JP3743240B2 - 液体クロマトグラフ質量分析装置 - Google Patents

液体クロマトグラフ質量分析装置 Download PDF

Info

Publication number
JP3743240B2
JP3743240B2 JP36619399A JP36619399A JP3743240B2 JP 3743240 B2 JP3743240 B2 JP 3743240B2 JP 36619399 A JP36619399 A JP 36619399A JP 36619399 A JP36619399 A JP 36619399A JP 3743240 B2 JP3743240 B2 JP 3743240B2
Authority
JP
Japan
Prior art keywords
ion
unit
mass spectrometer
ion mobility
ion source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP36619399A
Other languages
English (en)
Other versions
JP2001183345A (ja
Inventor
利博 石塚
勝 冨岡
義昭 加藤
集 平林
由紀子 平林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP36619399A priority Critical patent/JP3743240B2/ja
Publication of JP2001183345A publication Critical patent/JP2001183345A/ja
Application granted granted Critical
Publication of JP3743240B2 publication Critical patent/JP3743240B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は大気圧イオン源を用いた液体クロマトグラフ質量分析装置に関する。
【0002】
【従来の技術】
従来、イオンを加速、または質量数毎の分離を行うことを目的とした装置としてイオンモービリティ(ドリフトチューブ)がある。このイオンモービリティは、ガス状の試料を測定する装置として以前から使用されてきた。イオンモービリティを試料ガスの分析に用いた例は、例えば、特開平5−264505 号公報や米国特許第5,053,343号などがある。
【0003】
また、イオンモービリティはガス状の試料だけでなく、液体試料の測定に使用されることも考案されている。この様な例は、例えば、Y.H.Chen,H.H.Hill,Jr.,D.P.Winttmer,International Journal of Mass Spectrometry and Ion Processes,154巻,1−13ページ,1996年,“Thermal effects on electrospray ionization ion mobility spectrometry”や、C.Wu,W.F.Siems,G.R.Asbury,H.H.Hill,Jr.,Anal.Chem.,70巻,4929−4938ページ, 1998年,“Electrospray Ionization High-Resolution Ion Mobility Spectrometry-Mass Spectrometry”などに記述されている。
【0004】
これらの構成においては、試料を含んだ液体を5μL/分程度の流速でエレクトロスプレーイオン源(ESI)でイオン化し、その後生成したイオンを傾斜電界を発生しているイオンモービリティに導入して加速することが開示されている。
【0005】
イオンモービリティ内は、大気圧であるため、イオン化された試料が導入されると、同一の電荷ではイオンの分子量が小さくなる程、電気移動度が大きくなり、小さい分子量のイオンほど早く移動するようになる。この様な動作により、イオンを質量数毎に分離することが可能となる。更に、この分離能を向上させるために、イオンの流れとは逆の方向から窒素等のドリフトガス(カウンタガス)を導入することも行われている。このように、イオンモービリティは試料を質量数毎に分離する機能を有しており、液体クロマトグラフの高分子量の試料を測定する際の検出器として、また、四重極質量分析装置と組合わせて、更なる分離能を向上させる装置として使用されている。
【0006】
また、液体試料をイオンモービリティ内に導入した場合、帯電液滴は電界方向に分極し、分極した同符号のイオンはクーロン力でお互いに反発し合うことにより、イオンの蒸発が促進されるという効果も生ずる。
【0007】
また、イオンモービリティは使用していないが、液体クロマトグラフからの試料を大気圧イオン源でイオン化したときの液滴の問題を解決するものとして、特開平5−203637号公報がある。
【0008】
【発明が解決しようとする課題】
液体試料を分析する場合、イオンモービリティの存在の有無に関わらず、イオン化の際に発生する帯電液滴をどのように除去するかが、分析結果のSN比向上の一つの鍵となる。
【0009】
大気圧イオン源で静電噴霧された微細液滴の中には、粒子径が数nm程度の微細な試料成分のイオンだけでなく、数10nmから数10μmの帯電した液滴を含んでいる。これらの径の大きな帯電液滴が多く存在すると、質量分析装置に導入されてノイズとなるだけでなく、イオン蒸発が不十分となり、得られる試料成分のイオンの発生量を減らして信号の低下も生じさせるためである。
【0010】
そのため高感度で試料成分を測定するためには、極力これらの比較的径の大きな帯電液滴を効率良く除去させることが重要である。このような問題を解決するための手段として、イオンモービリティを用いていないものの、例えば、質量分析装置のイオン導入細孔とエレクトロスプレーイオン源の噴霧流の中心軸をずらして配置するというような構成が考えられる。これは例えば、上記の特開平5− 203637号公報に開示される。
【0011】
また、イオンモービリティを用いた引用文献の場合は、大気圧イオン源から正対する方向から加熱したドリフトガス(カウンタガス)を吹き出すことにより、粒子径が比較的大きく極性が中性に近い帯電液滴を噴霧流と反対方向に吹飛ばしたり、蒸発を促進したりして、径の大きな液滴を極力除去している。
【0012】
しかし、上記の特開平5−203637 号公報のような構成では、イオン源からの噴霧流の一部しか質量分析装置側に取り込むことができない。特開平5−203637 号公報の場合は、質量分析装置のイオン導入細孔とイオン源との距離が短いため、それほど問題とはならないが、イオンモービリティが間に介在する場合、イオンモービリティに導入されるイオン源からの噴霧流が非常に少なくなってしまうと(例えば数nL/分程度の微量流量)、イオンモービリティの長さ分、イオン源が質量分析装置のイオン導入細孔より遠くなるため、イオンモービリティ内でイオンの拡散や吸着が生じ、イオンの損失が増大し、結局のところ信号の低下を招いてしまうという問題が発生する。
【0013】
また、引用文献で開示されているドリフトガスを使用するイオンモービリティの場合は、5μL/分程度であり、この程度の低流量であれば、イオンモービリティ内でほとんど液滴を蒸発させることができるため、ある程度のSN比を得ることはできる。しかし、実用的な液体クロマトグラフの流量、即ち約0.2mL/分のセミミクロ領域の流量から約2.0mL/分 の汎用の液体クロマトグラフの流量の場合、帯電液滴が多量に発生してしまうため、ドリフトガスを当てただけでは充分に蒸発させることができないため、結局ノイズが増大し、更にはイオン化効率も低下してしまうことから、大幅にSN比が低下してしまうという問題があった。
【0014】
本発明の目的は、実用的な高感度で安定な測定を行うことができるイオンモービリティを用いた液体クロマトグラフ質量分析装置を提供することにある。
【0015】
【課題を解決するための手段】
上記目的を達成するための本発明の特徴は、測定対象試料を略大気圧下で噴霧しイオン化するイオン源と、当該イオン源で生成されたイオンを大気圧下で電界により加速するイオン加速部と、当該イオン加速部で加速されたイオンを導入し高真空下で質量分離して測定する質量分析部とを有する液体クロマトグラフ質量分析装置であって、前記イオン加速部内に、噴霧流を衝突させる構造体を備えたことである。
【0016】
また更には、前記イオン加速部は、前記イオン源で生成されたイオンを偏向して前記質量分析部へ導くことである。
【0017】
また更には、前記イオン源と前記イオン加速部を噴霧流の中心軸と当該イオン加速部の中心軸を一致させるように配置し、且つ前記質量分析部にイオンを導入する細孔の中心軸が前記イオン源と前記イオン加速部の中心軸からずらした位置に配置したことである。
【0018】
また更には、前記イオン加速部の長さを可変とすることである。
【0019】
また更には、前記イオン源と前記イオン加速部は、当該イオン源の噴霧流の中心軸と当該イオン加速部の中心軸がずれるように配置し、前記イオン源と前記イオン加速部間に、前記イオン源からの噴霧流を衝突させる構造体を設けたことである。
【0020】
また更には、前記イオン源を前記イオン加速部内に配置し、且つ、前記イオン源は噴霧流の中心軸方向に移動可能であることである。
【0022】
【発明の実施の形態】
以下、本発明の実施例を図面を用いて説明する。
【0023】
図1は本発明の第1の実施例の断面図を示すものである。衝突板3を備えたイオンモービリティ1の導入側には大気圧イオン源2が装着され、イオンモービリティ1の出口側は質量分析装置4の導入部41に結合されている。
【0024】
イオンモービリティ1は、例えば円筒状の形状でリング形状の電極131〜135とリング形状の絶縁物141〜145で構成されている。電極131〜135は、絶縁物141〜144によって絶縁されている。この場合衝突板3は、例えば円板である。また、イオンモービリティ1内の圧力は、ほぼ大気圧である。
【0025】
大気圧イオン源2には液体クロマトグラフもしくはシリンジポンプ等で試料成分を含んだ溶媒をチューブ等を経て導入している。本実施例の大気圧イオン源2ではエレクトロスプレー大気圧イオン源(ESI)で説明しているが、大気圧イオン源2は大気圧化学イオン化イオン源(APCI)やソニックスプレイイオン源(SSI)などであっても良く、大気圧下でイオン化を行えるイオン源であれば良い。
【0026】
本実施例の大気圧イオン源2では、静電噴霧を発生させるために噴霧部21に数KVの高電圧を印加する電源22を備え、更に対向電極23と該対抗電極23に電圧を印加する電源12を備えている。これによって対向電極23と大気圧イオン源2との間に数KVの電位差を生じさせて静電噴霧を発生させる。
【0027】
また、大気圧イオン源の噴霧部21は、図1の拡大図で示すように、二重管の構造をしており、内側の管には試料成分を含む溶液を流し、内側の管と外側の管の間には噴霧の微細化を促進させるアシストガスを同軸上に流す。通常アシストガスは乾燥窒素ガスを使用するが、アルゴン等の不活性ガスを使用しても良い。このアシストガスにより大気中に静電噴霧された液滴はさらに蒸発が促進され、より微細になってイオンを大気中に放出させる。
【0028】
本実施例では、イオンモービリティ1の電極131と対向電極23に同一の電圧を印加している。各電極131〜135は、抵抗151〜154によって電圧が分割され傾斜電圧が印加されている。これにより、電極131〜135によってイオンモービリティ1内部に傾斜電界を作り、噴霧により大気中に生成したイオンをイオンモービリティ1の出口方向に加速する。また、電極135には、抵抗16によってオフセット電圧を印加する。一方、電極板17には、電源18で電圧を印加しイオンを質量分析装置に導入するような電界を作っている。
【0029】
一方、さらに帯電液滴を蒸発させて微細にするためカウンタガス19を加熱し大気圧イオン源の噴霧流と正対する方向から吹き出す構造としている。カウンタガス19は通常乾燥窒素ガスを使用するがアルゴン等の不活性ガスを使用しても良い。カウンタガス19はカウンタガスを加熱するヒータ110によって室温から800℃程度まで設定加熱可能である。また、流量は0L/分から約20L/分まで設定可能である。本実施例ではカウンタガス19は図1に示す様に質量分析装置の導入部41とイオン導入電極板17との間から大気圧イオン源の噴霧流と正対する方向に流している。
【0030】
大気圧イオン源2で静電噴霧された微細液滴の中には、既述のように、粒子径が数nm程度の微細な試料成分のイオンだけでなく、数10nmから数10μmの帯電した液滴を含んでいる。これらの径の大きな帯電液滴を除去するには、まず一つの手段として、大気圧イオン源2から正対する方向から加熱したカウンタガス19を吹き出すことにより、粒子径が比較的大きく極性が中性に近い帯電液滴を噴霧流と反対方向に吹飛ばしたり、蒸発を促進したりして、径の大きな液滴を極力除去する。
【0031】
また、イオンモービリティの電界により、帯電液滴は傾斜電界の方向に分極して変形する。この分極によって同符号のイオンが偏在し、クーロン力により反発してイオン蒸発がさらに加速され、またイオンの生成が促進される。
【0032】
一方、粒子径が数nmと微細で電荷を持つ試料成分のイオンは、カウンタガスによる抗力が小さいため、イオンモービリティの電界により加速されイオンモービリティの出口側に押出される。
【0033】
以上の手段により、ある程度の帯電液滴の除去が可能となる。
【0034】
しかし、実用的な液体クロマトグラフの流量、すなわち約0.2 mL/分のセミミクロ領域の流量から約2.0 mL/分の汎用の液体クロマトグラフの流量では、粒子径の大きな帯電液滴が多すぎるため、上記の手段だけでは充分に液滴を除去することができない。この場合、噴霧をより微細にするために、アシストガスの初速度を例えば70m/秒程度に増加させることが考えられるが、イオンモービリティ内を帯電液滴が通過する速度及び運動エネルギーが増大し、帯電液滴をイオンモービリティ内に十分な時間停滞させることができなくなるため、効率良く液滴を蒸発させ且つイオンの発生効率を向上させることが困難となる。
【0035】
そこで、本実施例では、イオンモービリティ内に衝突板3を備える。この衝突板3を備えることにより、慣性インパクターの原理によって、比較的大きな粒子径(数10nmから数10μm)の帯電した液滴は、衝突板3に衝突し付着するため、衝突板3を迂回して通る事はできない。一方、数nm程度の微細な試料成分のイオンは、衝突板3を流線311の様に迂回して通り抜けることができるので、移動相溶媒の流量が多い場合でもノイズを低減し高いSN比を得ることができる。したがって、アシストガスの速度を上げること無く、帯電液滴の蒸発を十分行うことができるようになる。
【0036】
更に本実施例では、衝突板3の最適位置についてイオンモービリティ1内の入り口付近,中心,出口付近の位置で実験を行った。このとき、衝突板3にはイオンモービリティ1内の電界を乱さないように衝突板3が位置する電極と同一の電圧を印加している。結果として、衝突板3が中心付近にあった場合が、入口付近,出口付近のSN比よりも数倍から十倍良いSN比が得られるという結果が得られた。
【0037】
また、イオンモービリティ1内の中心付近に衝突板3が存在する場合には存在しない場合に比べて、流量20μL/分の場合には約2.7 倍、流量200μL/分の場合には3.7 倍、SN比が向上した。尚、この比較においては、溶媒は水/メタノール=1/1、試料はレセルピンで行ったものである。
【0038】
本実施例では、衝突板3を例に説明したが、より比較的大きな帯電液滴を減少させるために、衝突物として、大気圧イオン源側に凹形状(お椀状の形状)の構造体を配置しても良い。
【0039】
さらに、衝突板3を加熱ヒータ等で加熱する事で、熱により大きな帯電液滴をさらに蒸発させて減少させることが可能である。また、加熱により、試料として蛋白を噴霧した場合や染料を噴霧した様な場合の試料の付着を防止できる。これにより汚れを防止してコンタミ等のノイズを減少させる事が可能である。また、加熱して焼き出すことができるため衝突物のクリーニングの頻度を大幅に低減可能である。
【0040】
次に、洗浄手段について説明する。
【0041】
図1の例では衝突板3を水もしくは有機溶媒を噴霧して洗浄する噴霧部113を備えており、また第一細孔42に水もしくは有機溶媒を噴霧して洗浄する噴霧部112を備えている。
【0042】
他の例としては、大気圧イオン源2の噴霧流を衝突する構造体付近もしくはイオンモービリティ1の内部もしくは質量分析装置4の導入部41を水もしくは有機溶媒にて洗浄できるようにする。例えば各電極13に穴を開け非導電性のチューブを噴霧部112として挿入した構造体としている。
【0043】
また、洗浄の動作としては、例えば試料成分測定後、自動的に一定時間洗浄する設定手段を備える。これにより、たとえ試料成分に高濃度の蛋白を噴霧した場合や染料を噴霧した場合でも、また、燐酸バッファ等の不揮発性バッファを使用した場合でも容易に汚れの付着を除去でき、高感度で、長期間安定に測定することが可能である。
【0044】
次に、第2の実施例を図2を使って説明する。
【0045】
図2は、イオンモービリティ11の断面図を示すものである。イオンモービリティ11は、電極131〜135がぞれぞれ絶縁物141〜144で絶縁された状態で構成されており、イオンを質量分析装置4に導入する向きに電極131〜135により傾斜電界を発生させている。イオンモービリティ11は、湾曲した構造体としており、イオン源2の噴霧部21で噴霧した液滴はイオンモービリティ11内に導入し、質量分析装置4の導入部41に向かう。ここで、慣性インパクターの原理により比較的大きな粒子径(数10nmから数10μm)の帯電液滴の大部分は、イオンモービリティ11の湾曲した外周側の内壁面に衝突し付着して質量分析装置4の導入部41までは到達しない。
【0046】
また、加熱ヒータ1101を、噴霧流線の進行方向の外周側の湾曲部分付近に取り付ける。これにより、湾曲した電極132,133付近の外周側の内壁に接近した比較的大きな帯電液滴を加熱させて蒸発させ、減少させることが可能である。また、汚れの付着を防止できるので、コンタミノイズの発生を低下させることが可能である。
【0047】
一方、数nm程度の微細な試料成分のイオンは流線312の様に湾曲して通り抜け質量分析装置4で高感度な測定が可能となる。当然、カウンタガスや衝突板を併用することでさらに比較的大きな帯電液滴を減少させて高感度に測定することも可能である。
【0048】
次に、第3の実施例を図3を使って説明する。
【0049】
図3は、イオンモービリティ12の断面図を示すものである。イオンモービリティ12には、電極131〜135がそれぞれ絶縁物141〜144で絶縁された状態で構成されており、イオンを質量分析装置4に導入する向きに電極131〜135により傾斜電界を発生している。イオンモービリティ12は図3で示す様にくびれた構造体としており、イオン源2の噴霧部21で噴霧した液滴はイオンモービリティ12内に導入され、質量分析装置4の導入部41に向かう。ここで、慣性インパクターの原理により比較的大きな粒子径(数10nmから数10μm)の帯電液滴の大部分はイオンモービリティ11のくびれて細くなった内壁面に衝突し付着するので質量分析装置の導入部41までは到達しない。また、加熱ヒータ1101は、噴霧流線の進行方向のくびれた部分付近に取り付ける。これにより、加熱されたくびれた部分の電極142,143に接近した比較的大きな帯電液滴をさらに蒸発させて減少させることが可能である。また、汚れの付着を防止できるので、コンタミノイズが発生するのを低下させることが可能である。
【0050】
一方、数nm程度の微細な試料成分のイオンは流線313の様に曲がりくねって通り抜りぬけることができ、質量分析装置4で高感度な測定が可能となる。
【0051】
この場合当然、カウンタガスや衝突板を併用することでさらに比較的大きな帯電液滴を減少させて高感度に測定することも可能である。
【0052】
次に図4で、第4の実施例を説明する。
【0053】
この実施例は、イオンモービリティ1の中心軸と大気圧イオン源2の中心軸は一致しているが、質量分析装置4の導入部の細孔42の中心軸とはずらした構造体としたものである。この例では噴霧流の中心軸が質量分析装置4の導入部の細孔42の中心軸とずれているため、噴霧流の周辺の比較的小さい帯電液滴がより多く質量分析装置4に導入されるためノイズが低下する。これは噴霧流の端部では同符号の帯電液滴によるクーロン力の反発力によってより微細な液滴になるからである。さらに、イオンモービリティ1の中心軸と大気圧イオン源2の中心軸とが一致しているため、均一な電界により生成したイオンは効率良く質量分析装置4側に加速させ移動させることができる。
【0054】
また、図1のようにイオンモービリティ1内に衝突板3を追加することで、更に性能を向上する事が可能である。
【0055】
図5では、本発明の第5の実施例を示す。
【0056】
この実施例では、大気圧イオン源2の噴霧流の中心軸をイオンモービリティ1の中心軸に対して角度を持たせた構造体としている。大気圧イオン源2の噴霧流は湾曲した衝突板32に対して噴霧される。慣性インパクターの原理の通り、比較的大きな径(10nmから数10μm)の帯電液滴は衝突板32に衝突し付着し、数nm程度の微細な試料成分のイオンだけが衝突板32に衝突せず流線33の様にイオンモービリティ1に導入されるため、ノイズを低減し高いSN比が得られる。以降は図1の実施例の場合と同様である。
【0057】
本実施例では、衝突版32を凹形状もしくはお椀形状にすることで効率良く試料成分のイオンをイオンモービリティ1に導入し測定する事が可能である。
【0058】
また、図1のようにイオンモービリティ1内に衝突板3を追加することで、更に性能を向上する事が可能である。
【0059】
図6は、本発明の第6の実施例を示すものである。
【0060】
本実施例では、該衝突板3や衝突構造体を複数個、もしくは複数ヶ所設けることで、カスケードインパクターと同様の原理でさらに帯電液滴を減少させるものである。本実施例では、一段目の衝突板34で一度慣性インパクターの原理により比較的大きな径(10nmから数10μm)の帯電した液滴を除去し、さらに中央に孔の空いた板35により、流線が311の様に絞られ、液滴の速度を上げ、再度二段目の衝突板36に衝突させることで、残りの比較的大きな液滴が除去される。以上によりさらにノイズを低下させてSN比の向上を図ることが可能である。
【0061】
次に第7の実施例を図7を用いて説明する。
【0062】
本実施例はイオンモービリティの電極を含む筒部38内の衝突板37が着脱可能になっている例である。衝突板37の突起部371が、イオンモービリティの電極を含む筒部38に図の様に嵌まり、且つ衝突板37は取手部372を有し、取手部372を掴んで筒部38に矢印の方向に動かして容易に着脱可能な構造となっている。
【0063】
以上よりイオンモービリティ1が衝突板37を取り外した状態でも、取付けた状態でも使用可能となる。衝突板37が取付けた状態では溶液の流量が多い場合に前述の通りの効果が得られる。取り外した状態では溶液流量が極端に少ない場合に、例えば質量分析装置4で高感度測定が可能なnフローと呼ばれる数nL/分程度の流量の場合には、アシストガスやカウンタガスの流量が少なくても十分溶媒を蒸発して高感度測定することが可能である。逆に衝突板37があると試料成分イオンが拡散し損失が大きくなってしまい高感度測定が困難となってしまう。よって、本実施例の様に衝突板37を着脱可能な構造体とすることで、溶液の流量が数nL/分程度の極端に低い場合は衝突板37を取り外して使い、流量の多い場合、例えば通常の液体クラマトグラフで使用する数mL/分の場合は衝突板37を取り付けて使うことで、低流量から高流量まで高感度で測定することが可能となる。
【0064】
さらに、衝突板37を取外して容易にクリーニングする事も可能であり、衝突板37に付着した試料成分や溶媒の汚れによるノイズを低減できる。
【0065】
次に第8の実施例を図8を用いて説明する。
【0066】
本実施例ではイオンモービリティを構成する円筒38に対してより径の小さなイオンモービリティを構成する円筒39が前述の円筒38の内側をスライドする構造体となっている。円筒38には絶縁物であるリング状の突起部381が、円筒39には絶縁物であるリング状の突起部391がそれぞれ備えられ、突起部381は円筒39の外壁に接触し、突起部391は円筒38の内壁に接触してスライドする。以上の構成よりイオンモービリティによって形成する電界の長さとイオンの移動距離を可変とする事ができる。
【0067】
イオンモービリティは当然円筒以外の構造体であっても良い。また、アコーデオンの様に蛇腹な構造体になっていても良い。また、この場合スライド長に対応してイオンモービリティ内に均一な電界の傾斜を発生するようにイオンモービリティの電極に印加する電圧を変えても良い。
【0068】
以上の様にイオンモービリティの長さを可変とすることで、液体クロマトグラフから溶出される溶液の流量が極端に低い数nL/分程度の場合には、イオンモービリティを短くして試料成分イオンの拡散による損失を防ぎ、溶液の流量が通常の液体クロマトグラフで使用する数mL/分程度の場合には、液滴を十分蒸発させるためにイオンモービリティを長くする事で高感度に測定することが可能となる。また、当然ながら、溶液の流量が多いときには、第1の実施例で説明した衝突板をイオンモービリティ内に備えることにより、より効率よく液滴を除去することが可能となる。
【0069】
第9の実施例を図9を用いて説明する。
【0070】
本実施例の場合には、前述の実施例の効果と同様な効果を得るために、イオンモービリティ38の内側に大気圧イオン源2を保持したケース26が矢印の方向にスライドする構造となっている。この場合、当然スライド長に対応してイオンモービリティ内に均一な電界の傾斜を発生するようにイオンモービリティの電極に印加する電極の範囲及び電圧を変えても良い。
【0071】
以上の様に大気圧イオン源2をスライドすることで、イオンが通過する実質的なイオンモービリティの長さを可変とすることができ、図8の実施例と同様に、溶液の流量が極端に低い数nL/分程度の流量の場合には、イオンモービリティ内に大気圧イオン源をスライドして試料成分のイオンの拡散や吸着による損失を防ぎ、溶液が通常の液体クラマトグラフで使用するmL/分程度の流量の場合には溶液を十分蒸発させるためにイオンモービリティから引き出す方向に大気圧イオン源2をスライドして高感度で測定することが可能となる。
【0072】
本発明の第10の実施例を図10を用いて説明する。
【0073】
従来のイオンモービリティ1内は、試料成分イオンのみを移動させるために傾斜を持った電界を作っている。図10の例では、イオンモービリティの電極131に負電圧を印加する電源122を追加して備え、スイッチ123により正の電圧を印加する電源121と負電圧を印加する電源122を切換えることができる構成となっている。また、対向電極23は別の電源124で給電し、対向電極23とイオンモービリティ1の電極131は絶縁物146で絶縁している。
【0074】
図10の状態は、電極131に負電圧を電源122より印加しているのでイオンモービリティ1内には図の様に低い電界の等電位線116と高い電界の等電位線117が発生する。そのため、正の試料成分イオンを噴霧した場合、イオンモービリティ1の出口側とは反対側の方向に力が図の矢印118の様に働く。そのため、正の試料成分イオンはイオンモービリティ1の入り口側に加速され押出されて質量分析装置4には導入されない。負イオンの試料成分を噴霧した場合には同様に逆の電圧,電界を印加することで同様に質量分析装置4に導入しないようにすることができる。
【0075】
以上の実施例の応用例を図11を用いて説明する。本実施例では、試料成分を含んだ溶液を液体クロマトグラムのカラムで分離し紫外吸収でクロマトグラムを得ている。また、同時にカラムで分離した溶液を質量分析装置4にて測定する構成になっている。ここで、クロマトグラム中の試料成分のピーク51,52が得られている時のみ正の電圧53をイオンモービリティ1の電極131に印加し、正のイオンを加速して移動させ質量分析装置に導入し分析するようにしている。クロマトグラム中の試料成分のピーク51,52が発生している時以外は負電圧54を印加し、正イオンは質量分析装置4に導入されないようにしている。
【0076】
以上より、質量分析装置4で分析する必要のある時間以外はイオンモービリティ1内の質量分析装置4側には溶液のイオンが導入されないため、例えばリン酸バッファ等の不揮発性バッファを溶液に添加して使用する場合には、衝突板3や質量分析装置4の導入部41や第一細孔42の不揮発性バッファによる汚れや第一細孔42の詰まりを大幅に低減することが可能となり、安定に高感度で測定することができる。また、洗浄などの手間を大幅に低減できる。
【0077】
また、クロマトグラムのピークに対して正,負両方のイオンを一回で時間切換えて測定する必要がある場合には、電極131に逆電圧を印加せずに例えばゼロボルトを印加してイオンを質量分析装置4側に導入しないようにすることでも大きな効果が得られる。
【0078】
【発明の効果】
以上説明したように、本発明によれば、数nL/分の極低流量から数mL/分程度の通常液体クロマトグラフで使用されるような流量に至るまで、導入される溶媒の流量に拘わらず、高感度で安定な性能の液体クロマトグラフ質量分析装置が得られる。
【図面の簡単な説明】
【図1】本発明の第1の実施例の構成を示す断面図である。
【図2】本発明の第2の実施例の構成を示す断面図である。
【図3】本発明の第3の実施例の構成を示す断面図である。
【図4】本発明の第4の実施例の構成を示す断面図である。
【図5】本発明の第5の実施例の構成を示す断面図である。
【図6】本発明の第6の実施例の構成を示す断面図である。
【図7】本発明の第7の実施例の衝突板の構成を示す図である。
【図8】本発明の第8の実施例の構成を示す断面図である。
【図9】本発明の第9の実施例の構成を示す断面図である。
【図10】本発明の第10の実施例の構成を示す断面図である。
【図11】本発明の第10の実施例の測定タイミング制御を示す図である。
【符号の説明】
1…イオンモービリティ、2…大気圧イオン源、4…質量分析装置、11…イオンモービリティの内表面、12,18,22,43,121,122…電源、16,151,152,153,154…抵抗、17…イオン導入電極板、19…カウンタガス、23…対抗電極、34,36…衝突板、35…流線を絞るための板、42…質量分析装置の第一細孔、51…紫外吸収のクロマトグラムのピーク、52…別の紫外吸収のクロマトグラムのピーク、53…イオンモービリティに印加する正の電圧、54…イオンモービリティに印加する負の電圧、110,1101…ヒータ、112…衝突板洗浄用噴霧部、114…第一細孔洗浄用噴霧部、131,132,133,134,135…電極、141,142,143,144,145…絶縁物。

Claims (4)

  1. 測定対象試料を大気圧下で噴霧しイオン化するイオン源と、当該イオン源で生成されたイオンを大気圧下で電界により加速する筒状のイオン加速部と、当該イオン加速部で加速されたイオンを導入し高真空下で質量分離して測定する質量分析部とを有する液体クロマトグラフ質量分析装置であって、
    前記イオン加速部内に、前記イオン源からの噴霧流を衝突させる構造体を備え、
    前記構造体は三枚設けられ、噴霧流に対して最上流側及び最下流側に配置される構造体は周囲を噴霧流が流れる形状、中間に配置される構造体は構造体の中央を噴霧流が通過する形状であることを特徴とする液体クロマトグラフ質量分析装置。
  2. 測定対象試料を大気圧下で噴霧しイオン化するイオン源と、当該イオン源で生成されたイオンを大気圧下で電界により加速するイオン加速部と、当該イオン加速部で加速されたイオンを導入し高真空下で質量分離して測定する質量分析部とを有する液体クロマトグラフ質量分析装置であって、
    前記イオン加速部は、前記イオン源で生成されたイオンを偏向して前記質量分析部へ導くことを特徴とする液体クロマトグラフ質量分析装置。
  3. 請求項において、
    前記イオン加速部は湾曲構造であり、当該イオン加速部を加熱する加熱部を有することを特徴とする液体クロマトグラフ質量分析装置。
  4. 請求項において、
    前記イオン加速部は中間部がくびれた構造であり、当該イオン加速部を加熱する加熱部を有することを特徴とする液体クロマトグラフ質量分析装置。
JP36619399A 1999-12-24 1999-12-24 液体クロマトグラフ質量分析装置 Expired - Lifetime JP3743240B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36619399A JP3743240B2 (ja) 1999-12-24 1999-12-24 液体クロマトグラフ質量分析装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36619399A JP3743240B2 (ja) 1999-12-24 1999-12-24 液体クロマトグラフ質量分析装置

Publications (2)

Publication Number Publication Date
JP2001183345A JP2001183345A (ja) 2001-07-06
JP3743240B2 true JP3743240B2 (ja) 2006-02-08

Family

ID=18486157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36619399A Expired - Lifetime JP3743240B2 (ja) 1999-12-24 1999-12-24 液体クロマトグラフ質量分析装置

Country Status (1)

Country Link
JP (1) JP3743240B2 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090283674A1 (en) 2006-11-07 2009-11-19 Reinhold Pesch Efficient Atmospheric Pressure Interface for Mass Spectrometers and Method
JP5475433B2 (ja) * 2009-12-22 2014-04-16 株式会社日立ハイテクノロジーズ 検査システム及びイオン化プローブ
CN107533032A (zh) 2015-03-06 2018-01-02 英国质谱公司 用于从块状组织直接映射的原位电离质谱测定成像平台
CN107530064B (zh) * 2015-03-06 2021-07-30 英国质谱公司 气态样品的改进电离
EP3265819B1 (en) 2015-03-06 2020-10-14 Micromass UK Limited Chemically guided ambient ionisation mass spectrometry
CN110706996B (zh) 2015-03-06 2023-08-11 英国质谱公司 用于改进电离的碰撞表面
KR101956496B1 (ko) 2015-03-06 2019-03-08 마이크로매스 유케이 리미티드 전기수술 응용분야에 대한 액체 트랩 또는 세퍼레이터
WO2016142669A1 (en) 2015-03-06 2016-09-15 Micromass Uk Limited Physically guided rapid evaporative ionisation mass spectrometry ("reims")
EP3265822B1 (en) 2015-03-06 2021-04-28 Micromass UK Limited Tissue analysis by mass spectrometry or ion mobility spectrometry
CN112964625B (zh) 2015-03-06 2024-06-07 英国质谱公司 细胞群体分析
WO2016142681A1 (en) 2015-03-06 2016-09-15 Micromass Uk Limited Spectrometric analysis of microbes
EP3671216A1 (en) 2015-03-06 2020-06-24 Micromass UK Limited Imaging guided ambient ionisation mass spectrometry
CA2981085A1 (en) 2015-03-06 2016-09-15 Micromass Uk Limited Spectrometric analysis
EP3570315B1 (en) 2015-03-06 2024-01-31 Micromass UK Limited Rapid evaporative ionisation mass spectrometry ("reims") and desorption electrospray ionisation mass spectrometry ("desi-ms") analysis of biopsy samples
JP6783240B2 (ja) 2015-03-06 2020-11-11 マイクロマス ユーケー リミテッド 生体内内視鏡的組織同定機器
WO2016142690A1 (en) 2015-03-06 2016-09-15 Micromass Uk Limited Inlet instrumentation for ion analyser coupled to rapid evaporative ionisation mass spectrometry ("reims") device
GB201517195D0 (en) 2015-09-29 2015-11-11 Micromass Ltd Capacitively coupled reims technique and optically transparent counter electrode
US11454611B2 (en) 2016-04-14 2022-09-27 Micromass Uk Limited Spectrometric analysis of plants

Also Published As

Publication number Publication date
JP2001183345A (ja) 2001-07-06

Similar Documents

Publication Publication Date Title
JP3743240B2 (ja) 液体クロマトグラフ質量分析装置
US12080537B2 (en) IRMS sample introduction system and method
JP3299335B2 (ja) 時間変調が課される電気的噴霧装置および方法
Manisali et al. Electrospray ionization source geometry for mass spectrometry: past, present, and future
US6278110B1 (en) Orthogonal ion sampling for APCI mass spectrometry
US10546740B2 (en) Mass spectrometry device and ion detection device
JP3791479B2 (ja) イオンガイド
US10281433B2 (en) Mass spectrometer and ion mobility spectrometer
US20040046118A1 (en) Orthogonal ion sampling for apci mass spectrometry
CN107003283B (zh) 离子迁移率分析装置
JP2010537371A (ja) 真空以上の圧力での試料のイオン化
JP2002526892A (ja) 電気スプレー質量分析のための渦状ガス流インターフェース
CN112368799A (zh) 多种气体流离子发生器
JP3846417B2 (ja) 大気圧イオン化質量分析装置
JP5219274B2 (ja) 質量分析計
JP4645197B2 (ja) 質量分析方法
JP2000230921A (ja) マルチキャピラリイオン化質量分析装置
JP4254546B2 (ja) 質量分析装置
JPH10185876A (ja) 液体クロマトグラフ質量分析装置
JP2004303497A (ja) 粒子イオン化方法及び装置
JP2000055880A (ja) 液体クロマトグラフ質量分析装置
JPH1164289A (ja) 液体クロマトグラフ質量分析装置
JPH11108894A (ja) Lc/msインタフェイス
JP2003331777A (ja) 質量分析装置
JP3226584B2 (ja) 質量分析計

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051107

R151 Written notification of patent or utility model registration

Ref document number: 3743240

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111125

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111125

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121125

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121125

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131125

Year of fee payment: 8

EXPY Cancellation because of completion of term