JP3746778B2 - ガスセンサの制御装置 - Google Patents

ガスセンサの制御装置 Download PDF

Info

Publication number
JP3746778B2
JP3746778B2 JP2003328927A JP2003328927A JP3746778B2 JP 3746778 B2 JP3746778 B2 JP 3746778B2 JP 2003328927 A JP2003328927 A JP 2003328927A JP 2003328927 A JP2003328927 A JP 2003328927A JP 3746778 B2 JP3746778 B2 JP 3746778B2
Authority
JP
Japan
Prior art keywords
gas
detection
gas sensor
short
energization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003328927A
Other languages
English (en)
Other versions
JP2005091324A (ja
Inventor
英俊 大石
弘敏 井上
卓志 斎藤
孝 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2003328927A priority Critical patent/JP3746778B2/ja
Priority to US10/938,295 priority patent/US7104110B2/en
Publication of JP2005091324A publication Critical patent/JP2005091324A/ja
Application granted granted Critical
Publication of JP3746778B2 publication Critical patent/JP3746778B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/14Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature
    • G01N27/16Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature caused by burning or catalytic oxidation of surrounding material to be tested, e.g. of gas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036Specially adapted to detect a particular component
    • G01N33/005Specially adapted to detect a particular component for H2
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/007Arrangements to check the analyser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04231Purging of the reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、例えば燃料電池車両に搭載される接触燃焼式水素センサ等のガスセンサの制御装置に関する。
従来、例えば固体高分子膜型燃料電池は、固体高分子電解質膜を燃料極と酸素極とで両側から挟み込んで形成されたセルに対し、複数のセルを積層して構成されたスタック(以下において燃料電池と呼ぶ)を備えており、燃料極に燃料として水素が供給され、酸素極に酸化剤として空気が供給されて、燃料極で触媒反応により発生した水素イオンが、固体高分子電解質膜を通過して酸素極まで移動して、酸素極で酸素と電気化学反応を起こして発電するようになっている。
このような固体高分子膜型燃料電池等の燃料電池において、従来、例えば燃料電池の酸素極側の排出系に水素検出器(ガスセンサ)を備え、この水素検出器によって、燃料極側の水素が固体高分子電解質膜を通じて酸素極側に漏洩したことを検知したときは、燃料の供給を遮断する保護装置が知られている(例えば、特許文献1参照)。
また、水素検出器としては、例えば白金等の触媒からなるガス検出素子と温度補償素子とを一対備え、水素が白金等の触媒に接触した際の燃焼により発生する熱によってガス検出素子が相対的に高温の状態になったときに、例えば雰囲気温度下等の相対的に低温の状態の温度補償素子との間に生じる電気抵抗の差異に応じて、水素ガスの濃度を検出するガス接触燃焼式の水素検出器が知られている。
特開平6−223850号公報
ところで、上述したようなガスセンサにおいては、各素子の通電電流の検出値等に基づき、ガスセンサの異常状態、例えば短絡等の有無を検知しており、例えば通電電流の検出値が所定の判定閾値を超えて増大した場合には、各素子に生じた回復不能な破損や回路系に生じた異常等によって短絡が発生したと判断して、ガスセンサの作動を停止するようになっている。
しかしながら、上述したような固体高分子膜型燃料電池等の燃料電池においては、固体高分子電解質膜のイオン導電性を保つために、燃料電池に供給される反応ガス(例えば、水素や空気)には加湿装置等によって水(加湿水)が混合されており、さらに、燃料電池の作動時には電気化学反応による反応生成水が生成されるため、燃料電池の排出ガス、特に酸素極側の排出ガスは高湿潤のガスとなっている。
このため、上記従来技術の一例に係る燃料電池の保護装置においては、燃料電池から排出される高湿潤のオフガスによって、オフガスの流路内に配置された水素検出器等に結露が発生する場合があり、前述のガス接触燃焼式の水素検出器を、特に燃料電池の酸素極側の排出系に備える場合等において、ガス検出素子に加湿水、反応生成水等が付着した状態で通電を行うと、この結露水による短絡によって通電電流の検出値が所定の判定閾値を超えて増大し、たとえ結露が一時的に発生しただけであっても、ガスセンサに回復不能な異常が生じたと判断され、ガスセンサの作動が停止されてしまう場合がある。
本発明は上記事情に鑑みてなされたもので、ガスセンサの異常の有無を適切に検知することが可能なガスセンサの制御装置を提供することを目的とする。
上記課題を解決して係る目的を達成するために、請求項1に記載の本発明のガスセンサの制御装置は、検出素子(例えば、後述する実施の形態での検出素子31)と補償素子(例えば、後述する実施の形態での温度補償素子32)との電気抵抗値の差異に基づき検査対象ガスに含まれる被検出ガスのガス濃度を検出するガスセンサの制御装置であって、前記検出素子および前記補償素子への通電電流を検出する電流検出器(例えば、後述する実施の形態での電流センサ)と、前記電流検出器にて検出される前記通電電流の検出値が所定閾値以上であるか否かにより、少なくとも前記検出素子および前記補償素子の異常による短絡、もしくは、少なくとも前記検出素子および前記補償素子への水付着による短絡の何れかの短絡であることを複数回に亘って判定する短絡判定手段(例えば、後述する実施の形態でのステップS13)と、前記検出素子および前記補償素子への通電を継続した状態で前記短絡判定手段にて前記通電電流の検出値が所定閾値以上であると判定される状態の継続時間が所定時間(例えば、後述する実施の形態での所定上限時間)以上である場合に前記検出素子および前記補償素子が異常による短絡であると判定する異常判定手段(例えば、後述する実施の形態でのステップS15)とを備えることを特徴としている。
上記構成のガスセンサの制御装置によれば、短絡判定手段によって通電電流の検出値が所定閾値以上となる短絡状態であるか否かを複数回に亘って判定することにより、例えば一時的に検出素子および補償素子の表面上に結露が発生した状態等のように、検出した短絡状態が所定時間未満にて解消可能か否かを判定することができ、例えば短絡状態を検出した時点でガスセンサの検出動作を停止させてしまう場合等に比べて、ガスセンサを適切に作動させることができる。
さらに、請求項2に記載の本発明のガスセンサの制御装置では、前記検出素子および前記補償素子は前記検査対象ガスが導入されるガス検出室内に配置され、前記ガス検出室内に設けられたヒータと、前記短絡判定手段にて前記通電電流の検出値が所定閾値以上であると判定された場合に、前記ヒータへの通電を継続あるいは開始するヒータ通電制御手段(例えば、後述する実施の形態での制御装置2が兼ねる)とを備えることを特徴としている。
上記構成のガスセンサの制御装置によれば、例えば一時的に検出素子および補償素子の表面上に結露が発生したことによって通電電流の検出値が所定閾値以上となった場合であっても、ヒータへの通電を継続あるいは開始することによって、検出素子および補償素子の表面上に生成された結露水を迅速に蒸発させることができる。
また、請求項3に記載の本発明のガスセンサの制御装置は、検出素子と補償素子との電気抵抗値の差異に基づき検査対象ガスに含まれる被検出ガスのガス濃度を検出するガスセンサの制御装置であって、前記検出素子および前記補償素子は前記検査対象ガスが導入されるガス検出室内に配置され、前記ガス検出室内に設けられたヒータと、前記検出素子および前記補償素子への通電電流を検出する電流検出器と、前記電流検出器にて検出される前記通電電流の検出値が所定閾値以上であるか否かにより、少なくとも前記検出素子および前記補償素子の異常による短絡、もしくは、少なくとも前記検出素子および前記補償素子への水付着による短絡の何れかの短絡であることを複数回に亘って判定する短絡判定手段と、前記ヒータへの通電を継続した状態で前記短絡判定手段にて前記通電電流の検出値が所定閾値以上であると判定される状態の継続時間が所定時間以上である場合に前記検出素子および前記補償素子が異常による短絡であると判定する異常判定手段とを備えることを特徴としている。
上記構成のガスセンサの制御装置によれば、例えば一時的に検出素子および補償素子の表面上に結露が発生したことによって通電電流の検出値が所定閾値以上となった場合であっても、ヒータへの通電を継続あるいは開始することによって、検出素子および補償素子の表面上に生成された結露水を迅速に蒸発させることができ、検出した短絡状態が所定時間未満にて解消可能か否かを判定することができ、例えば短絡状態を検出した時点でガスセンサの検出動作を停止させてしまう場合等に比べて、ガスセンサを適切に作動させることができる。
さらに、請求項4に記載の本発明のガスセンサの制御装置は、前記所定時間は、少なくとも前記検出素子および前記補償素子の表面上に存在する水を蒸発させ、少なくとも前記検出素子および前記補償素子への水付着による短絡を解消するのに要する上限時間以上であることを特徴としている。
上記構成のガスセンサの制御装置によれば、通電電流の検出値が所定閾値以上となる短絡状態を検出した際に、この短絡状態が所定上限時間未満にて回復可能な異常状態、つまり検出素子および補償素子の表面上において一時的に結露水が生成された状態に起因するものであるか否かを適切に判定することができる。
さらに、請求項5に記載の本発明のガスセンサの制御装置では、前記異常判定手段は、前記ガスセンサの起動時に判定を行うことを特徴としている。
さらに、請求項6に記載の本発明のガスセンサの制御装置では、前記ガスセンサは接触燃焼式ガスセンサであることを特徴としている。
請求項1に記載の本発明のガスセンサの制御装置によれば、通電電流の検出値が所定閾値以上となる短絡状態が所定時間未満にて解消可能か否かを判定することができ、例えば短絡状態を検出した時点でガスセンサの検出動作を停止させてしまう場合等に比べて、ガスセンサを適切に作動させることができる
さらに、請求項2に記載の本発明のガスセンサの制御装置によれば、例えば一時的に検出素子および補償素子の表面上に結露が発生したことによって通電電流の検出値が所定閾値以上となった場合であっても、ヒータへの通電を継続あるいは開始することによって、検出素子および補償素子の表面上に生成された結露水を迅速に蒸発させることができる。
また、請求項3に記載の本発明のガスセンサの制御装置によれば、通電電流の検出値が所定閾値以上となる短絡状態が所定時間未満にて解消可能か否かを判定することができ、例えば短絡状態を検出した時点でガスセンサの検出動作を停止させてしまう場合等に比べて、ガスセンサを適切に作動させることができる。
さらに、請求項4に記載の本発明のガスセンサの制御装置によれば、通電電流の検出値が所定閾値以上となる短絡状態を検出した際に、この短絡状態が所定上限時間未満にて回復可能な異常状態、つまり検出素子および補償素子の表面上において一時的に結露水が生成された状態に起因するものであるか否かを適切に判定することができる。
以下、本発明の実施の形態に係るガスセンサについて添付図面を参照しながら説明する。
本実施形態に係るガスセンサ1は、例えば水素を検出する水素センサをなし、例えば図1に示すように、制御装置2と、記憶装置3と、警報装置4と、車両の動力源とされる燃料電池5と、燃料電池5に接続されて反応ガスを供給する各配管6,7,8,9とを備える燃料電池システム10において、酸素極側の出口側配管9に設けられ、この出口側配管9から水素が排出されていないことを確認するためのものである。
制御装置2は、酸素極側の出口側配管9に取り付けられたガスセンサ1に接続され、例えば、ガスセンサ1から出力される検出信号と、記憶装置3に格納されている所定の判定閾値との比較結果に応じて、燃料電池5の異常状態が発生しているか否かを判定し、異常状態であると判定した際には、警報装置4によって警報等を出力する。ここで、記憶装置3は、燃料電池5の作動状態、例えば極間差圧や作動圧力等に応じた、ガスセンサ1の検出値に対する所定の判定閾値のマップ等を記憶している。
燃料電池5は、例えば電気自動車等の動力源として車両に搭載されており、例えば陽イオン交換膜等からなる固体高分子電解質膜を燃料極と酸素極で挟持した電解質電極構造体を、更に一対のセパレータで挟持してなる燃料電池セル(図示略)を多数組積層して構成されている。
燃料極に入口側配管6から供給された水素などの燃料ガスにより、燃料極の触媒電極上で水素がイオン化され、適度に加湿された固体高分子電解質膜を介して酸素極へと移動する、その間に生じた電子が外部回路に取り出され、直流の電気エネルギとして利用される。酸素極には、例えば、酸素などの酸化剤ガスあるいは空気が入口側配管7を介して供給されているために、この酸素極において、水素イオン、電子及び酸素が反応して水が生成される。そして、燃料極側、酸素極側共に出口側配管8、9から反応済みのいわゆるオフガスが系外に排出される。
例えば図2および図3に示すように、ガスセンサ1は水平方向に伸びる出口側配管9の長手方向、つまり水平方向に沿って長い直方形状のケース21を備えている。ケース21は、例えばポリフェニレンサルファイド製であって、長手方向両端部にフランジ部22を備えている。フランジ部22にはカラー23が取り付けられており、例えば図3に示すように、このカラー23内にボルト24が挿入されることで、フランジ部22は酸素極側の出口側配管9に設けられた取付座25に締め付け固定されるようになっている。
また、例えば図3に示すように、ケース21の厚さ方向の端面には筒状部26が形成され、筒状部26の内部はガス検出室27として形成され、ガス検出室27の内部側面には、内側に向かってフランジ部28が形成され、フランジ部28の内周部分がガス導入部29として開口形成されている。
ケース21内には樹脂で封止された回路基板30が設けられ、筒状部26の内部に配置された検出素子31および温度補償素子32は、回路基板30に接続されている。そして、各素子31,32は回路基板30に接続された複数、例えば4個の通電用のステー33およびリード線33aにより、ガス検出室27の底面27A上に配置されたベース34から、ガスセンサ1の厚さ方向に所定距離だけ離間した位置において、所定間隔を隔てて対をなすようにして配置されている。また、筒状部26の外周面にシール材35が取り付けられ、このシール材35が出口側配管9の貫通孔9aの内周壁に密接して気密性を確保している。
検出素子31は周知の素子であって、例えば図4に示すように、電気抵抗に対する温度係数が高い白金等を含む金属線のコイル31aの表面が、被検出ガスとされる水素に対して活性な貴金属等からなる触媒31bを坦持するアルミナ等の坦体で被覆されて形成されている。
温度補償素子32は、被検出ガスに対して不活性とされ、例えば検出素子31と同等のコイル32aの表面がアルミナ等の坦体で被覆されて形成されている。
そして、被検出ガスである水素が検出素子31の触媒31bに接触した際に生じる燃焼反応の発熱により高温となった検出素子31と、被検出ガスによる燃焼反応が発生せず検出素子31よりも低温の温度補償素子32との間に電気抵抗値の差が生ずることを利用し、雰囲気温度による電気抵抗値の変化分を相殺して水素濃度を検出することができるようになっている。
ここで、例えば図2に示すように、ガス検出室27内には検出素子31と温度補償素子32との間に、両者を遮るようにして被検出ガスの流入方向に沿って立てられた状態で略矩形板状のヒータ36が配置されている。このヒータ36は抵抗体等から構成され、回路基板30によって通電されることでガス検出室27内および各素子31,32を加熱するもので、放熱面36Aを検出素子31および温度補償素子32に指向した状態で配置されている。つまりヒータ36は各面が放熱面36Aとして構成されている。このヒータ36により流入する被検出ガスが検出素子31と温度補償素子32とに振り分けられるようにして均等に分配される。
また、ガス検出室27にはガス検出室27内の温度および湿度等を検出するセンサ37が取り付けられている。
例えば図4に示すように、検出素子31(抵抗値R4)及び温度補償素子32(抵抗値R3)が直列接続されてなる枝辺と、固定抵抗41(抵抗値R1)及び固定抵抗42(抵抗値R2)が直列接続されてなる枝辺とが、外部の電源43から供給される電圧に基づいて所定の基準電圧を印加する基準電圧発生回路44に対して並列に接続されてなるブリッジ回路において、検出素子31と温度補償素子32同志の接続点PSと、固定抵抗41,42同志の接続点PRとの間に、これらの接続点PS,PR間の電圧を検出する検出回路45が接続されており、さらに、検出回路45には出力回路46が接続されている。
ここで、ガス検出室27内に導入された検査対象ガス中に被検出ガスである水素が存在しないときには、ブリッジ回路はバランスしてR1×R4=R2×R3の状態にあり、検出回路45の出力がゼロとなる。一方、水素が存在すると、検出素子31の触媒31bにおいて水素が燃焼し、コイル31aの温度が上昇し、抵抗値R4が増大する。これに対して温度補償素子32においては水素は燃焼せず、抵抗値R3は変化しない。これにより、ブリッジ回路の平衡が破れて検出回路45に、水素濃度の増大変化に応じて増大傾向に変化する適宜の電圧が印加される。この検出回路45から出力される電圧の検出値は出力回路46へ出力され、出力回路46は入力された検出値を制御装置2へ出力する。そして、制御装置2においては、この電圧の検出値の変化に応じて予め設定された水素濃度のマップ等に基づいて、水素濃度が算出される。
制御装置2は、ガス検出室27内のセンサ37およびヒータ36に接続され、例えばセンサ37から出力されるガス検出室27内の雰囲気の温度状態や湿度状態、燃料電池5の負荷状態や運転状態等に応じて、各素子31,32およびヒータ36の作動状態、例えば通電開始および通電停止の各タイミングや通電量等を制御する。このとき、制御装置2は、例えばヒータ36へ通電する電流値に対するフィードバック制御や、例えばスイッチング素子のオン/オフ動作等に基づくチョッパ制御(つまり、通電のオン/オフの切替制御)等によってヒータ36への通電量を制御する。
例えば、制御装置2は、センサ37の検出温度に基づいてヒータ36への通電を制御し、センサ37から検出されるガス検出室27内の温度が、少なくとも露点温度よりも高い所定温度範囲の温度となるように、また、センサ37から検出されるガス検出室27内の相対湿度が、例えば所定湿度範囲の相対湿度や、例えば予め作成されたガス検出室27内の温度状態に応じた相対湿度のマップ等から得られる相対湿度の検索値等となるように、ヒータ36への通電開始および通電停止のタイミングや通電量を制御する。
さらに、制御装置2は、センサ37により検出されるガス検出室27内の温度状態に加えて、例えば燃料電池5の運転状態(つまり、燃料電池5の作動開始や作動停止を含む作動状態)や、例えば燃料電池5の運転時における負荷状態、例えば燃料電池5に対する発電指令(FC出力指令値)や、例えば出力電流センサ(図示略)により検出される燃料電池5の出力電流の電流値や、例えば流量センサ(図示略)等により検出されるエアーコンプレッサ(図示略)から燃料電池5へ供給される空気の流量の検出値等に基づき算出される燃料電池5の発電状態に応じてヒータ36への通電量を制御する。
例えば、制御装置2は、燃料電池5の負荷状態が高負荷状態に変化する場合等において、酸素極側の出口側配管9内を流通するオフガスの流量が増大してオフガスに曝されるガスセンサ1のガス検出室27内の温度が低下したり、例えば燃料電池5にて生成されオフガスに含まれる生成水の量が増大してガス検出室27内の相対湿度が増大する虞がある場合には、ヒータ36への通電量を増大させてガス検出室27内の温度を上昇させることでガス検出室27内に結露が発生することを防止する。一方、燃料電池5の負荷状態が低負荷状態に変化する場合等においては、制御装置2は、ヒータ36への通電量を低下させて過剰なエネルギ消費を抑制する。
また、制御装置2は、燃料電池5の作動停止時等において、例えば各出口側配管8,9内を流通するオフガスの流量が増大させられて燃料電池システム内に残留する水が外部に排出されるパージ処理が実行される場合には、ヒータ36への通電量を増大させ、ガス検出室27内の温度を一時的に上昇させることでガス検出室27内の雰囲気ガスの飽和水蒸気量を増大させ、ガス検出室27内に結露が発生することを防止する。
また、制御装置2は、燃料電池5の作動開始時において、酸素極側の出口側配管9内におけるオフガスの流通開始に先立って、ガスセンサ1の各素子31,32と、ヒータ36とに対する通電を開始し、燃料電池5の作動停止時において、酸素極側の出口側配管9内におけるオフガスの流通を停止した後に、ガスセンサ1の各素子31,32と、ヒータ36とに対する通電を停止する。
そして、ガスセンサ1の検出系には各素子31,32へ供給される素子通電電流の電流値を検出する電流センサ(図示略)が備えられ、制御装置2は、後述するように、電流センサから出力される素子通電電流の検出値が所定閾値以上であるか否かを判定することによって、ガスセンサ1の検出系に短絡が発生しているか否かを検出するようになっている。
例えば、制御装置2は、ガスセンサ1の作動開始時等において、後述するように、少なくとも複数回に亘って電流センサから出力される素子通電電流の検出値が所定上限電流以上であるか否かを判定し、素子通電電流の検出値が所定上限電流以上であると判定される状態の継続時間が所定上限時間以上である場合に、各素子31,32が異常状態であると判定する。一方、この判定状態の継続時間が所定上限時間未満である場合には、例えば素子通電電流の検出値が一時的に所定上限電流以上になっただけであって、各素子31,32は正常状態であると判定する。
すなわち、制御装置2は、電流センサから出力される素子通電電流の検出値が所定閾値以上となる短絡の発生を検出した場合であっても、この短絡状態が所定上限時間未満にて回復可能な異常状態に起因して発生した場合には、各素子31,32は正常状態であると判定することによって、短絡が解消された時点でガスセンサ1の検出動作を継続させることができる。ここで、所定上限時間未満にて回復可能な異常状態とは、例えばガスセンサ1の作動開始時等において各素子31,32の表面上に結露水が存在する状態等であって、この場合には、各素子31,32への通電開始に伴い一時的に短絡が検出されても、各素子31,32への通電を継続することによって、さらには、ヒータ36の作動を開始することによって、各素子31,32の表面上から結露水を蒸発させ、短絡を解消することができる。一方、所定上限時間未満にて回復不能な異常状態とは、例えば各素子31、32に破損や劣化等が生じた状態である。
次に、上述した本実施の形態のガスセンサの制御装置の動作、特に、ガスセンサ1の作動開始時における異常判定の処理について説明する。
先ず、例えば、図6に示す時刻t0のように、運転者の操作によって車両のイグニッションスイッチ(IG)がONとされると、図5に示すステップS01以下の処理を実行する。
例えば図5に示すステップS01においては、ヒータ36へのヒータ通電量(例えば、通電電流)として、所定の暖機ヒータ通電量(例えば図6に示す通電電流A2)を設定する。
そして、ステップS02においては、各素子31,32への素子通電量(例えば、通電電圧)として、所定の暖機素子通電量(例えば図6に示す通電電圧V1)を設定する。この暖機素子通電量は、例えばヒータ36への通電量が所定の暖機ヒータ通電量とされている状態において、各素子31,32に対してステップ状に通電した場合であっても各素子31,32に生じる熱応力が所定値以下となる通電量であって、各素子31,32に生じる熱応力に起因する破損や劣化等が生じることがない通電量とされ、例えば予め所定の実験等により得られる。
次に、ステップS03においては、暖機継続タイマーの計時を開始する。
次に、ステップS04においては、暖機継続タイマーのタイマー値が所定暖機時間以上であるか否かを判定する。
この判定結果が「NO」の場合には、ステップS04の処理を繰り返す。
一方、この判定結果が「YES」の場合には、暖機継続タイマーのタイマー値をリセットして、ステップS05に進む。
次に、ステップS05においては、電流センサにより検出される素子通電電流の検出値を取得する。
次に、ステップS06においては、取得した素子通電電流の検出値が所定の上限電流以上であるか否かを判定する。
この判定結果が「YES」の場合には、ガスセンサ1の検出系において短絡が発生していると判断して、例えば図6に示す時刻t1のように、短絡判定フラグのフラグ値に1を設定し、後述するステップS09に進む。
一方、この判定結果が「NO」の場合には、ガスセンサ1の検出系において短絡は発生しておらず、ガスセンサ1は正常状態であると判断して、ステップS07に進む。
そして、ステップS07においては、ヒータ通電量を暖機ヒータ通電量(例えば図6に示す通電電流A2)から通常ヒータ通電量(例えば図6に示す通電電流A1<A2)へと低下させる。
そして、ステップS08においては、素子通電量を暖機素子通電量(例えば図6に示す通電電圧V1)から通常素子通電量(例えば図6に示す通電電圧V2>V1)へと増大させ、一連の処理をする。
ステップS09においては短絡確定タイマーの計時を開始する。
次に、ステップS10においては短絡判定タイマーの計時を開始する。
次に、ステップS11においては、短絡判定タイマーのタイマー値が所定時間以上であるか否かを判定する。
この判定結果が「NO」の場合には、ステップS11の処理を繰り返す。
一方、この判定結果が「YES」の場合には、短絡判定タイマーのタイマー値をリセットして、ステップS12に進む。
次に、ステップS12においては、電流センサにより検出される素子通電電流の検出値を取得する。
次に、ステップS13においては、取得した素子通電電流の検出値が所定の上限電流以上であるか否かを判定する。
ステップS13の判定結果が「NO」の場合には、発生していた短絡が解消したことによりガスセンサ1は正常状態であると判断して、例えば図6に示す時刻t4以降の点線のように、短絡判定フラグのフラグ値にゼロを設定し、上述したステップS07に進む。
一方、ステップS13の判定結果が「YES」の場合には、短絡状態が継続していると判断してステップS14に進む。
次に、ステップS14においては、短絡確定タイマーのタイマー値が所定上限時間以上であるか否かを判定する。この所定上限時間は、少なくとも各素子31、32の表面上に一時的に生成された結露水を蒸発させるのに要する時間であって、例えば予め所定の実験等により得られる。
この判定結果が「NO」の場合には、ステップS10に戻る。
一方、この判定結果が「YES」の場合には、短絡確定タイマーのタイマー値をリセットして、ステップS15に進む。
ステップS15においては、所定上限時間未満にて回復不能な異常状態が発生したと判断し、例えば図6に示す時刻t6のように、各素子31,32およびヒータ36への通電を停止することによってガスセンサ1の検出動作を停止し、一連の処理を終了する。
上述したように、本実施の形態によるガスセンサの制御装置によれば、ガスセンサ1の検出系に発生した短絡状態を検出した際に、この短絡状態が所定上限時間未満にて回復可能な異常状態、例えば各素子31,32の表面上において一時的に結露水が生成された状態等に起因するものであるか否かを判定し、この判定結果に応じてガスセンサ1の作動を継続するか否かを設定することにより、例えば短絡状態を検出した時点でガスセンサ1の検出動作を停止させてしまう場合等に比べて、ガスセンサ1を適切に作動させることができる。
しかも、例えばガスセンサ1の作動開始時において、素子通電量に所定の暖機素子通電量を設定し、ヒータ通電量に通常ヒータ通電量よりも大きい所定の暖機ヒータ通電量を設定する状態の継続時間が所定暖機時間以上となったときであっても、短絡状態を検出した場合には、ヒータ通電量に通常ヒータ通電量よりも大きい所定の暖機ヒータ通電量を設定する状態を継続することによって、例えば継続時間が所定暖機時間以上となった時点でヒータ通電量を暖機ヒータ通電量から通常ヒータ通電量へと低下させる場合に比べて、各素子31,32の表面上に一時的に生成された結露水を蒸発させるのに要する時間、つまりヒータ通電量に通常ヒータ通電量を設定し、素子通電量に通常素子通電量を設定するガスセンサ1の起動に要する時間を短縮することができる。
なお、上述した実施の形態においては、ガスセンサ1の作動開始時において短絡状態を検出した場合には、ヒータ通電量に暖機ヒータ通電量を設定する状態を継続するとしたが、これに限定されず、例えばヒータ通電量を暖機ヒータ通電量よりも大きな通電量へと増大させてもよい。
また、制御装置2は、ガスセンサ1の短絡状態を検出した場合に、ガスセンサ1から出力される信号として、通常の作動状態において出力される検出信号とは異なる所定の故障信号を外部へ出力するように設定してもよい。
なお、上述した実施の形態において、ガスセンサ1を水素センサとしたが、これに限定されず、その他のガス、例えば一酸化炭素やメタン等の可燃性ガスを検出するガスセンサであってもよい。
また、上述した実施の形態においては、各素子31,32を接続してなる回路をブリッジ回路としたが、これに限定されず、例えば直列回路等のその他の回路であってもよく、検出素子31の抵抗値R4に関連した状態量として、所定接点間の電圧や電流の検出値が制御装置2へ出力されてもよい。
また、上述した実施の形態においては、ヒータ36は検出素子31と温度補償素子32との間に配置されるとしたが、これに限定されず、例えばガス検出室27内の各素子31,32とガス導入部29との間に配置されてもよい。
適用できる。
本発明の一実施形態に係るガスセンサを備える燃料電池システムの要部構成図である。 図1に示すガスセンサの断面図である。 図2に示すA−A線に沿う概略断面図である。 図1に示すガスセンサの回路図である。 図1に示すガスセンサの制御装置の動作、特に、ガスセンサの作動開始時における異常判定の処理を示すフローチャートである。 図1に示す実施の形態に係るガスセンサの各素子およびヒータへの通電量の時間変化と短絡判定フラグのフラグ値の時間変化の一例を示すグラフ図である。
符号の説明
1 ガスセンサ
2 制御装置(通電制御手段、ヒータ通電制御手段)
27 ガス検出室
29 ガス導入部
31 検出素子
32 温度補償素子(補償素子)
36 ヒータ
37 センサ(状態検出手段)
ステップS13 短絡判定手段
ステップS15 異常判定手段

Claims (6)

  1. 検出素子と補償素子との電気抵抗値の差異に基づき検査対象ガスに含まれる被検出ガスのガス濃度を検出するガスセンサの制御装置であって、
    前記検出素子および前記補償素子への通電電流を検出する電流検出器と、
    前記電流検出器にて検出される前記通電電流の検出値が所定閾値以上であるか否かにより、少なくとも前記検出素子および前記補償素子の異常による短絡、もしくは、少なくとも前記検出素子および前記補償素子への水付着による短絡の何れかの短絡であることを複数回に亘って判定する短絡判定手段と、
    前記検出素子および前記補償素子への通電を継続した状態で前記短絡判定手段にて前記通電電流の検出値が所定閾値以上であると判定される状態の継続時間が所定時間以上である場合に前記検出素子および前記補償素子が異常による短絡であると判定する異常判定手段と
    を備えることを特徴とするガスセンサの制御装置。
  2. 前記検出素子および前記補償素子は前記検査対象ガスが導入されるガス検出室内に配置され、前記ガス検出室内に設けられたヒータと、
    前記短絡判定手段にて前記通電電流の検出値が所定閾値以上であると判定された場合に、前記ヒータへの通電を継続あるいは開始するヒータ通電制御手段と
    を備えることを特徴とする請求項1に記載のガスセンサの制御装置。
  3. 検出素子と補償素子との電気抵抗値の差異に基づき検査対象ガスに含まれる被検出ガスのガス濃度を検出するガスセンサの制御装置であって、
    前記検出素子および前記補償素子は前記検査対象ガスが導入されるガス検出室内に配置され、前記ガス検出室内に設けられたヒータと、
    前記検出素子および前記補償素子への通電電流を検出する電流検出器と、
    前記電流検出器にて検出される前記通電電流の検出値が所定閾値以上であるか否かにより、少なくとも前記検出素子および前記補償素子の異常による短絡、もしくは、少なくとも前記検出素子および前記補償素子への水付着による短絡の何れかの短絡であることを複数回に亘って判定する短絡判定手段と、
    前記ヒータへの通電を継続した状態で前記短絡判定手段にて前記通電電流の検出値が所定閾値以上であると判定される状態の継続時間が所定時間以上である場合に前記検出素子および前記補償素子が異常による短絡であると判定する異常判定手段と
    を備えることを特徴とするガスセンサの制御装置。
  4. 前記所定時間は、少なくとも前記検出素子および前記補償素子の表面上に存在する水を蒸発させ、少なくとも前記検出素子および前記補償素子への水付着による短絡を解消するのに要する上限時間以上であることを特徴とする請求項1から請求項3の何れかひとつに記載のガスセンサの制御装置。
  5. 前記異常判定手段は、前記ガスセンサの起動時に判定を行うことを特徴とする請求項1から請求項4の何れかひとつに記載のガスセンサの制御装置。
  6. 前記ガスセンサは接触燃焼式ガスセンサであることを特徴とする請求項1から請求項5の何れかひとつに記載のガスセンサの制御装置。
JP2003328927A 2003-09-19 2003-09-19 ガスセンサの制御装置 Expired - Fee Related JP3746778B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003328927A JP3746778B2 (ja) 2003-09-19 2003-09-19 ガスセンサの制御装置
US10/938,295 US7104110B2 (en) 2003-09-19 2004-09-10 Control device used for a gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003328927A JP3746778B2 (ja) 2003-09-19 2003-09-19 ガスセンサの制御装置

Publications (2)

Publication Number Publication Date
JP2005091324A JP2005091324A (ja) 2005-04-07
JP3746778B2 true JP3746778B2 (ja) 2006-02-15

Family

ID=34308838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003328927A Expired - Fee Related JP3746778B2 (ja) 2003-09-19 2003-09-19 ガスセンサの制御装置

Country Status (2)

Country Link
US (1) US7104110B2 (ja)
JP (1) JP3746778B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7520155B2 (en) 2004-11-26 2009-04-21 Honda Motor Co., Ltd. Gas detection apparatus and method

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006308440A (ja) * 2005-04-28 2006-11-09 Honda Motor Co Ltd ガス検出装置
US7841228B2 (en) * 2007-02-05 2010-11-30 Toyota Motor Engineering & Manufacturing North America, Inc. Method of detecting hydrogen sensor saturation in a hydrogen powered fuel cell
JP5230127B2 (ja) * 2007-06-06 2013-07-10 キヤノン株式会社 燃料電池システム、及び燃料電池システムの制御方法
DE102008013515A1 (de) * 2008-03-07 2009-09-10 Volkswagen Ag Verfahren zum Betreiben einer Lambdasonde während der Aufwärmphase
JP4892511B2 (ja) * 2008-04-15 2012-03-07 本田技研工業株式会社 ガスセンサ
US8230716B2 (en) * 2009-11-09 2012-07-31 Delphi Technologies, Inc. Method and system for diagnostics of a particulate matter sensor
JP5670788B2 (ja) * 2011-03-22 2015-02-18 矢崎エナジーシステム株式会社 ガス警報器及びブリッジ回路の設計方法
EP2642289A1 (en) * 2012-03-20 2013-09-25 Sensirion AG Portable electronic device
US9772317B2 (en) 2012-07-26 2017-09-26 Sensirion Ag Method for operating a portable electronic device
JP6012515B2 (ja) * 2013-03-15 2016-10-25 日立オートモティブシステムズ株式会社 ガスセンサ
KR102157792B1 (ko) * 2018-11-05 2020-09-18 삼성전자 주식회사 공정 환경 감시 시스템
CN111060473B (zh) * 2020-01-15 2021-06-25 王丽娟 一种食品质量分析检测装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06223850A (ja) 1993-01-29 1994-08-12 Mitsubishi Heavy Ind Ltd 固体高分子電解質燃料電池の運転保護システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7520155B2 (en) 2004-11-26 2009-04-21 Honda Motor Co., Ltd. Gas detection apparatus and method

Also Published As

Publication number Publication date
US7104110B2 (en) 2006-09-12
JP2005091324A (ja) 2005-04-07
US20050061055A1 (en) 2005-03-24

Similar Documents

Publication Publication Date Title
US7820949B2 (en) Method of starting, stopping and operating gas sensor with built-in heater
US7342505B2 (en) Gas detection apparatus and method for controlling gas sensor
JP3746778B2 (ja) ガスセンサの制御装置
JP4606948B2 (ja) ガスセンサ
US7418855B2 (en) Gas sensor and control method therefor
JP4571002B2 (ja) ガスセンサ
JP2012163514A (ja) ガス検知システム
JP4083652B2 (ja) ガスセンサの制御装置
JP2010019732A (ja) ガスセンサ
JP3905800B2 (ja) 燃料電池の保護装置
JP4011429B2 (ja) ガスセンサを具備する燃料電池システムおよびガスセンサを具備する燃料電池車両
JP3836403B2 (ja) ガス検出方法
JP4602124B2 (ja) ガス検出装置
JP4308107B2 (ja) ガスセンサ
JP2009092587A (ja) ヒータ内蔵型ガスセンサの制御装置
JP5186188B2 (ja) ヒータ内蔵型ガスセンサの制御装置
JP3986984B2 (ja) 接触燃焼式水素センサの較正方法
JP3987016B2 (ja) ガスセンサの制御装置
JP4021827B2 (ja) ガスセンサ
JP2006308440A (ja) ガス検出装置
JP3801950B2 (ja) ガスセンサ及びガスセンサの故障検知装置及びガスセンサの故障検知方法
JP3875163B2 (ja) ガスセンサの状態判定装置
JP2006010622A (ja) ガス検出システムおよび燃料電池車両
JP4131801B2 (ja) 燃料電池システムに具備される水素センサの劣化検知方法
JP3857218B2 (ja) ガスセンサ

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051124

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081202

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081202

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131202

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees