JP3733831B2 - 廃棄物処理設備 - Google Patents
廃棄物処理設備 Download PDFInfo
- Publication number
- JP3733831B2 JP3733831B2 JP2000100011A JP2000100011A JP3733831B2 JP 3733831 B2 JP3733831 B2 JP 3733831B2 JP 2000100011 A JP2000100011 A JP 2000100011A JP 2000100011 A JP2000100011 A JP 2000100011A JP 3733831 B2 JP3733831 B2 JP 3733831B2
- Authority
- JP
- Japan
- Prior art keywords
- furnace
- carbonization
- carbonized product
- tunnel
- temperature reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
- C10J3/58—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels combined with pre-distillation of the fuel
- C10J3/60—Processes
- C10J3/64—Processes with decomposition of the distillation products
- C10J3/66—Processes with decomposition of the distillation products by introducing them into the gasification zone
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0913—Carbonaceous raw material
- C10J2300/0946—Waste, e.g. MSW, tires, glass, tar sand, peat, paper, lignite, oil shale
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/12—Heating the gasifier
- C10J2300/1269—Heating the gasifier by radiating device, e.g. radiant tubes
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Coke Industry (AREA)
- Gasification And Melting Of Waste (AREA)
- Processing Of Solid Wastes (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、種々の廃棄物を乾燥、熱分解、炭化し、得られた炭化生成物をガス化、溶融処理する廃棄物処理設備に関し、特には、設備を小型化し省エネルギーを達成することが可能な廃棄物処理設備に関する。
【0002】
【従来の技術】
現在、廃棄物処理場の不足が顕著化しており、産業廃棄物あるいは一般廃棄物の多くは、発生したままの姿で、あるいは何らかの事前処理の上、焼却処理し減容化した後に、埋立などの最終処分が行われる場合が多い。
上記した焼却処理の方法としては様々な方法が挙げられるが、近年、焼却場における発生ガス中のダイオキシン類など有害物質の管理が問題となっており、高温酸化雰囲気で有害物を分解することが可能な処理方法が求められている。
【0003】
このような高温処理が可能な廃棄物処理方法として、特開平6−26626 号公報、特開平6− 79252号公報、特開平7−323270号公報に開示された廃棄物処理プロセスが挙げられる。
上記したプロセスは、廃棄物を圧縮成形後、乾燥、熱分解、炭化し、生成した炭化生成物を部分酸化・ガス化、溶融して燃料ガスおよびスラグ、金属を得る廃棄物処理プロセスである。
【0004】
図4に、上記した廃棄物処理設備を側断面図によって示す。
図4において、1は廃棄物を回分的(バッチ的)に加圧、圧縮する圧縮装置、2は圧縮用ピストン、3は圧縮支持盤、4は圧縮された廃棄物(圧縮廃棄物)(以下圧縮成形物とも記す)を乾燥、熱分解、炭化するための乾留・炭化炉である横型のトンネル式加熱炉(以下、トンネル式加熱炉とも記す)、4aは圧縮成形物の乾燥領域、4bは圧縮成形物の熱分解、炭化領域、4eはトンネル式加熱炉4の廃棄物の入口、4fはトンネル式加熱炉4の炭化生成物の出口(:高温反応塔5の側壁に設けられた炭化生成物入口)、5は竪型の高温反応塔、6a、6bはそれぞれトンネル式加熱炉4の側壁内に配設された炉加熱用高温ガスの流通パイプ、10a、10iは圧縮成形物、11、11i 、11n は炭化生成物、12は炭化生成物11の堆積層(以下、炭化生成物堆積層または堆積層と記す)、14は溶融物、14H は溶融物排出口、15は酸素含有ガス供給管、15a は高温反応塔5への酸素含有ガス供給口(以下、高温反応塔酸素含有ガス供給口とも記す)、16は高温反応塔5の下部側壁に接続された水平型筒状加熱炉である溶融物加熱・保温炉(以下、溶融物加熱・保温炉とも記す)、16e は溶融物加熱・保温炉の入口、17は溶融物加熱・保温炉の加熱装置であるバーナー、17a は溶融物加熱・保温炉16内に高温燃焼ガスを供給する燃焼ガス供給口、20は廃棄物投入口、21は廃棄物投入口の蓋、30は高温反応塔5から排出される高温反応塔発生ガス(以下、発生ガスとも記す)の冷却装置(急冷装置)、31はガス精製装置、32は高温反応塔5の発生ガス排出口、33は精製ガス、f1は圧縮成形物10a 、10i の移動方向、f2は炭化生成物11i 、11n の移動方向、f3はトンネル式加熱炉4内で生成した熱分解ガスの流れ方向、f4は高温反応塔5内への酸素含有ガスの吹き込み方向、f5は圧縮用ピストン2の移動方向、f6は圧縮支持盤3の移動方向、f7は廃棄物投入口20の蓋21の回転方向を示す。
【0005】
図4に示す廃棄物処理設備においては、先ず、廃棄物投入口20から圧縮装置1内へ所定量供給した廃棄物を、回分的に圧縮装置1を用いて圧縮してち密な圧縮成形物10aとする。
次に、この圧縮成形物10aを、流通パイプ6a、6b内を流通する高温ガスによって加熱された細長いトンネル式加熱炉4内へ押し込む。
【0006】
圧縮成形物10aの断面形状は、トンネル式加熱炉4の入口4eの内壁断面と同形、同一寸法であり、圧縮成形物10a はトンネル式加熱炉4の内壁と接触状態を保ったまま押し込めるため、トンネル式加熱炉入口で加熱炉内雰囲気をシールできる。
圧縮成形物10i は、順次新しい成形物が押し込まれる毎に、トンネル式加熱炉4内を滑りながら移動する。
【0007】
トンネル式加熱炉4は、前記したように流通パイプ6a、6b内を流通する高温ガスによって加熱され、内部は600 ℃程度まで昇温され、圧縮成形物10i の移動、昇温過程において、圧縮成形物10i が乾燥、熱分解、炭化する。
炭化生成物11n および熱分解、炭化により発生したガスは、高温反応塔5の側壁に設けられた炭化生成物入口4fから1000℃以上に維持された高温反応塔5内へ装入、供給される。
【0008】
炭化生成物11n は、高温反応塔5の下部に堆積して炭化生成物堆積層12を形成し、ガスは、高温反応塔5の上部の1000℃以上の領域で2秒以上滞留し、一酸化炭素と水素を含む燃料用の合成ガスとして回収できる。
すなわち、高温反応塔5の下部の高温反応塔酸素含有ガス供給口15aから堆積層12中へ供給する酸素含有ガスで、堆積層の可燃物を燃焼(部分酸化・ガス化)させ、そのエネルギーで堆積層中の不燃分(金属、灰分など)を溶融する。
【0009】
燃焼時に発生したガスは、堆積層12内を通って高温反応塔5を上昇し、この上昇ガスは、高温反応塔5の下部の堆積層内で炭化生成物11と向流熱交換を行い、炭化生成物11の顕熱を増加する。
顕熱の大きい炭化生成物11は、容易に燃焼、溶融する。
また、高温反応塔5の下部側壁に接続された溶融物加熱・保温炉16で溶融物14をバーナーなどの加熱装置17で加熱し、溶融物に含まれる微量の炭素などをガス化、除去して溶融物14は溶融物排出口14H から溶融スラグ、溶融金属として回収される。
【0010】
以上、従来の乾留・炭化炉、高温反応塔および溶融物加熱・保温炉を配設した廃棄物処理設備について述べたが、従来の廃棄物処理設備においては、下記の問題点があった。
すなわち、乾留・炭化炉であるトンネル式加熱炉4における圧縮成形物の乾燥、炭化が不十分な場合、図3に示すような中心に未乾燥部53が残存した炭化生成物11が高温反応塔5内に装入され、堆積層12中の不燃分(金属、灰分など)の溶融が進行せず、また溶融した場合も溶融物の粘度が高いため、溶融物加熱・保温炉16から排出される溶融物中のスラグとメタルの比重分離が困難となる。
【0011】
この結果、溶融物加熱・保温炉16の加熱装置17からの高温燃焼ガスの供給量を増加する必要があり、燃料使用量の増加を招いていた。
上記した問題点を解決する方法として、▲1▼トンネル式加熱炉4の炉長を長くする方法、▲2▼トンネル式加熱炉4における廃棄物の滞留時間を長くする方法が考えられるが、上記した▲1▼の方法の場合、設備の大型化を招き、さらにはトンネル式加熱炉4における炭化生成物の押し詰まりが生じる問題があり、上記した▲2▼の方法の場合、廃棄物の処理量の低下を招く問題があった。
【0012】
【発明が解決しようとする課題】
本発明は、前記した従来技術の問題点を解決し、廃棄物を乾燥、熱分解、炭化し、得られた炭化生成物をガス化、溶融処理する廃棄物処理設備において、設備を小型化し省エネルギーを達成することが可能な廃棄物処理設備を提供することを目的とする。
【0013】
【課題を解決するための手段】
第1の発明は、廃棄物を乾燥、熱分解、炭化する乾留・炭化炉4と、該乾留・炭化炉4の炭化生成物の出口と接続され、乾留・炭化炉4で得られた炭化生成物を酸素含有ガスで部分酸化・ガス化、溶融する高温反応塔5を有する廃棄物処理設備であって、前記乾留・炭化炉4の炭化生成物出口側炉内を乾留・炭化炉4の廃棄物入口側炉内に対して拡大し、高温反応塔5内の輻射熱を前記炭化生成物出口側炉内の炭化生成物に、直接、輻射・伝達する輻射熱伝達用空間40を設けたことを特徴とする廃棄物処理設備である。
【0014】
前記した第1の発明においては、前記した輻射熱伝達用空間40が、高温反応塔5内の輻射熱を、前記乾留・炭化炉4の炭化生成物出口側炉内の炭化生成物の側面に、直接、輻射・伝達する輻射熱伝達用空間40であることが好ましい。
なお、上記した炭化生成物の側面とは、前記乾留・炭化炉4の炭化生成物出口側炉内において炉壁4bW と相対する面を示す。
【0015】
第2の発明は、廃棄物を乾燥、熱分解、炭化する横型のトンネル式加熱炉4と、該トンネル式加熱炉4で得られた炭化生成物を酸素含有ガスで部分酸化・ガス化、溶融する竪型の高温反応塔5を有する廃棄物処理設備であって、前記トンネル式加熱炉4の炭化生成物の出口4fが前記高温反応塔5の側壁に接続され、前記トンネル式加熱炉4の炭化生成物出口側炉内をトンネル式加熱炉4の廃棄物入口側炉内に対して拡大し、高温反応塔5内の輻射熱を前記炭化生成物出口側炉内の炭化生成物に、直接、輻射・伝達する輻射熱伝達用空間40を設けたことを特徴とする廃棄物処理設備である。
【0016】
前記した第2の発明においては、前記した輻射熱伝達用空間40が、前記高温反応塔5内の輻射熱を、前記トンネル式加熱炉4の炭化生成物出口側炉内の炭化生成物の側面に、直接、輻射・伝達する輻射熱伝達用空間40であることが好ましい。
なお、上記した炭化生成物の側面とは、前記トンネル式加熱炉4の炭化生成物出口側炉内において炉壁4bW と相対する面を示す。
【0017】
また、前記した第2の発明においては、前記輻射熱伝達用空間40が、トンネル式加熱炉4の所定箇所4bP から炭化生成物の出口4fに到るまでの前記トンネル式加熱炉内を拡大して形成された空間であって、トンネル式加熱炉4の所定箇所4bP における、炭化生成物の移動方向に対して直交する炉内断面の断面積(:SOUT,4bP )と、トンネル式加熱炉4の所定箇所4bP から炭化生成物の出口4fに到るまでの任意の箇所における、炭化生成物の移動方向に対して直交する炉内断面の断面積(:SOUT,X )が下記式(1) を満足することが好ましい。
【0018】
SOUT,4bP <SOUT,X ………(1)
さらに、トンネル式加熱炉4の所定箇所4bP における、炭化生成物の移動方向に対して直交する炉内断面の断面積(:SOUT,4bP )と、トンネル式加熱炉4の炭化生成物の出口における、炭化生成物の移動方向に対して直交する炉内断面の断面積(:SOUT,4f)が下記(2) 式を満足することが好ましい。
【0019】
2×(SOUT,4bP )<SOUT,4f ……(2)
なお、前記した第1の発明、第2の発明における所定箇所4bP は、前記輻射熱伝達用空間の形成開始点であり、高温反応塔5内のガスの輻射熱を、前記乾留・炭化炉(横型のトンネル式加熱炉)4の炭化生成物出口側炉内の炭化生成物に、直接、輻射・伝達する炭化生成物の必要領域によって任意に定めることができる。
【0020】
前記した所定箇所4bP の好ましい位置は、該所定箇所4bP と炭化生成物出口4fとの間の距離が、前記乾留・炭化炉(横型のトンネル式加熱炉)4の全炉内長の1/2以内となる位置である。
また、前記した第1の発明、第2の発明においては、前記した廃棄物が圧縮成形した廃棄物であることが、より好ましい。
【0021】
【発明の実施の形態】
以下、本発明をさらに詳細に説明する。
本発明者らは、前記した従来技術の問題点を解決するために鋭意検討した結果、乾留・炭化炉4と乾留・炭化炉4の炭化生成物の出口と接続された高温反応塔5を有する廃棄物処理設備において、高温反応塔5内のガスなどの輻射熱を利用して乾留・炭化炉4内の炭化生成物を加熱することによって本発明の課題を解決することが可能であることを見出した。
【0022】
図1に、本発明の廃棄物処理設備の一例を、側断面図によって示す。
図1において、4bP は横型のトンネル式加熱炉(:トンネル式加熱炉)4内の所定箇所、4bW は乾留・炭化炉(横型のトンネル式加熱炉)4の炭化生成物出口側炉内の炉壁、40は竪型の高温反応塔(高温反応塔)5内のガスなどの輻射熱を乾留・炭化炉(横型のトンネル式加熱炉)4の炭化生成物出口側炉内の炭化生成物に、直接、輻射・伝達する輻射熱伝達用空間、f10 は高温反応塔5内のガスなどの輻射熱の輻射、伝達方向を示し、その他の符号は図4と同一の内容を示す。
【0023】
また、図1に示す廃棄物処理設備における溶融物加熱・保温炉16は横型の筒状加熱炉である。
図1に示す本発明の廃棄物処理設備は、廃棄物を乾燥、熱分解、炭化する乾留・炭化炉4と、乾留・炭化炉4の炭化生成物の出口と接続され、乾留・炭化炉4で得られた炭化生成物を酸素含有ガスで部分酸化・ガス化、溶融する高温反応塔5を有する廃棄物処理設備で、乾留・炭化炉4の炭化生成物出口側炉内を拡大し、高温反応塔5内のガスなどの輻射熱を炭化生成物出口側炉内の炭化生成物に、直接、輻射・伝達する輻射熱伝達用空間を設けた廃棄物処理設備である。
【0024】
また、図1に示す本発明の廃棄物処理設備における輻射熱伝達用空間40は、乾留・炭化炉4の炭化生成物出口側炉内を拡大し、高温反応塔5内のガスの輻射熱を炭化生成物出口側炉内の炭化生成物の側面に、直接、輻射・伝達する輻射熱伝達用空間40である。
なお、図1に示すように、上記した炭化生成物の側面とは、乾留・炭化炉4の炭化生成物出口側炉内において炉壁4bW と相対する面を示す。
【0025】
また、図1に示す廃棄物処理設備は、廃棄物を乾燥、熱分解、炭化する横型のトンネル式加熱炉4と、トンネル式加熱炉4で得られた炭化生成物を酸素含有ガスで部分酸化・ガス化、溶融する竪型の高温反応塔5を有する廃棄物処理設備で、トンネル式加熱炉4の炭化生成物の出口4fが高温反応塔5の側壁に接続され、トンネル式加熱炉4の炭化生成物出口側炉内を拡大し、高温反応塔5内のガスなどの輻射熱を炭化生成物出口側炉内の炭化生成物に、直接、輻射・伝達する輻射熱伝達用空間40を設けた廃棄物処理設備である。
【0026】
また、図1に示す本発明の廃棄物処理設備における輻射熱伝達用空間40は、トンネル式加熱炉4の炭化生成物出口側炉内を拡大し、高温反応塔5内のガスなどの輻射熱を炭化生成物出口側炉内の炭化生成物の側面に、直接、輻射・伝達する輻射熱伝達用空間40である。
なお、図1に示すように、上記した炭化生成物の側面とは、トンネル式加熱炉4の炭化生成物出口側炉内において炉壁4bW と相対する面を示す。
【0027】
また、図1に示す廃棄物処理設備においては、前記輻射熱伝達用空間40が、トンネル式加熱炉4の所定箇所4bP から炭化生成物の出口4fに到るまでの前記トンネル式加熱炉内を拡大して形成された空間であって、トンネル式加熱炉4の所定箇所4bP における、炭化生成物の移動方向に対して直交する炉内断面の断面積(:SOUT,4bP )と、トンネル式加熱炉4の炭化生成物出口側の所定箇所4bP から炭化生成物の出口4fに到るまでの任意の箇所における、炭化生成物の移動方向に対して直交する炉内断面の断面積(:SOUT,X )が下記式(1) を満足することが好ましい。
【0028】
SOUT,4bP <SOUT,X ………(1)
さらに、輻射・伝達を効率良く行うためトンネル式加熱炉4の所定箇所4bP における、炭化生成物の移動方向に対して直交する炉内断面の断面積(:SOUT,4bP )と、トンネル式加熱炉4の炭化生成物出口における、炭化生成物の移動方向に対して直交する炉内断面の断面積(:SOUT,4f)が下記式(2) を満足することが好ましい。
【0029】
2×(SOUT,4bP )<SOUT,4f………(2)
なお、前記した本発明の廃棄物処理設備においては、前記した所定箇所4bP は、高温反応塔5内のガスの輻射熱を乾留・炭化炉(横型のトンネル式加熱炉)4の炭化生成物出口側炉内の炭化生成物に、直接、輻射・伝達する炭化生成物の必要領域によって任意に定めることができる。
【0030】
図1に示す廃棄物処理設備においては、圧縮成形した廃棄物(:圧縮成形物10i )を乾燥、熱分解、炭化し、得られた炭化生成物11n を、高温反応塔5の側壁に設けられた炭化生成物入口4fから高温反応塔5内に装入し、高温反応塔5内に堆積した炭化生成物11中に酸素含有ガスを供給し、炭化生成物11を部分酸化・ガス化、溶融することによって廃棄物の処理を行う。
【0031】
高温反応塔5で発生したガスは、精製ガス(燃料用の合成ガス)33として回収する。
また、高温反応塔5の下部側壁に接続された溶融物加熱・保温炉16で溶融物14をバーナーなどの加熱装置17で加熱し、溶融物に含まれる微量の炭素などをガス化、除去し、溶融物14は溶融物排出口14H から溶融スラグ、溶融金属として回収される。
【0032】
本発明者らは前記した課題を解決するために、図1に示す廃棄物処理設備において、高温反応塔5内のガスなどの輻射熱を炭化生成物出口側炉内の炭化生成物に伝達する輻射熱伝達用空間40を設けた。
この結果、本発明の廃棄物処理設備によれば、下記の効果が得られる。
(1) 燃料使用量の削減:
本発明によれば、高温反応塔5内のガスなどの輻射熱を乾留・炭化炉4の炭化生成物出口側炉内の炭化生成物に伝達する輻射熱伝達用空間40を設けたため、炭化生成物が十分加熱され、中心に未乾燥部が残存した炭化生成物が高温反応塔5内に装入されることが無く、溶融物加熱・保温炉16の加熱装置17における燃料使用量を削減することが可能となった。
【0033】
(2) 設備の小型化:
また、本発明によれば、乾留・炭化炉4と高温反応塔5との接続部における乾留・炭化炉4の炉内断面積を拡大するのみでよいため、乾留・炭化炉4の炉長の増加が不要となり、設備を小型化することができる。
次に、図2に、本発明の廃棄物処理設備における乾留・炭化炉4と高温反応塔5との接続部の構成の他の例を、側断面図によって示す。
【0034】
なお、図2における各符号は、図1、図4と同一の内容を示す。
図2(a) に示す炭化生成物出口側炉内に設けられた輻射熱伝達用空間40は、トンネル式加熱炉4の炉内中心軸から炉壁迄の距離がトンネル式加熱炉4の長手方向において均一に拡大した輻射熱伝達用空間である。
また、図2(b) に示す炭化生成物出口側炉内に設けられた輻射熱伝達用空間40は、トンネル式加熱炉4の炭化生成物出口側炉内と高温反応塔5内とを連通し、高温反応塔5内のガスの輻射熱が、炭化生成物出口側炉内の所定箇所の炭化生成物に直線的に放射、伝達する空間から構成される輻射熱伝達用空間である。
【0035】
すなわち、本発明における炭化生成物出口側炉内に設けられた輻射熱伝達用空間40としては、高温反応塔5内のガスの輻射熱が、炭化生成物出口側炉内の所定箇所の炭化生成物に直線的に放射、伝達することが可能な空間であれば、その装置構成は特に制限されるものではない。
また、図2(b) に示すように、前記した第2の発明の好適態様におけるトンネル式加熱炉4の炭化生成物出口側の任意の箇所における炉内断面積:SOUT,X と炭化生成物出口4fの炉内断面積:SOUT,4fは、トンネル式加熱炉4内で生成した熱分解ガスの流路も含む炉内断面積である。
【0036】
本発明においては、図1、図2に示すように、廃棄物が圧縮成形した廃棄物であることが好ましい。
これは、廃棄物を圧縮成形することによって、乾留・炭化炉4内における廃棄物の乾燥、熱分解、炭化が促進され、しかも高温反応塔を含め廃棄物処理設備を小型化できるためである。
【0037】
ただし、本発明は、高温反応塔内のガスの輻射熱を利用して炭化生成物出口側炉内の炭化生成物を加熱するため、本発明の廃棄物処理設備は、廃棄物の圧縮成形物の処理に限定されることなく、廃棄物そのものの処理、もしくは廃棄物と廃棄物の圧縮成形物との混合物の処理にも好適に用いることができる。
【0038】
【実施例】
以下、本発明を実施例に基づいてさらに具体的に説明する。
〔実施例〕
前記した図1に示す廃棄物処理設備を用い、前記した方法にしたがって廃棄物の処理を行った。
【0039】
トンネル式加熱炉4内の所定箇所4bP の位置は、該所定箇所4bP とトンネル式加熱炉4の出口4fとの間の距離が、トンネル式加熱炉内の全長の1/4 の位置であり、上記した各々の箇所の炉内断面積はSOUT,4f= 2.1×(SOUT,4bp )の関係を有する。
本実施例においては、燃焼ガス供給装置(バーナ)17によって高温反応塔5で得られた精製ガスの高温燃焼ガスを溶融物加熱・保温炉16に供給すると共に、高温反応塔酸素含有ガス供給口15a から高温反応塔5に酸素(O2濃度:99vol %)を供給した。
【0040】
また、溶融物加熱・保温炉16に付設された溶融物排出口14H から排出される溶融物14中の無機質溶融物(スラグ)と金属溶融物(メタル)とを溶融物加熱・保温炉16の炉外で比重分離した。
一方、溶融物加熱・保温炉16内の溶融物14の温度を測定し、溶融物排出口14H から排出される溶融物の流動性、溶融物中のスラグ、メタルの比重分離の難易度を評価した。
【0041】
なお、溶融物の流動性およびスラグ、メタルの比重分離の難易度は目視で評価した。
表1に、得られた試験結果を示す。
表1に示されるように、本発明の廃棄物処理設備によれば、溶融物排出口14H から排出される溶融物14中のスラグとメタルとを溶融物加熱・保温炉16の炉外で比重分離することが可能であった。
【0042】
〔比較例1、比較例2〕
前記した図4に示す廃棄物処理設備を用い、実施例1と同一の条件(比較例1)および実施例1に対して燃焼ガス供給装置(バーナ)17からの高温燃焼ガスの供給量を増加した条件(比較例2)で廃棄物の処理を行った。
また、溶融物加熱・保温炉16に付設された溶融物排出口14H から排出される溶融物14中の無機質溶融物(スラグ)と金属溶融物(メタル)とを溶融物加熱・保温炉16の炉外で比重分離した。
【0043】
一方、実施例1と同様に溶融物加熱・保温炉16内の溶融物14の温度を測定した。
表1に、得られた試験結果を示す。
表1に示されるように、従来の廃棄物処理設備においては、燃焼ガス供給装置(バーナ)17からの高温燃焼ガスの供給量を増加しない場合、溶融物排出口14H から排出される溶融物14中のスラグとメタルとを溶融物加熱・保温炉16の炉外で比重分離することが困難であった。
【0044】
以上述べた実施例に示されるように、本発明の廃棄物処理設備によれば、高温反応塔5内のガスの輻射熱を乾留・炭化炉4の炭化生成物出口側炉内の炭化生成物に伝達する輻射熱伝達用空間40を設けたため、炭化生成物が十分加熱され、中心に未乾燥部が残存した炭化生成物が高温反応塔5内に装入されることが無く、溶融物加熱・保温炉16の加熱装置17における燃料使用量を削減することが可能となった。
【0045】
また、本発明の廃棄物処理設備によれば、乾留・炭化炉4と高温反応塔5との接続部における乾留・炭化炉4の炉内断面積を拡大するのみでよいため、乾留・炭化炉4の炉長の増加が不要となり、設備を小型化することができる。
【0046】
【表1】
【0047】
【発明の効果】
以上述べたように、本発明によれば、廃棄物を乾燥、熱分解、炭化し、得られた炭化生成物をガス化、溶融処理する廃棄物処理設備において、設備を小型化し省エネルギーを達成することが可能な廃棄物処理設備を提供することが可能となった。
【図面の簡単な説明】
【図1】本発明の廃棄物処理設備の一例を示す側断面図である。
【図2】本発明の廃棄物処理設備における乾留・炭化炉4と高温反応塔5との接続部の構成の例を示す側断面図である。
【図3】炭化生成物の断面を示す模式図である。
【図4】従来の廃棄物処理設備を示す側断面図である。
【符号の説明】
1 圧縮装置
2 圧縮用ピストン
3 圧縮支持盤
4 乾留・炭化炉(横型のトンネル式加熱炉、トンネル式加熱炉)
4a 圧縮成形物の乾燥領域
4b 圧縮成形物の熱分解、炭化領域
4e 乾留・炭化炉(トンネル式加熱炉)の廃棄物(廃棄物の圧縮成形物)の入口)
4f 乾留・炭化炉(トンネル式加熱炉)の炭化生成物の出口(:高温反応塔の側壁に設けられた炭化生成物入口)
4bP 横型のトンネル式加熱炉(:トンネル式加熱炉)の炭化生成物出口側の所定箇所
4bW 乾留・炭化炉(横型のトンネル式加熱炉)の炭化生成物出口側炉内の炉壁
5 竪型の高温反応塔(高温反応塔)
6a、6b 加熱用高温ガスの流通パイプ
10a 、10i 圧縮成形物
11、11i 、11n 炭化生成物
12 炭化生成物堆積層
14 溶融物
14H 溶融物排出口
15 高温反応塔酸素含有ガス供給管
15a 高温反応塔酸素含有ガス供給口
16 溶融物加熱・保温炉(水平型筒状溶融物加熱・保温炉)
16e 溶融物加熱・保温炉の入口(溶融物の入口)
17 燃焼ガス供給装置(バーナ)
17a 燃焼ガス供給口
20 廃棄物投入口
21 廃棄物投入口の蓋
30 高温反応塔発生ガスの急冷装置
31 ガス精製装置
32 高温反応塔の発生ガス排出口
33 精製ガス
40 輻射熱伝達用空間
50 炭化生成物中の炭化部
51 炭化生成物中の熱分解部
52 炭化生成物中の乾燥部
53 炭化生成物中の未乾燥部
54 廃棄物の圧縮成形物の炭化によって生じた縮小部
f1 圧縮成形物の移動方向
f2 炭化生成物の移動方向
f3 トンネル式加熱炉内で生成した熱分解ガスの流れ方向
f4 高温反応塔内への酸素含有ガスの吹き込み方向
f5 圧縮用ピストンの移動方向
f6 圧縮支持盤の移動方向
f7 廃棄物投入口の蓋の回転方向
f10 高温反応塔内のガスの輻射熱の輻射、伝達方向
【発明の属する技術分野】
本発明は、種々の廃棄物を乾燥、熱分解、炭化し、得られた炭化生成物をガス化、溶融処理する廃棄物処理設備に関し、特には、設備を小型化し省エネルギーを達成することが可能な廃棄物処理設備に関する。
【0002】
【従来の技術】
現在、廃棄物処理場の不足が顕著化しており、産業廃棄物あるいは一般廃棄物の多くは、発生したままの姿で、あるいは何らかの事前処理の上、焼却処理し減容化した後に、埋立などの最終処分が行われる場合が多い。
上記した焼却処理の方法としては様々な方法が挙げられるが、近年、焼却場における発生ガス中のダイオキシン類など有害物質の管理が問題となっており、高温酸化雰囲気で有害物を分解することが可能な処理方法が求められている。
【0003】
このような高温処理が可能な廃棄物処理方法として、特開平6−26626 号公報、特開平6− 79252号公報、特開平7−323270号公報に開示された廃棄物処理プロセスが挙げられる。
上記したプロセスは、廃棄物を圧縮成形後、乾燥、熱分解、炭化し、生成した炭化生成物を部分酸化・ガス化、溶融して燃料ガスおよびスラグ、金属を得る廃棄物処理プロセスである。
【0004】
図4に、上記した廃棄物処理設備を側断面図によって示す。
図4において、1は廃棄物を回分的(バッチ的)に加圧、圧縮する圧縮装置、2は圧縮用ピストン、3は圧縮支持盤、4は圧縮された廃棄物(圧縮廃棄物)(以下圧縮成形物とも記す)を乾燥、熱分解、炭化するための乾留・炭化炉である横型のトンネル式加熱炉(以下、トンネル式加熱炉とも記す)、4aは圧縮成形物の乾燥領域、4bは圧縮成形物の熱分解、炭化領域、4eはトンネル式加熱炉4の廃棄物の入口、4fはトンネル式加熱炉4の炭化生成物の出口(:高温反応塔5の側壁に設けられた炭化生成物入口)、5は竪型の高温反応塔、6a、6bはそれぞれトンネル式加熱炉4の側壁内に配設された炉加熱用高温ガスの流通パイプ、10a、10iは圧縮成形物、11、11i 、11n は炭化生成物、12は炭化生成物11の堆積層(以下、炭化生成物堆積層または堆積層と記す)、14は溶融物、14H は溶融物排出口、15は酸素含有ガス供給管、15a は高温反応塔5への酸素含有ガス供給口(以下、高温反応塔酸素含有ガス供給口とも記す)、16は高温反応塔5の下部側壁に接続された水平型筒状加熱炉である溶融物加熱・保温炉(以下、溶融物加熱・保温炉とも記す)、16e は溶融物加熱・保温炉の入口、17は溶融物加熱・保温炉の加熱装置であるバーナー、17a は溶融物加熱・保温炉16内に高温燃焼ガスを供給する燃焼ガス供給口、20は廃棄物投入口、21は廃棄物投入口の蓋、30は高温反応塔5から排出される高温反応塔発生ガス(以下、発生ガスとも記す)の冷却装置(急冷装置)、31はガス精製装置、32は高温反応塔5の発生ガス排出口、33は精製ガス、f1は圧縮成形物10a 、10i の移動方向、f2は炭化生成物11i 、11n の移動方向、f3はトンネル式加熱炉4内で生成した熱分解ガスの流れ方向、f4は高温反応塔5内への酸素含有ガスの吹き込み方向、f5は圧縮用ピストン2の移動方向、f6は圧縮支持盤3の移動方向、f7は廃棄物投入口20の蓋21の回転方向を示す。
【0005】
図4に示す廃棄物処理設備においては、先ず、廃棄物投入口20から圧縮装置1内へ所定量供給した廃棄物を、回分的に圧縮装置1を用いて圧縮してち密な圧縮成形物10aとする。
次に、この圧縮成形物10aを、流通パイプ6a、6b内を流通する高温ガスによって加熱された細長いトンネル式加熱炉4内へ押し込む。
【0006】
圧縮成形物10aの断面形状は、トンネル式加熱炉4の入口4eの内壁断面と同形、同一寸法であり、圧縮成形物10a はトンネル式加熱炉4の内壁と接触状態を保ったまま押し込めるため、トンネル式加熱炉入口で加熱炉内雰囲気をシールできる。
圧縮成形物10i は、順次新しい成形物が押し込まれる毎に、トンネル式加熱炉4内を滑りながら移動する。
【0007】
トンネル式加熱炉4は、前記したように流通パイプ6a、6b内を流通する高温ガスによって加熱され、内部は600 ℃程度まで昇温され、圧縮成形物10i の移動、昇温過程において、圧縮成形物10i が乾燥、熱分解、炭化する。
炭化生成物11n および熱分解、炭化により発生したガスは、高温反応塔5の側壁に設けられた炭化生成物入口4fから1000℃以上に維持された高温反応塔5内へ装入、供給される。
【0008】
炭化生成物11n は、高温反応塔5の下部に堆積して炭化生成物堆積層12を形成し、ガスは、高温反応塔5の上部の1000℃以上の領域で2秒以上滞留し、一酸化炭素と水素を含む燃料用の合成ガスとして回収できる。
すなわち、高温反応塔5の下部の高温反応塔酸素含有ガス供給口15aから堆積層12中へ供給する酸素含有ガスで、堆積層の可燃物を燃焼(部分酸化・ガス化)させ、そのエネルギーで堆積層中の不燃分(金属、灰分など)を溶融する。
【0009】
燃焼時に発生したガスは、堆積層12内を通って高温反応塔5を上昇し、この上昇ガスは、高温反応塔5の下部の堆積層内で炭化生成物11と向流熱交換を行い、炭化生成物11の顕熱を増加する。
顕熱の大きい炭化生成物11は、容易に燃焼、溶融する。
また、高温反応塔5の下部側壁に接続された溶融物加熱・保温炉16で溶融物14をバーナーなどの加熱装置17で加熱し、溶融物に含まれる微量の炭素などをガス化、除去して溶融物14は溶融物排出口14H から溶融スラグ、溶融金属として回収される。
【0010】
以上、従来の乾留・炭化炉、高温反応塔および溶融物加熱・保温炉を配設した廃棄物処理設備について述べたが、従来の廃棄物処理設備においては、下記の問題点があった。
すなわち、乾留・炭化炉であるトンネル式加熱炉4における圧縮成形物の乾燥、炭化が不十分な場合、図3に示すような中心に未乾燥部53が残存した炭化生成物11が高温反応塔5内に装入され、堆積層12中の不燃分(金属、灰分など)の溶融が進行せず、また溶融した場合も溶融物の粘度が高いため、溶融物加熱・保温炉16から排出される溶融物中のスラグとメタルの比重分離が困難となる。
【0011】
この結果、溶融物加熱・保温炉16の加熱装置17からの高温燃焼ガスの供給量を増加する必要があり、燃料使用量の増加を招いていた。
上記した問題点を解決する方法として、▲1▼トンネル式加熱炉4の炉長を長くする方法、▲2▼トンネル式加熱炉4における廃棄物の滞留時間を長くする方法が考えられるが、上記した▲1▼の方法の場合、設備の大型化を招き、さらにはトンネル式加熱炉4における炭化生成物の押し詰まりが生じる問題があり、上記した▲2▼の方法の場合、廃棄物の処理量の低下を招く問題があった。
【0012】
【発明が解決しようとする課題】
本発明は、前記した従来技術の問題点を解決し、廃棄物を乾燥、熱分解、炭化し、得られた炭化生成物をガス化、溶融処理する廃棄物処理設備において、設備を小型化し省エネルギーを達成することが可能な廃棄物処理設備を提供することを目的とする。
【0013】
【課題を解決するための手段】
第1の発明は、廃棄物を乾燥、熱分解、炭化する乾留・炭化炉4と、該乾留・炭化炉4の炭化生成物の出口と接続され、乾留・炭化炉4で得られた炭化生成物を酸素含有ガスで部分酸化・ガス化、溶融する高温反応塔5を有する廃棄物処理設備であって、前記乾留・炭化炉4の炭化生成物出口側炉内を乾留・炭化炉4の廃棄物入口側炉内に対して拡大し、高温反応塔5内の輻射熱を前記炭化生成物出口側炉内の炭化生成物に、直接、輻射・伝達する輻射熱伝達用空間40を設けたことを特徴とする廃棄物処理設備である。
【0014】
前記した第1の発明においては、前記した輻射熱伝達用空間40が、高温反応塔5内の輻射熱を、前記乾留・炭化炉4の炭化生成物出口側炉内の炭化生成物の側面に、直接、輻射・伝達する輻射熱伝達用空間40であることが好ましい。
なお、上記した炭化生成物の側面とは、前記乾留・炭化炉4の炭化生成物出口側炉内において炉壁4bW と相対する面を示す。
【0015】
第2の発明は、廃棄物を乾燥、熱分解、炭化する横型のトンネル式加熱炉4と、該トンネル式加熱炉4で得られた炭化生成物を酸素含有ガスで部分酸化・ガス化、溶融する竪型の高温反応塔5を有する廃棄物処理設備であって、前記トンネル式加熱炉4の炭化生成物の出口4fが前記高温反応塔5の側壁に接続され、前記トンネル式加熱炉4の炭化生成物出口側炉内をトンネル式加熱炉4の廃棄物入口側炉内に対して拡大し、高温反応塔5内の輻射熱を前記炭化生成物出口側炉内の炭化生成物に、直接、輻射・伝達する輻射熱伝達用空間40を設けたことを特徴とする廃棄物処理設備である。
【0016】
前記した第2の発明においては、前記した輻射熱伝達用空間40が、前記高温反応塔5内の輻射熱を、前記トンネル式加熱炉4の炭化生成物出口側炉内の炭化生成物の側面に、直接、輻射・伝達する輻射熱伝達用空間40であることが好ましい。
なお、上記した炭化生成物の側面とは、前記トンネル式加熱炉4の炭化生成物出口側炉内において炉壁4bW と相対する面を示す。
【0017】
また、前記した第2の発明においては、前記輻射熱伝達用空間40が、トンネル式加熱炉4の所定箇所4bP から炭化生成物の出口4fに到るまでの前記トンネル式加熱炉内を拡大して形成された空間であって、トンネル式加熱炉4の所定箇所4bP における、炭化生成物の移動方向に対して直交する炉内断面の断面積(:SOUT,4bP )と、トンネル式加熱炉4の所定箇所4bP から炭化生成物の出口4fに到るまでの任意の箇所における、炭化生成物の移動方向に対して直交する炉内断面の断面積(:SOUT,X )が下記式(1) を満足することが好ましい。
【0018】
SOUT,4bP <SOUT,X ………(1)
さらに、トンネル式加熱炉4の所定箇所4bP における、炭化生成物の移動方向に対して直交する炉内断面の断面積(:SOUT,4bP )と、トンネル式加熱炉4の炭化生成物の出口における、炭化生成物の移動方向に対して直交する炉内断面の断面積(:SOUT,4f)が下記(2) 式を満足することが好ましい。
【0019】
2×(SOUT,4bP )<SOUT,4f ……(2)
なお、前記した第1の発明、第2の発明における所定箇所4bP は、前記輻射熱伝達用空間の形成開始点であり、高温反応塔5内のガスの輻射熱を、前記乾留・炭化炉(横型のトンネル式加熱炉)4の炭化生成物出口側炉内の炭化生成物に、直接、輻射・伝達する炭化生成物の必要領域によって任意に定めることができる。
【0020】
前記した所定箇所4bP の好ましい位置は、該所定箇所4bP と炭化生成物出口4fとの間の距離が、前記乾留・炭化炉(横型のトンネル式加熱炉)4の全炉内長の1/2以内となる位置である。
また、前記した第1の発明、第2の発明においては、前記した廃棄物が圧縮成形した廃棄物であることが、より好ましい。
【0021】
【発明の実施の形態】
以下、本発明をさらに詳細に説明する。
本発明者らは、前記した従来技術の問題点を解決するために鋭意検討した結果、乾留・炭化炉4と乾留・炭化炉4の炭化生成物の出口と接続された高温反応塔5を有する廃棄物処理設備において、高温反応塔5内のガスなどの輻射熱を利用して乾留・炭化炉4内の炭化生成物を加熱することによって本発明の課題を解決することが可能であることを見出した。
【0022】
図1に、本発明の廃棄物処理設備の一例を、側断面図によって示す。
図1において、4bP は横型のトンネル式加熱炉(:トンネル式加熱炉)4内の所定箇所、4bW は乾留・炭化炉(横型のトンネル式加熱炉)4の炭化生成物出口側炉内の炉壁、40は竪型の高温反応塔(高温反応塔)5内のガスなどの輻射熱を乾留・炭化炉(横型のトンネル式加熱炉)4の炭化生成物出口側炉内の炭化生成物に、直接、輻射・伝達する輻射熱伝達用空間、f10 は高温反応塔5内のガスなどの輻射熱の輻射、伝達方向を示し、その他の符号は図4と同一の内容を示す。
【0023】
また、図1に示す廃棄物処理設備における溶融物加熱・保温炉16は横型の筒状加熱炉である。
図1に示す本発明の廃棄物処理設備は、廃棄物を乾燥、熱分解、炭化する乾留・炭化炉4と、乾留・炭化炉4の炭化生成物の出口と接続され、乾留・炭化炉4で得られた炭化生成物を酸素含有ガスで部分酸化・ガス化、溶融する高温反応塔5を有する廃棄物処理設備で、乾留・炭化炉4の炭化生成物出口側炉内を拡大し、高温反応塔5内のガスなどの輻射熱を炭化生成物出口側炉内の炭化生成物に、直接、輻射・伝達する輻射熱伝達用空間を設けた廃棄物処理設備である。
【0024】
また、図1に示す本発明の廃棄物処理設備における輻射熱伝達用空間40は、乾留・炭化炉4の炭化生成物出口側炉内を拡大し、高温反応塔5内のガスの輻射熱を炭化生成物出口側炉内の炭化生成物の側面に、直接、輻射・伝達する輻射熱伝達用空間40である。
なお、図1に示すように、上記した炭化生成物の側面とは、乾留・炭化炉4の炭化生成物出口側炉内において炉壁4bW と相対する面を示す。
【0025】
また、図1に示す廃棄物処理設備は、廃棄物を乾燥、熱分解、炭化する横型のトンネル式加熱炉4と、トンネル式加熱炉4で得られた炭化生成物を酸素含有ガスで部分酸化・ガス化、溶融する竪型の高温反応塔5を有する廃棄物処理設備で、トンネル式加熱炉4の炭化生成物の出口4fが高温反応塔5の側壁に接続され、トンネル式加熱炉4の炭化生成物出口側炉内を拡大し、高温反応塔5内のガスなどの輻射熱を炭化生成物出口側炉内の炭化生成物に、直接、輻射・伝達する輻射熱伝達用空間40を設けた廃棄物処理設備である。
【0026】
また、図1に示す本発明の廃棄物処理設備における輻射熱伝達用空間40は、トンネル式加熱炉4の炭化生成物出口側炉内を拡大し、高温反応塔5内のガスなどの輻射熱を炭化生成物出口側炉内の炭化生成物の側面に、直接、輻射・伝達する輻射熱伝達用空間40である。
なお、図1に示すように、上記した炭化生成物の側面とは、トンネル式加熱炉4の炭化生成物出口側炉内において炉壁4bW と相対する面を示す。
【0027】
また、図1に示す廃棄物処理設備においては、前記輻射熱伝達用空間40が、トンネル式加熱炉4の所定箇所4bP から炭化生成物の出口4fに到るまでの前記トンネル式加熱炉内を拡大して形成された空間であって、トンネル式加熱炉4の所定箇所4bP における、炭化生成物の移動方向に対して直交する炉内断面の断面積(:SOUT,4bP )と、トンネル式加熱炉4の炭化生成物出口側の所定箇所4bP から炭化生成物の出口4fに到るまでの任意の箇所における、炭化生成物の移動方向に対して直交する炉内断面の断面積(:SOUT,X )が下記式(1) を満足することが好ましい。
【0028】
SOUT,4bP <SOUT,X ………(1)
さらに、輻射・伝達を効率良く行うためトンネル式加熱炉4の所定箇所4bP における、炭化生成物の移動方向に対して直交する炉内断面の断面積(:SOUT,4bP )と、トンネル式加熱炉4の炭化生成物出口における、炭化生成物の移動方向に対して直交する炉内断面の断面積(:SOUT,4f)が下記式(2) を満足することが好ましい。
【0029】
2×(SOUT,4bP )<SOUT,4f………(2)
なお、前記した本発明の廃棄物処理設備においては、前記した所定箇所4bP は、高温反応塔5内のガスの輻射熱を乾留・炭化炉(横型のトンネル式加熱炉)4の炭化生成物出口側炉内の炭化生成物に、直接、輻射・伝達する炭化生成物の必要領域によって任意に定めることができる。
【0030】
図1に示す廃棄物処理設備においては、圧縮成形した廃棄物(:圧縮成形物10i )を乾燥、熱分解、炭化し、得られた炭化生成物11n を、高温反応塔5の側壁に設けられた炭化生成物入口4fから高温反応塔5内に装入し、高温反応塔5内に堆積した炭化生成物11中に酸素含有ガスを供給し、炭化生成物11を部分酸化・ガス化、溶融することによって廃棄物の処理を行う。
【0031】
高温反応塔5で発生したガスは、精製ガス(燃料用の合成ガス)33として回収する。
また、高温反応塔5の下部側壁に接続された溶融物加熱・保温炉16で溶融物14をバーナーなどの加熱装置17で加熱し、溶融物に含まれる微量の炭素などをガス化、除去し、溶融物14は溶融物排出口14H から溶融スラグ、溶融金属として回収される。
【0032】
本発明者らは前記した課題を解決するために、図1に示す廃棄物処理設備において、高温反応塔5内のガスなどの輻射熱を炭化生成物出口側炉内の炭化生成物に伝達する輻射熱伝達用空間40を設けた。
この結果、本発明の廃棄物処理設備によれば、下記の効果が得られる。
(1) 燃料使用量の削減:
本発明によれば、高温反応塔5内のガスなどの輻射熱を乾留・炭化炉4の炭化生成物出口側炉内の炭化生成物に伝達する輻射熱伝達用空間40を設けたため、炭化生成物が十分加熱され、中心に未乾燥部が残存した炭化生成物が高温反応塔5内に装入されることが無く、溶融物加熱・保温炉16の加熱装置17における燃料使用量を削減することが可能となった。
【0033】
(2) 設備の小型化:
また、本発明によれば、乾留・炭化炉4と高温反応塔5との接続部における乾留・炭化炉4の炉内断面積を拡大するのみでよいため、乾留・炭化炉4の炉長の増加が不要となり、設備を小型化することができる。
次に、図2に、本発明の廃棄物処理設備における乾留・炭化炉4と高温反応塔5との接続部の構成の他の例を、側断面図によって示す。
【0034】
なお、図2における各符号は、図1、図4と同一の内容を示す。
図2(a) に示す炭化生成物出口側炉内に設けられた輻射熱伝達用空間40は、トンネル式加熱炉4の炉内中心軸から炉壁迄の距離がトンネル式加熱炉4の長手方向において均一に拡大した輻射熱伝達用空間である。
また、図2(b) に示す炭化生成物出口側炉内に設けられた輻射熱伝達用空間40は、トンネル式加熱炉4の炭化生成物出口側炉内と高温反応塔5内とを連通し、高温反応塔5内のガスの輻射熱が、炭化生成物出口側炉内の所定箇所の炭化生成物に直線的に放射、伝達する空間から構成される輻射熱伝達用空間である。
【0035】
すなわち、本発明における炭化生成物出口側炉内に設けられた輻射熱伝達用空間40としては、高温反応塔5内のガスの輻射熱が、炭化生成物出口側炉内の所定箇所の炭化生成物に直線的に放射、伝達することが可能な空間であれば、その装置構成は特に制限されるものではない。
また、図2(b) に示すように、前記した第2の発明の好適態様におけるトンネル式加熱炉4の炭化生成物出口側の任意の箇所における炉内断面積:SOUT,X と炭化生成物出口4fの炉内断面積:SOUT,4fは、トンネル式加熱炉4内で生成した熱分解ガスの流路も含む炉内断面積である。
【0036】
本発明においては、図1、図2に示すように、廃棄物が圧縮成形した廃棄物であることが好ましい。
これは、廃棄物を圧縮成形することによって、乾留・炭化炉4内における廃棄物の乾燥、熱分解、炭化が促進され、しかも高温反応塔を含め廃棄物処理設備を小型化できるためである。
【0037】
ただし、本発明は、高温反応塔内のガスの輻射熱を利用して炭化生成物出口側炉内の炭化生成物を加熱するため、本発明の廃棄物処理設備は、廃棄物の圧縮成形物の処理に限定されることなく、廃棄物そのものの処理、もしくは廃棄物と廃棄物の圧縮成形物との混合物の処理にも好適に用いることができる。
【0038】
【実施例】
以下、本発明を実施例に基づいてさらに具体的に説明する。
〔実施例〕
前記した図1に示す廃棄物処理設備を用い、前記した方法にしたがって廃棄物の処理を行った。
【0039】
トンネル式加熱炉4内の所定箇所4bP の位置は、該所定箇所4bP とトンネル式加熱炉4の出口4fとの間の距離が、トンネル式加熱炉内の全長の1/4 の位置であり、上記した各々の箇所の炉内断面積はSOUT,4f= 2.1×(SOUT,4bp )の関係を有する。
本実施例においては、燃焼ガス供給装置(バーナ)17によって高温反応塔5で得られた精製ガスの高温燃焼ガスを溶融物加熱・保温炉16に供給すると共に、高温反応塔酸素含有ガス供給口15a から高温反応塔5に酸素(O2濃度:99vol %)を供給した。
【0040】
また、溶融物加熱・保温炉16に付設された溶融物排出口14H から排出される溶融物14中の無機質溶融物(スラグ)と金属溶融物(メタル)とを溶融物加熱・保温炉16の炉外で比重分離した。
一方、溶融物加熱・保温炉16内の溶融物14の温度を測定し、溶融物排出口14H から排出される溶融物の流動性、溶融物中のスラグ、メタルの比重分離の難易度を評価した。
【0041】
なお、溶融物の流動性およびスラグ、メタルの比重分離の難易度は目視で評価した。
表1に、得られた試験結果を示す。
表1に示されるように、本発明の廃棄物処理設備によれば、溶融物排出口14H から排出される溶融物14中のスラグとメタルとを溶融物加熱・保温炉16の炉外で比重分離することが可能であった。
【0042】
〔比較例1、比較例2〕
前記した図4に示す廃棄物処理設備を用い、実施例1と同一の条件(比較例1)および実施例1に対して燃焼ガス供給装置(バーナ)17からの高温燃焼ガスの供給量を増加した条件(比較例2)で廃棄物の処理を行った。
また、溶融物加熱・保温炉16に付設された溶融物排出口14H から排出される溶融物14中の無機質溶融物(スラグ)と金属溶融物(メタル)とを溶融物加熱・保温炉16の炉外で比重分離した。
【0043】
一方、実施例1と同様に溶融物加熱・保温炉16内の溶融物14の温度を測定した。
表1に、得られた試験結果を示す。
表1に示されるように、従来の廃棄物処理設備においては、燃焼ガス供給装置(バーナ)17からの高温燃焼ガスの供給量を増加しない場合、溶融物排出口14H から排出される溶融物14中のスラグとメタルとを溶融物加熱・保温炉16の炉外で比重分離することが困難であった。
【0044】
以上述べた実施例に示されるように、本発明の廃棄物処理設備によれば、高温反応塔5内のガスの輻射熱を乾留・炭化炉4の炭化生成物出口側炉内の炭化生成物に伝達する輻射熱伝達用空間40を設けたため、炭化生成物が十分加熱され、中心に未乾燥部が残存した炭化生成物が高温反応塔5内に装入されることが無く、溶融物加熱・保温炉16の加熱装置17における燃料使用量を削減することが可能となった。
【0045】
また、本発明の廃棄物処理設備によれば、乾留・炭化炉4と高温反応塔5との接続部における乾留・炭化炉4の炉内断面積を拡大するのみでよいため、乾留・炭化炉4の炉長の増加が不要となり、設備を小型化することができる。
【0046】
【表1】
【0047】
【発明の効果】
以上述べたように、本発明によれば、廃棄物を乾燥、熱分解、炭化し、得られた炭化生成物をガス化、溶融処理する廃棄物処理設備において、設備を小型化し省エネルギーを達成することが可能な廃棄物処理設備を提供することが可能となった。
【図面の簡単な説明】
【図1】本発明の廃棄物処理設備の一例を示す側断面図である。
【図2】本発明の廃棄物処理設備における乾留・炭化炉4と高温反応塔5との接続部の構成の例を示す側断面図である。
【図3】炭化生成物の断面を示す模式図である。
【図4】従来の廃棄物処理設備を示す側断面図である。
【符号の説明】
1 圧縮装置
2 圧縮用ピストン
3 圧縮支持盤
4 乾留・炭化炉(横型のトンネル式加熱炉、トンネル式加熱炉)
4a 圧縮成形物の乾燥領域
4b 圧縮成形物の熱分解、炭化領域
4e 乾留・炭化炉(トンネル式加熱炉)の廃棄物(廃棄物の圧縮成形物)の入口)
4f 乾留・炭化炉(トンネル式加熱炉)の炭化生成物の出口(:高温反応塔の側壁に設けられた炭化生成物入口)
4bP 横型のトンネル式加熱炉(:トンネル式加熱炉)の炭化生成物出口側の所定箇所
4bW 乾留・炭化炉(横型のトンネル式加熱炉)の炭化生成物出口側炉内の炉壁
5 竪型の高温反応塔(高温反応塔)
6a、6b 加熱用高温ガスの流通パイプ
10a 、10i 圧縮成形物
11、11i 、11n 炭化生成物
12 炭化生成物堆積層
14 溶融物
14H 溶融物排出口
15 高温反応塔酸素含有ガス供給管
15a 高温反応塔酸素含有ガス供給口
16 溶融物加熱・保温炉(水平型筒状溶融物加熱・保温炉)
16e 溶融物加熱・保温炉の入口(溶融物の入口)
17 燃焼ガス供給装置(バーナ)
17a 燃焼ガス供給口
20 廃棄物投入口
21 廃棄物投入口の蓋
30 高温反応塔発生ガスの急冷装置
31 ガス精製装置
32 高温反応塔の発生ガス排出口
33 精製ガス
40 輻射熱伝達用空間
50 炭化生成物中の炭化部
51 炭化生成物中の熱分解部
52 炭化生成物中の乾燥部
53 炭化生成物中の未乾燥部
54 廃棄物の圧縮成形物の炭化によって生じた縮小部
f1 圧縮成形物の移動方向
f2 炭化生成物の移動方向
f3 トンネル式加熱炉内で生成した熱分解ガスの流れ方向
f4 高温反応塔内への酸素含有ガスの吹き込み方向
f5 圧縮用ピストンの移動方向
f6 圧縮支持盤の移動方向
f7 廃棄物投入口の蓋の回転方向
f10 高温反応塔内のガスの輻射熱の輻射、伝達方向
Claims (3)
- 廃棄物を乾燥、熱分解、炭化する乾留・炭化炉(4) と、該乾留・炭化炉(4) の炭化生成物の出口と接続され、乾留・炭化炉(4) で得られた炭化生成物を酸素含有ガスで部分酸化・ガス化、溶融する高温反応塔(5) を有する廃棄物処理設備であって、前記乾留・炭化炉(4) の炭化生成物出口側炉内を乾留・炭化炉(4) の廃棄物入口側炉内に対して拡大し、高温反応塔(5) 内の輻射熱を前記炭化生成物出口側炉内の炭化生成物に、直接、輻射・伝達する輻射熱伝達用空間(40)を設けたことを特徴とする廃棄物処理設備。
- 廃棄物を乾燥、熱分解、炭化する横型のトンネル式加熱炉(4) と、該トンネル式加熱炉(4) で得られた炭化生成物を酸素含有ガスで部分酸化・ガス化、溶融する竪型の高温反応塔(5) を有する廃棄物処理設備であって、前記トンネル式加熱炉(4) の炭化生成物の出口(4f)が前記高温反応塔(5) の側壁に接続され、前記トンネル式加熱炉(4) の炭化生成物出口側炉内をトンネル式加熱炉(4) の廃棄物入口側炉内に対して拡大し、高温反応塔(5) 内の輻射熱を前記炭化生成物出口側炉内の炭化生成物に、直接、輻射・伝達する輻射熱伝達用空間(40)を設けたことを特徴とする廃棄物処理設備。
- 前記輻射熱伝達用空間(40)が、トンネル式加熱炉(4) の所定箇所(4bP) から炭化生成物の出口(4f)に到るまでの前記トンネル式加熱炉内を拡大して形成された空間であって、トンネル式加熱炉(4) の所定箇所(4bP) における、炭化生成物の移動方向に対して直交する炉内断面の断面積(:SOUT,4bP )と、トンネル式加熱炉(4) の所定箇所(4bP) から炭化生成物の出口(4f)に到るまでの任意の箇所における、炭化生成物の移動方向に対して直交する炉内断面の断面積(:SOUT,X )が下記式(1) を満足することを特徴とする請求項2記載の廃棄物処理設備。
記
SOUT,4bP <SOUT,X ………(1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000100011A JP3733831B2 (ja) | 2000-03-31 | 2000-03-31 | 廃棄物処理設備 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000100011A JP3733831B2 (ja) | 2000-03-31 | 2000-03-31 | 廃棄物処理設備 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001289416A JP2001289416A (ja) | 2001-10-19 |
JP3733831B2 true JP3733831B2 (ja) | 2006-01-11 |
Family
ID=18614281
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000100011A Expired - Fee Related JP3733831B2 (ja) | 2000-03-31 | 2000-03-31 | 廃棄物処理設備 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3733831B2 (ja) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3897649B2 (ja) * | 2002-06-14 | 2007-03-28 | 株式会社川崎技研 | ストーカー型焼却炉におけるゴミ等の溶融処理装置 |
JPWO2006114818A1 (ja) * | 2005-04-01 | 2008-12-11 | Jfeエンジニアリング株式会社 | ガス化溶融炉への廃棄物の供給方法及び供給装置 |
JP4612457B2 (ja) * | 2005-04-18 | 2011-01-12 | 新日鉄エンジニアリング株式会社 | プラズマ溶融分解炉及びプラズマ溶融分解方法 |
KR100856653B1 (ko) * | 2007-07-09 | 2008-09-04 | 제이에프이 엔지니어링 가부시키가이샤 | 가스화 용융로에의 폐기물의 공급방법 |
JP5391770B2 (ja) * | 2009-03-25 | 2014-01-15 | Jfeエンジニアリング株式会社 | 廃棄物処理装置および廃棄物処理方法 |
CN102322630B (zh) | 2011-09-24 | 2014-03-19 | 刘伟奇 | 大分子物质高效清洁燃用方法及装置 |
CN111676033B (zh) * | 2020-03-23 | 2021-12-07 | 同济大学 | 一种利用废弃物的制气系统及制气方法 |
-
2000
- 2000-03-31 JP JP2000100011A patent/JP3733831B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2001289416A (ja) | 2001-10-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5447835B2 (ja) | 水素に富む生成ガスを製造するための方法 | |
CA2377774A1 (en) | A method and an apparatus for the pyrolysis and gasification of organic substances or mixtures of organic substances | |
JPH11515086A (ja) | 都市廃棄物のプラズマ熱分解及びガラス化 | |
US4472245A (en) | Process for continuous thermal treatment of carbonizable material | |
JP3733831B2 (ja) | 廃棄物処理設備 | |
KR101397378B1 (ko) | 2단계 열분해 가스화 장치 및 2단계 열분해 가스화 방법 | |
KR20110018427A (ko) | 합성 가스를 생산하기 위한 방법 및 장치 | |
CN216303716U (zh) | 一种固废利用干馏气化协同水泥窑资源化节煤处置的装置 | |
JP3713991B2 (ja) | 廃棄物処理方法および廃棄物処理設備 | |
US11788021B2 (en) | Reactor and process for gasifying and/or melting of feed materials | |
JPH11189778A (ja) | 廃棄物固形燃料からの炭化物の製造方法 | |
JP2005003359A (ja) | 廃棄物処理方法および廃棄物処理設備 | |
CH689354A5 (it) | Procedimento per trattare prodotti di scarto ed in particolare i rifiuti solidi urbani e dispositivo per realizzare il procedimento. | |
JPH11270824A (ja) | 廃棄物処理方法および廃棄物処理設備 | |
JP5391770B2 (ja) | 廃棄物処理装置および廃棄物処理方法 | |
JPH11131078A (ja) | 熱分解生成物からの燃料ガス及び合成ガスの産出のための方法 | |
JP2008150477A (ja) | 炭素質原料の熱分解方法 | |
JP3617367B2 (ja) | 廃棄物処理設備 | |
RU2569667C1 (ru) | Способ и устройство переработки углеводородного материала в топливные компоненты путем газификации (пиролиза) | |
JP3622625B2 (ja) | 廃棄物処理方法および廃棄物処理設備 | |
JPH11337037A (ja) | 廃棄物処理方法 | |
RU16193U1 (ru) | Установка для переработки отходов | |
JP2004243286A (ja) | 有機性廃棄物の処理システムとその利用方法 | |
JP2012163260A (ja) | 廃棄物ガス化溶融装置 | |
JP2000279916A (ja) | 廃棄物の処理方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050824 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050927 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20051010 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |