JP3723362B2 - フラッシュ方式アナログ/デジタル変換装置 - Google Patents

フラッシュ方式アナログ/デジタル変換装置 Download PDF

Info

Publication number
JP3723362B2
JP3723362B2 JP35012198A JP35012198A JP3723362B2 JP 3723362 B2 JP3723362 B2 JP 3723362B2 JP 35012198 A JP35012198 A JP 35012198A JP 35012198 A JP35012198 A JP 35012198A JP 3723362 B2 JP3723362 B2 JP 3723362B2
Authority
JP
Japan
Prior art keywords
code
bit
channel
input
thermometer code
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35012198A
Other languages
English (en)
Other versions
JP2000013229A (ja
Inventor
秉 權 安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of JP2000013229A publication Critical patent/JP2000013229A/ja
Application granted granted Critical
Publication of JP3723362B2 publication Critical patent/JP3723362B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/14Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit
    • H03M1/16Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit with scale factor modification, i.e. by changing the amplification between the steps
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/14Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit
    • H03M1/145Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit the steps being performed sequentially in series-connected stages
    • H03M1/146Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit the steps being performed sequentially in series-connected stages all stages being simultaneous converters
    • H03M1/147Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit the steps being performed sequentially in series-connected stages all stages being simultaneous converters at least two of which share a common reference generator
    • H03M1/148Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit the steps being performed sequentially in series-connected stages all stages being simultaneous converters at least two of which share a common reference generator the reference generator being arranged in a two-dimensional array
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/06Continuously compensating for, or preventing, undesired influence of physical parameters
    • H03M1/0617Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence
    • H03M1/0675Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence using redundancy
    • H03M1/0678Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence using redundancy using additional components or elements, e.g. dummy components
    • H03M1/068Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence using redundancy using additional components or elements, e.g. dummy components the original and additional components or elements being complementary to each other, e.g. CMOS
    • H03M1/0682Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence using redundancy using additional components or elements, e.g. dummy components the original and additional components or elements being complementary to each other, e.g. CMOS using a differential network structure, i.e. symmetrical with respect to ground
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/34Analogue value compared with reference values
    • H03M1/36Analogue value compared with reference values simultaneously only, i.e. parallel type
    • H03M1/361Analogue value compared with reference values simultaneously only, i.e. parallel type having a separate comparator and reference value for each quantisation level, i.e. full flash converter type
    • H03M1/362Analogue value compared with reference values simultaneously only, i.e. parallel type having a separate comparator and reference value for each quantisation level, i.e. full flash converter type the reference values being generated by a resistive voltage divider
    • H03M1/365Analogue value compared with reference values simultaneously only, i.e. parallel type having a separate comparator and reference value for each quantisation level, i.e. full flash converter type the reference values being generated by a resistive voltage divider the voltage divider being a single resistor string

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Analogue/Digital Conversion (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はアナログ/デジタル変換装置に係り、特に、比較器アレイを用いたフラッシュ方式アナログ/デジタル変換装置に関する。
【0002】
【従来の技術】
従来のnビット1チャンネルフラッシュ方式アナログ/デジタル変換装置は2n (ここで、nは正の整数)個の抵抗と(2n −1)個の比較器を使用してなる。このように幾つの比較器と抵抗を含むフラッシュ方式アナログ/デジタル変換装置においては、アナログ/デジタル変換装置の直線性特性のために比較器及び抵抗の特性を同じくすることは非常に重要である。
【0003】
【発明が解決しようとする課題】
しかし、製造工程上のバラツキによって比較器間及び抵抗間には特性が一致しない特性不整合が発生する。このような特性不整合が存在する場合、アナログ/デジタル変換装置の直線性特性が低下し、誤動作や誤変換を起こす。従って、通常6ビット以上のアナログ/デジタル変換装置ではフラッシュ方式アナログ/デジタル変換装置を使用し難くなる。
【0004】
一方、最近はシステムの信号処理が多チャンネル化してアナログ/デジタル変換装置もチャンネル数に相応して幾つかが同時に使われる。しかし、従来のフラッシュ方式アナログ/デジタル変換装置をチャンネル数に相応して幾つを同時に使用すると、各チャンネルのアナログ/デジタル変換装置間にも特性不整合が発生する追加的な問題点が起こる。
【0005】
本発明が達成しようとする技術的課題は、サーモメータコードの特性を利用して比較器及び抵抗の使用個数を従来と対比して略半分に減らすことによって、製造上のバラツキによって発生する特性不整合を最小化するフラッシュ方式アナログ/デジタル変換装置を提供することにある。
【0006】
【課題を解決するための手段】
本発明によるフラッシュ方式アナログ/デジタル変換装置は、サンプルアンドホールドされたアナログ信号を入力し、システムクロック信号に応答して1ビットの中間コード及び(m/2−1)(ここで、m=2n 、nは正の整数)ビットのハーフサーモメータコードを出力するハーフコード発生手段と、中間コード及び前記(m/2−1)ビットのハーフサーモメータコードを入力して論理組合し、論理組合された結果を(m−1)ビットのフルサーモメータコードとして出力するコード発生手段と、(m−1)ビットのフルサーモメータコードをnビットの2進データに変換するエンコーダとを含む。
【0007】
また、本発明によるフラッシュ方式アナログ/デジタル変換装置は、サンプルアンドホールドされた第1乃至第P(ここで、P>1の整数)アナログ信号を第1乃至第Pチャンネル入力端に各々入力し、システムクロック信号に応答して第1乃至第Pチャンネル別に(m/2−1)(ここで、m=2n 、nは正の整数)ビットのハーフサーモメータコードと1ビットのチャンネル中間コードを各々出力するハーフコード発生手段と、各チャンネル別に発生する前記1ビットの中間コード及び前記(m/2−1)ビットのハーフサーモメータコードを入力して論理組合し、論理組合した結果を(m−1)ビットのフルサーモメータコードとして出力する第1乃至第Pチャンネルコード発生手段と、前記第1乃至第Pチャンネルコード発生手段から各々発生される(m−1)ビットのフルサーモメータコードをnビットの2進データに変換する第1乃至第Pチャンネルエンコーダを含む。
【0008】
一般的にnビットフラッシュ方式のアナログ/デジタル変換装置では(2n −1)個の比較器が必要であり、(2n −1)個の比較器から出力されるデータは(2n −1)ビットのフルサーモメータコードである。この時、フルサーモメータコードは(2n-1 −1)ビットの上位ハーフサーモメータコード、(2n-1 −1)ビットの下位ハーフサーモメータコード及び中間コードよりなる。このようなサーモメータコードの特性を説明すると次の通りである。
【0009】
例えば、中間コード値を出力する中間(2n-1 番目) 比較器の正の入力端子にアナログ信号が入力され、正の入力端子に入力されたアナログ信号より小さな基準電圧が負の入力端子に入力されると仮定しよう。すると、中間比較器は" 高" 論理レベルの信号を出力する。この時、中間比較器の基準電圧より低い基準電圧を入力して下位ハーフサーモメータコード値を出力する(2n-1 −1)個の比較器は、全て" 高" 論理レベルのコード値を出力する。また、中間比較器の正の入力端子に入力されるアナログ信号が負の入力端子に入力される基準電圧より小さいと、中間比較器は" 低" 論理レベルの信号を出力する。この時、中間比較器の基準電圧より高い基準電圧を入力して上位ハーフサーモメータコードを出力する(2n-1 −1)個の比較器は、全て" 低" 論理レベルのコード値を有する上位ハーフサーモメータコードを出力する。
【0010】
即ち、入力されるアナログ信号が中間比較器の基準電圧より大きくて中間比較器が" 高" 論理レベルのコード値を出力すると、上で説明したサーモメータコードの特性により下位ハーフサーモメータコード値が全て" 高" 論理レベルということを既に知っている。従って、中間比較器より大きい基準電圧を入力して上位ハーフコード値を出力する比較器だけ動作させる。一方、入力されるアナログ信号が中間比較器の基準電圧より小さくて中間比較器が" 低" 論理レベルのコード値を出力すると、上で説明したサーモメータコードの特性により上位ハーフサーモメータコード値が全て" 低" 論理レベルということを既に知っている。従って、中間比較器より小さな基準電圧を入力して下位ハーフコード値を出力する比較器だけ動作させる。
【0011】
結局、中間比較器から出力されるコード値を制御信号として使用することによって、実際に動作される比較器をほぼ半分に減らしうる。即ち、従来はnビットフラッシュ方式アナログ/デジタル変換装置を実現するために(2n −1)個の比較器が必要であった。しかし、上記のようなサーモメータコードの特性を利用すると、2n-1 個の比較器だけでnビットアナログ/デジタル変換装置が実現できる。
