JPH0535086B2 - - Google Patents

Info

Publication number
JPH0535086B2
JPH0535086B2 JP60139145A JP13914585A JPH0535086B2 JP H0535086 B2 JPH0535086 B2 JP H0535086B2 JP 60139145 A JP60139145 A JP 60139145A JP 13914585 A JP13914585 A JP 13914585A JP H0535086 B2 JPH0535086 B2 JP H0535086B2
Authority
JP
Japan
Prior art keywords
acid
producing high
fibrous gel
solution
purity silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60139145A
Other languages
Japanese (ja)
Other versions
JPS623011A (en
Inventor
Koichi Orii
Masashi Nishida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP13914585A priority Critical patent/JPS623011A/en
Priority to CA000511722A priority patent/CA1271307A/en
Priority to IN454/CAL/86A priority patent/IN165458B/en
Priority to ES556561A priority patent/ES8707158A1/en
Priority to US06/878,773 priority patent/US4683128A/en
Priority to KR1019860005151A priority patent/KR930001210B1/en
Priority to DE8686108783T priority patent/DE3688009T2/en
Priority to CN 86104402 priority patent/CN1009075B/en
Priority to EP86108783A priority patent/EP0206353B1/en
Publication of JPS623011A publication Critical patent/JPS623011A/en
Publication of JPH0535086B2 publication Critical patent/JPH0535086B2/ja
Priority to SG92694A priority patent/SG92694G/en
Granted legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、高純度シリカの製造方法に関する。
詳しくは、アルカリけい酸塩水溶液から、アルカ
リ金属や塩素のほか、ウランなど放射性を有する
不純物の含有率が極めて低い高純度シリカを製造
する方法に関する。 高純度シリカは、充填剤・分散剤などの用途、
透明石英ガラス、特殊セラミツクスなどの原料と
して用いられるほか、電子部品封止用樹脂組成物
の充填剤の原料としての用途が期待される。 電子部品の封止材料としては、シリカなど無機
質充填剤を含む合成樹脂組成物が用いられている
が、無機質充填剤は、膨張係数、熱伝導性、透湿
性、機械的特性などの諸物性およびコストの面か
ら成形性の許す限り多量に配合することが有利と
され、シリカ系充填剤が最も好ましいとされてい
る。しかし、電子部品素子の高集積化に伴つて、
素子の誤作動の問題が生じており、これは使用す
る封止材料、特にシリカ系充填剤中に数十〜数百
ppb単位で含まれている微量のウラン、トリウム
などの放射性元素から放出されるα線に起因する
とされていて、シリカ中のこのような不純物の含
有率を更に低減させることが望まれている。 本発明は、このような要望に対応することを目
的とするものである。 〔従来の技術〕 高純度シリカの製法としては; (1) 蒸留・吸着・液相抽出等により精製した四塩
化けい素を酸水素炎下で反応させる方法が知ら
れている。また; (2) けい酸アルカリ水溶液を原料として高純度シ
リカを製造する方法として、けい酸アルカリ水
溶液をイオン交換樹脂で処理することによつて
精製する方法(特開昭60−42217号、特開昭60
−42218号など)が提案されている。 〔発明が解決しようとする問題点〕 これらの方法により純度の高いシリカを製造す
ることができるが、(1)の方法の場合、得られるシ
リカ粒子の平均粒径がmμオーダーの微粒子で比
表面積が大きく、電子部品封止用樹脂組成物への
充填剤としては利用し難い。 また、(2)の方法では、いづれもけい酸アルカリ
水溶液のSiO2濃度を約10重量%以下に希釈して
精製処理操作を行うので装置効率上の点で、また
シリカゾルからシリカを沈澱析出させ母液から分
離回収する操作条件が複雑であるので生産性の点
で難がある。 〔問題点を解決するための手段〕 本発明者らは、従来の方法における、このよう
な問題点を改善し、アルカリけい酸塩水溶液を原
料として不純物の含有量が極めて少ない高純度シ
リカを効率良く、しかも経済的に製造するべく鋭
意研究し、アルカリけい酸塩水溶液を凝固浴中で
微細な繊維状ゲルとし、得られた繊維状ゲルを酸
を含む液、次いで水で処理して不純物を抽出、除
去することによつて高純度シリカを得ることがで
きることを見出し、本発明を完成した。 本発明は、粘度が2〜500ポイズの範囲である
アルカリけい酸塩水溶液(アルカリけい酸塩は、
一般式:M2O・nSiO2〈ただし、Mはアルカリ金
属元素、nはSiO2のモル数で0.5〜5を示す〉で
表される)を、材質が貴金属類製、貴金属合金類
製もしくは四弗化エチレン系樹脂製のもの、また
はそのノズル面を貴金属類もしくは四弗化エチレ
ン系樹脂で被覆したもののいずれかであり、孔径
1mm以下である紡糸ノズルから直接、水溶性有機
媒体中に押し出して微細な繊維状ゲルとし、得ら
れた繊維状ゲルを処理の最初の段階で酸濃度が30
容量%以下である酸を含む液で処理した後、次い
で水洗して不純物を抽出除去することを特徴とす
る高純度シリカの製造方法を要旨とする。 以下、本発明について説明する。本発明の実施
態様は、次の2工程から構成される。 ●工程−1:(繊維化工程) アルカリけい酸塩水溶液から曳糸性を有する高
粘性液(以下、原液という)を調製し、この原液
を繊維化装置を用いて凝固浴中で凝固させ微細な
繊維状ゲルとする。 ●工程−2:(不純物抽出工程) 得られた繊維状ゲルを、酸を含む液(以下、処
理液という)、次いで水で処理して不純物を抽出
し除去する。 本発明の特徴は; (1) アルカリけい酸塩水溶液は、紡糸ノズル(以
下、ノズルという)を備えた繊維化装置を用い
て凝固浴中で凝固させ微細な繊維状ゲルとす
る。 繊維化に際しては、1mm以下の孔径を有する
ノズルを用いるのがよい。 得られる繊維状ゲルは微細径で高表面積を有
するので不純物の抽出効率が高まる。 (2) アルカリけい酸塩水溶液を微細な繊維状ゲル
とするに際して、アルカリけい酸塩水溶液を水
溶性有機媒体中で凝固させる。 アルカリけい酸塩水溶液の粘度は2〜500ポ
イズの範囲とするのがよい。 前記の特徴(1)および(2)を組み合わせることによ
り、驚くべきことに、通常の円形孔ノズルを用い
ても中空構造を有する繊維状ゲルが得られ、その
凝固体部分は均質な高膨潤状態を保持し、不純物
が酸および水によつて抽出され易い構造で得られ
るので、前記の特徴(1)の効果とあいまつて前記の
組合せはシリカ中の不純物の抽出効率を著しく向
上させることができる。 本発明の方法で原料のアルカリけい酸塩水溶液
としては、けい酸のナトリウム塩、カリウム塩、
リチウム塩などの水溶液を用いることができる。 以下、本発明の方法においてアルカリけい酸塩
水溶液としてけい酸ナトリウム水溶液を用いた場
合を例として、前記の2工程を順次説明する。 〔工程−1:(繊維化工程)〕 原料のけい酸ナトリウム水溶液を繊維化するの
に適した粘度範囲に調製し、原液とする。 本発明の方法に適した原液の粘度範囲は、2〜
500ポイズの範囲がよく、特に10〜200ポイズの範
囲が好適である。 SiO2濃度が高く粘度が高過ぎるけい酸ナトリ
ウム水溶液を原料とする場合には、水で適宜希釈
して使用する。 SiO2約30%を含むけい酸ナトリウム水溶液の
場合には、通常の状態では粘度が低く曳糸性が充
分でないので、これに曳糸性を付与するためにけ
い酸ナトリウムを重合させて用いる。 けい酸ナトリウムを重合させる方法としては、
酸性物質による部分中和法、脱水濃縮法、多価金
属塩を添加する方法等が提案されている。これら
の内、脱水濃縮法は最も簡単な方法で数%の脱水
でけい酸ナトリウムは重合し粘度が増大する。 調製した原液を繊維化に適した温度、たとえば
30〜60℃に保ち、適宜のろ過装置を経て、定量ポ
ンプを用いて繊維化装置に送る。 繊維化装置としては、特に限定するものではな
く、一般には紡糸ノズルを備えた押し出し機を用
いることができる。 ノズルを用いる場合の最大の問題点は、ノズル
から押し出された原液のノズル出口面への接着ト
ラブルの発生である。 周知のように、けい酸ナトリウム水溶液は金属
との親和性の高い粘稠な液であり、僅かの含水率
の減少で急に凝固する性質を有し、接着剤として
も使用されていることから判るように、けい酸ナ
トリウム水溶液からなる原液がノズル面に付着し
た状態で凝固すると、けい酸ナトリウムとノズル
面との間に強固な結合が形成され、これを剥離さ
せることは極めて困難である。凝固体がノズル面
に接着すると隣接している孔から押し出された原
液が次々と付着凝固してゆき、遂には繊維化の操
作を継続することができなくなる。 このような現象は使用するノズルの孔径が小さ
く、孔数の多い場合に起こり易い。これの解決策
としては、ノズル面と原液との付着性をできるだ
け小さくすることである。 本発明者らは使用するノズルの材質について
種々の検討を行い、金、白金などの貴金属類製、
金−白金合金などの貴金属合金類製もしくは四弗
化エチレン(以下、TFEという)系樹脂製のノ
ズル、またはそのノズル面を貴金属類もしくは
TFE系樹脂で被覆したものを使用するとゲル化
したアルカリけい酸塩のノズル離れ性が著しく向
上することを見出した。 本発明でいう貴金属類とは、金、白金、銀、パ
ラジウムを含み、通常のメツキ処理によつてノズ
ル面に被覆することができる。 本発明でいうTFE系樹脂とはポリ四弗化エチ
レン(PTFE)のほか、TFEとヘキサフルオロ
プロピレンとの共重合体、TFEとパーフルオロ
アルキルビニルエーテルとの共重合体、エチレン
とTFEとの共重合体、エチレンとビニルフルオ
ライドとの共重合体、エチレンとビニリデンフル
オライドとの共重合体、エチレンとクロロトリフ
ルオロエチレンとの共重合体などの共重合体類を
含む。 ノズル面へのTFE系樹脂の被覆は常法に従つ
て行い、必要ならノズル外面にプライマーを施し
た後、被覆を行つてもよい。 繊維化には、湿式法のほかアルカリけい酸塩水
溶液をノズルからいつたん空気中に押し出した後
で、酸溶液で処理して凝固させるなど種々の方法
が採用できるが、アルカリけい酸塩のノズル面へ
の接着防止の観点からは乾式法に比し湿式法が有
利である。 本発明では、凝固浴中に浸漬したノズルから原
液を押し出す。押し出された原液は凝固浴中で繊
維状に凝固しゲルとなる。この繊維状ゲルはロー
ラーで引きとるか、またはベルトコンベアーに乗
せて次の工程−2へ送る。 本工程で使用するノズルの孔径は、0.05〜1.0
mmの範囲がよく、好ましくは0.1〜0.3mmの範囲で
ある。ノズルは通常の円形孔ノズルを用いればよ
いが、異形断面孔ノズル若しくは中空糸紡糸用ノ
ズルを使用することもできる。 本発明の方法では、特に中空糸紡糸用ノズルを
用いなくても中空繊維状ゲルを得ることができ、
工程−2で良好な不純物抽出効果が得られる。 繊維状ゲルに微細な気泡を混入させることも不
純物抽出効率を高めるのに有効である。 繊維状ゲルに微細な気泡を混入させる方法とし
ては、空気が液中に巻き込まれるように撹拌して
調製した原液を用いる方法、原液に加熱により分
解して気体を発生する化学的発泡剤または常温で
液状の低沸点物質を添加し、該原液を加熱しなが
ら繊維化する方法、或いは原液を繊維化装置に送
るポンプのキヤビテーシヨン現象を利用する方法
など種々の方法を採ることができる。 本発明の凝固浴に用いる凝固剤としては水溶性
の有機媒体を使用する。水溶性の有機媒体は水に
対する親和性が大きいが、アルカリけい酸塩に対
しては殆ど親和性を示さない。アルカリけい酸塩
の凝固は、いわゆる脱水効果によつて起こるもの
と考えられる。本発明の方法で用いられる水溶性
の有機媒体としては、例えば、メタノール、エタ
ノール、n−プロパノール等のアルコール類、酢
酸メチル、酢酸エチル等のエステル類、アセト
ン、メチルエチルケトン等のケトン類、ジメチル
アセトアミド(以下、DMACという)、ジメチル
ホルムアミド(以下、DMFという)などのアミ
ド類、ジメチルスルフオキシド等を挙げることが
できる。 アルカリけい酸塩の凝固速度は使用する凝固剤
の種類によつても大巾に異なるので、凝固浴温度
を一義的に決めるのはむづかしいが、通常は10〜
60℃程度の温度がよい。 繊維状ゲルの引き取りは、ローラータイプで毎
分1〜100m程度、コンベアータイプで毎分0.1〜
50m程度の速度で通常操作される。 〔工程−2:(不純物抽出工程)〕 前記工程−1で得られた繊維状ゲルを本工程に
おいて酸を含む液で処理する。酸は、硫酸、塩
酸、硝酸などの無機酸およびギ酸などの有機酸
で、実用上、硫酸、硝酸などを用いるのが好まし
い。 また、処理液としては実用上、これらの酸の水
溶液が好ましい。 本工程での酸処理操作としては、1段階で処理
する方法を採ることもできるが、特に微量の不純
物を抽出除去するには処理操作を少なくとも2段
階に分け、各段階ごとに使用する処理液を更新す
る多段階処理を行うこともできる。 不純物の抽出には高濃度の酸を用いて行うのが
一般的な方法であるが、本発明の方法では工程−
1において形成された、不純物が抜け易いゲルの
構造をできるだけ保持するため、処理液の酸濃度
は低くすることが好ましい。 本発明の方法では、処理操作の最初の段階にお
ける処理液の酸濃度は30容量%以下(処理液100
容量部当たりに含む酸:30容量部以下を意味し、
以下同様とする。)とするのが好ましい。 処理液の酸濃度が30容量%以下の領域では繊維
状ゲルは膨潤状態を保つており、この状態で脱ア
ルカリが進行する。その上、微細な中空繊維の特
徴である高表面積との相乗効果によつて、不純物
の抽出効率が著しく向上する。 処理操作の最初の段階において酸濃度30容量%
を超える処理液を用いた場合には、この処理によ
つて生成したシリカの組識が緻密になり過ぎ、内
部に残留する不純物の抽出が難しくなる。 また、処理液の酸濃度が0.5容量%未満では酸
処理の能率の点で実用的でない。 このようなことから、この処理の最初の段階で
用いる処理液の酸濃度は0.5〜30容量%の範囲が
よく、好ましくは1〜25容量%、更に好ましくは
3〜20容量%の範囲である。 多段階処理の場合、最初の段階における処理液
の酸濃度は30容量%以下にすることが必要である
が、第2段階以降の処理液の酸濃度にはこのよう
な制限はなく、任意に定めることができる。 本工程での処理温度は特に制限しないが、50℃
以上の温度で抽出操作を行うのがよい。 処理液の常圧における沸点よりも高い温度で加
圧下で処理すると不純物抽出の所要時間を短縮す
ることができる。加圧抽出の際の温度は、高い程
好ましいが酸による装置の腐食やエネルギーコス
トを考慮すると、100〜150℃、好ましくは110〜
140℃の範囲が実用的である。 本工程の処理は、撹拌しながら行うことが望ま
しい。本工程の操作は長繊維状のままで連続処理
することもできるが、回分式で処理する場合には
前記工程−1で得られた長繊維状ゲルを短繊維状
に切断することが好ましい。短繊維化には通常の
ガラス繊維切断用カツターを使用することができ
る。切断長は通常5〜50mmがよく、そのうちでも
10mm前後が好適である。 ゲルが短繊維化されると、処理液中での撹拌に
よるゲルの分散性が極めて良好になる。短繊維状
ゲルは処理液中でスラリー状に分散し、不純物抽
出の操作が容易になると共に不純物の抽出効果の
均一性も向上し、不純物抽出成積のバラツキが著
しく少なくなる。また、短繊維状ゲルは繊維状物
の特徴である嵩高性も備えているので不純物抽出
処理後の洗滌およびろ過操作でも、液分離が極め
て容易である。 酸処理の時間は、回分式の場合には30分から5
時間程度、また、連続式の場合には30秒から30分
程度、好ましくは1〜10分程度である。 酸処理を施して得られたシリカ繊維は次いで任
意の温度の水を用いて洗滌し、必要によりろ過操
作を組み合せて脱酸および脱水処理する。 なお、本発明で使用する酸は精製または電子グ
レードと称される高純度品を、また原料や使用す
る酸の希釈またはシリカの洗滌などに用いる水は
不純物の少ない純水を用いることが好ましい。 本工程の処理によつて、シリカ中の放射性元素
を含む前記不純物の含有率は極めて低くなる。 酸処理後のシリカ中の不純物含有率は、アルカ
リ金属:約10ppm以下、塩素:3ppm以下、ウラ
ンについては、約3ppb以下にすることができる。 〔発明の効果〕 本発明の方法によれば、アルカリけい酸塩水溶
液を原料としてウランなどの放射性元素を含む不
純物含有率が極めて低い高純度のシリカを得るこ
とができる。得られるシリカは従来技術による場
合に比較して純度が高いので、充填剤・分散剤な
どの用途のほか、透明石英ガラス・特殊セラミツ
クスなどの原料として利用できるほか、電子部品
封止用樹脂組成物の充填剤の原料としての用途も
期待される。 更に、本発明の方法は従来の方法による場合に
比較して、製造コストを低減することができると
いう利点も併せ持つている。 〔実施例〕 以下、本発明の方法を実施例および比較例によ
り具体的に説明する。 実施例 1 けい酸ソーダ#3号(JIS K1408、3号相当
品、以下同じ)(SiO2:28%、Na2O:9%、
U:36ppb)3000gを、減圧下で50℃に加温して
脱水濃縮し、SiO2:32%の繊維化用原液を得た。
本原液の粘度は30℃で約100ポイズであり、曳糸
性も良好であつた。この原液をろ過後、押し出し
機を用い孔径0.1mmφ、孔数200個のPTFE樹脂被
覆ノズルを通して3m/分の速度で、30℃に保持
した凝固浴(凝固剤:DMAC)中へ押し出した。 押し出された原液はDMACによつて脱水され
て凝固し、透明な繊維状ゲルに変化した。この繊
維状ゲルをカツターを用いて切断し、繊維長約1
cmの短繊維とした。 得られた短繊維状ゲル10gを処理液−硫酸5容
量%水溶液:500c.c.中に浸漬し、撹拌しつつ100℃
で1時間処理し、次いで、処理液を硫酸10容量%
水溶液:500c.c.に替え、同様にして第2段目の処
理を行つた。 このようにして得られた短繊維状シリカを沸騰
水で洗滌、ろ過して脱酸・脱水し、150℃で乾燥
した後、粒径分布をそろえるためメノウ製粉砕器
で粉砕し、シリカ粒子を得た。 なお、本実施例以下、酸は半井化学製試薬特級
品を、また水は電気伝導度が1.0μS/cm(25℃)
以下であるイオン交換水を使用した。 実施例 2 けい酸ソーダ#3号(実施例1と同ロツト)
5000gを30℃に保持し、撹拌しながら微粉状の酸
性硫酸ソーダを少量づつゆつくり添加した。けい
酸ソーダ液の粘度は酸性硫酸ソーダの添加量の増
加につれて上昇し、粘度30ポイズの原液を得た。 この原液は空気をまきこみ、気泡で充満してい
た。この気泡を含んだ原液をそのまま押し出し機
から孔径0.1mmφ、孔数200個の金−白金合金製ノ
ズルを通してDMACを凝固剤とした凝固浴中へ
押し出し、繊維状ゲルを得た。この繊維状ゲル中
には多数の微細な気泡が存在していた。気泡を含
んだままの繊維状ゲルを切断して短繊維化し、実
施例1と同様の処理を行つてシリカ粒子を得た。 上記の実施例1〜2で得られたシリカ中の不純
物含有率を表−1に示す。Cl、UおよびThの分
析は放射化分析法によつた。
[Industrial Application Field] The present invention relates to a method for producing high-purity silica.
Specifically, the present invention relates to a method for producing high-purity silica containing extremely low content of radioactive impurities such as uranium in addition to alkali metals and chlorine from an aqueous alkali silicate solution. High-purity silica is used for fillers, dispersants, etc.
In addition to being used as a raw material for transparent quartz glass and special ceramics, it is also expected to be used as a raw material for fillers in resin compositions for encapsulating electronic components. Synthetic resin compositions containing inorganic fillers such as silica are used as encapsulating materials for electronic components.Inorganic fillers have various physical properties such as expansion coefficient, thermal conductivity, moisture permeability, mechanical properties, From the viewpoint of cost, it is considered advantageous to blend as much as moldability allows, and silica-based fillers are said to be the most preferred. However, with the increasing integration of electronic component elements,
The problem of device malfunction has arisen, and this is due to the presence of tens to hundreds of silica-based fillers in the encapsulation materials used, especially silica-based fillers.
It is believed that this is caused by alpha rays emitted from trace amounts of radioactive elements such as uranium and thorium, which are contained in ppb units, and it is desired to further reduce the content of such impurities in silica. The present invention aims to meet such demands. [Prior Art] Known methods for producing high-purity silica include: (1) A method in which silicon tetrachloride purified by distillation, adsorption, liquid phase extraction, etc. is reacted under an oxyhydrogen flame. (2) As a method for producing high-purity silica using an aqueous alkali silicate solution as a raw material, a method of purifying an aqueous alkali silicate solution by treating it with an ion exchange resin (JP-A No. 60-42217, JP-A No. 60-42217, Showa 60
−42218, etc.) have been proposed. [Problems to be solved by the invention] Highly pure silica can be produced by these methods, but in the case of method (1), the average particle diameter of the obtained silica particles is on the order of mμ, and the specific surface area is small. is large, making it difficult to use as a filler in resin compositions for encapsulating electronic components. In addition, in method (2), since the purification operation is performed after diluting the SiO 2 concentration of the aqueous alkali silicate solution to about 10% by weight or less, it is difficult to precipitate silica from the silica sol in terms of equipment efficiency. Since the operating conditions for separating and recovering from the mother liquor are complicated, there is a problem in terms of productivity. [Means for Solving the Problems] The present inventors have improved the above-mentioned problems in conventional methods, and have developed an efficient method for producing high-purity silica with extremely low impurity content using an aqueous alkali silicate solution as a raw material. In order to produce it efficiently and economically, we conducted intensive research to form a fine fibrous gel from an aqueous alkali silicate solution in a coagulation bath, and treated the resulting fibrous gel with an acid-containing solution and then with water to remove impurities. The present invention was completed based on the discovery that high purity silica can be obtained by extraction and removal. The present invention is an aqueous alkali silicate solution having a viscosity in the range of 2 to 500 poise (alkali silicate is
General formula: M 2 O・nSiO 2 (where M is an alkali metal element, n is the number of moles of SiO 2 and is 0.5 to 5)) is made of noble metals, noble metal alloys, or Extruded directly into a water-soluble organic medium from a spinning nozzle with a pore diameter of 1 mm or less, either made of tetrafluoroethylene resin or whose nozzle surface is coated with precious metals or tetrafluoroethylene resin. The resulting fibrous gel is heated to an acid concentration of 30% in the first stage of processing.
The gist of the present invention is a method for producing high-purity silica, which is characterized in that it is treated with a solution containing acid in a volume percent or less, and then washed with water to extract and remove impurities. The present invention will be explained below. An embodiment of the present invention consists of the following two steps. ●Process-1: (Fiberization process) A highly viscous liquid with stringiness (hereinafter referred to as stock solution) is prepared from an aqueous alkali silicate solution, and this stock solution is coagulated in a coagulation bath using a fiberization device to form fine particles. It is made into a fibrous gel. ●Step-2: (Impurity extraction step) The obtained fibrous gel is treated with a liquid containing an acid (hereinafter referred to as a treatment liquid) and then with water to extract and remove impurities. Features of the present invention are: (1) An aqueous alkali silicate solution is coagulated into a fine fibrous gel in a coagulation bath using a fiberizing device equipped with a spinning nozzle (hereinafter referred to as nozzle). For fiberization, it is preferable to use a nozzle with a hole diameter of 1 mm or less. The resulting fibrous gel has a fine diameter and a high surface area, increasing the efficiency of extracting impurities. (2) When forming an aqueous alkali silicate solution into a fine fibrous gel, the aqueous alkali silicate solution is coagulated in a water-soluble organic medium. The viscosity of the aqueous alkali silicate solution is preferably in the range of 2 to 500 poise. By combining features (1) and (2) above, surprisingly, a fibrous gel with a hollow structure can be obtained even using a normal circular hole nozzle, and the coagulated part is in a homogeneous and highly swollen state. , and impurities can be easily extracted by acid and water, so the above combination, together with the effect of feature (1) above, can significantly improve the efficiency of extracting impurities from silica. . In the method of the present invention, the raw material aqueous alkali silicate solution includes sodium salt, potassium salt,
Aqueous solutions such as lithium salts can be used. Hereinafter, the above two steps will be sequentially explained, taking as an example a case where a sodium silicate aqueous solution is used as the alkali silicate aqueous solution in the method of the present invention. [Step-1: (Fibre-forming process)] The raw material sodium silicate aqueous solution is adjusted to a viscosity range suitable for fiber-forming, and used as a stock solution. The viscosity range of the stock solution suitable for the method of the invention is 2 to
A range of 500 poise is preferred, and a range of 10 to 200 poise is particularly preferred. If a sodium silicate aqueous solution with a high SiO 2 concentration and too high viscosity is used as a raw material, it should be diluted with water as appropriate before use. In the case of an aqueous sodium silicate solution containing about 30% SiO 2 , the viscosity is low under normal conditions and the stringiness is insufficient, so sodium silicate is polymerized and used in order to impart stringiness to the solution. As a method for polymerizing sodium silicate,
A partial neutralization method using an acidic substance, a dehydration concentration method, a method of adding a polyvalent metal salt, etc. have been proposed. Among these, the dehydration and concentration method is the simplest method, in which sodium silicate polymerizes and increases in viscosity by dehydration of a few percent. The prepared stock solution is heated to a temperature suitable for fiberization, e.g.
The mixture is kept at 30 to 60°C, passed through an appropriate filtration device, and sent to a fiberizing device using a metering pump. The fiberizing device is not particularly limited, and generally an extruder equipped with a spinning nozzle can be used. The biggest problem when using a nozzle is the occurrence of adhesion problems of the stock solution extruded from the nozzle to the nozzle exit surface. As is well known, sodium silicate aqueous solution is a viscous liquid that has a high affinity with metals, and has the property of rapidly solidifying with a slight decrease in water content, and is also used as an adhesive. As can be seen, when the stock solution consisting of an aqueous sodium silicate solution solidifies while adhering to the nozzle surface, a strong bond is formed between the sodium silicate and the nozzle surface, and it is extremely difficult to separate this bond. When the coagulated material adheres to the nozzle surface, the stock solution extruded from adjacent holes will adhere and coagulate one after another, until it becomes impossible to continue the fiberizing operation. Such a phenomenon is likely to occur when the nozzle used has a small hole diameter and a large number of holes. A solution to this problem is to minimize the adhesion between the nozzle surface and the stock solution. The present inventors conducted various studies on the material of the nozzle to be used, and found that it was made of precious metals such as gold and platinum,
Nozzles made of precious metal alloys such as gold-platinum alloys or tetrafluoroethylene (hereinafter referred to as TFE) resin, or whose nozzle surface is made of precious metals or
It has been found that the nozzle release properties of gelled alkali silicate are significantly improved when a product coated with TFE resin is used. The noble metals referred to in the present invention include gold, platinum, silver, and palladium, and can be coated on the nozzle surface by ordinary plating treatment. In addition to polytetrafluoroethylene (PTFE), the TFE resin used in the present invention refers to copolymers of TFE and hexafluoropropylene, copolymers of TFE and perfluoroalkyl vinyl ether, and copolymers of ethylene and TFE. copolymers, such as copolymers of ethylene and vinyl fluoride, copolymers of ethylene and vinylidene fluoride, and copolymers of ethylene and chlorotrifluoroethylene. The nozzle surface is coated with the TFE resin according to a conventional method, and if necessary, the coating may be performed after applying a primer to the outer surface of the nozzle. In addition to the wet method, various methods can be used for fiberization, such as extruding an aqueous alkali silicate solution into the air through a nozzle and then treating it with an acid solution to coagulate it. From the viewpoint of preventing adhesion to surfaces, the wet method is more advantageous than the dry method. In the present invention, the stock solution is extruded through a nozzle immersed in a coagulation bath. The extruded stock solution coagulates into fibers in a coagulation bath and becomes a gel. This fibrous gel is pulled off with a roller or placed on a belt conveyor and sent to the next step-2. The pore diameter of the nozzle used in this process is 0.05 to 1.0.
The range is preferably 0.1 to 0.3 mm. As the nozzle, a normal circular hole nozzle may be used, but a modified cross-section hole nozzle or a hollow fiber spinning nozzle may also be used. In the method of the present invention, a hollow fibrous gel can be obtained without particularly using a hollow fiber spinning nozzle,
A good impurity extraction effect can be obtained in step-2. Incorporating fine air bubbles into the fibrous gel is also effective in increasing impurity extraction efficiency. Methods for mixing fine air bubbles into the fibrous gel include using a stock solution prepared by stirring so that air is drawn into the liquid, using a chemical blowing agent that decomposes into the stock solution by heating to generate gas, or using a chemical blowing agent that generates gas by heating the stock solution. Various methods can be used, such as adding a liquid low-boiling substance to the fiber and heating the stock solution to form fibers, or utilizing the cavitation phenomenon of a pump that sends the stock solution to the fiberization device. A water-soluble organic medium is used as the coagulant used in the coagulation bath of the present invention. Water-soluble organic media have a high affinity for water, but have little affinity for alkali silicates. The coagulation of alkali silicates is thought to occur due to the so-called dehydration effect. Examples of the water-soluble organic medium used in the method of the present invention include alcohols such as methanol, ethanol, and n-propanol, esters such as methyl acetate and ethyl acetate, ketones such as acetone and methyl ethyl ketone, and dimethylacetamide ( Examples include amides such as dimethylformamide (hereinafter referred to as DMAC), dimethylformamide (hereinafter referred to as DMF), and dimethyl sulfoxide. The coagulation rate of alkali silicate varies widely depending on the type of coagulant used, so it is difficult to determine the coagulation bath temperature unambiguously, but it is usually within 10 to
A temperature of around 60℃ is best. Fibrous gel can be picked up at a rate of 1 to 100 m/min with a roller type, and 0.1 to 100 m/min with a conveyor type.
It is normally operated at a speed of about 50 m. [Step-2: (Impurity extraction step)] The fibrous gel obtained in step-1 is treated with a liquid containing an acid in this step. The acids include inorganic acids such as sulfuric acid, hydrochloric acid, and nitric acid, and organic acids such as formic acid. Practically speaking, it is preferable to use sulfuric acid, nitric acid, and the like. Further, as the treatment liquid, an aqueous solution of these acids is practically preferable. The acid treatment in this process can be carried out in one step, but in order to extract and remove particularly trace amounts of impurities, the treatment should be divided into at least two steps, and the treatment solution used in each step should be It is also possible to perform a multi-step process of updating the . Generally, impurities are extracted using highly concentrated acids, but in the method of the present invention, the process
In order to maintain as much as possible the gel structure formed in step 1 from which impurities can easily escape, it is preferable that the acid concentration of the treatment liquid be low. In the method of the present invention, the acid concentration of the treatment liquid at the first stage of the treatment operation is 30% by volume or less (100% of the treatment liquid
Acid contained per part by volume: means 30 parts by volume or less,
The same shall apply hereinafter. ) is preferable. In a region where the acid concentration of the treatment solution is 30% by volume or less, the fibrous gel remains in a swollen state, and dealkalization proceeds in this state. Moreover, the synergistic effect with the high surface area characteristic of fine hollow fibers significantly improves the efficiency of extracting impurities. Acid concentration 30% by volume in the first stage of treatment operation
If a treatment solution exceeding 20% is used, the structure of the silica produced by this treatment becomes too dense, making it difficult to extract the impurities remaining inside. Furthermore, if the acid concentration of the treatment solution is less than 0.5% by volume, it is not practical in terms of acid treatment efficiency. For this reason, the acid concentration of the treatment liquid used in the first stage of this treatment is preferably in the range of 0.5 to 30% by volume, preferably in the range of 1 to 25% by volume, and more preferably in the range of 3 to 20% by volume. . In the case of multi-stage processing, the acid concentration of the processing solution in the first stage must be 30% by volume or less, but there is no such restriction on the acid concentration of the processing solution in the second and subsequent stages, and it can be set arbitrarily. can be determined. The processing temperature in this process is not particularly limited, but it is 50℃
It is best to carry out the extraction operation at a temperature above. When the treatment is performed under pressure at a temperature higher than the boiling point of the treatment liquid at normal pressure, the time required for extracting impurities can be shortened. The temperature during pressurized extraction is preferably as high as possible, but in consideration of equipment corrosion due to acid and energy costs, the temperature is 100-150℃, preferably 110-150℃.
A range of 140°C is practical. It is desirable that this step be performed while stirring. Although the operation of this step can be carried out continuously in the form of long fibers, in the case of batch treatment, it is preferable to cut the long fiber gel obtained in step-1 above into short fibers. A common cutter for cutting glass fibers can be used to shorten the fibers. The cutting length is usually 5 to 50 mm, but within that range,
Approximately 10 mm is suitable. When the gel is made into short fibers, the dispersibility of the gel by stirring in the treatment liquid becomes extremely good. The short fibrous gel is dispersed in the processing liquid in the form of a slurry, which facilitates the impurity extraction operation, improves the uniformity of the impurity extraction effect, and significantly reduces the variation in the impurity extraction composition. In addition, since the short fibrous gel has bulkiness which is a characteristic of fibrous materials, liquid separation is extremely easy during washing and filtration operations after impurity extraction treatment. The acid treatment time is 30 minutes to 5 minutes in case of batch method.
In the case of a continuous type, the time is about 30 seconds to 30 minutes, preferably about 1 to 10 minutes. The silica fibers obtained by the acid treatment are then washed with water at a desired temperature, and if necessary, combined with a filtration operation to undergo deacidification and dehydration treatment. It is preferable that the acid used in the present invention be a highly purified product called purified or electronic grade, and that the water used for diluting the raw material or the acid used or for washing the silica be pure water with few impurities. By the treatment in this step, the content of the impurities including radioactive elements in the silica becomes extremely low. The impurity content in the silica after acid treatment can be reduced to about 10 ppm or less for alkali metals, 3 ppm or less for chlorine, and about 3 ppb or less for uranium. [Effects of the Invention] According to the method of the present invention, high purity silica having an extremely low content of impurities including radioactive elements such as uranium can be obtained using an aqueous alkali silicate solution as a raw material. The resulting silica has a higher purity than that produced by conventional techniques, so it can be used as fillers and dispersants, as well as raw materials for transparent quartz glass and special ceramics, as well as resin compositions for encapsulating electronic components. It is also expected to be used as a raw material for fillers. Furthermore, the method of the present invention also has the advantage that manufacturing costs can be reduced compared to conventional methods. [Example] Hereinafter, the method of the present invention will be specifically explained using Examples and Comparative Examples. Example 1 Sodium silicate #3 (JIS K1408, equivalent to No. 3, hereinafter the same) (SiO 2 : 28%, Na 2 O: 9%,
U: 36 ppb) 3000 g was heated to 50° C. under reduced pressure and dehydrated and concentrated to obtain a stock solution for fiberization containing 32% SiO 2 .
The viscosity of this stock solution was approximately 100 poise at 30°C, and the stringiness was also good. After filtering this stock solution, it was extruded using an extruder through a PTFE resin-coated nozzle with a hole diameter of 0.1 mmφ and 200 holes at a speed of 3 m/min into a coagulation bath (coagulant: DMAC) maintained at 30°C. The extruded stock solution was dehydrated and solidified by DMAC, turning into a transparent fibrous gel. This fibrous gel was cut using a cutter, and the fiber length was approximately 1.
cm short fibers. 10 g of the obtained short fibrous gel was immersed in a treatment solution - 5% by volume aqueous solution of sulfuric acid: 500 c.c., and heated to 100°C with stirring.
The treatment solution was treated with sulfuric acid 10% by volume.
Aqueous solution: 500 c.c. was used, and the second stage treatment was carried out in the same manner. The short fibrous silica thus obtained is washed with boiling water, filtered, deoxidized and dehydrated, dried at 150°C, and then crushed with an agate crusher to make the particle size distribution uniform. Obtained. In addition, in this example, the acid used was a special grade reagent manufactured by Hani Chemical, and the water used had an electrical conductivity of 1.0 μS/cm (25°C).
The following ion-exchanged water was used. Example 2 Sodium silicate #3 (same lot as Example 1)
While maintaining 5000 g at 30°C, finely powdered acidic sodium sulfate was slowly added little by little while stirring. The viscosity of the sodium silicate solution increased as the amount of acidic sodium sulfate added increased, and a stock solution with a viscosity of 30 poise was obtained. This stock solution was aerated and filled with air bubbles. This bubble-containing stock solution was extruded as it was from an extruder through a gold-platinum alloy nozzle with a hole diameter of 0.1 mmφ and 200 holes into a coagulation bath using DMAC as a coagulant to obtain a fibrous gel. Many fine air bubbles were present in this fibrous gel. The fibrous gel still containing air bubbles was cut into short fibers, and the same treatment as in Example 1 was performed to obtain silica particles. Table 1 shows the impurity content in the silica obtained in Examples 1 and 2 above. Analysis of Cl, U and Th was carried out by activation analysis.

【表】 実施例 3 けい酸ソーダ#3号(実施例1と同ロツト)
5000gを50℃に保持したニーダー中で撹拌しなが
ら真空ポンプを用いて減圧下で脱水濃縮し、
SiO2:31.8%とし、透明な原液を得た。原液の粘
度は30℃で50ポイズであつた。この原液を押し出
し機から孔径0.1mmφ、孔数50個のPTFE樹脂被
覆ノズルを通して種々の凝固剤中へ押し出し、透
明な繊維状ゲルを得た。この繊維状ゲルを実施例
1と同様の方法で処理し、表−2に示す結果を得
た。
[Table] Example 3 Sodium silicate #3 (same lot as Example 1)
5000g was dehydrated and concentrated under reduced pressure using a vacuum pump while stirring in a kneader kept at 50℃.
SiO 2 :31.8% was used to obtain a transparent stock solution. The viscosity of the stock solution was 50 poise at 30°C. This stock solution was extruded from an extruder through a PTFE resin-coated nozzle with a hole diameter of 0.1 mm and 50 holes into various coagulants to obtain transparent fibrous gels. This fibrous gel was treated in the same manner as in Example 1, and the results shown in Table 2 were obtained.

【表】 実施例4、および比較例1 (1) 実施例1と同様の操作によつて得られた短繊
維状ゲル各10gを、第1段目の処理液としてそ
れぞれ酸濃度0.5、10、20および30、また比較
のため40および70各容量%の硫酸水溶液各500
c.c.中に入れて、以下、実施例1に準じた不純物
抽出処理を行つた。(実施例:4−1〜4、比
較例1−1〜2) (2) また、比較例1に対して酸処理における処理
液の酸濃度の順序だけを替え、その他は同様の
処理を行つた。(実施例:4−5〜6) 得られたシリカ中の不純物含有率を実施例1の
結果と併せて表−3に示す。
[Table] Example 4 and Comparative Example 1 (1) 10 g each of the short fibrous gel obtained by the same procedure as in Example 1 was used as the first-stage treatment solution at acid concentrations of 0.5, 10, and 10, respectively. 20 and 30, and for comparison 40 and 70% by volume sulfuric acid aqueous solution each 500
cc and then subjected to impurity extraction treatment according to Example 1. (Examples: 4-1 to 4, Comparative Examples 1-1 to 2) (2) In addition, compared to Comparative Example 1, only the order of the acid concentration of the treatment liquid in the acid treatment was changed, and the other treatments were the same. Ivy. (Examples: 4-5 to 6) The impurity content in the obtained silica is shown in Table 3 together with the results of Example 1.

【表】 実施例5、および比較例2 実施例3で調製した原液を用いて実施例1と同
様の操作によつて短繊維状ゲルを得た。この短繊
維状ゲル各10gを、第1段目の処理液としてそれ
ぞれ酸濃度5、10および20、また比較のため40お
よび60各容量%の硝酸水溶液各500c.c.中に入れ、
撹拌しながら100℃で1時間処理後、ついで処理
液を10容量%硝酸水溶液各500c.c.に替え、同様に
第2段目の処理を行つた。以後の処理は実施例1
に準じた方法によつてシリカ粒子を得た。 シリカ中の不純物含有率を表−4に示す。
[Table] Example 5 and Comparative Example 2 Using the stock solution prepared in Example 3, a short fibrous gel was obtained in the same manner as in Example 1. 10 g each of these short fibrous gels were placed in 500 c.c. of nitric acid aqueous solutions with acid concentrations of 5, 10, and 20, respectively, and 40 and 60% by volume for comparison, respectively, as the first treatment solution,
After treatment at 100° C. for 1 hour with stirring, the treatment liquid was then changed to 500 c.c. each of a 10% by volume nitric acid aqueous solution, and a second stage treatment was carried out in the same manner. The subsequent processing is as in Example 1.
Silica particles were obtained by a method similar to . Table 4 shows the impurity content in silica.

【表】 実施例6、および比較例3 けい酸ソーダ#3号(本実施例1と同ロツト)
6000gを70℃に保持したニーダー中で撹拌しなが
ら真空ポンプを用いて減圧下で脱水濃縮し、各種
粘度の原液を得た。 これらの原液を実施例1の操作に準じて繊維化
した。それぞれの状態を表−5に示す。 また、得られた繊維状ゲルを実施例1に準じた
方法で処理し、不純物の抽出成績を得られたシリ
カ中のNa含有率で代表させて表−5に示す。 実施例7、および比較例4 実施例1で調製した原液を押し出し機から孔径
がそれぞれ0.2、0.5、1.0、および比較のため3.0
mmφである各孔数50個の金メツキしたSUS−316
製ノズルを通して、実施例1に準じた方法で凝固
浴中へ押し出し、繊維状ゲルを得た。 得られた繊維状ゲルを実施例1と同様の方法で
処理し、不純物の抽出成績をシリカ中のNa含有
率で代表させて表−6に示す。
[Table] Example 6 and Comparative Example 3 Sodium silicate #3 (same lot as Example 1)
6000 g was dehydrated and concentrated under reduced pressure using a vacuum pump while stirring in a kneader maintained at 70°C to obtain stock solutions of various viscosities. These stock solutions were made into fibers according to the procedure of Example 1. The status of each is shown in Table-5. In addition, the obtained fibrous gel was treated in the same manner as in Example 1, and the impurity extraction results obtained are shown in Table 5, representing the Na content in the silica. Example 7 and Comparative Example 4 The stock solution prepared in Example 1 was extracted from an extruder with pore sizes of 0.2, 0.5, 1.0, and 3.0 for comparison, respectively.
Gold-plated SUS-316 with 50 holes each, mmφ
The gel was extruded through a manufactured nozzle into a coagulation bath in the same manner as in Example 1 to obtain a fibrous gel. The obtained fibrous gel was treated in the same manner as in Example 1, and the impurity extraction results are shown in Table 6, represented by the Na content in silica.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 粘度が2〜500ポイズの範囲であるアルカリ
けい酸塩水溶液(アルカリけい酸塩は、一般式:
M2O・nSiO2〈ただし、Mはアルカリ金属元素、
nはSiO2のモル数で0.5〜5を示す〉で表される)
を、材質が貴金属類製、貴金属合金類製もしくは
四弗化エチレン系樹脂製のもの、またはそのノズ
ル面を貴金属類もしくは四弗化エチレン系樹脂で
被覆したもののいずれかであり、孔径が1mm以下
である紡糸ノズルから直接、水溶性有機媒体中に
押し出して微細な繊維状ゲルとし、得られた繊維
状ゲルを処理の最初の段階で酸濃度が30容量%以
下である酸を含む液で処理した後、次いで水洗し
て不純物を抽出除去することを特徴とする高純度
シリカの製造方法。 2 紡糸ノズルの孔径が、0.05〜1.0mmの範囲で
ある特許請求の範囲第1項記載の高純度シリカの
製造方法。 3 紡糸ノズルの孔径が、0.1〜0.3mmの範囲であ
る特許請求の範囲第1項記載の高純度シリカの製
造方法。 4 繊維状ゲルが気泡を含有している特許請求の
範囲第1項記載の高純度シリカの製造方法。 5 酸を含む液で繊維状ゲルを処理する際の最初
の段階で用いる酸を含む液の酸濃度が、0.5〜30
容量%の範囲である特許請求の範囲第1項記載の
高純度シリカの製造方法。 6 繊維状ゲルの酸処理、少なくとも2段階に分
けて行う特許請求の範囲第1項記載の高純度シリ
カの製造方法。
[Claims] 1. An aqueous alkali silicate solution having a viscosity in the range of 2 to 500 poise (the alkali silicate has the general formula:
M 2 O・nSiO 2 (where M is an alkali metal element,
n is the number of moles of SiO 2 , expressed as 0.5 to 5)
The material is made of precious metals, precious metal alloys, or tetrafluoroethylene resin, or the nozzle surface is coated with precious metals or tetrafluoroethylene resin, and the pore diameter is 1 mm or less. A fine fibrous gel is extruded directly from a spinning nozzle into a water-soluble organic medium, and the resulting fibrous gel is treated with a liquid containing an acid with an acid concentration of 30% by volume or less in the first stage of processing. A method for producing high-purity silica, which comprises washing with water to extract and remove impurities. 2. The method for producing high-purity silica according to claim 1, wherein the spinning nozzle has a hole diameter in the range of 0.05 to 1.0 mm. 3. The method for producing high-purity silica according to claim 1, wherein the diameter of the spinning nozzle is in the range of 0.1 to 0.3 mm. 4. The method for producing high-purity silica according to claim 1, wherein the fibrous gel contains air bubbles. 5 The acid concentration of the acid-containing solution used in the first step when treating fibrous gel with an acid-containing solution is 0.5 to 30.
The method for producing high-purity silica according to claim 1, wherein the silica content is in the range of % by volume. 6. The method for producing high-purity silica according to claim 1, wherein the acid treatment of the fibrous gel is carried out in at least two stages.
JP13914585A 1985-06-27 1985-06-27 Production of high-purity silica Granted JPS623011A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP13914585A JPS623011A (en) 1985-06-27 1985-06-27 Production of high-purity silica
CA000511722A CA1271307A (en) 1985-06-27 1986-06-17 Process for manufacturing high purity silica
IN454/CAL/86A IN165458B (en) 1985-06-27 1986-06-18
ES556561A ES8707158A1 (en) 1985-06-27 1986-06-24 Process for manufacturing high purity silica.
US06/878,773 US4683128A (en) 1985-06-27 1986-06-25 Process for manufacturing high purity silica
KR1019860005151A KR930001210B1 (en) 1985-06-27 1986-06-26 Process for manufacturing high purity silica
DE8686108783T DE3688009T2 (en) 1985-06-27 1986-06-27 METHOD FOR PRODUCING HIGH PURE PURITY.
CN 86104402 CN1009075B (en) 1985-06-27 1986-06-27 Prepn. of high purity silicon dioxide
EP86108783A EP0206353B1 (en) 1985-06-27 1986-06-27 Process for manufacturing high purity silica
SG92694A SG92694G (en) 1985-06-27 1994-07-11 Process for manufacturing high purity silica

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13914585A JPS623011A (en) 1985-06-27 1985-06-27 Production of high-purity silica

Publications (2)

Publication Number Publication Date
JPS623011A JPS623011A (en) 1987-01-09
JPH0535086B2 true JPH0535086B2 (en) 1993-05-25

Family

ID=15238613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13914585A Granted JPS623011A (en) 1985-06-27 1985-06-27 Production of high-purity silica

Country Status (2)

Country Link
JP (1) JPS623011A (en)
IN (1) IN165458B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02215938A (en) * 1989-02-16 1990-08-28 Fuji Heavy Ind Ltd Operating controller for garbage truck
JP2545282B2 (en) * 1989-04-17 1996-10-16 日東化学工業株式会社 Method for producing spherical silica particles
JP2566668B2 (en) * 1990-07-16 1996-12-25 新明和工業株式会社 Information processing equipment in a garbage truck
JPH0475901A (en) * 1990-07-16 1992-03-10 Shin Meiwa Ind Co Ltd Dust collecting vehicle
JP3751326B2 (en) 1994-10-14 2006-03-01 三菱レイヨン株式会社 Manufacturing method of high purity transparent quartz glass
CN105263860B (en) * 2013-05-20 2017-06-27 日产化学工业株式会社 Ludox and silica containing composition epoxy resin
CN105000565A (en) * 2015-07-16 2015-10-28 安徽东阳矿业科技有限公司 Compounding-based quartz sand purification technology
CN105060302A (en) * 2015-07-16 2015-11-18 安徽东阳矿业科技有限公司 Chemical-biological purification method for quartz sand
KR20170001671A (en) 2016-11-17 2017-01-04 (주)파마오넥스 Method for manufacturing a composite to suppress a virus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51112924A (en) * 1975-03-28 1976-10-05 Asahi Chem Ind Co Ltd A process for producing silicate fibers

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51112924A (en) * 1975-03-28 1976-10-05 Asahi Chem Ind Co Ltd A process for producing silicate fibers

Also Published As

Publication number Publication date
IN165458B (en) 1989-10-21
JPS623011A (en) 1987-01-09

Similar Documents

Publication Publication Date Title
KR930001210B1 (en) Process for manufacturing high purity silica
JPH0535086B2 (en)
JPH0643246B2 (en) Silica purification method
US2338463A (en) Process of making filaments consisting of pure silicic acid
US20030005724A1 (en) Method for producing silica particles, synthetic quartz powder and synthetic quartz glass
CN1186254C (en) macroreticular silica gel and its preparing process
JPS62283809A (en) Production of high-purity silica
JPS62283810A (en) Production of high-purity silica
JPH0535087B2 (en)
JP3722860B2 (en) Method for producing high purity silica
JP3442120B2 (en) Method for washing silica hydrogel
JPH0457606B2 (en)
JP4737930B2 (en) Manufacturing method of high purity silica gel
JPH04104907A (en) Production of pore size-controlled silica balloon
JP3442119B2 (en) Method for cleaning silica hydrogel
JPS60180911A (en) High-purity silica and its manufacture
JPH02133311A (en) Production of high purity silica
JP4504491B2 (en) Manufacturing method of high purity synthetic quartz powder
EP0296401B1 (en) Process for manufacturing fine silica particles
JPS62128917A (en) Production of fine spherical porous silica
KR960010780B1 (en) Process for manufacturing fine silica particles
JP5057622B2 (en) Method for producing low boron silica particles, low boron silica particles obtained by this method, and method for producing low boron silica glass particles using the same
CN115521388A (en) Method for producing, preparing and purifying nano chitin membrane
JPH1111929A (en) Production of high purity silica powder and high purity silica powder produced by this method
JP2003012321A (en) Method for producing high purity silica particles and high purity silica particles and method for producing high purity quartz glass particles using them

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees