ信号を復元する受信手段とを具備して構成するようにした。
【0010】
また請求項5に係わる本発明は、n対(nは2以上の自然数)の差動バスラインを構成する二組のバスA,Bを通じて、他の電子回路とデータ通信を行う電子回路において、データ信号を反転させ反転信号として出力する反転手段と、nビットで構成される拡散符号をビット毎にデータ信号に乗算し、これによって得られるn個の乗算結果を、バスAが有するバスラインのうち、それぞれ各ビットに対応するバスラインを通じて他の電子回路に並列伝送する第1の送信手段と、nビットで構成される拡散符号をビット毎に反転信号に乗算し、これによって得られるn個の乗算結果を、バスBが有するバスラインのうち、それぞれ各ビットに対応するバスラインを通じて他の電子回路に並列伝送する第2の送信手段と、バスAの各バスラインを通じて他の電子回路から並列伝送される各信号に、nビットで構成される拡散符号のうち対応するビットをそれぞれ乗算する第1の受信手段と、バスBの各バスラインを通じて他の電子回路から並列伝送される各信号に、nビットで構成される拡散符号のうち対応するビットをそれぞれ乗算する第2の受信手段と、第1の受信手段の乗算結果を積分する第1の積分手段と、第2の受信手段の乗算結果を積分する第2の積分手段と、第1の積分手段の積分結果と、第2の積分手段の積分結果とをそれぞれ所定の閾値と比較して判定し、この判定結果に応じてデータ信号を復元する復元手段とを具備して構成するようにした。
【0011】
上記構成の電子回路では、データ信号をnビットで構成される拡散符号で拡散し、これによって得られるn個の拡散信号を、それぞれ各ビットに対応するn本のバスラインを通じて他の電子回路に並列伝送し、一方、他の電子回路から同様にしてn本のバスラインを通じて並列伝送されるn個の信号に、nビットで構成される拡散符号のうち対応するビットをでそれぞれ乗算してデータ信号を復元するようにしている。
【0012】
したがって、上記構成の電子回路によれば、データ信号を1つのタイミングで複数のバスラインに拡散して送信するとともに、受信についても逆の手順により行うので、1クロックでデータ信号の送受信を行うことができ、高集積化に伴って増大しうる配線間ノイズや、高速化による伝播遅延の影響を極小にすることができる。
【0013】
【発明の実施の形態】
以下、図面を参照して、この発明の一実施形態について説明する。
図1は、この発明の一実施形態に係わる電子回路で採用するParallel−CDMA(以下、P−CDMAと略称する)インタフェースの動作原理を示すものである。
【0014】
P−CDMAは、送信データを拡散符号と呼ばれる擬似的な乱数を用いて複数のバスに拡散させて伝送する方式である。用いる拡散符号は、M系列の拡散符号に付加ビットを加えて合計nビットの系列長を持つものとする。これにより、相互相関値が0となるようにした。
【0015】
このようなP−CDMAインタフェースを採用する電子回路の一例として、図2に示すように複数の送信器T1〜Tn、受信器R1〜Rn およびそれぞれn本のバスラインからなるバス群A,Bと、これらのバスの電位をリセットするバス安定化回路Sによって構成される。送信器T1〜Tnは、それぞれバス群A,Bの各バスラインに接続されており、同様に、受信器R1〜Rnもそれぞれバス群A,Bの各バスラインに接続されている。
【0016】
送信器T1は、入力端子10から送信データが入力され、この送信データD1は反転器11と容量結合回路12に入力される。反転器11に入力された送信データは、ここで反転され、容量結合回路12に入力される。入力端子10から入力された送信データD1、および反転器11で反転された送信データ(−D1)は、ともに容量結合回路12を介して、乗算器13に入力され、ここでそれぞれ拡散符号SS1が乗算され、拡散信号が得られる。なお、送信器T2〜Tnについても同様であるため、説明を省略する。
【0017】
このように、送信器T1〜Tnにおいては、それぞれに入力される送信データD1〜Dnと拡散符号SS1〜SSnの排他的論理和をとる。そして、これによって得た、送信データD1〜Dnと拡散符号のl(l=1,2,3,…,n)ビット目との排他的論理和の結果をバス群A,Bの各BUS_lに転送する。ここでチャネルkを持つ送信器Tkが送信するデータをDk、上記送信器Tkが用いる拡散符号の各ビットをSSklとすると、上記BUS_lに送られるデータBUSlは、下式で表される。
【数1】
Figure 0003749948
【0018】
このように、従来のCDMAでは送信データを拡散符号により時間方向に拡散していたのに対して、P−CDMAインタフェースでは1つのタイミングで複数のバスライン上に空間的に送信データを拡散するため、1クロックでのデータ転送を実現する。複数の送信器T1〜Tnがデータをバス群A,Bに転送する場合、各送信器T1〜Tnからのデータを容量結合によってバス群A,B上で線形的に足し合わせることで多重化を行う。バスライン上での信号は、CDMAの高いノイズ余裕度を持つので、1ビット当たり数十ミリボルト(数10mV/ビット)に低減することができる。n多重させた時の各バス上の信号は、下式で表される。
【数2】
Figure 0003749948
【0019】
受信器R1は、バス群A,Bから乗算器20に拡散信号が入力される。ここで例えば、受信器R1で送信器T1から送られたデータD1を受信する場合、乗算器20は、乗算器13で用いたものと同じ拡散符号を、バス群A,Bからの拡散信号に乗算する。そしてこの結果を積分器21,22でバス群A,Bごとに積分し、積分器21によるバス群Aの積分結果からデータD1を得る。また、分離器23により、積分器21,22の両積分結果からデータ(−D1)を得る。なお、受信器R2〜Rnについても同様であるため、説明を省略する。
【0020】
このように、受信器R1〜Rnにおいては、各バスに拡散された信号に拡散符号を掛け合わせ、その結果をバス群A,Bごとに足し合わせることで相関値を得る。そして、図3に示すような判定基準点に従って、上記相関値の大小でデータの判別を行う。受信器Rrが用いる拡散符号のlビット目をSSrlとすると、受信器Rrが得る相関値CORRrは下式で表される。
【0021】
【数3】
Figure 0003749948
【0022】
送信信号が論理“H”のときDk=1、論理“L”のときDk=−1とすると、M系列の拡散符号の相関値には、下式に示す関係が成り立つ。
【0023】
【数4】
Figure 0003749948
このため、下式の関係が成り立つ。
【0024】
【数5】
Figure 0003749948
【0025】
この関係式より、相関値が0のときは、受信器が用いた拡散符号と同じ拡散符号で拡散された信号が存在していないと判定できる。
以上のように受信器は相関値によってデータの判定を行うため、ノイズやデバイスのミスマッチなどの影響で伝送データが影響を受けたとしても、相関判定値を超えなければ正しいデータの伝送が可能である。
【0026】
P−CDMAでは時間軸に沿った変復調を行わないため、隣り合う符号同士の相関値も0となり、隣接符号間の干渉がなく、限られた符号を有効に使うことができる。
【0027】
次に、上述したようなP−CDMAインタフェースを実現するために、送信器T1〜Tn、受信器R1〜Rn、およびバス安定化回路Sについて、より具体的な回路構成についてそれぞれ説明する。なお、バス群A,Bは、コモンモードノイズ耐性を持たせるために全て差動構成を用いるものとする。
【0028】
まず、送信器T1〜Tnについて、より具体的な構成例を挙げ、その動作について説明する。図4はその構成を示すもので、この図では送信器T1を例に挙げており、ディジタル回路部110、信号生成部120、容量結合部130および乗算部140を備える。なお、送信器T2〜Tnについても同様である。
【0029】
ディジタル回路部110は、リセット信号が入力されるリセット端子RST、クロック信号が入力されるクロック端子CLK、送信データが入力されるデータ端子Dを備え、これらの入力端子に入力される信号に応じて、後述する信号生成部120を制御する。
【0030】
信号生成部120は、上記ディジタル回路部110の制御により、後述する容量結合部130に対して、2つの出力信号OUTPA、OUTPBとして、VDD、あるいはVDD−ΔVの電圧を有する信号を出力するものである。図4に示す例では、4つのスイッチを選択的に動作させることで、上記信号を出力する。
【0031】
容量結合部130は、信号生成部120の出力信号OUTPA、OUTPBを後述する乗算部140に容量結合するものである。すなわち、出力信号OUTPAをn本に分岐し、それぞれキャパシタを介してOUTA_1〜OUTA_nとして、乗算部140に出力する。同様に、出力信号OUTPBをn本に分岐し、それぞれキャパシタを介してOUTB_1〜OUTB_nとして、乗算部140に出力する。
【0032】
乗算部140は、n個の乗算器からなり、各乗算器では、OUTA_lおよびOUTB_lに対して、拡散符号のlビット目であるSSklを乗算する(l=1,2,…,n)。この乗算結果は、それぞれバス群AをなすBUSA_l〜BUSA_n、およびバス群BをなすBUSB_l〜BUSB_nの対応する各バスラインに出力される。
【0033】
このような構成の送信器T1〜Tnは、リセット端子RSTに論理“L”が与えられる時、システム全体はリセット状態にあり、バス群A,Bの各バスラインの電位は全てVbusLにリセットされているとする。このとき全ての送信器T1〜Tnにおいて、信号生成部120はディジタル回路部110の制御により、OUTPA、OUTPBとしてVDD−ΔVを出力する。
【0034】
一方、リセット端子RSTに論理“H”が与えられる時、システム全体はアクティブ状態となり、データ端子Dにはデータがクロック端子CLKに入力されるクロック信号に同期して入力される。
ここで、データが論理“H”のとき、信号生成部120はディジタル回路部110の制御により、OUTPA=VDD、OUTPB=VDD−ΔVを出力する。一方、データが論理“L”のとき、信号生成部120はディジタル回路部110の制御により、OUTPA=VDD−ΔV、OUTPB=VDDを出力する。
【0035】
OUTPAの電位の変化は、容量結合部130を通してバスの電位を変化させる。BUSA_lおよびBUSB_lの電位をそれぞれVbusal、Vbusbl、また容量結合部130の各キャパシタのキャパシタンスをCtran、バス容量をCbusとすると、送信器T1〜Tnからの差動出力は、下式のように表される。
【0036】
【数6】
Figure 0003749948
【0037】
このとき差動バスの電位差は、CDMAのノイズ耐性から1ビットあたり数十mVとすることが可能である。
【0038】
送信信号の多重化は、容量結合部130によって、図5や図6のようなキャパシタンスカップリングを用いることと等価である。図5は、リセット端子RSTに論理“L”が与えられる時を示しており、この場合、多重化されたバス上の電位Vbus=Vbuslである。
【0039】
図6は、リセット端子RSTに論理“H”が与えられる時を示している。この図に示すように、VDDで送信キャパシタンスCtranを駆動している、すなわちデータが論理“H”の送信器(T1〜Tnのいずれか)の数をmとすると、多重化されたバス上の電位Vbusは下式のように表される。
【0040】
【数7】
Figure 0003749948
【0041】
乗算部140において、拡散符号を各送信器T1〜Tnに固有に与えるとすると、データと拡散符号との排他的論理和は、論理ゲートを用いることなく図7や図8に示すような配線で実現できる。すなわち、拡散符号のlビット目をSSlとすると、SSl=1の時は、図7に示すようにOUTA_lはバス群Aのl番目のバスラインBUSA_lに、OUTB_lはバス群Bのl番目のバスラインBUSB_lに接続し、一方、SSl=0の時は、図8に示すように、OUTA_lをBUSB_lに、OUTB_lをBUSA_lに接続する。このような構成によれば、排他的論理和を論理回路ではなく配線で実現するので、ゲート数の減少とゲート遅延の低下を実現できる。
【0042】
次に、受信器R1〜Rnについて、より具体的な構成例を挙げ、その動作について説明する。図9はその構成を示すもので、この図では受信器R1を例に挙げており、乗算器210および差動増幅部220を備える。なお、受信器R2〜Rnについても同様である。
【0043】
乗算器210は、n個の乗算器からなり、各乗算器では、バスライン上の信号BUSA_lおよびBUSB_lに対して、拡散符号SSklを乗算する(l=1,2,…,n)。この乗算結果は、差動増幅部220に出力される。
【0044】
差動増幅部220は、乗算器210の乗算結果を差動バスによって同じ系列のバス群A,Bごとに足し合わせ、その大小から相論理判定を行う。
このように、受信器R1〜Rnでは、送信器T1〜Tnと同様の結線技術によって行われる。これにより、高速化、小面積化を図り、伝播遅れを少なくすることができる。
【0045】
このような構成の受信器R1〜Rnでは、乗算器210において、図10および図11に示すように、拡散符号のlビット目であるSSrlが、SSrl=1の時は、図10に示すようにBUSA_lはINA_lに接続し、BUSB_lはINB_lに接続する。一方、SSrl=0の時は、図11に示すように、BUSA_lをINB_lに接続し、BUSB_lをINA_lに接続する。
【0046】
拡散符号を掛け合わせた後の各バス信号の積算は以下のように行う。
図12に示すような差動アンプは、図13に示すように、入力段に流れる電流差が入力電位に比例する。この直線特性を利用して、差動増幅部220で用いる差動アンプは、図14のように入力段をバス群A,Bのバスラインの本数だけ並列に用意し、それぞれのMOSのゲートと各バスラインを接続する。すなわち、INA_l〜INA_nとINB_l〜INB_nを、それぞれBUSA_l〜BUSA_n、BUSB_l〜BUSB_nに接続することで、バス電位の足し合わせを行う。
【0047】
また入力段のMOSにオフセットを持たせることで入力段に流れる電流差がつりあう位置を変え、それによって相関値の論理判定点を決定する。図14に示す差動アンプは、MOSトランジスタ相互のサイズの違いによって、入力オフセットを持っている。この多入力差動増幅器における正および負の各入力段のMOSデバイスが、正側の入力段のMOSデバイスでのゲート幅寸法がWaで、ゲート長寸法がL、そして負側の入力段のMOSデバイスでのゲート幅寸法がWbで、ゲート長寸法がLであるとき、その出力オフセット電圧△Vは下式で表される。ここでIssは集合端の電流であり、Kは相互コンダクタンス・パラメータである。
【0048】
【数8】
Figure 0003749948
【0049】
このため、図9のようにオフセット電位をずらした差動アンプを二つ用いることで、相関値の判定を行う。このように、オフセット電圧を用いることによって、相関および非相関の判定が、図3のように、大きなノイズ・マージンを持って、適正に行われる。
【0050】
次に、バス安定化回路Sの具体的な構成例と、その動作について説明する。
図15は、その構成を示すもので、ディレードフリップフロップ(DFF)310と、反転器320と、スイッチ回路330を備える。
ディレードフリップフロップ310は、所定数のクロックをカウントすると、リセット信号を出力する。このリセット信号は、反転器320にて反転された後、スイッチ回路330を構成する複数のスイッチをON/OFF制御する。スイッチ回路330は、バス群A,Bの各バスラインBUSA_l〜BUSA_n、BUSB_l〜BUSB_nに対して、ON状態の時に基準電圧VREFを供給する。このようなリセット動作により、各バスラインの電荷はリークによって正確には一定に保存されなくなることを防止して、安定化が図られる。
【0051】
以上のように、上記構成の電子回路では、従来のように送信信号を時間方向に拡散するのではなく、送信信号を1つのタイミングで複数のバスラインに拡散して送信するとともに、受信についても逆の手順により行うので、1クロックでデータの送受信を行うことができ、CDMA方式を採用しているが、高集積化に伴って増大しうる配線間ノイズや、高速化による伝播遅延の影響を極小にできる。またCDMAの特性である高ノイズ耐性を有しており、信号振幅も小さくでき、消費電力も非常に小さく、システム・オン・チップなどの大容量バスの低消費電力化に好適する。
【0052】
本発明者らは、上述したようなP−CDMAインタフェースをメタル3層、ポリシリコン2層の0.35μmCMOSルールを用いて設計し、拡散符号の系列長は16で、送信器、受信器はともに15個搭載した。
【0053】
このレイアウトにおける回路シュミレーションでは、図16に示すような出力波形が得られた。これによると、バスライン上の振幅は信号1ビットあたり40mVであり、非常に小振幅である。動作周波数は166MHz、15多重であることから約2.5Gb/sの転送速度が得られることがわかった。
【0054】
なお、この発明は上記実施形態そのままに限定されるものではなく、実施段階ではその用紙を逸脱しない範囲で構成要素を変形して具体化できる。また上記実施形態に開示されている複数の構成要素を適宜組み合わせることによって種々の発明を形成できる。また例えば、実施形態に示される全構成要素からいくつかの構成要素を削除した構成も考えられる。さらに、異なる実施形態に記載した構成要素を適宜組み合わせてもよい。
【0055】
【発明の効果】
以上述べたように、この発明では、データ信号をnビットで構成される拡散符号で拡散し、これによって得られるn個の拡散信号を、それぞれ各ビットに対応するn本のバスラインを通じて他の電子回路に並列伝送し、一方、他の電子回路から同様にしてn本のバスラインを通じて並列伝送されるn個の信号に、nビットで構成される拡散符号のうち対応するビットをでそれぞれ乗算してデータ信号を復元するようにしている。
【0056】
したがって、この発明によれば、データ信号を1つのタイミングで複数のバスラインに拡散して送信するとともに、受信についても逆の手順により行うので、1クロックでデータ信号の送受信を行うことができ、高集積化に伴って増大しうる配線間ノイズや、高速化による伝播遅延の影響を極小にすることが可能な電子回路を提供できる。
【図面の簡単な説明】
【図1】 この発明に係わる電子回路が備えるインターフェイスの動作原理を説明するための図。
【図2】 この発明に係わる電子回路の構成を示す回路ブロック図。
【図3】 図2に示した電子回路の受信器で行われる相関値の判定動作を説明するための図。
【図4】 図2に示した電子回路の送信器の構成を示す回路ブロック図。
【図5】 図4に示した送信器の容量結合部の等価回路を示す図。
【図6】 図4に示した送信器の容量結合部の等価回路を示す図。
【図7】 図4に示した送信器の乗算部で行う排他的論理和の構成例を示す図。
【図8】 図4に示した送信器の乗算部で行う排他的論理和の構成例を示す図。
【図9】 図2に示した電子回路の受信器の構成を示す回路ブロック図。
【図10】 図9に示した受信器の乗算部で行う排他的論理和の構成例を示す図。
【図11】 図9に示した受信器の乗算部で行う排他的論理和の構成例を示す図。
【図12】 差動アンプの一例を示す図。
【図13】 図12に示した差動アンプの特性を示す図。
【図14】 図9に示した受信器の差動増幅部の構成例を示す図。
【図15】 図2に示したバス安定化回路の構成を示す回路ブロック図。
【図16】 図2に示した電子回路間での回路シュミレーションを示すタイミングチャート。
【符号の説明】
A,B…バス群、R1〜Rn…受信器、T1 n…送信器、S…バス安定化回路、10…入力端子、11…反転器、12…容量結合回路、13…乗算器、20…乗算器、21,22…積分器、23…分離器、110…ディジタル回路部、120…信号生成部、130…容量結合部、140…乗算部、210…乗算器、220…差動増幅部、310…ディレードフリップフロップ(DEF)、320…反転器、330…スイッチ回路、CLK…クロック端子、D…データ端子、RST…リセット端子。

Claims (14)

  1. n本(nは2以上の自然数)のバスラインを有するバスを通じて他の電子回路とデータ通信を行う電子回路において、
    nビットで構成される拡散符号をビット毎にデータ信号に乗算し、これによって得られるn個の乗算結果をそれぞれ各ビットに対応する前記バスラインを通じて他の電子回路に並列伝送する送信手段と、
    前記n本のバスラインを通じて他の電子回路から並列伝送される各信号に、nビットで構成される拡散符号のうち対応するビットをそれぞれ乗算して、この乗算結果からデータ信号を復元する受信手段とを具備することを特徴とする電子回路。
  2. 前記送信手段は、キャパシタを有し、これを介したデータ信号にnビットで構成される拡散符号をビット毎に乗算し、これによって得られるn個の乗算結果をそれぞれ各ビットに対応する前記バスラインを通じて他の電子回路に並列伝送することを特徴とする請求項1に記載の電子回路。
  3. 前記受信手段は、前記n本のバスラインを通じて他の電子回路から並列伝送される各信号に、nビットで構成される拡散符号のうち対応するビットをそれぞれ乗算し、この乗算結果を積分して、この積分結果からデータ信号を復元することを特徴とする請求項1に記載の電子回路。
  4. 前記受信手段は、互いに寸法の異なる一組のMOSデバイスを用いた差動増幅器により、前記乗算結果の積分を行うことを特徴とする請求項3に記載の電子回路。
  5. n対(nは2以上の自然数)の差動バスラインを構成する二組のバスA,Bを通じて、他の電子回路とデータ通信を行う電子回路において、
    データ信号を反転させ反転信号として出力する反転手段と、
    nビットで構成される拡散符号をビット毎に前記データ信号に乗算し、これによって得られるn個の乗算結果を、前記バスAが有するバスラインのうち、それぞれ各ビットに対応するバスラインを通じて他の電子回路に並列伝送する第1の送信手段と、
    nビットで構成される拡散符号をビット毎に前記反転信号に乗算し、これによって得られるn個の乗算結果を、前記バスBが有するバスラインのうち、それぞれ各ビットに対応するバスラインを通じて他の電子回路に並列伝送する第2の送信手段と、
    前記バスAの各バスラインを通じて他の電子回路から並列伝送される各信号に、nビットで構成される拡散符号のうち対応するビットをそれぞれ乗算する第1の受信手段と、
    前記バスBの各バスラインを通じて他の電子回路から並列伝送される各信号に、nビットで構成される拡散符号のうち対応するビットをそれぞれ乗算する第2の受信手段と、
    前記第1の受信手段の乗算結果を積分する第1の積分手段と、
    前記第2の受信手段の乗算結果を積分する第2の積分手段と、
    前記第1の積分手段の積分結果と、前記第2の積分手段の積分結果とをそれぞれ所定の閾値と比較して判定し、この判定結果に応じてデータ信号を復元する復元手段とを具備することを特徴とする電子回路。
  6. 前記第1の積分手段および前記第2の積分手段は、互いに寸法の異なる一組のMOSデバイスを用いた差動増幅器により、前記乗算結果の積分を行うことを特徴とする請求項5に記載の電子回路。
  7. n本(nは2以上の自然数)のバスラインを有するバスを通じて他の電子回路とデータ通信を行う電子回路において、
    nビットで構成される拡散符号をビット毎にデータ信号に乗算し、これによって得られるn個の乗算結果をそれぞれ各ビットに対応する前記バスラインを通じて他の電子回路に並列伝送する送信手段を具備することを特徴とする電子回路。
  8. 前記送信手段は、キャパシタを有し、これを介したデータ信号にnビットで構成される拡散符号をビット毎に乗算し、これによって得られるn個の乗算結果をそれぞれ各ビットに対応する前記バスラインを通じて他の電子回路に並列伝送することを特徴とする請求項7に記載の電子回路。
  9. n本(nは2以上の自然数)のバスラインを有するバスを通じて他の電子回路とデータ通信を行う電子回路において、
    前記n本のバスラインを通じて他の電子回路から並列伝送される各信号に、nビットで構成される拡散符号のうち対応するビットをそれぞれ乗算して、この乗算結果からデータ信号を復元する受信手段を具備することを特徴とする電子回路。
  10. 前記受信手段は、前記n本のバスラインを通じて他の電子回路から並列伝送される各信号に、nビットで構成される拡散符号のうち対応するビットをそれぞれ乗算し、この乗算結果を積分して、この積分結果からデータ信号を復元することを特徴とする請求項9に記載の電子回路。
  11. 前記受信手段は、互いに寸法の異なる一組のMOSデバイスを用いた差動増幅器により、前記乗算結果の積分を行うことを特徴とする請求項10に記載の電子回路。
  12. n対(nは2以上の自然数)の差動バスラインを構成する二組のバスA,Bを通じて、他の電子回路とデータ通信を行う電子回路において、
    データ信号を反転させ反転信号として出力する反転手段と、
    nビットで構成される拡散符号をビット毎に前記データ信号に乗算し、これによって得られるn個の乗算結果を、前記バスAが有するバスラインのうち、それぞれ各ビットに対応するバスラインを通じて他の電子回路に並列伝送する第1の送信手段と、
    nビットで構成される拡散符号をビット毎に前記反転信号に乗算し、これによって得られるn個の乗算結果を、前記バスBが有するバスラインのうち、それぞれ各ビットに対応するバスラインを通じて他の電子回路に並列伝送する第2の送信手段とを具備することを特徴とする電子回路。
  13. n対(nは2以上の自然数)の差動バスラインを構成する二組のバスA,Bを通じて、他の電子回路とデータ通信を行う電子回路において、
    前記バスAの各バスラインを通じて他の電子回路から並列伝送される各信号に、nビットで構成される拡散符号のうち対応するビットをそれぞれ乗算する第1の受信手段と、
    前記バスBの各バスラインを通じて他の電子回路から並列伝送される各信号に、nビットで構成される拡散符号のうち対応するビットをそれぞれ乗算する第2の受信手段と、
    前記第1の受信手段の乗算結果を積分する第1の積分手段と、
    前記第2の受信手段の乗算結果を積分する第2の積分手段と、
    前記第1の積分手段の積分結果と、前記第2の積分手段の積分結果とをそれぞれ所定の閾値と比較して判定し、この判定結果に応じてデータ信号を復元する復元手段とを具備することを特徴とする電子回路。
  14. 前記第1の積分手段および前記第2の積分手段は、互いに寸法の異なる一組のMOSデバイスを用いた差動増幅器により、前記乗算結果の積分を行うことを特徴とする請求項13に記載の電子回路。
JP2003110416A 2003-04-15 2003-04-15 電子回路 Expired - Lifetime JP3749948B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003110416A JP3749948B2 (ja) 2003-04-15 2003-04-15 電子回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003110416A JP3749948B2 (ja) 2003-04-15 2003-04-15 電子回路

Publications (2)

Publication Number Publication Date
JP2004320344A JP2004320344A (ja) 2004-11-11
JP3749948B2 true JP3749948B2 (ja) 2006-03-01

Family

ID=33471280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003110416A Expired - Lifetime JP3749948B2 (ja) 2003-04-15 2003-04-15 電子回路

Country Status (1)

Country Link
JP (1) JP3749948B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9077442B2 (en) * 2012-07-16 2015-07-07 Texas Instruments Incorporated DSSS inverted spreading for smart utility networks
CN107078544B (zh) 2015-09-29 2022-06-07 松下知识产权经营株式会社 编码调制器、编码解调器以及控制器

Also Published As

Publication number Publication date
JP2004320344A (ja) 2004-11-11

Similar Documents

Publication Publication Date Title
JP4492920B2 (ja) 差動信号伝送システム
US8737456B2 (en) Mixed-mode signaling
KR100713784B1 (ko) 수신기, 트랜시버 회로, 신호 전송 방법 및 신호 전송시스템
KR100790968B1 (ko) 차동신호 전송을 위한 입, 출력 드라이버회로 및 이를구비한 차동신호 전송 장치 및 전송방법
US7724079B1 (en) Programmable logic enabled dynamic offset cancellation
US7633329B2 (en) Single signal-to-differential signal converter and converting method
JP3328593B2 (ja) マッチドフィルタおよび信号受信装置
JP5360672B2 (ja) パルス発生回路およびuwb通信装置
US6346830B1 (en) Data input/output circuit and interface system using the same
JP3471277B2 (ja) クロックドライバ回路およびクロック配線方法
JPH10126250A (ja) バス機構
JP3749948B2 (ja) 電子回路
TW488138B (en) ISI-rejecting differential receiver
JP2001103098A (ja) レシーバ、トランシーバ回路および信号伝送システム
JP2007189723A (ja) レシーバ
WO2007032079A1 (ja) 抵抗を用いたハイブリッド回路
US20080313250A1 (en) Random signal generator and random number generator including the same
EP2893637A1 (en) Method and apparatus for an active negative-capacitor circuit
JP2015167342A (ja) 送信装置及び送信方法
US20090231040A1 (en) Output driver having pre-emphasis capability
JP3986214B2 (ja) レシーバ回路
Duvvuri et al. A new hybrid circuit topology for simultaneous bidirectional signaling over on-chip interconnects
US10749663B1 (en) Method and apparatus for simultaneous propagation of multiple clockfrequencies in serializer/deserializer (SerDes) Macros
JP3859544B2 (ja) データ受信回路
US6983010B1 (en) High frequency equalizer using a demultiplexing technique and related semiconductor device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050822

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051108

R150 Certificate of patent or registration of utility model

Ref document number: 3749948

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term