【0012】
【発明の実施の形態】
以下、本発明によるフラッシュ方式アナログ/デジタル変換装置の望ましい実施形態を添付した図面を参照して次のように説明する。
図1は本発明による4ビットの2チャンネルフラッシュ方式アナログ/デジタル変換装置を説明するための一実施形態のブロック図である。本発明による4ビットの2チャンネルフラッシュ方式アナログ/デジタル変換装置は、第1〜第8比較器100 〜114 よりなる第1チャンネル比較部190、第9〜第16比較器140 〜154 よりなる第2チャンネル比較部192 、第1〜第8抵抗R1〜R8が直列接続された第1基準抵抗列138 、第9〜第16抵抗R9〜R16 が直列接続された第2基準抵抗列136 、第1〜第7スイッチ116 〜128 よりなる第1スイッチング部134 、第8〜第14スイッチ156 〜168 よりなる第2スイッチング部174 、第1〜第2コード発生部180 〜182 と第1〜第2エンコーダ184 〜186 を含む。
【0013】
第1基準抵抗列138 の第1〜第8抵抗R1〜R8の各々は第1〜第7ノードN1〜N7を通じて直列接続され、第1抵抗R1を通して第1基準電圧VREFL と接続される。また、第2基準抵抗列136 の第9〜第16抵抗R9〜R16 の各々は第9〜第15ノードN9〜N15 を通じて直列接続され、第16抵抗R16 を通して第2基準電圧VREFH と接続される。そして、第1及び第2抵抗基準列138 及び136 は第8ノードN8で直列接続され、第8ノードN8での電圧は第1比較器100 の基準電圧として負の入力端子に入力される。
【0014】
第1比較器100 は入力端子IN1 に入力された第1アナログ信号を正の入力端子に入力し、第8ノードN8から発生する基準電圧を負の入力端子に入力してその大きさを比較し、比較した結果をフルサーモメータコードの中間コード値として第1コード発生部180 に出力する。また、第1比較器100 から出力された中間コード値は第1スイッチング部134 を制御し、第1〜第7スイッチ116 〜128 の各々が第7〜第1ノードN7〜N1の各々と接続されるように第1基準抵抗列138 にスイッチングしたり、または、第9〜第15ノードN9〜N15 の各々と接続されるように第2基準抵抗列136 にスイッチングさせる。
【0015】
結局、第1比較器100 から出力される中間コード値に応答して第1スイッチング部134 が第1基準抵抗列138 にスイッチングすると、第2〜第8比較器102 〜114 の各々の負の入力端子には第7〜第1ノードN7〜N1から発生する電圧が各々入力される。また、中間コード値に応答して第1スイッチング部134 が第2基準抵抗列136 にスイッチングすると、第2〜第8比較器102 〜114 の各々の負の入力端子には第9〜第15ノードN9〜N15 から発生する電圧が各々入力される。
【0016】
第2〜第8比較器102 〜114 は第1〜第7スイッチ116 〜128 の各々から発生する基準電圧を負の入力端子に各々入力し、入力端子IN1 に入力される第1アナログ信号を正の入力端子に各々入力してその大きさを比較し、 比較した結果をハーフサーモメータコードとして第1コード発生部180 に出力する。
【0017】
第1コード発生部180 は第1比較器100 から発生した中間コード値と第2〜第8比較器102 〜114 から発生した7ビットのハーフサーモメータコードを入力して論理組合し、論理組合された結果を15ビットのフルサーモメータコードとして出力する。
【0018】
第1エンコーダ184 は第1コード発生部180 から15ビットのフルサーモメータコードを入力し、15ビットのフルサーモメータコードに相応する4ビットのデジタルデータを出力端子OUT1に最終出力する。
【0019】
一方、第2チャンネル比較部192 、第2スイッチング部174 、第2コード発生部182 及び第2エンコーダ186 の構成は、対応する第1チャンネル比較部190 、第1スイッチング部174 、第1コード発生部180 及び第1エンコーダ184 の構成と同一なのでその説明を省略する。
【0020】
以下、図1に示した装置の動作を添付した図面を参照して次のように説明する。
図2(A)乃至図2(G)は図1に示した各部の入出力波形図であって、図2(A)は入力端子IN1 及びIN2 に入力される、サンプルアンドホールドされたアナログ信号30及び32を各々示し、図2(B)は図1に示した装置の動作のためのシステムクロック信号CKを示し、図2(C)は第1チャンネル比較部190 の第1比較器100 の出力信号を示し、図2(D)は第2チャンネル比較部192 の第9比較器140 の出力信号を示し、図2(E)は第1及び第2コード発生部180 及び182 に入力される7ビットのハーフサーモメータコードを示し、図2(F)は第1及び第2コード発生部180 及び182 から出力される15ビットのフルサーモメータコードを示し、図2(G)は第1及び第2エンコーダ184 及び186 から出力される4ビットのデジタルデータを各々示す。
【0021】
図1に示した4ビット2チャンネルフラッシュ方式のアナログ/デジタル変換装置で第1チャンネル比較部190 の第1比較器100 は、第1チャンネルの中間コード値を発生する比較器である。第1比較器100 は入力端子IN1 から入力される図2(A)に示した第1アナログ信号30を正の入力端子に入力し、第8ノードN8から発生する中央基準電圧V1を負の入力端子に入力する。この時、第8ノードN8から発生する中央基準電圧V1は次の数学式1のようになる。
【数1】
V1 =(VREFH−VREFL)/2+VREFL
【0022】
ここで、VREFL 及びVREFH は第1及び第2基準電圧を示し、第2基準電圧VREFH は第1基準電圧VREFL より大きい電圧値を有する。また、第1及び第2基準抵抗列138 及び136 を構成する第1〜第16抵抗R1〜R16 の抵抗の大きさは全て同一である。すると、第8ノードN8を基点として、第9〜第15ノードN9〜N15 の各々から発生する電圧は第8ノードN8から発生する中央基準電圧V1より大きいし、第1〜第7ノードN1〜N7から発生する電圧は第8ノードN8から発生する中央基準電圧V1より小さい。
【0023】
また、第2チャンネル比較部192 で第9比較器140 は第2チャンネルの中間コード値を発生する比較器である。第9比較器140 は入力端子IN2 に入力される図2(A)に示した第2アナログ信号32を正の入力端子に入力し、第8ノードN8から発生する中央基準電圧V1を負の入力端子に各々入力する。
【0024】
まず、図2(A)の第1区間40のように、システムクロック信号に応答して入力端子IN1 に入力される第1アナログ信号30が中央基準電圧V1より大きく、入力端子IN2 に入力される第2アナログ信号32が中央基準電圧V1より小さな区間での動作を調べる。
【0025】
第1チャンネル比較部190 の第1比較器100 に中央基準電圧V1より大きいアナログ信号が入力されると、第1比較器100 は図2(C)に示した波形図のように" 高" 論理レベルの中間コード値を出力する。第1比較器100 から出力される" 高" 論理レベルの中間コード値は第1コード発生部180 に入力されながら、同時に第1スイッチング部134 のスイッチング動作を制御する制御信号として利用される。
【0026】
一方、第1比較器100 が" 高" 論理レベルのコード値を出力すると、サーモメータコードの特性により下位ハーフサーモメータコード値は全て" 高" 論理レベルのコード値が発生することが分かる。従って、第1比較器100 が" 高" 論理レベルを有するコード値を出力すると、第2〜第8比較器102 〜114 が上位ハーフサーモメータコード値を出力するように、第1〜第7スイッチ116 〜128 は第2基準抵抗列136 の第9〜第15ノードN9〜N15 に各々接続するようにスイッチングする。このように第1〜第7スイッチ116 〜128 が第9〜第15ノードN9〜N15 に各々スイッチングすると、第2〜第8比較器102 〜114 の負の入力端子に中央基準電圧V1より大きい電圧が各々入力される。
【0027】
第2〜第8比較器102 〜114 は負の入力端子に入力された電圧と正の入力端子に入力された第1アナログ信号30の大きさを各々比較して、比較した結果を上位ハーフサーモメータコード値として第1コード発生部180 に出力する。
【0028】
例えば、入力端子IN1 に入力される第1アナログ信号30が第6比較器110 の負の入力端子に入力される電圧より大きく、第7比較器112 の負の入力端子に入力される電圧より小さいと仮定しよう。すると、第2〜第6比較器102 〜110 は全て" 高" 論理レベルのコード値を第1コード発生部180 に各々出力し、第7〜第8比較器112 〜114 は全て" 低" 論理レベルのコード値を第1コード発生部180 に各々出力する。
【0029】
一方、第2チャンネル比較部192 の第9比較器140 に中央基準電圧V1より小さいアナログ信号が入力されると、第9比較器140 は図2(D)に示した波形図と同じように" 低" 論理レベルの中間コード値を出力する。第9比較器140 から出力される" 低" 論理レベルの中間コード値は第2コード発生部182 に入力されながら、同時に第2スイッチング部174 のスイッチング動作を制御する制御信号として利用される。上記のように、第9比較器140 が" 低" 論理レベルのコード値を出力すると、サーモメータコードの特性により上位ハーフサーモメータコード値は全て" 低" 論理レベルのコード値が発生することが分かる。
【0030】
従って、第9比較器140 が" 低" 論理レベルを有するコード値を出力すると、第10〜第16比較器142 〜154 が下位ハーフサーモメータコード値を出力するように、第8〜第14スイッチ156 〜168 は第1基準抵抗列138 の第7〜第1ノードN7〜N1に各々接続されるようにスイッチングする。このように、第8〜第14スイッチ156 〜168 が第7〜第1ノードN7〜N1に各々スイッチングすると、第10〜第16比較器142 〜154 の負の入力端子に中央基準電圧V1より小さな電圧が入力される。
【0031】
第10〜第16比較器142 〜154 は負の入力端子に入力された電圧と正の入力端子に入力された第2アナログ信号32の大きさを比較し、比較した結果を下位ハーフサーモメータコード値として第2コード発生部182 に出力する。
【0032】
例えば、入力端子IN2 に入力される第2アナログ信号32が第14比較器150 の負の入力端子に入力される電圧より小さく、第15比較器152 の負の入力端子に入力される電圧より大きいと仮定しよう。すると、第10〜第14比較器142 〜150 は全て" 低" 論理レベルを有するコード値を第2コード発生部182 に出力し、第15〜第16比較器152 〜154 は全て" 高" 論理レベルを有するコード値を第2コード発生部182 に出力する。
【0033】
次に、図2(A)の第2区間42のようにシステムクロック信号に応答して、入力端子IN1 に入力される第1アナログ信号30が中央基準電圧V1より小さく、入力端子IN2 に入力される第2アナログ信号32が中央基準電圧V1より大きい区間での動作を調べる。
【0034】
第1チャンネル比較部190 の第1比較器100 に中央基準電圧V1より小さいアナログ信号が入力されると、第1比較器100 は図2(C)に示した波形図と同じように" 低" 論理レベルの中間コード値を出力する。第1比較器100 から出力される" 低" 論理レベルの中間コード値は第1コード発生部180 に入力されながら、同時に第1スイッチング部134 のスイッチング動作を制御する制御信号として利用される。即ち、第1比較器100 が" 低" 論理レベルを有するコード値を出力すると、第2〜第8比較器102 〜114 が下位ハーフサーモメータコード値を出力するように、第1〜第7スイッチ116 〜128 は第1基準抵抗列138 の第7〜第1ノードN7〜N1に各々接続されるようにスイッチングする。
【0035】
このように、第1〜第7スイッチ116 〜128 が第7〜第1ノードN7〜N1に各々スイッチングすると、第2〜第8比較器102 〜114 の負の入力端子に中央基準電圧V1より小さな電圧が入力される。
【0036】
第2〜第8比較器102 〜114 は負の入力端子に入力された電圧と正の入力端子に入力された第1アナログ信号30の大きさを比較し、比較した結果を下位ハーフサーモメータコード値として第1コード発生部180 に出力する。
【0037】
例えば、入力端子IN1に入力される第1アナログ信号30が第6比較器110 の負の入力端子に入力される電圧より小さく、第7比較器112 の負の入力端子に入力される電圧より大きいと仮定しよう。すると、第2〜第6比較器102 〜110 は全て" 低" 論理レベルを有するコード値を第1コード発生部180 に出力し、第7〜第8比較器112 〜114 は全て" 高" 論理レベルを有するコード値を第1コード発生部180 に出力する。
【0038】
一方、第2チャンネル比較部192 の第9比較器140 に中央基準電圧V1より大きいアナログ信号が入力されると、第9比較器140 は図2(D)に示した波形図と同じように" 高" 論理レベルの中間コード値を出力する。第9比較器140 から出力される" 高" 論理レベルの中間コード値は第2コード発生部182 に入力されながら、同時に第2スイッチング部174 のスイッチング動作を制御する制御信号として利用される。即ち、第9比較器140 が" 高" 論理レベルを有するコード値を出力すると、第10〜第16比較器142 〜154 が上位ハーフサーモメータコード値を出力するように、第8〜第14スイッチ156 〜168 は第2基準抵抗列136 の第9〜第15ノードN9〜N15 に各々接続されるようにスイッチングする。
【0039】
このように、第8〜第14スイッチ156 〜168 が第9〜第15ノードN9〜N15 に各々スイッチングすると、第10〜第16比較器142 〜154 の負の入力端子に中央基準電圧V1より大きい電圧が入力される。
【0040】
第10〜第16比較器142 〜154 は負の入力端子に入力された電圧と正の入力端子に入力された第2アナログ信号32の大きさを比較し、比較した結果を上位ハーフサーモメータコード値として第2コード発生部180 に出力する。
【0041】
例えば、入力端子IN2 に入力される第2アナログ信号32が第14比較器150 の負の入力端子に入力される電圧より大きく、第15比較器152 の負の入力端子に入力される電圧より小さいと仮定しよう。すると、第10〜第14比較器142 〜150 は全て" 高" 論理レベルを有するコード値を第2コード発生部182 に出力し、第15〜第16比較器152 〜154 は全て" 低" 論理レベルを有するコード値を第2コード発生部182 に出力する。
【0042】
以上のような動作により、第1チャンネル比較部190 は、第1チャンネルの中間コード値と図2(E)に示した7ビットの第1チャンネルハーフサーモメータコード値を第1コード発生部180 に出力し、第2チャンネル比較部192 は第2チャンネルの中間コード値と図2(E)に示した7ビットの第2チャンネルハーフサーモメータコード値を第2コード発生部182 に出力する。第1及び第2コード発生部180 及び182 は、第1及び第2チャンネル比較部190 及び192 から発生した各々の中間コード値及び7ビットのハーフサーモメータコード値を論理組合して、図2(F)に示した15ビットのフルサーモメータコード値に変換して第1及び第2エンコーダ184 及び186 に各々出力する。
【0043】
第1及び第2エンコーダ184 及び186 は第1及び第2コード発生部180 及び182 から15ビットのフルサーモメータコード値を各々入力し、サーモメータコード値に対応する2進データにエンコーディングして、図2(G)に示した4ビットの2進データを出力端子OUT1及びOUT2に各々出力する。
【0044】
結局、24 個の比較器を利用して、従来は4ビット1チャンネルフラッシュ方式アナログ/デジタル変換装置が実現できたが、本発明では4ビット2チャンネルフラッシュ方式アナログ/デジタル変換装置が実現できる。一方、図1に示した装置は第1及び第2チャンネルに対して同じ基準抵抗列が使われるが、本発明の他の実施形態においては、同じ基準抵抗列が2チャンネル以上の多チャンネルアナログ/デジタル変換装置で使われる場合もある。このように単一チャンネル変換器の場合、比較器の使用個数が従来に対して半分減り、多チャンネル変換器では各チャンネルが同じ基準抵抗列を使用して比較器及び抵抗の個数が更に減るため、工程上発生する比較器及び抵抗のバラツキによって発生する比較器間及びチャンネル間の不整合を従来と対比して大きく減らしうる。
【0045】
図3は図1に示した第1及び第2コード発生部180 及び182 の本発明による望ましい一具体例の回路図である。本発明によるコード発生部は第1〜第4インバータ200 〜206 よりなるインバーティング部208 、第1〜第7ANDゲート210 〜216 よりなる第1論理組合部218 、第1〜第7ORゲート220 〜226 よりなる第2論理組合部228 及びラッチ部230 を含む。
【0046】
図3に示したコード発生部は、図1に示した装置の第1または第2チャンネル比較部190 及び192 から各々出力される中間コード値と7ビットのハーフサーモメータコードを論理組合して、15ビットのフルサーモメータコードに変換する。
【0047】
図3で入力データを示すD0は第1または第2チャンネル比較部190 または192 から出力される中間コード値を示し、D1〜D7は第1または第2チャンネル比較部190 または192 から出力されるハーフサーモメータコードである。
【0048】
第1論理組合部218 は、ハーフサーモメータコード値D1〜D7の各々と中間コード値D0を論理組合して上位ハーフサーモメータコードを発生する。また、第2論理組合部228 は、ハーフサーモメータコード値D1〜D7各々と中間コード値D0を論理組合して下位ハーフサーモメータコードを発生する。この時、第1〜第4インバータ200 〜206 は中間コード値D0のファン−アウトを高めるためのものである。
【0049】
ラッチ部230 は第1論理組合部218 から発生する7ビットの上位ハーフサーモメータコード、中間コード値及び第2論理組合部228 から発生する7ビットの下位ハーフサーモメータコードをシステムクロック信号CKに応答して各々入力し、これを15ビットのフルサーモメータコードとして出力する。
【0050】
以下、図1に示した第1チャンネル比較部190 を例として図3に示したコード発生部の動作を説明する。
まず、入力端子IN1 に中央基準電圧V1より大きいアナログ信号が入力されると、第1比較器100 は" 高" 論理レベルを有する中間コード値D0を出力する。この時、" 高" 論理レベルの中間コード値D0を入力する第2論理組合部228 のORゲートは全て" 高" 論理レベルのコード値を出力する。 従って、第2論理組合部228 は" 高" 論理レベルを有する7ビットの下位ハーフサーモメータコードを出力する。また、" 高" 論理レベルの中間コード値D0を入力する第1論理組合部218 は、第1チャンネル比較部190 から出力されるコード値に相応して7ビットの上位ハーフサーモメータコードを出力する。
【0051】
例えば、入力端子IN1 に入力されるアナログ信号が第6比較器110 の負の入力端子に入力される電圧より大きく、第7比較器112 の負の入力端子に入力される電圧より小さいと仮定しよう。すると、第7〜第8比較器112 〜114 は全て" 低" 論理レベルを有するコードD6〜D7を出力し、第2〜第6比較器102 〜110 は" 高" 論理レベルを有するコードD1〜D5を出力する。従って、" 低" 論理レベルのコード値を入力する第6〜第7ANDゲート214 〜216 は" 低" 論理レベルのコード値をラッチ部230 に出力し、" 高" 論理レベルを入力する第1〜第5ANDゲート210 及び212 は" 高" 論理レベルのコード値をラッチ部230 に出力する。
【0052】
ラッチ部230 はシステムクロック信号CKに応答して第1論理組合部218 、インバーティング部208 及び第2論理組合部228 から出力されるコード値をラッチ及び出力する。結局、出力端子OUT1〜OUT13 で" 高" 論理レベルのコード値を出力し、出力端子OUT14 〜OUT15 で" 低" 論理レベルのコード値を出力することによって、15ビットのフルサーモメータコードを出力する。
【0053】
次に、入力端子IN1 に中央基準電圧V1より小さなアナログ信号が入力されると、第1比較器100 は" 低" 論理レベルを有する中間コード値D0を出力する。この時、" 低" 論理レベルの中間コード値D0を入力する第1論理組合部218 のANDゲートは、全て" 低" 論理レベルのコード値を出力する。従って、第1論理組合部218 は" 低" 論理レベルを有する7ビットの上位ハーフサーモメータコードを出力する。また、" 低" 論理レベルの中間コード値D0を入力する第2論理組合部228 は、第1チャンネル比較部190 から出力されるコード値に相応して7ビットの下位ハーフサーモメータコードを出力する。
【0054】
例えば、入力端子IN1 に入力されるアナログ信号が第6比較器110 の負の入力端子に入力される電圧より小さく、第7比較器112 の負の入力端子に入力される電圧より大きいと仮定しよう。すると、 第2〜第6比較器102 〜110 は" 低" 論理レベルを有するコードD1〜D5を出力し、第7〜第8比較器112 〜114 は" 高" 論理レベルを有するコードD6〜D7を出力する。従って、" 低" 論理レベルのコード値を入力する第1〜第5ORゲート220 〜222 は" 低" 論理レベルのコード値をラッチ部230 に出力し、" 高" 論理レベルを入力する第6〜第7ORゲート224 〜226 は" 高" 論理レベルのコード値をラッチ部230 に出力する。
【0055】
ラッチ部230 はシステムクロック信号CKに応答して第1論理組合部218 、インバーティング部208 及び第2論理組合部228 から出力されるコード値をラッチ及び出力する。結局、出力端子OUT1〜OUT2で" 高" 論理レベルのコード値を出力し、出力端子OUT3〜OUT15 で" 低" 論理レベルのコード値を出力することによって、15ビットのフルサーモメータコードを出力する。
【0056】
一方、第2チャンネル比較部192 の出力コード値に相応する第2コード発生部182 の動作は、前述した第1チャンネル比較部190 の出力コード値に相応する第1コード発生部180 の動作と同一なのでその説明を省略する。
【0057】
【発明の効果】
以上のように、本発明によるフラッシュ方式アナログ/デジタル変換装置は、従来と対比して用いられる比較器の個数を略半分に減らすことができ、また、2チャンネル以上のアナログ/デジタル変換装置の実現時各チャンネルが同じ基準抵抗列を使用することによって、消費電力及びチップの大きさを減少させるだけでなく、製造時の比較器及び基準抵抗列のバラツキによって発生する比較器間及びチャンネル間の不整合を減少させる効果がある。合わせて、比較器の個数が減少し製造バラツキの影響が減ることによってビット数の多い変換器(例えば、6ビット以上)を製作できる。
【図面の簡単な説明】
【図1】本発明による2チャンネルフラッシュ方式アナログ/デジタル変換装置の一実施形態例のブロック図。
【図2】図1に示した各部の入出力波形図。
【図3】図1に示した第1及び第2コード発生部の回路図。
【符号の説明】
100 〜114 第1〜第8比較器
116 〜128 第1〜第7スイッチ
134 第1スイッチング部
136 第2基準抵抗列
138 第1基準抵抗列
140 〜154 第9〜第16比較器
156 〜168 第8〜第14スイッチ
174 第2スイッチング部
180 〜182 第1〜第2コード発生部
184 〜186 第1〜第2エンコーダ
190 第1チャンネル比較部
192 第2チャンネル比較部
R1〜R8 第1〜第8抵抗
R9〜R16 第9〜第16抵抗
N1〜N7 第1〜第7ノード
N9〜N15 第9〜第15ノード
VREFL 第1基準電圧
VREFH 第2基準電圧

Claims (10)

  1. アナログ信号を入力し、システムクロック信号に応答して1ビットの中間コード及び(m/2−1)(ここで、m=2n 、nは正の整数)ビットのハーフサーモメータコードを出力するハーフコード発生手段と、
    前記中間コード及び前記(m/2−1)ビットのハーフサーモメータコードを入力して論理組合し、論理組合された結果を(m−1)ビットのフルサーモメータコードとして出力するコード発生手段と、
    前記(m−1)ビットのフルサーモメータコードをnビットの2進データに変換するエンコーダと
    を具備することを特徴とするフラッシュ方式アナログ/デジタル変換装置。
  2. 前記ハーフコード発生手段は、
    第1基準電圧と第1ノードとの間で、同じ抵抗特性を有する(m/2) 個の抵抗が直列接続された第1基準抵抗列と、
    前記第1ノードと第2基準電圧との間で、同じ抵抗特性を有する(m/2) 個の抵抗が直列接続された第2基準抵抗列と、
    前記アナログ信号を前記システムクロック信号に応答して正の入力端子に入力し、前記第1ノードから発生する中央基準電圧を負の入力端子に入力して、前記アナログ信号と前記中央基準電圧の大きさを比較して、比較した結果を中間コードとして出力する中間比較器と、
    各々が、前記中間コードに応答して前記第1基準抵抗列の該当ノードの電圧、または前記第2基準抵抗列の該当ノードの電圧を選択して選択された電圧を各々の基準電圧として出力する第1〜第(m/2−1)スイッチング手段と、
    各々が、前記アナログ信号を前記クロック信号に応答して正の入力端子に入力し、対応する前記第1〜第(m/2−1)スイッチング手段から各々出力される前記各基準電圧を負の入力端子に入力して、前記アナログ信号と前記各基準電圧の大きさを比較し、比較した結果を前記(m/2−1)ビットのハーフサーモメータコードの該当ビットとして出力する第1〜第(m/2−1)比較器と
    を具備することを特徴とする請求項1に記載のフラッシュ方式アナログ/デジタル変換装置。
  3. 前記コード発生手段は、
    前記中間コードと前記(m/2−1)ビットのハーフサーモメータコードの各々を論理組合して、論理組合した結果を(m/2−1)ビットの上位ハーフサーモメータコードとして出力する第1論理組合手段と、
    前記中間コードと前記(m/2−1)ビットのハーフサーモメータコードの各々を論理組合して、論理組合した結果を(m/2−1)ビットの下位ハーフサーモメータコードとして出力する第2論理組合手段と、
    前記(m/2−1)ビットの下位ハーフサーモメータコード、前記中間コード及び前記(m/2−1)ビットの上位ハーフコードを前記システムクロック信号に応答して各々ラッチして、ラッチした結果を前記(m−1)ビットのフルサーモメータコードとして出力するラッチ手段と
    を具備することを特徴とする請求項1に記載のフラッシュ方式アナログ/デジタル変換装置。
  4. 前記第1論理組合手段は、
    前記(m/2−1)ビットのハーフサーモメータコードの各ビットと前記中間コードを論理積し、論理積した結果を前記(m/2−1)ビットの上位ハーフサーモメータコードとして出力する第1乃至第(m/2−1)論理積手段を具備することを特徴とする請求項3に記載のフラッシュ方式アナログ/デジタル変換装置。
  5. 前記第2論理組合手段は、
    前記(m/2−1)ビットのハーフサーモメータコードの各ビットと前記中間コードを論理和し、論理和した結果を前記(m/2−1)ビットの下位ハーフサーモメータコードとして出力する第1乃至第(m/2−1)論理和手段を具備することを特徴とする請求項3に記載のフラッシュ方式アナログ/デジタル変換装置。
  6. 第1乃至第P (ここで、P>1の整数) アナログ信号を第1乃至第Pチャンネル入力端に各々入力し、システムクロック信号に応答して第1乃至第Pチャンネル別に(m/2−1)( ここで、m=2n 、nは正の整数) ビットのハーフサーモメータコードと1ビットのチャンネル中間コードを各々出力するハーフコード発生手段と、
    各チャンネル別に発生する前記1ビットの中間コード及び前記(m/2−1)ビットのハーフサーモメータコードを入力して論理組合し、論理組合した結果を(m−1)ビットのフルサーモメータコードとして出力する第1乃至第Pチャンネルコード発生手段と、
    前記第1乃至第Pチャンネルコード発生手段から各々発生される前記(m−1)ビットのフルサーモメータコードをnビットの2進データに変換する第1乃至第Pチャンネルエンコーダと
    を具備することを特徴とするフラッシュ方式アナログ/デジタル変換装置。
  7. 前記ハーフコード発生手段は、
    第1基準電圧と第1ノードとの間で、同じ抵抗特性を有する(m/2) 個の抵抗が直列接続された第1基準抵抗列と、
    前記第1ノードと第2基準電圧との間で、同じ抵抗特性を有する(m/2) 個の抵抗が直列接続された第2基準抵抗列と、
    各々が、前記第1乃至第第Pアナログ信号を前記システムクロック信号に応答して正の入力端子に入力し、前記第1ノードから発生する中央基準電圧を負の入力端子に入力して、前記アナログ信号と前記中央基準電圧の大きさを比較して、比較した結果を第1乃至第Pチャンネルの前記中間コードとして出力する第1乃至第Pチャンネル中間比較器と、
    各々が、第1乃至第Pチャンネル中相応するチャンネルの前記1ビットの中間コードに応答して前記第1基準抵抗列の該当ノードの電圧、または前記第2基準抵抗列の該当ノードの電圧を選択して選択した電圧を各々の基準電圧として出力する(m/2−1)個のスイッチよりなる第1乃至第Pチャンネルスイッチング手段と、
    各々が、前記第1乃至第Pアナログ信号を前記クロック信号に応答して正の入力端子に入力し、前記第1乃至第Pチャンネルスイッチング手段から発生する電圧を負の入力端子に入力して、正の入力端子と負の入力端子に入力された信号の大きさを比較し、比較した結果を前記第1乃至第Pチャンネルの前記(m/2−1)ビットのハーフサーモメータコードとして出力する(m/2−1)個の比較器よりなる第1乃至第Pチャンネル比較部と
    を具備することを特徴とする請求項6に記載のフラッシュ方式アナログ/デジタル変換装置。
  8. 前記第1乃至第Pチャンネルコード発生手段の各々は、
    前記1ビットの中間コードと前記(m/2−1)ビットのハーフサーモメータコードの各々を論理組合し、論理組合した結果を前記該当チャンネルの(m/2−1)ビットの上位ハーフサーモメータコードとして出力する第1論理組合手段と、
    前記1ビットの中間コードと前記(m/2−1)ビットのハーフサーモメータコードの各々を論理組合し、論理組合した結果を前記該当チャンネルの(m/2−1)ビットの下位ハーフサーモメータコードとして出力する第2論理組合手段と、
    前記(m/2−1)ビットの下位ハーフサーモメータコード、前記該当チャンネルの前記1ビット中間コード及び前記該当チャンネルの前記(m/2−1)ビットの上位ハーフサーモメータコードを前記システムクロック信号に応答して各々ラッチし、ラッチされた結果を前記該当チャンネルの前記(m−1)ビットのフルサーモメータコードとして出力するラッチ手段と
    を具備することを特徴とする請求項6に記載のフラッシュ方式アナログ/デジタル変換装置。
  9. 前記第1論理組合手段は、
    各々入力された前記(m/2−1)ビットのハーフサーモメータコードと前記中間コードを論理積し、論理積した結果を前記(m/2−1)ビットの上位ハーフサーモメータコードとして出力する(m/2−1)個の論理積手段を具備することを特徴とする請求項8に記載のフラッシュ方式アナログ/デジタル変換装置。
  10. 前記第2論理組合手段は、
    各々入力された前記(m/2−1)ビットのハーフサーモメータコードと前記中間コードを論理和し、論理和した結果を前記(m/2−1)ビットの下位ハーフサーモメータコードとして出力する(m/2−1)個の論理和手段を具備することを特徴とする請求項8に記載のフラッシュ方式アナログ/デジタル変換装置。
JP35012198A 1998-05-29 1998-12-09 フラッシュ方式アナログ/デジタル変換装置 Expired - Fee Related JP3723362B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1998P-19804 1998-05-29
KR1019980019804A KR100301041B1 (ko) 1998-05-29 1998-05-29 플래쉬방식아날로그/디지털변환장치

Publications (2)

Publication Number Publication Date
JP2000013229A JP2000013229A (ja) 2000-01-14
JP3723362B2 true JP3723362B2 (ja) 2005-12-07

Family

ID=19537906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35012198A Expired - Fee Related JP3723362B2 (ja) 1998-05-29 1998-12-09 フラッシュ方式アナログ/デジタル変換装置

Country Status (4)

Country Link
US (1) US6127959A (ja)
JP (1) JP3723362B2 (ja)
KR (1) KR100301041B1 (ja)
NL (1) NL1010298C2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6373423B1 (en) 1999-12-14 2002-04-16 National Instruments Corporation Flash analog-to-digital conversion system and method with reduced comparators
US7017243B2 (en) * 2003-08-07 2006-03-28 Carnevali Jeffrey D Secure interface cradle for pocket personal computer device
KR100727538B1 (ko) * 2006-04-13 2007-06-14 (주) 픽셀플러스 온도계 코드 생성 장치
US8638252B2 (en) * 2011-11-30 2014-01-28 Tensorcom, Inc Low power high speed A/D converter

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2199710A (en) * 1986-12-23 1988-07-13 Philips Electronic Associated Analogue to digital converter
JP2714999B2 (ja) * 1990-11-28 1998-02-16 シャープ株式会社 アナログ/デジタル変換器
US5194867A (en) * 1991-05-06 1993-03-16 Harris Corporation Flash analog-to-digital converter employing least significant bit-representative comparative reference voltage
US5296858A (en) * 1992-05-14 1994-03-22 Advanced Micro Devices, Inc. Improved two-stage analog-to-digital converter
US5623265A (en) * 1994-01-28 1997-04-22 Texas Instruments Incorporated Flash analog-to-digital converter and method of operation
JP3581485B2 (ja) * 1996-04-05 2004-10-27 株式会社ルネサステクノロジ パイプライン型a/dコンバータ
KR100235465B1 (ko) * 1996-05-29 1999-12-15 유기범 플래시형 아날로그-디지탈 변환기

Also Published As

Publication number Publication date
NL1010298C2 (nl) 2004-06-08
KR100301041B1 (ko) 2001-09-22
JP2000013229A (ja) 2000-01-14
US6127959A (en) 2000-10-03
NL1010298A1 (nl) 1999-11-30
KR19990086692A (ko) 1999-12-15

Similar Documents

Publication Publication Date Title
US5936566A (en) Auto-reference pseudo-flash analog to digital converter
EP0153778A2 (en) Multi-step parallel analog-digital converter
US5194867A (en) Flash analog-to-digital converter employing least significant bit-representative comparative reference voltage
WO2020020092A1 (zh) 数模转换器
JP3723362B2 (ja) フラッシュ方式アナログ/デジタル変換装置
US7183962B1 (en) Low power asynchronous data converter
EP0135274A2 (en) Digital-to-analog converter
US6700523B2 (en) Analog to digital converter selecting reference voltages in accordance with feedback from prior stages
EP0952672A2 (en) Digital-to-analog conversion circuit and analog-to-digital conversion device using the circuit
US6836237B2 (en) Analog-to-digital converter
EP0090667B1 (en) Digital-to-analog converter of the current-adding type
JP2877983B2 (ja) A/dコンバータ回路
JPH0744454B2 (ja) A/dコンバータ
Ghoshal et al. Design of a Modified 8-bit Semiflash Analog to Digital Converter
JPH04129332A (ja) 逐次比較型a/d変換装置
EP4184794A1 (en) Analog-to-digital converter and method for analog-to-digital conversion
US5091728A (en) D/A and A/D converters utilizing weighted impedances
KR100502402B1 (ko) 축차비교형아날로그-디지탈변환회로
JPH06120829A (ja) 逐次比較型adコンバータ
JP2000151407A (ja) Da変換回路
SU1676100A1 (ru) Последовательно-параллельный аналого-цифровой преобразователь
JP2001308707A (ja) パルスエンコード型a/d変換器
CN114356280A (zh) 乘积和运算装置
JPH06224764A (ja) A/d変換器
KR20000004486A (ko) 아날로그/디지탈 변환기

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050915

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees