JP3730448B2 - 多孔質ガラス母材の製造方法と製造装置 - Google Patents
多孔質ガラス母材の製造方法と製造装置 Download PDFInfo
- Publication number
- JP3730448B2 JP3730448B2 JP20703999A JP20703999A JP3730448B2 JP 3730448 B2 JP3730448 B2 JP 3730448B2 JP 20703999 A JP20703999 A JP 20703999A JP 20703999 A JP20703999 A JP 20703999A JP 3730448 B2 JP3730448 B2 JP 3730448B2
- Authority
- JP
- Japan
- Prior art keywords
- base material
- burner
- porous glass
- row
- movement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/01413—Reactant delivery systems
- C03B37/0142—Reactant deposition burners
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2207/00—Glass deposition burners
- C03B2207/50—Multiple burner arrangements
- C03B2207/52—Linear array of like burners
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2207/00—Glass deposition burners
- C03B2207/60—Relationship between burner and deposit, e.g. position
- C03B2207/66—Relative motion
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2207/00—Glass deposition burners
- C03B2207/70—Control measures
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Glass Melting And Manufacturing (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、光ファイバを製造するための多孔質ガラス母材の製造方法、及びその製造装置に関するものである。
【0002】
【従来の技術】
光ファイバは、大直径のガラス母材から成形したガラスロッド、いわゆる光ファイバプリフォームを線引きして製造される。この大直径のガラス母材は、軸付け法や外付け法と呼ばれる方法で多孔質ガラス母材を製造し、それを熱処理により透明ガラス化することにより得られている。現在、この多孔質ガラス母材の製造については、その生産性を上げるため種々の提案がなされている。
【0003】
その中で部分的に複数のガラス微粒子生成用バーナーを移動させ高速で堆積する方法が提案されている。この方法は、製造される多孔質ガラス母材の長手方向に複数のバーナーを横列配置し、これらを多孔質ガラス母材の全長域ではなく部分的に往復移動させる方法である(特開平3−228845号公報参照)。これは、光ファイバ母材として有効に使用することができない両端の不要部も含んだ長い距離を、バーナーを往復移動させる方法(全域トラバース法)に対して、不要部を増やすことなく、バーナーの本数を増やすことができ、複数のバーナーを用いることにより堆積速度を飛躍的に向上させることができる。
【0004】
【発明が解決しようとする課題】
一方、このような部分的に複数のガラス微粒子生成用バーナーを移動させ高速で堆積する方法は、堆積速度が飛躍的に増加する反面、最終製品である光ファイバとして用いられる有効部内でバーナーが折り返すために、長手方向の堆積量が不均一になる問題がある。
【0005】
このため、部分移動における折り返し位置をきれいに分散させる必要がある。ところが、通常バーナーの往復移動は1軸上で行われており、部分往復移動における折り返し位置の順次移動は、制御プログラム上でソフト的に折り返し位置を制御することによって行われている。
【0006】
しかし、この場合制御プログラム上で折返し位置を計算するために、プログラム上の計算時間と、制御系と制御対象である装置機器との情報伝達の時間が問題となり、きれいに折り返し位置の分散を行うことが難しい。このため、堆積面に生じる長手方向の凹凸を軽減しようと、条件を色々と変え、折返し位置を分散させるが、思ったようには効果がでない。
加えて、きれいに折り返し位置の分散を行ったとしても、光ファイバとして用いられる有効部内でバーナーが折り返すために、全域トラバース法と比較すると長手方向の平坦度が劣るという欠点がある。
【0007】
そこで、この問題を解決するために、多孔質ガラス母材の長手方向全域を移動するバーナーを別に設けて修正用バーナーとし、堆積量検出機構にて得られた結果に基づき、この修正用バーナーを制御して堆積量を均一にする方法が提案されている(特開平10−158025号公報参照)。しかし、この方法は堆積量検出機構や修正用バーナーのために別のガス供給ラインや移動機構を必要とし、さらに、それらを制御する装置が必要となるため、製造装置が複雑化し高価になるという問題がある。
【0008】
本発明は、上記問題点に鑑みなされたもので、長手方向に対して移動する複数のバーナーを用いて、ガラス微粒子を出発母材へ堆積させる多孔質ガラス母材の製造において、長手方向に堆積量が均一で高品質な多孔質ガラス母材を高生産性で製造する方法及び装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成するため、本発明の請求項1に記載した発明は、長手方向に対して往復移動する複数の横列設置されたバーナーを用いて、ガラス微粒子を出発母材へ堆積させる多孔質ガラス母材の製造方法において、
前記バーナー列を第1移動軸上に設置して往復移動させ、前記第1移動軸を第2移動軸上に設置して往復移動させることにより、バーナー列の往復移動の折返し位置を移動させ、前記第1移動軸および第2移動軸の少なくとも1の移動軸の往復移動幅を前記バーナーの横列設置間隔の整数倍として多孔質ガラス母材を製造することを特徴とする多孔質ガラス母材の製造方法である。
【0010】
このように、前記バーナー列を第1移動軸上に設置して往復移動させ、前記第1移動軸を第2移動軸上に設置して往復移動させることにより、バーナー列の往復移動の折返し位置を、相対的に移動する2つの移動軸により往復移動させれば、簡単な機械的方法によりバーナー列の往復移動の折返し位置を移動させることができ、製造させる多孔質ガラス母材の長手方向の堆積量を均一なものとすることができる。従って、前述のような補正用バーナーによって修正する必要がない。
さらに、前記第1移動軸および第2移動軸の少なくとも1の移動軸の往復移動幅を前記バーナーの横列設置間隔の整数倍として多孔質ガラス母材を製造することにより、堆積量をさらに均一化し、多孔質ガラス母材の長手方向の凹凸を極めて少ないものとすることができる。
【0011】
この場合、本発明の請求項2に記載したように、前記第1移動軸および第2移動軸の両方の移動軸の往復移動幅を前記バーナーの横列設置間隔の整数倍とすることが好ましい。
このように、第1移動軸および第2移動軸の両方の移動軸の往復移動幅を前記バーナーの横列設置間隔の整数倍とすることにより、一層多孔質ガラス母材の長手方向の凹凸を少なくし、良好な多孔質ガラス母材を製造することができる。
【0012】
さらにこの場合、本発明の請求項3に記載したように、請求項1または請求項2に記載した多孔質ガラス母材の製造方法であって、前記整数を1または(全バーナー数)/5を超えない整数にすることが好ましい。
製造される多孔質ガラス母材の平坦度という点では、前記整数の数を大きくして、移動軸の往復移動幅を大きくした方が良好なものとなる。しかし、あまり往復移動幅が大きいと製造される多孔質ガラス母材両端のテーパ部が大きくなり、製品として使用することのできない不要部が大きくなり、歩留りが低下することがある。
そこで、第1移動軸または第2移動軸の少なくとも1方の往復移動幅をバーナーの間隔の整数倍とし、前記整数を1または(全バーナー数)/5を超えないようにして、移動軸の往復移動幅をあまり大きくしないようにすることが好ましい。
【0013】
また、本発明の請求項4に記載した発明は、少なくとも出発母材を把持しかつ該出発母材をその長手軸の周りに回転させる手段と、ガラス微粒子を出発母材へ堆積させる複数の横列設置されたバーナーを具備する多孔質ガラス母材の製造装置であって、
前記バーナー列を往復移動する第1移動軸と、第1移動軸を往復移動する第2移動軸とを具備し、前記第1移動軸および第2移動軸の少なくとも1の移動軸の往復移動幅が前記バーナーの横列設置間隔の整数倍とされており、バーナー列の往復移動の折返し位置を移動させることが可能とされていることを特徴とする多孔質ガラス母材の製造装置である。
【0014】
このように前記バーナー列を往復移動する第1移動軸と、第1移動軸を往復移動する第2移動軸とを具備し、バーナー列の往復移動の折返し位置を移動させることが可能とされている多孔質ガラス母材の製造装置は、バーナー列の折り返し位置を移動するのに、複雑な制御プログラム上でソフト的に折り返し位置を制御する必要がないため、プログラム上の計算時間や、制御系と制御対象との情報伝達時間等は問題とはならない。そのため、きれいに折り返し位置の分散を行うことができ、堆積面に生じる長手方向の凹凸を軽減することができる。
さらに、第1移動軸および第2移動軸の少なくとも1の移動軸の往復移動幅が前記バーナーの横列設置の整数倍とされていることにより、多孔質ガラス母材の堆積面に生じる長手方向の凹凸を著しく軽減することができる。
【0015】
以下、本発明をさらに詳述するが本発明はこれに限定されるものではない。
本発明者らは、長手方向に対して移動する複数のバーナーを用いて、ガラス微粒子を出発母材へ堆積させる多孔質ガラス母材の製造において、バーナー列の往復移動を2つの移動軸によって行うことにし、さらにバーナーの横列設置間隔に対する各移動軸の往復移動幅を最適なものとすることにより、高速で凹凸の少ない良好な多孔質母材を製造することを発想し、諸条件を精査して本発明を完成するに至ったものである。
【0016】
従来、バーナーの移動はただ1つの移動軸上にバーナーを設置することにより行い、バーナーの往復移動の折返し位置の移動は制御プログラムのみによりソフト的に行っていた。例えば、前述の特開平3−228845号では、同一寸法のバーナーを一定等間隔で1移動軸上に配置し、その往復移動の開始位置を3点以上に順次移動分散させることにより、ガラス微粒子を均一に堆積させようとするものである。往復移動の開始位置、すなわち折返し位置は制御プログラム等により制御され、各々の往復移動1行程同士が重なり合うと、ちょうど多孔質ガラス母材のほぼ全長域で堆積量が均一になるようにされるというものである。
【0017】
しかし、現実の製造装置においては、上記のように折り返し位置を正確に制御することは不可能であった。現実の装置では、まず制御プログラム上での計算時間が原因で、折返し位置の制御に誤差が生じる。また、制御対象である装置機器と制御系との情報伝達の時間も誤差の原因となり、計算上は均一にガラス微粒子を堆積できるようにプログラムしても、実際の装置では製造される多孔質ガラス母材に凹凸が生じる。
【0018】
そこで、本発明ではバーナー列を移動させる移動軸を2軸設けることにより、往復移動の折返し位置を機械的に移動させることとした。つまり、バーナー列を部分的に往復移動させる第1移動軸を設け、その第1移動軸を移動させる第2移動軸を設けることにより、機械的にバーナー列の往復移動の折返し位置を移動させる。
このようにすれば、それぞれの移動軸により被移動物を一定速度で一定間隔に折返し移動させることで、容易にバーナー列往復移動の折返し位置の移動が可能となる。また、それぞれの移動軸による移動幅は固定されているため、往復移動において移動し過ぎを機械的に防止することができる。さらに制御プログラムでの計算時間や、制御対象と制御系との情報伝達の時間は全く問題とはならず、簡単な方法で均一にガラス微粒子を堆積させることができる。
【0019】
また、本発明でバーナー列を移動させる移動軸を2軸設けることは、前述の特開平10−15802のように修正用のバーナーを設けるために2軸以上の移動軸を設ける方法と異なり、新たなガス供給ラインや制御手段が必要となるわけではないので、製造装置が複雑、高価になることはない。
さらに、バーナー列を移動させる移動軸を2軸設けることにより、移動軸が1軸のみの場合には不可能であった動きをバーナー列にさせることが可能となり、多孔質ガラス母材製造の自由度を拡げることができるという利点もある。
【0020】
しかし、前述したように、きれいに折り返し位置の分散を行ったとしても、光ファイバとして用いられる有効部内でバーナーが折り返すために、全域トラバース法と比較すると長手方向の平坦度が劣るという欠点がある。
そこで、本発明者はバーナーの横列設置間隔と各移動軸の往復移動幅との関係が、上記平坦度に大きな影響があるのではないかと考え、実験、調査を試みた。
【0021】
本発明者らは、実際に長手方向に対して往復移動する複数の横列設置されたバーナーを用いてガラス微粒子を出発母材へ堆積させ、多孔質ガラス母材を製造する実験を行った。
5本のバーナーを150mm間隔で横列設置してバーナー列とし、このバーナー列を第1移動軸上に設置して1000mm/minの速度で往復移動させ、第1移動軸を第2移動軸上に設置して20mm/minの速度で往復移動させ、バーナー列の往復移動の折り返し位置を移動させた。第1移動軸および第2移動軸の往復移動幅は各々50mm〜200mmの間で変化させるものとし、製造された多孔質ガラス母材の平坦度を測定、評価した。平坦度の評価は、ガラス母材の直胴部の最大径及び最小径を測定し、
{(最大径)−(最小径)}/(最大径) (%)
の値により評価した。
【0022】
測定した結果を図2および図3に示す。図2は第2移動軸の往復移動幅を一定値に固定し、第1移動軸の往復移動幅を変化させた結果を示し、図3は第1移動軸の往復移動幅を一定値に固定し、第2移動軸の往復移動幅を変化させた結果を示している。
【0023】
図2に示すように、第2移動軸の往復移動幅が50mm、100mm、150mm、200mmのいずれの値についても、第1移動軸の往復移動幅がバーナーの横列設置間隔と同じ150mmの場合に、多孔質ガラス母材の平坦度が最も良好になることが判った。特に、第2移動軸の往復移動幅もバーナーの横列設置間隔と同じ150mmの場合は、平坦度は極めて良好になることが判った。
【0024】
また、図3から判るように、第1移動軸の往復移動幅を一定値に固定し、第2移動軸の往復移動幅を変化させた場合についても同様に、第2移動軸の往復移動幅がバーナーの横列設置間隔と同じ150mmの場合に、多孔質ガラス母材の平坦度は最も良好であり、特に第1移動軸の往復移動幅もバーナーの横列設置間隔と同じ場合は、極めて良好な平坦度を得ることができることが判った。
【0025】
本発明者らは、さらに研究・調査を進めたところ、一般的に各移動軸の往復移動幅がバーナーの横列設置間隔の整数倍であれば、多孔質ガラス母材の平坦度は良好なものとなり、この場合バーナーの横列設置間隔と往復移動幅の整数比が大きい、すなわち、バーナー列の往復移動幅が大きい程、平坦度が良好になることが判った。
【0026】
図4および図5は、第2移動軸の往復移動幅を一定値に固定し、第1移動軸の往復移動幅を変えることにより、n=(第1移動軸移動幅)/(バーナー横列設置間隔)の値を変動させた場合の多孔質ガラス母材の平坦度を示し、図4は第2移動軸の往復移動幅が100mmの場合、図5は第2移動軸の往復移動幅が200mmの場合を示している。この図4及び図5が示すように、第1移動軸の往復移動幅が大きくなり、n=(第1移動軸移動幅)/(バーナー横列設置間隔)で規定されるnの値が大きくなればなる程、平坦度は向上することが判る。
【0027】
しかし、図6にn=(第1移動軸移動幅)/(バーナー横列設置間隔)とガラス母材の端部の形状との関係を示したように、あまりバーナーの往復移動幅が大きくなり過ぎると、多孔質ガラス母材の両端に形成されるテーパ形状の部分が大きくなるので、製品として使用できない不要部分が大きくなり、歩留りが低下するという問題がある。
【0028】
さらに、前述の図4及び図5に示したように、第1移動軸または第2移動軸の少なくとも1方の往復移動幅をバーナーの間隔の整数倍とした場合は、例えば整数=1として、バーナーの設置間隔だけ移動軸が往復移動するものとしても平坦度は十分に良好である。そこで、本発明者らは、各移動軸の往復移動幅をバーナーの間隔の整数倍とした場合において、前記整数を1、または(全バーナー数)/5を超えないようにすることとし、この移動幅でバーナー列を往復移動させるものとした。
【0029】
【発明の実施の形態】
次に、本発明の実施の形態について添付した図面に基づき説明するが本発明はこれに限定されるものではない。
ここで図1は、本発明の多孔質ガラス母材の製造装置の一例を示した説明図である。この多孔質ガラス母材製造装置11は、軸付け法により多孔質ガラス母材を製造する装置であり、出発母材(コアロッド)1を把持しかつ出発母材1をその長手軸の周りに回転させる母材把持具7を具備し、この母材把持具7には母材を回転させるための動力として母材回転用モータ8が備えられている。
【0030】
また、この多孔質ガラス母材製造装置11は、この母材把持具7に把持された出発母材1にガラス微粒子を堆積させる複数のガラス微粒子生成用バーナーから構成されるバーナー列6を具備しており、ガラス微粒子生成用バーナーは、出発母材1の長手方向に横列設置間隔14で等間隔に横列設置されている。そしてバーナー列6は、バーナー前後移動機構9を備えており、バーナー列6と出発母材1との距離を自在に調整することができるようにされている。さらに、出発母材1を間に挟んでバーナー列6と対向するように排気フード10が設けられており、反応ガス及び未付着のガラス微粒子を排気することができるようになっている。
【0031】
さらに、本発明の多孔質ガラス母材製造装置11は、部分トラバース機構3を備え、バーナー列6を出発母材の長手方向に部分的に往復移動させることができるようにされている。本発明の装置11の特徴は、この部分トラバース機構3にあり、この部分トラバース機構3は、バーナー列6を第1移動速度において部分トラバース幅12で往復移動する第1移動軸4と、第1移動軸4を第2移動速度において全域トラバース幅13で往復移動する第2移動軸5を備え、2つの移動軸の働きにより、バーナー列6の往復移動の折返し位置を移動させることができるようにされている。
【0032】
すなわち、第1移動軸4は比較的高速の第1移動速度で、バーナー列6を部分的に往復移動させ、第2移動軸5は比較的低速の第2移動速度で、バーナー列6を往復移動させる第1移動軸4をさらに往復移動させるようになっている。このようにすることにより、バーナー列6の往復移動の折返し位置はムラなく分散され、凹凸なくガラス微粒子の堆積を行うことができるようにされている。
【0033】
この発明における第1移動速度と第2移動速度の関係は、同一速度でも異なる速度でもかまわず、バーナー列6の往復移動の折返し位置を移動することができるものであれば、どのようなものであっても良い。したがって上記とは異なり、第1移動速度は低速とし第2移動速度は高速としても良いが、実際の装置では比較的軽量であるバーナー列を高速で移動させる方が容易であるため、第1移動速度が第2移動速度より速いことが好ましい。
このように本発明では、バーナー列の実際の移動速度は、第1移動速度と第2移動速度の和となる。
【0034】
また、本発明の多孔質ガラス母材製造装置11においては、第1移動軸4の往復移動幅である部分トラバース幅12および第2移動軸5の往復移動幅である全域トラバース幅13の少なくとも1方が、バーナーの横列設置間隔14の整数倍とされるようになっている。さらに、部分トラバース幅12及び全域トラバース幅13は、前述したように多孔質ガラス母材の歩留りを低下させないため、バーナーの横列設置間隔14の1倍または、バーナーの横列設置間隔14の整数倍であって、(全バーナー数)/5倍を超えないようにされている。
【0035】
これは、例えば、製造装置11の全バーナー数を5としてバーナー列6が構成されている場合は、(全バーナー数=5)/5=1であるから、部分トラバース幅12及び全域トラバース幅13の最適値は横列設置間隔14と同じ幅となる。また、全バーナー数が18の場合は、(全バーナー数=18)/5=3.6であるから、部分トラバース幅12及び全域トラバース幅13は、横列設置間隔14の1倍、2倍、あるいは3倍となるようにされるのが好ましい。これらの移動幅は機械的に調整することが可能なため、制御プログラム上の遅延時間等は問題とはならない。
【0036】
次に、以上のような装置による多孔質ガラス母材の製造方法について説明する。
まず、出発母材1の両端を母材把持具7によって把持する。母材把持具7によって把持された出発母材1は母材回転用モータ8によって回転される。そして、部分トラバース機構3により往復移動するバーナー列6から、ガラス微粒子用原料と反応ガスが出発母材1に吹き付けられる。出発母材1は回転しており、またバーナー列6は往復移動するので、ガラス微粒子は出発母材1に吹き付けられ堆積し、ガラス微粒子堆積体2を形成する。
【0037】
そして、部分トラバース機構3において、第1移動軸4はバーナー列6を比較的高速の第1移動速度で往復移動させ、第2移動軸5は第1移動軸を比較的低速の第2移動速度で往復移動させる。そのためバーナー列6は部分的に往復移動するが、その折返し位置は順次移動され、ガラス微粒子堆積体2の表面の凹凸はかなり滑らかなものとなる。従って、従来のように堆積面の凹凸を別に設置した修正用バーナーにより修正する必要はない。さらに第1移動軸4は部分トラバース幅12で往復移動し、第2移動軸5は全域トラバース幅13で往復移動し、これらのトラバース幅はバーナーの横列設置間隔14の整数倍であるため、堆積面の平坦度は極めて優れたものとなる。そして第1移動速度及び第2移動速度の両方とも一定速度であり、一定振幅であるため、特別な制御手段は必要なく、移動し過ぎの恐れもない。
【0038】
さらに、本発明の多孔質ガラス母材製造装置11は、部分トラバース機構3が第1移動軸4及び第2移動軸5の2つの移動軸で構成されているため、従来の1つの移動軸しか持たない装置に比べてバーナー移動の自由度が大きい。そのため、例えば、バーナー列6の移動条件とバーナー列6から噴出させるガラス微粒子の成分あるいは量を組み合わせて変更することにより、所望の嵩密度分布をもつ多孔質ガラス母材を製造することもできる。
【0039】
【実施例】
以下、本発明を実施例および比較例を挙げて説明する。
(実施例)
図1に示す多孔質ガラス母材製造装置11により、VAD法にて予め作製された外径40mm、長さ800mmの出発母材1に対し、最終外径が200mmとなるようにガラス微粒子を堆積してガラス微粒子堆積体2を形成し、多孔質ガラス母材の製造を行った。バーナー列6については、バーナー列6を150mm間隔で5本設置し、各々のバーナー列6から外径40mm時には四塩化ケイ素1L/min、水素40L/min、酸素20L/minが、最終外径の200mm時には、四塩化ケイ素5L/min、水素150L/min、酸素70L/minが噴出されるように調整を行った。
【0040】
母材回転用モータ8に電力を供給し、母材把持具により把持された出発母材1を30rpmで回転させた。第1移動軸4によりバーナー列6を第1移動速度を1000mm/minとして往復移動させ、第2移動軸5により第1移動軸4を第2移動速度20mm/minとして往復移動させた。第1移動軸4の部分トラバース幅12は150mmとし、第2移動軸5の全域トラバース幅13も150mmとした。そして、直径40mmの出発母材1上にガラス微粒子堆積体2が直径200mmになるまで堆積を実施した。
【0041】
堆積終了後の多孔質ガラス母材の外径を測定した。外径測定はガラス母材の両端の不要部を除いた直胴部全域について行い、前述したように、その凹凸の度合いを直胴部についての、
{(最大径)−(最小径)}/(最大径) (%)
の値により評価した。
上記の評価の結果、本発明の装置により製造された多孔質ガラス母材の凹凸は1%以下に抑えることができ、凹凸のきわめて少ない多孔質ガラス母材を得ることができた。
【0042】
(比較例1)
比較のため、従来の1軸でバーナーを往復移動させる多孔質ガラス母材製造装置を用いて、制御ソフトにより実施例と同様の動きになるようにして堆積を実施し、多孔質ガラス母材の製造を行った。すなわち、この比較例の多孔質ガラス母材製造装置は、大部分が図1に示す実施例の装置11と同様の構成であるが、部分トラバース機構3において、第2移動軸5がなく、バーナー列6の往復移動は第1移動軸1軸のみで行うようになっている。さらに、往復移動の折返し位置は、制御プログラムによる制御により順次移動されるようになっている。その他の条件は実施例と同一にして、多孔質ガラス母材を製造した。
【0043】
製造された多孔質ガラス母材の凹凸を実施例と同様に評価した。その結果は、8%程度の値となり、実施例の装置に比べて劣った値となっていた。これは、制御プログラムの計算時間による誤差、あるいは制御系と制御対象との情報伝達の時間が原因であると考えられる。
【0044】
(比較例2)
比較のため、実施例と同様に、トラバース機構として2軸を有している多孔質ガラス母材製造装置により多孔質ガラス母材の製造を行った。ただし、部分トラバース幅12及び全域トラバース幅13については、バーナー横列設置間隔14の整数倍とはなっていない装置で、それぞれのトラバース幅を100mm〜200mmの間で変更してガラス微粒子の堆積を行った。その他バーナーの横列設置間隔14等の条件は実施例と同一にして多孔質ガラス母材を製造した。
【0045】
製造された多孔質ガラス母材の凹凸を実施例と同様に評価した。その結果は、4〜8%程度の値となり、実施例の装置に比べて劣った値となっていた。各移動軸の往復移動幅がバーナーの横列設置間隔の整数倍となっておらず、堆積にムラが生じたことが原因と考えられる。
【0046】
尚、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
【0047】
例えば、本発明の方法および装置は、バーナーを2つの移動軸により往復移動させ、その移動幅をバーナーの横列設置間隔の整数倍とするものであれば、本発明の範囲であり、これをプログラム可能な制御装置と組み合せて用いてもよいことは言うまでもない。
【0048】
【発明の効果】
以上説明したように、本発明を適用することにより、凹凸の少ない良好な品質の多孔質ガラス母材を、簡単な方法あるいは装置により高生産性で製造することができる。
【図面の簡単な説明】
【図1】本発明の多孔質ガラス母材の製造装置の1例を示した説明図である。
【図2】第1移動軸の往復移動幅とガラス母材の平坦度との関係を示した図である。
【図3】第2移動軸の往復移動幅とガラス母材の平坦度との関係を示した図である。
【図4】n=(第1移動軸移動幅)/(バーナー横列設置間隔)とガラス母材の平坦度との関係を示した図である。
【図5】n=(第1移動軸移動幅)/(バーナー横列設置間隔)とガラス母材の平坦度との関係を示した図である。
【図6】n=(第1移動軸移動幅)/(バーナー横列設置間隔)とガラス母材の端部の形状との関係を示した図である。
【符号の説明】
1…出発母材(コア用ロッド)、 2…ガラス微粒子堆積体、
3…部分トラバース機構、 4…第1移動軸、 5…第2移動軸、
6…バーナー列、 7…母材把持具、 8…母材回転用モータ、
9…バーナー前後移動機構、 10…排気フード、
11…多孔質ガラス母材製造装置、 12…部分トラバース幅、
13…全域トラバース幅、 14…横列設置間隔。
【発明の属する技術分野】
本発明は、光ファイバを製造するための多孔質ガラス母材の製造方法、及びその製造装置に関するものである。
【0002】
【従来の技術】
光ファイバは、大直径のガラス母材から成形したガラスロッド、いわゆる光ファイバプリフォームを線引きして製造される。この大直径のガラス母材は、軸付け法や外付け法と呼ばれる方法で多孔質ガラス母材を製造し、それを熱処理により透明ガラス化することにより得られている。現在、この多孔質ガラス母材の製造については、その生産性を上げるため種々の提案がなされている。
【0003】
その中で部分的に複数のガラス微粒子生成用バーナーを移動させ高速で堆積する方法が提案されている。この方法は、製造される多孔質ガラス母材の長手方向に複数のバーナーを横列配置し、これらを多孔質ガラス母材の全長域ではなく部分的に往復移動させる方法である(特開平3−228845号公報参照)。これは、光ファイバ母材として有効に使用することができない両端の不要部も含んだ長い距離を、バーナーを往復移動させる方法(全域トラバース法)に対して、不要部を増やすことなく、バーナーの本数を増やすことができ、複数のバーナーを用いることにより堆積速度を飛躍的に向上させることができる。
【0004】
【発明が解決しようとする課題】
一方、このような部分的に複数のガラス微粒子生成用バーナーを移動させ高速で堆積する方法は、堆積速度が飛躍的に増加する反面、最終製品である光ファイバとして用いられる有効部内でバーナーが折り返すために、長手方向の堆積量が不均一になる問題がある。
【0005】
このため、部分移動における折り返し位置をきれいに分散させる必要がある。ところが、通常バーナーの往復移動は1軸上で行われており、部分往復移動における折り返し位置の順次移動は、制御プログラム上でソフト的に折り返し位置を制御することによって行われている。
【0006】
しかし、この場合制御プログラム上で折返し位置を計算するために、プログラム上の計算時間と、制御系と制御対象である装置機器との情報伝達の時間が問題となり、きれいに折り返し位置の分散を行うことが難しい。このため、堆積面に生じる長手方向の凹凸を軽減しようと、条件を色々と変え、折返し位置を分散させるが、思ったようには効果がでない。
加えて、きれいに折り返し位置の分散を行ったとしても、光ファイバとして用いられる有効部内でバーナーが折り返すために、全域トラバース法と比較すると長手方向の平坦度が劣るという欠点がある。
【0007】
そこで、この問題を解決するために、多孔質ガラス母材の長手方向全域を移動するバーナーを別に設けて修正用バーナーとし、堆積量検出機構にて得られた結果に基づき、この修正用バーナーを制御して堆積量を均一にする方法が提案されている(特開平10−158025号公報参照)。しかし、この方法は堆積量検出機構や修正用バーナーのために別のガス供給ラインや移動機構を必要とし、さらに、それらを制御する装置が必要となるため、製造装置が複雑化し高価になるという問題がある。
【0008】
本発明は、上記問題点に鑑みなされたもので、長手方向に対して移動する複数のバーナーを用いて、ガラス微粒子を出発母材へ堆積させる多孔質ガラス母材の製造において、長手方向に堆積量が均一で高品質な多孔質ガラス母材を高生産性で製造する方法及び装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成するため、本発明の請求項1に記載した発明は、長手方向に対して往復移動する複数の横列設置されたバーナーを用いて、ガラス微粒子を出発母材へ堆積させる多孔質ガラス母材の製造方法において、
前記バーナー列を第1移動軸上に設置して往復移動させ、前記第1移動軸を第2移動軸上に設置して往復移動させることにより、バーナー列の往復移動の折返し位置を移動させ、前記第1移動軸および第2移動軸の少なくとも1の移動軸の往復移動幅を前記バーナーの横列設置間隔の整数倍として多孔質ガラス母材を製造することを特徴とする多孔質ガラス母材の製造方法である。
【0010】
このように、前記バーナー列を第1移動軸上に設置して往復移動させ、前記第1移動軸を第2移動軸上に設置して往復移動させることにより、バーナー列の往復移動の折返し位置を、相対的に移動する2つの移動軸により往復移動させれば、簡単な機械的方法によりバーナー列の往復移動の折返し位置を移動させることができ、製造させる多孔質ガラス母材の長手方向の堆積量を均一なものとすることができる。従って、前述のような補正用バーナーによって修正する必要がない。
さらに、前記第1移動軸および第2移動軸の少なくとも1の移動軸の往復移動幅を前記バーナーの横列設置間隔の整数倍として多孔質ガラス母材を製造することにより、堆積量をさらに均一化し、多孔質ガラス母材の長手方向の凹凸を極めて少ないものとすることができる。
【0011】
この場合、本発明の請求項2に記載したように、前記第1移動軸および第2移動軸の両方の移動軸の往復移動幅を前記バーナーの横列設置間隔の整数倍とすることが好ましい。
このように、第1移動軸および第2移動軸の両方の移動軸の往復移動幅を前記バーナーの横列設置間隔の整数倍とすることにより、一層多孔質ガラス母材の長手方向の凹凸を少なくし、良好な多孔質ガラス母材を製造することができる。
【0012】
さらにこの場合、本発明の請求項3に記載したように、請求項1または請求項2に記載した多孔質ガラス母材の製造方法であって、前記整数を1または(全バーナー数)/5を超えない整数にすることが好ましい。
製造される多孔質ガラス母材の平坦度という点では、前記整数の数を大きくして、移動軸の往復移動幅を大きくした方が良好なものとなる。しかし、あまり往復移動幅が大きいと製造される多孔質ガラス母材両端のテーパ部が大きくなり、製品として使用することのできない不要部が大きくなり、歩留りが低下することがある。
そこで、第1移動軸または第2移動軸の少なくとも1方の往復移動幅をバーナーの間隔の整数倍とし、前記整数を1または(全バーナー数)/5を超えないようにして、移動軸の往復移動幅をあまり大きくしないようにすることが好ましい。
【0013】
また、本発明の請求項4に記載した発明は、少なくとも出発母材を把持しかつ該出発母材をその長手軸の周りに回転させる手段と、ガラス微粒子を出発母材へ堆積させる複数の横列設置されたバーナーを具備する多孔質ガラス母材の製造装置であって、
前記バーナー列を往復移動する第1移動軸と、第1移動軸を往復移動する第2移動軸とを具備し、前記第1移動軸および第2移動軸の少なくとも1の移動軸の往復移動幅が前記バーナーの横列設置間隔の整数倍とされており、バーナー列の往復移動の折返し位置を移動させることが可能とされていることを特徴とする多孔質ガラス母材の製造装置である。
【0014】
このように前記バーナー列を往復移動する第1移動軸と、第1移動軸を往復移動する第2移動軸とを具備し、バーナー列の往復移動の折返し位置を移動させることが可能とされている多孔質ガラス母材の製造装置は、バーナー列の折り返し位置を移動するのに、複雑な制御プログラム上でソフト的に折り返し位置を制御する必要がないため、プログラム上の計算時間や、制御系と制御対象との情報伝達時間等は問題とはならない。そのため、きれいに折り返し位置の分散を行うことができ、堆積面に生じる長手方向の凹凸を軽減することができる。
さらに、第1移動軸および第2移動軸の少なくとも1の移動軸の往復移動幅が前記バーナーの横列設置の整数倍とされていることにより、多孔質ガラス母材の堆積面に生じる長手方向の凹凸を著しく軽減することができる。
【0015】
以下、本発明をさらに詳述するが本発明はこれに限定されるものではない。
本発明者らは、長手方向に対して移動する複数のバーナーを用いて、ガラス微粒子を出発母材へ堆積させる多孔質ガラス母材の製造において、バーナー列の往復移動を2つの移動軸によって行うことにし、さらにバーナーの横列設置間隔に対する各移動軸の往復移動幅を最適なものとすることにより、高速で凹凸の少ない良好な多孔質母材を製造することを発想し、諸条件を精査して本発明を完成するに至ったものである。
【0016】
従来、バーナーの移動はただ1つの移動軸上にバーナーを設置することにより行い、バーナーの往復移動の折返し位置の移動は制御プログラムのみによりソフト的に行っていた。例えば、前述の特開平3−228845号では、同一寸法のバーナーを一定等間隔で1移動軸上に配置し、その往復移動の開始位置を3点以上に順次移動分散させることにより、ガラス微粒子を均一に堆積させようとするものである。往復移動の開始位置、すなわち折返し位置は制御プログラム等により制御され、各々の往復移動1行程同士が重なり合うと、ちょうど多孔質ガラス母材のほぼ全長域で堆積量が均一になるようにされるというものである。
【0017】
しかし、現実の製造装置においては、上記のように折り返し位置を正確に制御することは不可能であった。現実の装置では、まず制御プログラム上での計算時間が原因で、折返し位置の制御に誤差が生じる。また、制御対象である装置機器と制御系との情報伝達の時間も誤差の原因となり、計算上は均一にガラス微粒子を堆積できるようにプログラムしても、実際の装置では製造される多孔質ガラス母材に凹凸が生じる。
【0018】
そこで、本発明ではバーナー列を移動させる移動軸を2軸設けることにより、往復移動の折返し位置を機械的に移動させることとした。つまり、バーナー列を部分的に往復移動させる第1移動軸を設け、その第1移動軸を移動させる第2移動軸を設けることにより、機械的にバーナー列の往復移動の折返し位置を移動させる。
このようにすれば、それぞれの移動軸により被移動物を一定速度で一定間隔に折返し移動させることで、容易にバーナー列往復移動の折返し位置の移動が可能となる。また、それぞれの移動軸による移動幅は固定されているため、往復移動において移動し過ぎを機械的に防止することができる。さらに制御プログラムでの計算時間や、制御対象と制御系との情報伝達の時間は全く問題とはならず、簡単な方法で均一にガラス微粒子を堆積させることができる。
【0019】
また、本発明でバーナー列を移動させる移動軸を2軸設けることは、前述の特開平10−15802のように修正用のバーナーを設けるために2軸以上の移動軸を設ける方法と異なり、新たなガス供給ラインや制御手段が必要となるわけではないので、製造装置が複雑、高価になることはない。
さらに、バーナー列を移動させる移動軸を2軸設けることにより、移動軸が1軸のみの場合には不可能であった動きをバーナー列にさせることが可能となり、多孔質ガラス母材製造の自由度を拡げることができるという利点もある。
【0020】
しかし、前述したように、きれいに折り返し位置の分散を行ったとしても、光ファイバとして用いられる有効部内でバーナーが折り返すために、全域トラバース法と比較すると長手方向の平坦度が劣るという欠点がある。
そこで、本発明者はバーナーの横列設置間隔と各移動軸の往復移動幅との関係が、上記平坦度に大きな影響があるのではないかと考え、実験、調査を試みた。
【0021】
本発明者らは、実際に長手方向に対して往復移動する複数の横列設置されたバーナーを用いてガラス微粒子を出発母材へ堆積させ、多孔質ガラス母材を製造する実験を行った。
5本のバーナーを150mm間隔で横列設置してバーナー列とし、このバーナー列を第1移動軸上に設置して1000mm/minの速度で往復移動させ、第1移動軸を第2移動軸上に設置して20mm/minの速度で往復移動させ、バーナー列の往復移動の折り返し位置を移動させた。第1移動軸および第2移動軸の往復移動幅は各々50mm〜200mmの間で変化させるものとし、製造された多孔質ガラス母材の平坦度を測定、評価した。平坦度の評価は、ガラス母材の直胴部の最大径及び最小径を測定し、
{(最大径)−(最小径)}/(最大径) (%)
の値により評価した。
【0022】
測定した結果を図2および図3に示す。図2は第2移動軸の往復移動幅を一定値に固定し、第1移動軸の往復移動幅を変化させた結果を示し、図3は第1移動軸の往復移動幅を一定値に固定し、第2移動軸の往復移動幅を変化させた結果を示している。
【0023】
図2に示すように、第2移動軸の往復移動幅が50mm、100mm、150mm、200mmのいずれの値についても、第1移動軸の往復移動幅がバーナーの横列設置間隔と同じ150mmの場合に、多孔質ガラス母材の平坦度が最も良好になることが判った。特に、第2移動軸の往復移動幅もバーナーの横列設置間隔と同じ150mmの場合は、平坦度は極めて良好になることが判った。
【0024】
また、図3から判るように、第1移動軸の往復移動幅を一定値に固定し、第2移動軸の往復移動幅を変化させた場合についても同様に、第2移動軸の往復移動幅がバーナーの横列設置間隔と同じ150mmの場合に、多孔質ガラス母材の平坦度は最も良好であり、特に第1移動軸の往復移動幅もバーナーの横列設置間隔と同じ場合は、極めて良好な平坦度を得ることができることが判った。
【0025】
本発明者らは、さらに研究・調査を進めたところ、一般的に各移動軸の往復移動幅がバーナーの横列設置間隔の整数倍であれば、多孔質ガラス母材の平坦度は良好なものとなり、この場合バーナーの横列設置間隔と往復移動幅の整数比が大きい、すなわち、バーナー列の往復移動幅が大きい程、平坦度が良好になることが判った。
【0026】
図4および図5は、第2移動軸の往復移動幅を一定値に固定し、第1移動軸の往復移動幅を変えることにより、n=(第1移動軸移動幅)/(バーナー横列設置間隔)の値を変動させた場合の多孔質ガラス母材の平坦度を示し、図4は第2移動軸の往復移動幅が100mmの場合、図5は第2移動軸の往復移動幅が200mmの場合を示している。この図4及び図5が示すように、第1移動軸の往復移動幅が大きくなり、n=(第1移動軸移動幅)/(バーナー横列設置間隔)で規定されるnの値が大きくなればなる程、平坦度は向上することが判る。
【0027】
しかし、図6にn=(第1移動軸移動幅)/(バーナー横列設置間隔)とガラス母材の端部の形状との関係を示したように、あまりバーナーの往復移動幅が大きくなり過ぎると、多孔質ガラス母材の両端に形成されるテーパ形状の部分が大きくなるので、製品として使用できない不要部分が大きくなり、歩留りが低下するという問題がある。
【0028】
さらに、前述の図4及び図5に示したように、第1移動軸または第2移動軸の少なくとも1方の往復移動幅をバーナーの間隔の整数倍とした場合は、例えば整数=1として、バーナーの設置間隔だけ移動軸が往復移動するものとしても平坦度は十分に良好である。そこで、本発明者らは、各移動軸の往復移動幅をバーナーの間隔の整数倍とした場合において、前記整数を1、または(全バーナー数)/5を超えないようにすることとし、この移動幅でバーナー列を往復移動させるものとした。
【0029】
【発明の実施の形態】
次に、本発明の実施の形態について添付した図面に基づき説明するが本発明はこれに限定されるものではない。
ここで図1は、本発明の多孔質ガラス母材の製造装置の一例を示した説明図である。この多孔質ガラス母材製造装置11は、軸付け法により多孔質ガラス母材を製造する装置であり、出発母材(コアロッド)1を把持しかつ出発母材1をその長手軸の周りに回転させる母材把持具7を具備し、この母材把持具7には母材を回転させるための動力として母材回転用モータ8が備えられている。
【0030】
また、この多孔質ガラス母材製造装置11は、この母材把持具7に把持された出発母材1にガラス微粒子を堆積させる複数のガラス微粒子生成用バーナーから構成されるバーナー列6を具備しており、ガラス微粒子生成用バーナーは、出発母材1の長手方向に横列設置間隔14で等間隔に横列設置されている。そしてバーナー列6は、バーナー前後移動機構9を備えており、バーナー列6と出発母材1との距離を自在に調整することができるようにされている。さらに、出発母材1を間に挟んでバーナー列6と対向するように排気フード10が設けられており、反応ガス及び未付着のガラス微粒子を排気することができるようになっている。
【0031】
さらに、本発明の多孔質ガラス母材製造装置11は、部分トラバース機構3を備え、バーナー列6を出発母材の長手方向に部分的に往復移動させることができるようにされている。本発明の装置11の特徴は、この部分トラバース機構3にあり、この部分トラバース機構3は、バーナー列6を第1移動速度において部分トラバース幅12で往復移動する第1移動軸4と、第1移動軸4を第2移動速度において全域トラバース幅13で往復移動する第2移動軸5を備え、2つの移動軸の働きにより、バーナー列6の往復移動の折返し位置を移動させることができるようにされている。
【0032】
すなわち、第1移動軸4は比較的高速の第1移動速度で、バーナー列6を部分的に往復移動させ、第2移動軸5は比較的低速の第2移動速度で、バーナー列6を往復移動させる第1移動軸4をさらに往復移動させるようになっている。このようにすることにより、バーナー列6の往復移動の折返し位置はムラなく分散され、凹凸なくガラス微粒子の堆積を行うことができるようにされている。
【0033】
この発明における第1移動速度と第2移動速度の関係は、同一速度でも異なる速度でもかまわず、バーナー列6の往復移動の折返し位置を移動することができるものであれば、どのようなものであっても良い。したがって上記とは異なり、第1移動速度は低速とし第2移動速度は高速としても良いが、実際の装置では比較的軽量であるバーナー列を高速で移動させる方が容易であるため、第1移動速度が第2移動速度より速いことが好ましい。
このように本発明では、バーナー列の実際の移動速度は、第1移動速度と第2移動速度の和となる。
【0034】
また、本発明の多孔質ガラス母材製造装置11においては、第1移動軸4の往復移動幅である部分トラバース幅12および第2移動軸5の往復移動幅である全域トラバース幅13の少なくとも1方が、バーナーの横列設置間隔14の整数倍とされるようになっている。さらに、部分トラバース幅12及び全域トラバース幅13は、前述したように多孔質ガラス母材の歩留りを低下させないため、バーナーの横列設置間隔14の1倍または、バーナーの横列設置間隔14の整数倍であって、(全バーナー数)/5倍を超えないようにされている。
【0035】
これは、例えば、製造装置11の全バーナー数を5としてバーナー列6が構成されている場合は、(全バーナー数=5)/5=1であるから、部分トラバース幅12及び全域トラバース幅13の最適値は横列設置間隔14と同じ幅となる。また、全バーナー数が18の場合は、(全バーナー数=18)/5=3.6であるから、部分トラバース幅12及び全域トラバース幅13は、横列設置間隔14の1倍、2倍、あるいは3倍となるようにされるのが好ましい。これらの移動幅は機械的に調整することが可能なため、制御プログラム上の遅延時間等は問題とはならない。
【0036】
次に、以上のような装置による多孔質ガラス母材の製造方法について説明する。
まず、出発母材1の両端を母材把持具7によって把持する。母材把持具7によって把持された出発母材1は母材回転用モータ8によって回転される。そして、部分トラバース機構3により往復移動するバーナー列6から、ガラス微粒子用原料と反応ガスが出発母材1に吹き付けられる。出発母材1は回転しており、またバーナー列6は往復移動するので、ガラス微粒子は出発母材1に吹き付けられ堆積し、ガラス微粒子堆積体2を形成する。
【0037】
そして、部分トラバース機構3において、第1移動軸4はバーナー列6を比較的高速の第1移動速度で往復移動させ、第2移動軸5は第1移動軸を比較的低速の第2移動速度で往復移動させる。そのためバーナー列6は部分的に往復移動するが、その折返し位置は順次移動され、ガラス微粒子堆積体2の表面の凹凸はかなり滑らかなものとなる。従って、従来のように堆積面の凹凸を別に設置した修正用バーナーにより修正する必要はない。さらに第1移動軸4は部分トラバース幅12で往復移動し、第2移動軸5は全域トラバース幅13で往復移動し、これらのトラバース幅はバーナーの横列設置間隔14の整数倍であるため、堆積面の平坦度は極めて優れたものとなる。そして第1移動速度及び第2移動速度の両方とも一定速度であり、一定振幅であるため、特別な制御手段は必要なく、移動し過ぎの恐れもない。
【0038】
さらに、本発明の多孔質ガラス母材製造装置11は、部分トラバース機構3が第1移動軸4及び第2移動軸5の2つの移動軸で構成されているため、従来の1つの移動軸しか持たない装置に比べてバーナー移動の自由度が大きい。そのため、例えば、バーナー列6の移動条件とバーナー列6から噴出させるガラス微粒子の成分あるいは量を組み合わせて変更することにより、所望の嵩密度分布をもつ多孔質ガラス母材を製造することもできる。
【0039】
【実施例】
以下、本発明を実施例および比較例を挙げて説明する。
(実施例)
図1に示す多孔質ガラス母材製造装置11により、VAD法にて予め作製された外径40mm、長さ800mmの出発母材1に対し、最終外径が200mmとなるようにガラス微粒子を堆積してガラス微粒子堆積体2を形成し、多孔質ガラス母材の製造を行った。バーナー列6については、バーナー列6を150mm間隔で5本設置し、各々のバーナー列6から外径40mm時には四塩化ケイ素1L/min、水素40L/min、酸素20L/minが、最終外径の200mm時には、四塩化ケイ素5L/min、水素150L/min、酸素70L/minが噴出されるように調整を行った。
【0040】
母材回転用モータ8に電力を供給し、母材把持具により把持された出発母材1を30rpmで回転させた。第1移動軸4によりバーナー列6を第1移動速度を1000mm/minとして往復移動させ、第2移動軸5により第1移動軸4を第2移動速度20mm/minとして往復移動させた。第1移動軸4の部分トラバース幅12は150mmとし、第2移動軸5の全域トラバース幅13も150mmとした。そして、直径40mmの出発母材1上にガラス微粒子堆積体2が直径200mmになるまで堆積を実施した。
【0041】
堆積終了後の多孔質ガラス母材の外径を測定した。外径測定はガラス母材の両端の不要部を除いた直胴部全域について行い、前述したように、その凹凸の度合いを直胴部についての、
{(最大径)−(最小径)}/(最大径) (%)
の値により評価した。
上記の評価の結果、本発明の装置により製造された多孔質ガラス母材の凹凸は1%以下に抑えることができ、凹凸のきわめて少ない多孔質ガラス母材を得ることができた。
【0042】
(比較例1)
比較のため、従来の1軸でバーナーを往復移動させる多孔質ガラス母材製造装置を用いて、制御ソフトにより実施例と同様の動きになるようにして堆積を実施し、多孔質ガラス母材の製造を行った。すなわち、この比較例の多孔質ガラス母材製造装置は、大部分が図1に示す実施例の装置11と同様の構成であるが、部分トラバース機構3において、第2移動軸5がなく、バーナー列6の往復移動は第1移動軸1軸のみで行うようになっている。さらに、往復移動の折返し位置は、制御プログラムによる制御により順次移動されるようになっている。その他の条件は実施例と同一にして、多孔質ガラス母材を製造した。
【0043】
製造された多孔質ガラス母材の凹凸を実施例と同様に評価した。その結果は、8%程度の値となり、実施例の装置に比べて劣った値となっていた。これは、制御プログラムの計算時間による誤差、あるいは制御系と制御対象との情報伝達の時間が原因であると考えられる。
【0044】
(比較例2)
比較のため、実施例と同様に、トラバース機構として2軸を有している多孔質ガラス母材製造装置により多孔質ガラス母材の製造を行った。ただし、部分トラバース幅12及び全域トラバース幅13については、バーナー横列設置間隔14の整数倍とはなっていない装置で、それぞれのトラバース幅を100mm〜200mmの間で変更してガラス微粒子の堆積を行った。その他バーナーの横列設置間隔14等の条件は実施例と同一にして多孔質ガラス母材を製造した。
【0045】
製造された多孔質ガラス母材の凹凸を実施例と同様に評価した。その結果は、4〜8%程度の値となり、実施例の装置に比べて劣った値となっていた。各移動軸の往復移動幅がバーナーの横列設置間隔の整数倍となっておらず、堆積にムラが生じたことが原因と考えられる。
【0046】
尚、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
【0047】
例えば、本発明の方法および装置は、バーナーを2つの移動軸により往復移動させ、その移動幅をバーナーの横列設置間隔の整数倍とするものであれば、本発明の範囲であり、これをプログラム可能な制御装置と組み合せて用いてもよいことは言うまでもない。
【0048】
【発明の効果】
以上説明したように、本発明を適用することにより、凹凸の少ない良好な品質の多孔質ガラス母材を、簡単な方法あるいは装置により高生産性で製造することができる。
【図面の簡単な説明】
【図1】本発明の多孔質ガラス母材の製造装置の1例を示した説明図である。
【図2】第1移動軸の往復移動幅とガラス母材の平坦度との関係を示した図である。
【図3】第2移動軸の往復移動幅とガラス母材の平坦度との関係を示した図である。
【図4】n=(第1移動軸移動幅)/(バーナー横列設置間隔)とガラス母材の平坦度との関係を示した図である。
【図5】n=(第1移動軸移動幅)/(バーナー横列設置間隔)とガラス母材の平坦度との関係を示した図である。
【図6】n=(第1移動軸移動幅)/(バーナー横列設置間隔)とガラス母材の端部の形状との関係を示した図である。
【符号の説明】
1…出発母材(コア用ロッド)、 2…ガラス微粒子堆積体、
3…部分トラバース機構、 4…第1移動軸、 5…第2移動軸、
6…バーナー列、 7…母材把持具、 8…母材回転用モータ、
9…バーナー前後移動機構、 10…排気フード、
11…多孔質ガラス母材製造装置、 12…部分トラバース幅、
13…全域トラバース幅、 14…横列設置間隔。
Claims (4)
- 長手方向に対して往復移動する複数の横列設置されたバーナーを用いて、ガラス微粒子を出発母材へ堆積させる多孔質ガラス母材の製造方法において、
前記バーナー列を第1移動軸上に設置して往復移動させ、前記第1移動軸を第2移動軸上に設置して往復移動させることにより、バーナー列の往復移動の折返し位置を移動させ、前記第1移動軸および第2移動軸の少なくとも1の移動軸の往復移動幅を前記バーナーの横列設置間隔の整数倍として多孔質ガラス母材を製造することを特徴とする多孔質ガラス母材の製造方法。 - 前記第1移動軸および第2移動軸の両方の移動軸の往復移動幅を前記バーナーの横列設置間隔の整数倍とすることを特徴とする請求項1に記載の多孔質ガラス母材の製造方法。
- 請求項1または請求項2に記載した多孔質ガラス母材の製造方法であって、前記整数を1または(全バーナー数)/5を超えない整数にすることを特徴とする多孔質ガラス母材の製造方法。
- 少なくとも出発母材を把持しかつ該出発母材をその長手軸の周りに回転させる手段と、ガラス微粒子を出発母材へ堆積させる複数の横列設置されたバーナーを具備する多孔質ガラス母材の製造装置であって、
前記バーナー列を往復移動する第1移動軸と、第1移動軸を往復移動する第2移動軸とを具備し、前記第1移動軸および第2移動軸の少なくとも1の移動軸の往復移動幅が前記バーナーの横列設置間隔の整数倍とされており、バーナー列の往復移動の折返し位置を移動させることが可能とされていることを特徴とする多孔質ガラス母材の製造装置。
Priority Applications (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20703999A JP3730448B2 (ja) | 1999-07-22 | 1999-07-22 | 多孔質ガラス母材の製造方法と製造装置 |
DE60019029T DE60019029T2 (de) | 1999-07-02 | 2000-06-30 | Verfahren und Vorrichtung zum herstellen einer Vorform aus Glas für optische Fasern mittels des Aussenabscheidungsverfahrens |
KR1020000036991A KR100651146B1 (ko) | 1999-07-02 | 2000-06-30 | 유리 모재를 제조하는 장치 및 그 방법 |
EP00250218A EP1065175B1 (en) | 1999-07-02 | 2000-06-30 | Method and apparatus for manufacturing a glass optical fibre preform by the outside vapour deposition process |
TW093137247A TWI260310B (en) | 1999-07-02 | 2000-07-01 | Glass base material manufacturing apparatus and glass base material manufacturing method |
TW093132318A TW200505807A (en) | 1999-07-02 | 2000-07-01 | Glass base material manufacturing apparatus and glass base material manufacturing method |
TW089113004A TWI229057B (en) | 1999-07-02 | 2000-07-01 | Glass base material manufacturing apparatus |
US09/609,389 US6546759B1 (en) | 1999-07-02 | 2000-07-03 | Glass base material manufacturing apparatus with super imposed back-and-forth burner movement |
US10/370,494 US7055345B2 (en) | 1999-07-02 | 2003-02-24 | Glass base material manufacturing apparatus and glass base material manufacturing method |
US10/373,224 US6672112B2 (en) | 1999-07-02 | 2003-02-26 | OVD apparatus including air-regulating structure |
KR1020060041200A KR100691668B1 (ko) | 1999-07-02 | 2006-05-08 | 유리 모재를 제조하는 장치 및 그 방법 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20703999A JP3730448B2 (ja) | 1999-07-22 | 1999-07-22 | 多孔質ガラス母材の製造方法と製造装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001031431A JP2001031431A (ja) | 2001-02-06 |
JP3730448B2 true JP3730448B2 (ja) | 2006-01-05 |
Family
ID=16533203
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20703999A Expired - Fee Related JP3730448B2 (ja) | 1999-07-02 | 1999-07-22 | 多孔質ガラス母材の製造方法と製造装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3730448B2 (ja) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4370798B2 (ja) | 2002-04-18 | 2009-11-25 | 住友電気工業株式会社 | 多孔質ガラス母材の製造方法 |
US7506522B2 (en) * | 2004-12-29 | 2009-03-24 | Corning Incorporated | High refractive index homogeneity fused silica glass and method of making same |
US10464838B2 (en) * | 2015-01-13 | 2019-11-05 | Asi/Silica Machinery, Llc | Enhanced particle deposition system and method |
JP7393985B2 (ja) * | 2020-03-13 | 2023-12-07 | 古河電気工業株式会社 | 光ファイバ母材の製造装置及び光ファイバ母材の製造方法 |
JP2022111799A (ja) * | 2021-01-20 | 2022-08-01 | 古河電気工業株式会社 | 光ファイバ母材の製造装置及び光ファイバ母材の製造方法 |
-
1999
- 1999-07-22 JP JP20703999A patent/JP3730448B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2001031431A (ja) | 2001-02-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2809905B2 (ja) | 多孔質ガラスプリフォ−ムの作成方法および装置 | |
JP4015702B2 (ja) | 石英ガラス体の製造方法 | |
JP4763015B2 (ja) | ガラス母材製造装置及びガラス母材製造方法 | |
JPS5978945A (ja) | 光フアイバ用多孔質プリフオ−ムの製造方法 | |
JP2005522342A5 (ja) | ||
JP3730448B2 (ja) | 多孔質ガラス母材の製造方法と製造装置 | |
US6837077B2 (en) | Method for producing soot body | |
JP3730446B2 (ja) | 多孔質ガラス母材の製造方法と製造装置 | |
JP4614782B2 (ja) | 光ファイバ用石英ガラス母材の製造方法 | |
JP3396430B2 (ja) | 光ファィバ母材の製造方法および光ファィバ母材を製造する装置 | |
JP3581764B2 (ja) | 多孔質光ファイバ母材の製造方法 | |
JP4690979B2 (ja) | 光ファイバ母材の製造方法 | |
US20030003228A1 (en) | Method and device for manufactuirng glass particulate sedimented body | |
JP4495070B2 (ja) | 光ファイバ用多孔質母材の製造方法 | |
JP2005225702A (ja) | ガラス微粒子堆積体の製造方法 | |
JP3521897B2 (ja) | 多孔質ガラス母材の製造方法及び装置 | |
JP3917022B2 (ja) | 光ファイバ用多孔質母材の製造方法 | |
JP3521415B2 (ja) | 光ファイバ母材の製造方法 | |
JPH08325029A (ja) | 光ファイバ用多孔質ガラス母材の製造方法 | |
JP2002338256A (ja) | ガラス微粒子堆積体の製造方法及び装置 | |
JPH03295827A (ja) | 光ファイバ母材の製造方法 | |
JP2003048722A (ja) | 多孔質ガラス母材の製造方法 | |
JP3521898B2 (ja) | 多孔質ガラス母材の製造方法 | |
JP2000272929A (ja) | 光ファイバ母材の製造方法 | |
JP4140839B2 (ja) | 光ファイバ母材の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050906 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050920 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20051006 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |