JP3722860B2 - Method for producing high purity silica - Google Patents

Method for producing high purity silica Download PDF

Info

Publication number
JP3722860B2
JP3722860B2 JP33288294A JP33288294A JP3722860B2 JP 3722860 B2 JP3722860 B2 JP 3722860B2 JP 33288294 A JP33288294 A JP 33288294A JP 33288294 A JP33288294 A JP 33288294A JP 3722860 B2 JP3722860 B2 JP 3722860B2
Authority
JP
Japan
Prior art keywords
acid
silica
washing
water
producing high
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP33288294A
Other languages
Japanese (ja)
Other versions
JPH08169711A (en
Inventor
晃一 折居
正史 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP33288294A priority Critical patent/JP3722860B2/en
Publication of JPH08169711A publication Critical patent/JPH08169711A/en
Application granted granted Critical
Publication of JP3722860B2 publication Critical patent/JP3722860B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、高純度シリカの製造方法に関する。
【0002】
【従来の技術】
高純度シリカの製造方法として、従来より種々の方法が提案されているが、原料としてアルカリ金属珪酸塩水溶液を用いる場合には、水混和性有機媒体または酸溶液と接触させて凝固物を生成させ、ついで凝固物を酸含有液で処理して非晶質シリカとし、含有されている不純物を抽出除去する方法が知られている。
(たとえば、本発明者等が先に提案した特開昭62- 3011号、特開昭62- 283809号各公報記載の方法など。)
ところで、酸含有液で処理されて処理液と分離されたシリカ粒子の表面には、抽出された不純物を含む酸含有液 (酸処理液) が付着している。
高純度シリカを得ようとするとき、従来の方法においては、分離されたシリカ粒子を洗滌用水として不純物を実質的に含まない純水を用いた洗滌を繰り返し、これらの付着物 (不純物) を置換除去して、高純度シリカを得ている。
【0003】
【発明が解決しようとする課題】
前記の、不純物を実質的に含まない純水を用いた洗滌を繰り返して行う従来の方法においては、ときに不純物濃度の高い汚染されたシリカが発生するという問題点がある。本発明者らによる解析の結果によると、その汚染物質は、アルカリ金属- 特に、Naであることが多い。そして、その汚染の主な原因は、製造設備の装置材料から溶出した不純物がシリカに吸着されるためと考えられる。
不純物による製品中間体シリカの汚染は、高純度シリカ製品の歩留りを低下させ、生産設備の安定操業に対する大きな阻害要因となる。
本発明が解決しようとする課題は、アルカリ金属珪酸塩水溶液を原料として高純度シリカを得る際に、不純物による製品シリカの汚染を防ぐことができる改良された方法を開発することである。
【0004】
本発明の目的は、アルカリ金属珪酸塩水溶液を水混和性有機媒体または酸溶液と接触させて生成した凝固物を酸含有液で処理して、非晶質シリカとし不純物を抽出した後、水で洗滌して高純度シリカを得る方法において、アルカリ金属不純物による製品中間体の汚染による製品歩留りの低下を防ぎ、生産設備の安定操業に寄与する、高純度シリカの改良された製造方法を提供することにある。
【0005】
【課題を解決するための手段】
本発明者らは、アルカリ金属珪酸塩水溶液から高純度シリカを得る際に、不純物による製品シリカの汚染防止方法について鋭意研究し、製品シリカの汚染の主な原因は、装置材料から洗滌用水中へ溶出したアルカリ金属不純物が製品中間体シリカに吸着されるためであることを究明した。
すなわち、洗滌用水中のアルカリ金属不純物の製品中間体シリカへの吸着は、洗滌用水のpHに支配され、洗滌用水のpHが酸性領域から中性領域に近づくと急激に増大すること、そして、純水を用いた繰り返し洗滌を行った際に、その少なくとも最終段階における被洗滌シリカと洗滌用水とを混合してなる系(以下、単に洗滌系という)のpHを 4.2以下に保持すれば、アルカリ金属不純物の製品中間体シリカへの吸着を防ぐことができることを見出し、本発明を完成した。
【0006】
本発明は「アルカリ金属珪酸塩水溶液を水混和性有機媒体または酸溶液と接触させて生成した凝固物を酸含有液で処理して不純物を抽出し、得られた非晶質シリカを酸含有液と分離した後、水で洗滌して高純度シリカを得る方法において、前記非晶質シリカを、その水洗滌の少なくとも最終段階において、前記非晶質シリカと洗滌用水とを混合してなる系のpHを4.2〜2.2の範囲に保って洗滌した後、洗滌水と分離して加熱処理することを特徴とする高純度シリカの製造方法。」を要旨とする。
【0007】
好ましい態様としては、前記の少なくとも最終段階における洗滌用水が、30〜300 ppm の酸を含む水であることがよく、また、酸は、炭酸または硫酸であることがよい。
【0008】
また、加熱処理は、温度 800〜1400℃の範囲で行われることがよい。
【0009】
以下、本発明について詳述する。
本発明の方法によって得られる高純度シリカは、不純物含有率が極めて低く、Na, Kなどのアルカリ金属, Mg, Caなどのアルカリ土類金属, FeおよびAlの各元素の含有率がそれぞれ1ppm 以下である。
【0010】
本発明の方法の実施態様は、次の3工程を含む。
(1) 非晶質シリカの調製工程
アルカリ金属珪酸塩水溶液を水混和性有機媒体または酸溶液と接触させて、シリカゲルを生成させる。次いで、得られたシリカゲルを酸含有液で処理して非晶質シリカとし不純物を抽出して、酸含有液と分離する。
(2) 非晶質シリカの洗滌工程
酸含有液と分離した非晶質シリカを、純水を用いて洗滌する。
この水洗滌の少なくとも最終段階において、洗滌系のpHを 4.2〜2.2 の範囲に保って洗滌した後、非晶質シリカと洗滌水とを分離する。
(3) 非晶質シリカの加熱処理工程
前記の洗滌処理を施した非晶質シリカを、温度 800〜1400℃ の範囲で加熱処理する。
【0011】
以下、前記の各工程について詳述する。
(1) 非晶質シリカの調製工程
本発明の方法は、アルカリ金属珪酸塩水溶液を水混和性有機媒体または酸溶液と接触させて生成した凝固物(ゲル)を、酸含有液で処理して得られた非晶質シリカに適用することができる。上記の方法の範囲内であれば、非晶質シリカの製造法は特に限定されず、いずれの方法で得られた非晶質シリカでもよい。
原料のアルカリ金属珪酸塩としては、珪酸のナトリウム塩, カリウム塩, リチウム塩などを用いることができる。
【0012】
非晶質シリカの製造法としては、本発明者等が先に提案したたとえば、特開昭62- 3011号、特開昭62- 3012号、特開昭62- 283809号または特開昭62- 283810号各公報記載の方法により、アルカリ金属珪酸塩水溶液を水混和性有機媒体または酸溶液中に細孔から押し出して得られた凝固物を、酸含有液で処理して不純物を抽出する方法を用いることができる。
【0013】
より具体的な実施の態様としては、粘度が2〜500 ポイズの範囲であるアルカリ金属珪酸塩水溶液を、孔径0.05〜1mmの範囲であるノズルから、水混和性有機媒体または濃度4規定以下の酸溶液からなる凝固浴中に押し出して繊維状ないし柱状あるいは粒状に凝固させ、得られた凝固物を酸含有液で処理する。
【0014】
凝固浴に用いられる水混和性有機媒体としては、たとえば、メタノール, エタノール, n-プロパノール等のアルコール類、酢酸メチル, 酢酸エチル等のエステル類、アセトン, メチルエチルケトン等のケトン類、ジメチルアセトアミド, ジメチルホルムアミドなどのアミド類、ジメチルスルフォキシド等を挙げることができる。
【0015】
また、凝固浴に用いられる酸としては、硫酸, 硝酸, 塩酸などの無機酸であって、硫酸, 硝酸を用いるのが好ましく、凝固浴としては、実用上、これらの酸の水溶液が好ましい。酸濃度は、 0.1〜4規定、好ましくは 0.5〜3規定、更に好ましくは1〜2規定の範囲である。
凝固浴温度は、10〜60℃の範囲に保持するのがよい。
【0016】
酸含有液に用いられる酸としては、硫酸, 硝酸, 塩酸などの無機酸であって、硫酸, 硝酸を用いるのが好ましく、酸含有液としては、実用上、これらの酸の水溶液が好ましい。酸濃度は、 0.1〜8規定、好ましくは 0.5〜7規定、更に好ましくは3〜6規定の範囲である。
【0017】
酸含有液による凝固物の処理は、回分式で凝固物と酸含有液とを混合する方式でも、また、凝固物に酸含有液を連続的に供給して処理する連続方式でも、いずれでもよく、製品中の不純物の許容されるレベルに応じて選択すればよい。
更に、不純物の抽出率を高める手段として、回分式で新しい酸含有液を用いた繰り返し処理を行うこともできる。
【0018】
(2) 非晶質シリカの洗滌工程
酸含有液による処理 (酸処理) によって、凝固物中の不純物は抽剤である酸含有液 (酸処理液) 中に移行する。酸処理を行った後、生成した非晶質シリカと抽剤である酸処理液とは、濾過などの通常の固液分離操作によって分離される。
この際、酸処理液と分離された湿シリカの表面には、凝固物から抽出された不純物を含む酸処理液の一部が付着残留している。
【0019】
アルカリ金属珪酸塩水溶液を原料としたとき、前記湿シリカの表面に付着残留している酸処理液は、酸処理により抽出された原料中の夾雑物と共に、最高濃度の不純物である原料中のアルカリ金属が中和されて生成した塩や、使用された酸含有液の過剰の酸分などを含む。
高純度シリカを得ようとするときは、酸処理液と分離された湿シリカの表面に付着残留している不純物の濃度を低減させるために、前記湿シリカに対して不純物を実質的に含まない純水を用いた洗滌と固液分離の処理を施し、これらの付着物 (不純物) を希釈し置換除去する。
【0020】
純水を用いた洗滌と固液分離の処理は、処理されたシリカに付着ないし包含される不純物濃度が、製品シリカ中に含まれる不純物の許容されるレベルに達するまで、必要に応じて繰り返して行う。
この段階では、洗滌処理系の pH は、中性域になりやすい。
従来の高純度シリカの製造方法では、この段階で洗滌処理を終了させていた。しかし、前述のとおりこのような洗滌処理では、洗滌処理された製品中間体シリカのアルカリ金属不純物による汚染がときに発生し、高純度シリカ製品の歩留りを低下させ、生産設備の安定操業を阻害するという問題点がある。
【0021】
本発明の方法では、この水洗滌の少なくとも最終段階における洗滌系の pH を 4.2以下、好ましくは 4.2〜2.2 の範囲に保持することによって、アルカリ金属のシリカへの吸着を防ぎ、製品中間体シリカの汚染の発生を防ぐ。
洗滌系のpHを 4.2以下にする手段としては、水洗滌の少なくとも最終段階において使用する洗滌用水としての純水に酸を加えればよい。
なお、水洗滌の最終段階において、処理されたシリカに付着ないし包含される酸以外の不純物の濃度が製品シリカに許容されるレベルに達しており、かつ、処理されたシリカに付着残留した酸の濃度が、洗滌系の pH を 4.2以下になし得る場合には、洗滌用水に酸を加える必要はない。
添加する酸としては、少ない量でアルカリ汚染を防ぐ効果を発揮し、かつ、加熱処理によってシリカから揮散しやすいものが好ましい。具体的には、塩酸, 硝酸, 硫酸, 炭酸などの無機酸、ギ酸, 酢酸などの有機酸を用いることができる。実用上、炭酸, 硫酸が好ましい。
【0022】
本発明の方法では、非晶質シリカをその水洗滌の少なくとも最終段階で、30〜300 ppm 、好ましくは40〜200 ppm 、更に好ましくは50〜100 ppm の酸を含む水を用いて洗滌することができる。
酸の濃度が、30 ppm未満では、アルカリ金属のシリカへの吸着を防ぐ効果が期待できず、一方、300 ppm を超えると加熱処理を施しても酸分がシリカに残留する可能性が生ずると共に、揮散する酸分による設備腐食あるいは環境汚染を防止するための負荷が増大する。
【0023】
本発明の方法における洗滌処理操作の態様は、特に制約はなく、粉粒体物質について通常行われる洗滌操作を選ぶことができる。
このような操作としては、たとえば、濾過・遠心分離など常法により処理して酸処理液と分離され、酸処理液の一部が残留している湿シリカの層に対して洗滌水を圧入・透過させ、残留している酸処理液を洗滌水で置換洗滌(リンス洗滌ともいう)する方法、または、湿シリカを洗滌水中にスラリー状に分散させシリカに付着している物質を除去するケーク洗滌(リパルプ洗滌ともいう)による方法などを例示することができる。
水洗滌の少なくとも最終段階で、洗滌処理する非晶質シリカの重量に対して、通常5〜15倍の洗滌用水が用いられる。
【0024】
(3) 非晶質シリカの加熱処理工程
酸を含む系で洗滌処理を終了させる方法によって得られた非晶質シリカの表面には、酸が付着している。
ところで、本発明の方法で得ようとする高純度シリカについては、その用途- 特に VLSI の封止用樹脂組成物のフィラーにおいて、イオン性不純物の存在は、 VLSI のリード線・リードフレームなどの腐食の原因となるため、その濃度は厳しく規制されている。
高純度シリカに含まれるイオン性不純物の量は、高純度シリカを純水中で煮沸抽出処理して得られた抽出水の電気伝導度の値によって評価することができ、この電気伝導度の値が 10 μS/cm以下であることが望まれている。
このような高純度化の要求に対応するために、非晶質シリカの表面に付着している酸を、本工程における加熱処理によって除去する。
【0025】
非晶質シリカの表面に付着している酸を除去するには、温度 800℃以上の領域で加熱処理することが望ましい。
処理の条件は、目的とする製品シリカに望まれる品質・物性に応じて選定することができる。製品シリカの物性を考慮すると、加熱処理の温度は、 900〜1400℃、好ましくは1050〜1300℃、更に好ましくは1100〜1250℃の範囲がよい。
加熱処理温度が 800℃未満であるときは、得られた非晶質シリカに酸が残留して、本発明の方法が目的とする高純度シリカが得られない。
加熱処理の時間は、加熱処理の方法・装置に依存し、たとえば、静置方式では30分〜50時間、流動層ないし移動層方式では1秒〜10時間の範囲である。
【0026】
このような加熱処理によって、酸として硫酸を用いたとき、残留する硫酸イオンの濃度が1ppm 以下であり、純水中で煮沸抽出処理して得られた抽出水の電気伝導度の値が1μS/cm以下である非晶質シリカを得ることができる。
【0027】
加熱処理を行う際に用いる装置としては、原料シリカを所定の温度に維持することができるものであればよく、管状炉, 箱型炉, トンネル炉などを使用することができる。また、加熱源は任意であり、電熱または燃焼ガスは経済的な熱源である。その他、プラズマ加熱、イメージ炉を用いることもできる。
【0028】
【実施例】
以下、実施例および比較例により本発明の方法を具体的に説明する。
なお、本発明は、以下の実施例に限定されるものではない。
実施例1
JIS 3号水ガラスを加熱濃縮して、20℃における粘度を 300 cpsとした。この水ガラス約8リットルをポンプで加圧し、濾過器 (目開き70μm) を経てノズル (孔径 0.2mm, 孔数50個) を通して、50℃に保持された8重量%硫酸水溶液 300リットルを入れた凝固浴中へ毎秒 0.4mの速度で押し出した。
繊維状で得られたシリカを、酸含有液として10倍量の新たに調製した8重量%硫酸水溶液中に浸漬して温度約95℃で約1時間攪拌して不純物の抽出を行い、得られた非晶質シリカを酸含有液と分離した。
ついで、被洗滌シリカの10倍量の純水を用いて4回洗浄した。第4回目の洗滌液中の硫酸濃度は約8ppm であった。
【0029】
第5回目の洗滌を最終回とし、純水に硫酸を加えて調製した硫酸濃度 50 ppm の洗滌用水を被洗滌シリカの10倍量を用いて洗滌した。
この後、濾過による固液分離を行って得られた湿シリカを熱風乾燥機により温度 120℃に保持して8時間乾燥し、含水率 (加熱処理シリカ基準の重量減少率) が7重量%である非晶質乾燥シリカ 3.7kgを得た。
この非晶質乾燥シリカの硫酸濃度は、約 50 ppm であった。
【0030】
前記非晶質乾燥シリカ50gを石英ビーカーに充填し、電気炉を用いて温度1250℃で1時間加熱処理を行った。
このようにして得られたシリカの不純物濃度は、Na : 0.3 ppm, K : 0.1 ppm以下, Mg : 0.1 ppm以下, Ca : 0.1 ppm, Fe : 0.5 ppm, SO4 2- : 0.1 ppm であった。
【0031】
また、前記非晶質乾燥シリカと加熱処理シリカを、それぞれ純水に分散させて各々濃度10重量%のスラリーを調製し、揮発濃縮のない条件下で8時間煮沸抽出処理して得られた上澄み液 (抽出水) の25℃における電気伝導度を測定した。
電気伝導度の値は、乾燥シリカでは 40 μS/cm、加熱処理シリカでは1μS/cmであった。
【0032】
実施例2および比較例1
第5回目の洗滌を最終回とし、純水に硫酸を加えて調製した表-1に示す各種の硫酸濃度の洗滌用水を用いたほかは、実施例1の方法に準じて処理し、非晶質乾燥シリカおよび加熱処理シリカを得た。
第5回目の洗滌で用いた洗滌用水の硫酸濃度と洗滌系のpH、得られた乾燥シリカおよび加熱処理シリカのSO4 2- 濃度と煮沸抽出水の電気伝導度の値、ならびに加熱処理シリカの Na 濃度を、表-1に示した。
なお、得られたシリカのNa以外の不純物濃度は、いずれもK : 0.1 ppm以下, Mg : 0.1 ppm以下, Ca : 0.1 ppm, Fe : 0.5 ppmであった。
【0033】
【表1】

Figure 0003722860
【0034】
表-1に示すように、本発明で規定する条件で処理したとき、本発明が目的とする不純物が極めて少ない高純度シリカを得ることができた (実施例1〜2) 。
これに対して、第5回目 (最終回) の洗滌において、本発明で規定した条件をはずれた洗滌用水を用いて洗滌処理を行ったとき、規定した条件の下限に満たないときは、アルカリ金属による汚染が発生して得られたシリカのNa濃度が1ppm を超え (比較例1-1〜-2) 、一方、規定した条件の上限を超えたときは、加熱処理シリカにおいても酸分の揮散が充分でなく、SO4 2- 濃度が 40 ppm であり、また、煮沸抽出水の電気伝導度の値は32μS/cmであって (比較例1-3) 、いずれも、本発明が目的とする高純度シリカを得ることができなかった。
【0035】
【発明の効果】
【0036】
本発明の方法によって、シリカのアルカリ金属による汚染の発生を防止して目的とする製品シリカの品質の安定性を向上させ、不純物が極めて少ない高純度シリカを効率よく製造することができる。
本発明の方法で得られた高純度シリカは、各種の充填材・分散剤などの用途、透明石英ガラス・特殊セラミックスなどの原料のほか、 VLSI 封止用樹脂組成物のフィラー原料として好適に用いられる。[0001]
[Industrial application fields]
The present invention relates to a method for producing high-purity silica.
[0002]
[Prior art]
Various methods have been proposed for producing high-purity silica. However, when an alkali metal silicate aqueous solution is used as a raw material, it is brought into contact with a water-miscible organic medium or acid solution to form a coagulum. Then, a method is known in which the coagulated material is treated with an acid-containing liquid to form amorphous silica, and the contained impurities are extracted and removed.
(For example, the methods described in Japanese Patent Laid-Open Nos. 62-3011 and 62-283809 previously proposed by the present inventors)
By the way, an acid-containing liquid (acid treatment liquid) containing extracted impurities is attached to the surface of the silica particles that have been treated with the acid-containing liquid and separated from the treatment liquid.
When trying to obtain high-purity silica, in the conventional method, the separated silica particles are used as washing water, and washing with pure water substantially free of impurities is repeated to replace these deposits (impurities). Removal of high purity silica is obtained.
[0003]
[Problems to be solved by the invention]
In the conventional method in which washing with pure water substantially free of impurities is repeated, there is a problem that contaminated silica having a high impurity concentration is sometimes generated. According to the results of the analysis by the present inventors, the contaminant is often an alkali metal, particularly Na. And the main cause of the contamination is considered that the impurities eluted from the equipment material of the production facility are adsorbed on the silica.
Contamination of the product intermediate silica with impurities reduces the yield of high-purity silica products and is a major impediment to the stable operation of production facilities.
The problem to be solved by the present invention is to develop an improved method capable of preventing contamination of product silica by impurities when high-purity silica is obtained using an alkali metal silicate aqueous solution as a raw material.
[0004]
The object of the present invention is to treat a coagulated product formed by bringing an alkali metal silicate aqueous solution into contact with a water-miscible organic medium or an acid solution with an acid-containing liquid to extract amorphous impurities, and then with water. To provide an improved production method of high-purity silica that prevents a decrease in product yield due to contamination of product intermediates by alkali metal impurities and contributes to stable operation of production equipment in a method of obtaining high-purity silica by washing. It is in.
[0005]
[Means for Solving the Problems]
When the present inventors obtain high-purity silica from an aqueous alkali metal silicate solution, they have eagerly studied how to prevent contamination of product silica due to impurities, and the main cause of product silica contamination is from equipment materials to washing water. It was determined that the eluted alkali metal impurities were adsorbed on the product intermediate silica.
In other words, the adsorption of alkali metal impurities in the washing water on the product intermediate silica is governed by the pH of the washing water, and increases rapidly as the pH of the washing water approaches from the acidic region to the neutral region. If the pH of a system (hereinafter simply referred to as a “washing system”) in which the silica to be washed and the washing water in at least the final stage are mixed and maintained at 4.2 or lower when repeated washing with water is performed, an alkali metal The inventors have found that adsorption of impurities onto the product intermediate silica can be prevented, and the present invention has been completed.
[0006]
The present invention describes a method of treating a coagulated product formed by bringing an alkali metal silicate aqueous solution into contact with a water-miscible organic medium or an acid solution with an acid-containing liquid to extract impurities, and converting the resulting amorphous silica into an acid-containing liquid. after separation and a method of and washed with water to obtain a high-purity silica, said amorphous silica, at least the final stage of its water washing, the formed by combining an amorphous silica and washing water of the system The gist is a method for producing high-purity silica, characterized in that after washing while maintaining the pH in the range of 4.2 to 2.2, it is separated from the washing water and subjected to heat treatment.
[0007]
In a preferred embodiment, the washing water in at least the final stage is preferably water containing 30 to 300 ppm of acid, and the acid is preferably carbonic acid or sulfuric acid.
[0008]
The heat treatment is preferably performed at a temperature in the range of 800 to 1400 ° C.
[0009]
Hereinafter, the present invention will be described in detail.
The high-purity silica obtained by the method of the present invention has an extremely low impurity content, and the content of each element of alkali metals such as Na and K, alkaline earth metals such as Mg and Ca, and Fe and Al is 1 ppm or less. It is.
[0010]
The method embodiment of the present invention includes the following three steps.
(1) Step of preparing amorphous silica An alkali metal silicate aqueous solution is brought into contact with a water-miscible organic medium or an acid solution to form silica gel. Next, the obtained silica gel is treated with an acid-containing liquid to form amorphous silica, and impurities are extracted and separated from the acid-containing liquid.
(2) Amorphous silica washing step The amorphous silica separated from the acid-containing liquid is washed with pure water.
At least in the final stage of the water washing, after washing with the pH of the washing system kept in the range of 4.2 to 2.2, the amorphous silica and the washing water are separated.
(3) Amorphous Silica Heat Treatment Step The amorphous silica that has been subjected to the above washing treatment is subjected to a heat treatment within a temperature range of 800 to 1400 ° C.
[0011]
Hereafter, each said process is explained in full detail.
(1) Amorphous silica preparation process The method of the present invention comprises treating a coagulum (gel) formed by contacting an aqueous alkali metal silicate solution with a water-miscible organic medium or an acid solution with an acid-containing liquid. It can be applied to the obtained amorphous silica. If it is in the range of said method, the manufacturing method of an amorphous silica will not be specifically limited, The amorphous silica obtained by any method may be sufficient.
As the raw material alkali metal silicate, sodium salt, potassium salt, lithium salt, etc. of silicic acid can be used.
[0012]
As the method for producing amorphous silica, the inventors previously proposed, for example, JP-A-62-23011, JP-A-62-21212, JP-A-62-283809 or JP-A-62-2 A method of extracting impurities by treating a coagulated product obtained by extruding an alkali metal silicate aqueous solution from pores into a water-miscible organic medium or acid solution with an acid-containing solution according to the method described in each publication No. 283810. Can be used.
[0013]
As a more specific embodiment, an alkali metal silicate aqueous solution having a viscosity in the range of 2 to 500 poise is fed from a nozzle having a pore diameter in the range of 0.05 to 1 mm with a water-miscible organic medium or an acid having a concentration of 4 N or less. The solution is extruded into a coagulation bath made of a solution to be solidified into a fiber, a column or a granule, and the obtained coagulum is treated with an acid-containing liquid.
[0014]
Examples of the water-miscible organic medium used in the coagulation bath include alcohols such as methanol, ethanol and n-propanol, esters such as methyl acetate and ethyl acetate, ketones such as acetone and methyl ethyl ketone, dimethylacetamide and dimethylformamide. And amides such as dimethyl sulfoxide.
[0015]
The acid used in the coagulation bath is an inorganic acid such as sulfuric acid, nitric acid or hydrochloric acid, and sulfuric acid or nitric acid is preferably used. As the coagulation bath, an aqueous solution of these acids is practically preferred. The acid concentration is in the range of 0.1 to 4 N, preferably 0.5 to 3 N, more preferably 1 to 2 N.
The coagulation bath temperature is preferably maintained in the range of 10 to 60 ° C.
[0016]
The acid used in the acid-containing liquid is an inorganic acid such as sulfuric acid, nitric acid, or hydrochloric acid, and sulfuric acid or nitric acid is preferably used. The acid-containing liquid is practically an aqueous solution of these acids. The acid concentration is in the range of 0.1 to 8 N, preferably 0.5 to 7 N, and more preferably 3 to 6 N.
[0017]
The treatment of the coagulated product with the acid-containing liquid may be either a batch method in which the coagulated product and the acid-containing solution are mixed, or a continuous method in which the acid-containing solution is continuously supplied to the coagulated product and processed. The selection may be made according to the allowable level of impurities in the product.
Furthermore, as a means for increasing the extraction rate of impurities, it is possible to perform a repeated treatment using a new acid-containing liquid in a batch system.
[0018]
(2) Washing process of amorphous silica By treatment with an acid-containing solution (acid treatment), impurities in the coagulated product are transferred to an acid-containing solution (acid treatment solution) as an extractant. After the acid treatment, the produced amorphous silica and the acid treatment liquid as the extractant are separated by a normal solid-liquid separation operation such as filtration.
At this time, a part of the acid treatment liquid containing impurities extracted from the solidified material remains on the surface of the wet silica separated from the acid treatment liquid.
[0019]
When an alkali metal silicate aqueous solution is used as a raw material, the acid treatment liquid remaining on the wet silica surface is contaminated with impurities in the raw material extracted by the acid treatment, and the alkali in the raw material which is the highest concentration impurity. It includes salts produced by neutralizing metals and excess acid content of the acid-containing liquid used.
When obtaining high-purity silica, in order to reduce the concentration of impurities remaining on the surface of the wet silica separated from the acid treatment liquid, the impurities are not substantially contained in the wet silica. After washing with pure water and solid-liquid separation, these deposits (impurities) are diluted and replaced.
[0020]
The washing and solid-liquid separation treatment with pure water is repeated as necessary until the concentration of impurities contained or contained in the treated silica reaches an acceptable level of impurities contained in the product silica. Do.
At this stage, the pH of the washing system tends to be neutral.
In the conventional method for producing high-purity silica, the washing treatment is terminated at this stage. However, as described above, in such washing treatment, contamination of the washed product intermediate silica due to alkali metal impurities sometimes occurs, reducing the yield of high-purity silica products and hindering stable operation of production facilities. There is a problem.
[0021]
In the method of the present invention, the pH of the washing system in at least the final stage of the water washing is maintained at 4.2 or less, preferably in the range of 4.2 to 2.2, thereby preventing the adsorption of alkali metal to silica, and the product intermediate silica. Prevent contamination.
As a means for reducing the pH of the washing system to 4.2 or less, an acid may be added to pure water as washing water used in at least the final stage of washing with water.
In the final stage of washing with water, the concentration of impurities other than the acid adhering to or contained in the treated silica has reached a level acceptable for the product silica, and the acid remaining on the treated silica It is not necessary to add acid to the wash water if the concentration can bring the pH of the wash system below 4.2.
As the acid to be added, an acid that exhibits an effect of preventing alkali contamination in a small amount and easily evaporates from silica by heat treatment is preferable. Specifically, inorganic acids such as hydrochloric acid, nitric acid, sulfuric acid, and carbonic acid, and organic acids such as formic acid and acetic acid can be used. Practically, carbonic acid and sulfuric acid are preferable.
[0022]
In the method of the present invention, the amorphous silica is washed with water containing 30 to 300 ppm, preferably 40 to 200 ppm, more preferably 50 to 100 ppm of acid at least at the final stage of the water washing. Can do.
If the acid concentration is less than 30 ppm, the effect of preventing alkali metal adsorption on silica cannot be expected. On the other hand, if the acid concentration exceeds 300 ppm, the acid content may remain on the silica even after heat treatment. , The load for preventing equipment corrosion or environmental pollution due to volatilized acid content increases.
[0023]
The mode of the washing treatment operation in the method of the present invention is not particularly limited, and a washing operation usually performed on the granular material can be selected.
As such an operation, for example, washing water is injected into the layer of wet silica that is separated from the acid treatment liquid by a conventional method such as filtration and centrifugation, and a part of the acid treatment liquid remains. A method of permeating and replacing the remaining acid treatment solution with washing water (also referred to as rinsing washing) or a cake washing in which wet silica is dispersed in a slurry in washing water to remove substances adhering to the silica. The method by (it is also called repulp washing) etc. can be illustrated.
In at least the final stage of the water washing, the washing water is usually used 5 to 15 times the weight of the amorphous silica to be washed.
[0024]
(3) Heat treatment step of amorphous silica Acid is adhered to the surface of amorphous silica obtained by the method of terminating the washing treatment in a system containing acid.
By the way, the high-purity silica to be obtained by the method of the present invention is used for its use-especially in the filler of a VLSI sealing resin composition, the presence of ionic impurities is caused by corrosion of VLSI lead wires and lead frames. Therefore, the concentration is strictly regulated.
The amount of ionic impurities contained in high-purity silica can be evaluated by the value of electrical conductivity of the extracted water obtained by boiling and extracting high-purity silica in pure water. Is desired to be 10 μS / cm or less.
In order to meet such a requirement for high purity, the acid adhering to the surface of the amorphous silica is removed by heat treatment in this step.
[0025]
In order to remove the acid adhering to the surface of the amorphous silica, it is desirable to perform heat treatment at a temperature of 800 ° C. or higher.
The treatment conditions can be selected according to the quality and physical properties desired for the target product silica. Considering the physical properties of the product silica, the temperature of the heat treatment is in the range of 900 to 1400 ° C, preferably 1050 to 1300 ° C, more preferably 1100 to 1250 ° C.
When the heat treatment temperature is less than 800 ° C., acid remains in the obtained amorphous silica, and the high-purity silica targeted by the method of the present invention cannot be obtained.
The heat treatment time depends on the heat treatment method and apparatus, and is, for example, in the range of 30 minutes to 50 hours in the stationary method, and 1 second to 10 hours in the fluidized bed or moving bed method.
[0026]
When sulfuric acid is used as the acid by such heat treatment, the concentration of residual sulfate ions is 1 ppm or less, and the electric conductivity value of the extracted water obtained by boiling extraction treatment in pure water is 1 μS / Amorphous silica having a size of cm or less can be obtained.
[0027]
The apparatus used for the heat treatment may be any apparatus that can maintain the raw silica at a predetermined temperature, and a tubular furnace, a box furnace, a tunnel furnace, or the like can be used. Further, the heating source is arbitrary, and electric heat or combustion gas is an economical heat source. In addition, plasma heating and an image furnace can also be used.
[0028]
【Example】
Hereinafter, the method of the present invention will be specifically described with reference to Examples and Comparative Examples.
The present invention is not limited to the following examples.
Example 1
JIS No. 3 water glass was heated and concentrated to give a viscosity at 20 ° C. of 300 cps. About 8 liters of water glass was pressurized with a pump, passed through a filter (mesh opening 70 μm) and passed through a nozzle (pore diameter 0.2 mm, number of holes 50), and 300 liters of an 8 wt% sulfuric acid aqueous solution maintained at 50 ° C. Extruded into the coagulation bath at a speed of 0.4 m per second.
The silica obtained in the form of fibers is immersed in 10 times the amount of newly prepared 8 wt% sulfuric acid aqueous solution as an acid-containing solution and stirred at a temperature of about 95 ° C for about 1 hour to extract impurities. The amorphous silica was separated from the acid-containing liquid.
Subsequently, it was washed 4 times with 10 times the amount of pure water of the silica to be washed. The sulfuric acid concentration in the fourth washing solution was about 8 ppm.
[0029]
The fifth wash was the final wash, and water for washing with a sulfuric acid concentration of 50 ppm prepared by adding sulfuric acid to pure water was washed using 10 times the amount of silica to be washed.
Thereafter, the wet silica obtained by solid-liquid separation by filtration was dried for 8 hours while maintaining the temperature at 120 ° C. with a hot air dryer, and the water content (weight reduction rate based on heat-treated silica) was 7% by weight. 3.7 kg of some amorphous dry silica was obtained.
The sulfuric acid concentration of this amorphous dry silica was about 50 ppm.
[0030]
A quartz beaker was filled with 50 g of the amorphous dry silica, and heat-treated at 1250 ° C. for 1 hour using an electric furnace.
The impurity concentration of the silica thus obtained was Na: 0.3 ppm, K: 0.1 ppm or less, Mg: 0.1 ppm or less, Ca: 0.1 ppm, Fe: 0.5 ppm, SO 4 2- : 0.1 ppm .
[0031]
The amorphous dry silica and the heat-treated silica are each dispersed in pure water to prepare a slurry having a concentration of 10% by weight, and the supernatant obtained by boiling extraction treatment for 8 hours under conditions without volatile concentration. The electrical conductivity of the liquid (extracted water) at 25 ° C was measured.
The electrical conductivity values were 40 μS / cm for dry silica and 1 μS / cm for heat-treated silica.
[0032]
Example 2 and Comparative Example 1
The fifth wash was the final wash, and was treated according to the method of Example 1 except that washing water having various sulfuric acid concentrations shown in Table 1 prepared by adding sulfuric acid to pure water was used. Quality dry silica and heat-treated silica were obtained.
The sulfuric acid concentration of the washing water used in the fifth washing and the pH of the washing system, the SO 4 2− concentration of the obtained dried silica and heat-treated silica, the electric conductivity value of the boiling extract water, and the heat-treated silica The Na concentration is shown in Table-1.
The impurity concentrations of the silica other than Na were K: 0.1 ppm or less, Mg: 0.1 ppm or less, Ca: 0.1 ppm, Fe: 0.5 ppm.
[0033]
[Table 1]
Figure 0003722860
[0034]
As shown in Table 1, when treated under the conditions specified in the present invention, high-purity silica with very few impurities intended by the present invention could be obtained (Examples 1 and 2).
On the other hand, in the fifth (final) cleaning, when the cleaning treatment is performed using cleaning water that does not satisfy the conditions specified in the present invention, when the lower limit of the specified conditions is not satisfied, When the concentration of sodium in silica obtained by contamination by silica exceeds 1 ppm (Comparative Examples 1-1 and -2), on the other hand, when the upper limit of the specified conditions is exceeded, volatilization of acid content in heat-treated silica Is not sufficient, the SO 4 2− concentration is 40 ppm, and the electric conductivity value of the boiled extracted water is 32 μS / cm (Comparative Example 1-3). High purity silica could not be obtained.
[0035]
【The invention's effect】
[0036]
By the method of the present invention, it is possible to improve the stability of the quality of the target product silica by preventing the occurrence of silica contamination with alkali metals, and to efficiently produce high purity silica with very few impurities.
The high-purity silica obtained by the method of the present invention is suitably used as a filler raw material for resin compositions for VLSI sealing, in addition to raw materials such as various fillers and dispersants, transparent quartz glass and special ceramics. It is done.

Claims (8)

アルカリ金属珪酸塩水溶液を水混和性有機媒体または酸溶液と接触させて生成した凝固物を酸含有液で処理して不純物を抽出し、得られた非晶質シリカを酸含有液と分離した後、水で洗滌して高純度シリカを得る方法において、前記非晶質シリカを、その水洗滌の少なくとも最終段階において、前記非晶質シリカと洗滌用水とを混合してなる系のpHを4.2〜2.2の範囲に保って洗滌した後、洗滌水と分離して加熱処理することを特徴とする高純度シリカの製造方法。  After the coagulate formed by contacting an alkali metal silicate aqueous solution with a water-miscible organic medium or acid solution is treated with an acid-containing solution to extract impurities, and the resulting amorphous silica is separated from the acid-containing solution In the method of obtaining high-purity silica by washing with water, the amorphous silica is mixed with the amorphous silica and washing water at least at the final stage of the washing with a pH of 4.2 to 4.2. A method for producing high-purity silica, comprising washing after maintaining in the range of 2.2 and then separating from the washing water and heating. アルカリ金属珪酸塩が、珪酸ナトリウム、珪酸カリウムおよび珪酸リチウムからなる群から選ばれた少なくとも一種である請求項1記載の高純度シリカの製造方法。  The method for producing high-purity silica according to claim 1, wherein the alkali metal silicate is at least one selected from the group consisting of sodium silicate, potassium silicate and lithium silicate. 酸溶液が、硫酸、硝酸および塩酸からなる群から選ばれた少なくとも一種の酸水溶液であって、酸濃度が0.1〜4規定の範囲にある請求項1記載の高純度シリカの製造方法。The method for producing high-purity silica according to claim 1, wherein the acid solution is at least one acid aqueous solution selected from the group consisting of sulfuric acid, nitric acid and hydrochloric acid, and the acid concentration is in the range of 0.1 to 4 N. 酸含有液が、硫酸、硝酸および塩酸からなる群から選ばれた少なくとも一種の酸水溶液であって、酸濃度が0.1〜8規定の範囲にある請求項1記載の高純度シリカの製造方法。  The method for producing high-purity silica according to claim 1, wherein the acid-containing liquid is at least one acid aqueous solution selected from the group consisting of sulfuric acid, nitric acid and hydrochloric acid, and the acid concentration is in the range of 0.1 to 8 N. 酸が、塩酸、硝酸、硫酸、炭酸、ギ酸、および酢酸からなる群から選ばれた少なくとも一種の酸である請求項1記載の高純度シリカの製造方法。  The method for producing high-purity silica according to claim 1, wherein the acid is at least one acid selected from the group consisting of hydrochloric acid, nitric acid, sulfuric acid, carbonic acid, formic acid, and acetic acid. 前記の水洗滌の少なくとも最終段階における洗滌用水が、30〜300ppmの硫酸を含む水である請求項1記載の高純度シリカの製造方法。  The method for producing high-purity silica according to claim 1, wherein the water for washing in at least the final stage of the water washing is water containing 30 to 300 ppm sulfuric acid. 前記最終段階の洗滌処理の後、洗滌水と分離された非晶質シリカが、30〜300ppmの硫酸を含むものである請求項1記載の高純度シリカの製造方法。  The method for producing high-purity silica according to claim 1, wherein the amorphous silica separated from the washing water after the final washing treatment contains 30 to 300 ppm of sulfuric acid. 加熱処理を、温度800〜1400℃の範囲で行う請求項1記載の高純度シリカの製造方法。  The method for producing high-purity silica according to claim 1, wherein the heat treatment is performed in a temperature range of 800 to 1400 ° C.
JP33288294A 1994-12-15 1994-12-15 Method for producing high purity silica Expired - Lifetime JP3722860B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33288294A JP3722860B2 (en) 1994-12-15 1994-12-15 Method for producing high purity silica

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33288294A JP3722860B2 (en) 1994-12-15 1994-12-15 Method for producing high purity silica

Publications (2)

Publication Number Publication Date
JPH08169711A JPH08169711A (en) 1996-07-02
JP3722860B2 true JP3722860B2 (en) 2005-11-30

Family

ID=18259858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33288294A Expired - Lifetime JP3722860B2 (en) 1994-12-15 1994-12-15 Method for producing high purity silica

Country Status (1)

Country Link
JP (1) JP3722860B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101253122B (en) * 2005-08-31 2015-04-15 近藤胜义 Method for production of amorphous silicon oxide powder
JP5894742B2 (en) * 2011-03-29 2016-03-30 株式会社アドマテックス Composition for surface coating and method for producing the same
JP5843684B2 (en) * 2012-03-30 2016-01-13 太平洋セメント株式会社 Method for producing high purity silica
CN113955760B (en) * 2021-10-22 2023-06-16 福建思科硅材料有限公司 Preparation equipment and process of white carbon black

Also Published As

Publication number Publication date
JPH08169711A (en) 1996-07-02

Similar Documents

Publication Publication Date Title
KR930001210B1 (en) Process for manufacturing high purity silica
JPS6283313A (en) Method for highly purifying silica
JPH01167238A (en) Method for manufacture of glass body
JP3722860B2 (en) Method for producing high purity silica
TWI221149B (en) Method for producing synthetic quartz glass
JPS61158810A (en) Production of high-purity silica sol
JPS5954632A (en) Preparation of quartz glass powder
JP3299291B2 (en) Method for obtaining a metal hydroxide having a low fluoride content
JPH0535086B2 (en)
JP4504491B2 (en) Manufacturing method of high purity synthetic quartz powder
JPH10204554A (en) Method for refining zirconium and/or hafnium compound
JP4649677B2 (en) Method for producing high-purity silica particles, high-purity silica particles obtained thereby, and method for producing high-purity quartz glass particles using the same
JPH051208B2 (en)
JP4000399B2 (en) Method for producing ultra-high purity silica powder, ultra-high purity silica powder obtained by the production method, and quartz glass crucible using the same
JP4070154B2 (en) Ultra high purity silica powder and method for producing the same, and silica glass crucible for pulling single crystal using the ultra high purity silica powder
CN111729639B (en) Coating circulating water treatment agent and preparation method thereof
JP7061452B2 (en) Phosphoric acid production method and purification method
JPS62283809A (en) Production of high-purity silica
JPH0457606B2 (en)
JP2003012321A (en) Method for producing high purity silica particles and high purity silica particles and method for producing high purity quartz glass particles using them
JPH069683A (en) Production of pharmaceutical grade highly pure iodeoxycholicacid
JP5057622B2 (en) Method for producing low boron silica particles, low boron silica particles obtained by this method, and method for producing low boron silica glass particles using the same
EP0296401B1 (en) Process for manufacturing fine silica particles
JPS62283810A (en) Production of high-purity silica
JPH0134977B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term