JP3706031B2 - 目標識別装置 - Google Patents

目標識別装置 Download PDF

Info

Publication number
JP3706031B2
JP3706031B2 JP2001017470A JP2001017470A JP3706031B2 JP 3706031 B2 JP3706031 B2 JP 3706031B2 JP 2001017470 A JP2001017470 A JP 2001017470A JP 2001017470 A JP2001017470 A JP 2001017470A JP 3706031 B2 JP3706031 B2 JP 3706031B2
Authority
JP
Japan
Prior art keywords
pulse
detector
signal
calculator
pulse width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001017470A
Other languages
English (en)
Other versions
JP2002221567A (ja
Inventor
泰雄 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2001017470A priority Critical patent/JP3706031B2/ja
Publication of JP2002221567A publication Critical patent/JP2002221567A/ja
Application granted granted Critical
Publication of JP3706031B2 publication Critical patent/JP3706031B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、受信したパルス状の目標からのレーダ波(電波)等におけるパルスデータ、あるいはパルス内データをもとに、その違いから目標の識別を行う目標識別装置に関するものである。
【0002】
【従来の技術】
図17は一般的な従来の目標識別装置の構成を示すブロック図である。図において、1はパルスビデオ信号、2はA/D変換器、3はパルス量子化信号、4はスレッショルドレベル、5はパルス諸元測定指示、6はパルス諸元測定制御器、7はタイマ、8はピークレベル検出器、9はピークレベル、10はパルス幅測定レベル算出器、11はパルス幅測定レベル、12は立ち上がり検出器、13は立ち上がり時刻、14は立ち下がり検出器、15は立ち下がり時刻、16はパルス幅算出器、17はパルス幅、18は相関器である。
【0003】
次に動作について説明する。
A/D変換器2は受信したレーダ波のパルスビデオ信号1を一定間隔でサンプリングしてパルス量子化信号3を出力する。パルス諸元測定制御器6はこのパルス量子化信号3がスレッショルドレベル4より高くなってから低くなるまでの間パルス諸元測定指示5を出力する。ピークレベル検出器8はパルス諸元測定指示5が出力されている間、パルス量子化信号3の量大レベル値を保持し、パルス諸元測定指示5の出力終了後、それをピークレベル9として出力する。このピークレベル9を受けたパルス幅測定レベル算出器10はパルス幅測定レベル11を算出し、そのレベル値を立ち上がり検出器12および立ち下がり検出器14に出力する。
【0004】
立ち上がり検出器12はパルス量子化信号3が増加したときのレベルとその時刻を保持し、パルス諸元測定指示5の出力終了後、その保持データをもとに立ち上がり時刻13を検出してパルス幅算出器16に出力する。また立ち下がり検出器14はパルス量子化信号3が減少したときのレベルとその時刻を保持し、パルス諸元測定指示5の出力終了後、その保持データをもとに立ち下がり時刻15を検出してパルス幅算出器16に出力する。パルス幅算出器16はこれら立ち下がり時刻15と立ち上がり時刻13との差よりパルス幅17を算出する。相関器18(1色)はこのパルス幅17とピークレベル9を用いてパルス信号の相関をとり目標の識別を行う。
【0005】
なお、このような従来の目標識別装置に関連する記載がある文献としては、例えばサンプリング点を結んでその延長交点から時刻を算出する特開平7−84031号公報、あるいは個々のパルスデータの形状に着目して目標の識別を行う特開平10−260209号公報などがある。
【0006】
【発明が解決しようとする課題】
従来の目標識別装置は以上のように構成されているので、パルス信号のピークレベル9とパルス幅17が同一であれば、パルス波形の形状が異なっていても同一パルスとして分類、識別してしまうため、目標を識別する確度が低くなるという課題があった。
【0007】
この発明は、上記のような課題を解決するためになされたもので、目標の識別条件として、これまでのパルスのピークレベルおよびパルス幅というデータに加えて、パルスの立ち上がり/立ち下がり総数、中間パルス立ち上がり比率、レーダ覆域形状等の特徴量のデータも参照することで、これまでできなかった目標の違いの識別を可能とし、確度の高い目標識別が行える目標識別装置を得ることを目的とする。
【0008】
【課題を解決するための手段】
の発明に係る目標識別装置は、受信したパルス信号のパルス波形の各パルス立ち上がり傾斜を検出する立ち上がり傾斜検出器と、そのパルス立ち上がり傾斜の変動の度合いからパルス列変動パターンデータを算出するパルス列変動パターン算出器とを用意し、立ち上がり傾斜検出器にてA/D変換器から出力されたパルス量子化信号を受けてパルス波形の立ち上がり傾斜を検出するとともに、パルス列変動パターン算出器にてこの立ち上がり傾斜検出器が検出した立ち上がり傾斜の変動の度合いよりパルス列変動パターンデータを算出し、パルス波形のピークレベルおよびそのパルス幅と、当該パルス列変動パターンデータの値をもとに、相関器にてパルス信号の相関をとることにより、パルス列変動パターン算出器の算出したパルス信号の立ち上がりの変化を特徴量としてパルス信号の形状の違いをとらえ、目標を識別するようにしたものである。
【0009】
この発明に係る目標識別装置は、受信したパルス信号のパルス波形の各パルス立ち下がり傾斜を検出する立ち下がり傾斜検出器と、そのパルス立ち下がり傾斜の変動の度合いからパルス列変動パターンデータを算出するパルス列変動パターン算出器とを用意し、立ち下がり傾斜検出器にてA/D変換器から出力されたパルス量子化信号を受けてパルス波形の立ち下がり傾斜を検出するとともに、パルス列変動パターン算出器にてこの立ち下がり傾斜検出器が算出した立ち下がり傾斜の変動の度合いよりパルス列変動パターンデータを算出し、パルス波形のピークレベルおよびそのパルス幅と、当該パルス列変動パターンデータの値をもとに、相関器にてパルス信号の相関をとることにより、パルス列変動パターン算出器の算出したパルス信号の立ち下がりの変化を特徴量としてパルス信号の形状の違いをとらえ、目標を識別するようにしたものである。
【0010】
この発明に係る目標識別装置は、受信したパルス信号のパルス波形の各パルス中間立ち上がり傾斜を検出する中間立ち上がり傾斜検出器と、その中間パルス立ち上がり傾斜の変動の度合いからパルス列変動パターンデータを算出するパルス列変動パターン算出器とを用意し、中間立ち上がり傾斜検出器にてA/D変換器から出力されたパルス量子化信号を受けてパルス波形の中間立ち上がり傾斜を検出するとともに、パルス列変動パターン算出器にてこの中間立ち上がり傾斜検出器が検出した中間立ち上がり傾斜の変動の度合いよりパルス列変動パターンデータを算出し、パルス波形のピークレベルおよびそのパルス幅と、当該パルス列変動パターンデータの値をもとに、相関器にてパルス信号の相関をとることにより、パルス列変動パターン算出器の算出したパルス信号の中間立ち上がりの変化を特徴量としてパルス信号の形状の違いをとらえ、目標を識別するようにしたものである。
【0011】
この発明に係る目標識別装置は、受信したパルス信号のグループパルスの各パルス立ち上がり傾斜を検出する立ち上がり傾斜検出器と、そのパルス立ち上がり傾斜の変動の度合いからグループパルス変動パターンデータを算出するグループパルス変動パターン算出器とを用意し、立ち上がり傾斜検出器にてA/D変換器から出力されたパルス量子化信号を受けてパルス波形の立ち上がり傾斜を検出するとともに、グループパルス変動パターン算出器にてこの立ち上がり傾斜検出器が検出した立ち上がり傾斜の変動の度合いよりグループパルス変動パターンデータを算出し、パルス波形のピークレベルおよびそのパルス幅と、当該グループパルス変動パターンデータの値をもとに、相関器にてパルス信号の相関をとることにより、グループパルス変動パターン算出器の算出したグループパルスの立ち上がりの変化を特徴量としてパルス信号の形状の違いをとらえ、目標を識別するようにしたものである。
【0012】
この発明に係る目標識別装置は、受信したパルス信号のグループパルスの各パルス立ち下がり傾斜を検出する立ち下がり傾斜検出器と、そのパルス立ち下がり傾斜の変動の度合いからグループパルス変動パターンデータを算出するグループパルス変動パターン算出器とを用意し、立ち下がり傾斜検出器にてA/D変換器から出力されたパルス量子化信号を受けてパルス波形の立ち下がり傾斜を検出するとともに、グループパルス変動パターン算出器にてこの立ち下がり傾斜検出器が検出した立ち下がり傾斜の変動の度合いよりグループパルス変動パターンデータを算出し、パルス波形のピークレベルおよびそのパルス幅と、当該グループパルス変動パターンデータの値をもとに、相関器にてパルス信号の相関をとることにより、グループパルス変動パターン算出器の算出したグループパルスの立ち下がりの変化を特徴量としてパルス信号の形状の違いをとらえ、目標を識別するようにしたものである。
【0013】
この発明に係る目標識別装置は、受信したパルス信号のパルス波形の各パルス中間立ち上がり傾斜を検出する中間立ち上がり傾斜検出器と、その中間パルス立ち上がり傾斜の変動の度合いからグループパルス変動パターンデータを算出するグループパルス変動パターン算出器とを用意し、中間立ち上がり傾斜検出器にてA/D変換器から出力されたパルス量子化信号を受けてパルス波形の中間立ち上がり傾斜を検出するとともに、グループパルス変動パターン算出器にてこの中間立ち上がり傾斜検出器が検出した中間立ち上がり傾斜の変動の度合よりグループパルス変動パターンデータを算出し、パルス波形のピークレベルおよびそのパルス幅と、当該グループパルス変動パターンデータの値をもとに、相関器にてパルス信号の相関をとることにより、グループパルス変動パターン算出器の算出したグループパルスの立ち上がりの変化を特徴量としてパルス信号の形状の違いをとらえ、目標を識別するようにしたものである。
【0014】
【発明の実施の形態】
以下、この発明の実施の一形態を説明する。参考例1
図1はこの発明の参考例1による目標識別装置の構成を示すブロック図である。図において、1は受信されたパルス状のレーダ波(電波)のパルス信号としてのパルスビデオ信号である。2はそのパルスビデオ信号1が入力され、それを一定の時間間隔でサンプリングしてディジタル信号に変換するA/D変換器であり、3はディジタル変換されてA/D変換器2より出力されるパルス量子化信号である。4はこのパルス量子化信号3と比較される、あらかじめ定められた基準値としてのスレッショルドレベルであり、5はパルス量子化信号3とスレッショルドレベル4との比較結果に基づくパルス諸元測定指示である。6はこれらパルス量子化信号3とスレッショルドレベル4との比較を行い、A/D変換器2から出力されたパルス量子化信号3が、スレッショルドレベル4より一旦高くなってからその後低くなるまでの期間、パルス諸元測定指示5を出力する(有意とする)パルス諸元測定制御器である。
【0015】
7は時間の計測を行って、後述する立ち上がり検出器12および立ち下がり検出器14に、得られた時刻データを供給するタイマである。8はA/D変換器2より出力されたパルス量子化信号3のピークレベルを検出するピークレベル検出器であり、9はそのピークレベル検出器8によって検出されたピークレベルである。10はピークレベル検出器8の検出したピークレベル9よりも、あらかじめ定めたレベル分だけ低いパルス幅測定レベルを算出するパルス幅測定レベル算出器であり、11はこのパルス幅測定レベル算出器10にて算出されたパルス幅測定レベルである。
【0016】
12はこのパルス幅測定レベル算出器10で算出されたパルス幅測定レベル11、A/D変換器2からのパルス量子化信号3、およびタイマ7からの時刻データが入力され、パルス波形の立ち上がり部分におけるパルス幅測定レベル11に最も近いパルス量子化信号3の立ち上がり時刻を検出する立ち上がり検出器であり、13はこの立ち上がり検出器12によって検出された立ち上がり時刻である。14は同様に、パルス幅測定レベル算出器10で算出されたパルス幅測定レベル11、A/D変換器2からのパルス量子化信号3、タイマ7からの時刻データが入力され、パルス立ち下がり部分におけるパルス幅測定レベル11に最も近いパルス量子化信号3の立ち下がり時刻を検出する立ち下がり検出器であり、15はこの立ち下がり検出器14によって検出された立ち下がり時刻である。16はそれら立ち上がり検出器12で検出された立ち上がり時刻13と、立ち下がり検出器14で検出された立ち下がり時刻15との差を求めるパルス幅算出器であり、17はこのパルス幅算出器16で算出された、立ち上がり時刻13と立ち下がり時刻15の差によるパルス幅17である。
【0017】
なお、これら各部は図17に同一符号を付して示した従来の目標識別装置におけるそれらと同等の部分である。
【0018】
18はパルスビデオ信号1の相関をとる相関器であるが、ピークレベル検出器8で検出されたピークレベル9、パルス幅算出器16で算出されたパルス幅17に加えて、A/D変換器2より出力されるパルス量子化信号3の立ち上がり回数の総数も用いてパルスビデオ信号1の相関をとっている点で、図17に同一符号を付して示したものとは異なっている。21はA/D変換器2からのパルス量子化信号3、およびパルス諸元測定制御器6からのパルス諸元測定指示5が入力されて、パルス量子化信号3(パルスビデオ信号1)のパルス波形の立ち上がり回数もしくは立ち下がり回数の総数をカウントする、特徴量検出手段としての立ち上がり/立ち下がり総数カウンタであり、ここではパルス波形の立ち上がり回数の総数をカウントするものが用いられている。22はこの立ち上がり/立ち下がり総数カウンタ21より相関器18に入力されて、相関処理のための1つのデータとなる、パルスビデオ信号1のパルス波形の特徴量としての立ち上がり総数である。
【0019】
次に動作について説明する。
ここで、図2は上記目標識別装置における各信号のタイミングを示す波形図であり、各信号には図1と同一の符号を付している。目標識別装置はレーダ波を受信すると、そのパルスビデオ信号1をA/D変換器2において一定の時間間隔でサンプリングし、パルス量子化信号3を生成する。なお、図2ではそのサンプリングポイントをパルス量子化信号3の波形上の「・」印で示している。生成されたパルス量子化信号3はパルス諸元測定制御器6に送られて、あらかじめ設定されているスレッショルドレベル4と比較される。パルス諸元測定制御器6はこのパルス量子化信号3がスレッショルドレベル4より一旦高くなってから、その後スレッショルドレベル4より低くなるまでの期間、パルス諸元測定指示5を出力する。図2ではこのスレッショルドレベル4を一点鎖線で表し、このスレッショルドレベル4よりパルス量子化信号3のレベルの方が高い期間において、パルス諸元測定指示5が有意になっている。
【0020】
ピークレベル検出器8はこのパルス諸元測定制御器6からパルス諸元測定指示5が出力されている(有意となっている)期間、パルス量子化信号3の最大レベルの値を保持する。すなわち、図3に示すように、中間部で変化しているパルス波形の中で、その時点までにおけるGNDレベルより一番大きな値(最大レベル値)を順次検出して保持する。その後、スレッショルドレベル4よりパルス量子化信号3のレベルの方が低くなると、パルス諸元測定指示5が無意になる。このようにして、パルス諸元測定制御器6からのパルス諸元測定指示5の出力が終了すると、ピークレベル検出器8は保持している最大レベルの値をピークレベル9として出力する。
【0021】
パルス幅測定レベル算出器10はこのピークレベル検出器8からのピークレベル9を受け取ると、そのピークレベル9からあらかじめ定められたレベル分だけ低いレベル値をパルス幅測定レベル11として、立ち上がり検出器12および立ち下がり検出器14に出力する。すなわち、パルス幅測定レベル算出器10は受け取ったピークレベル9から逆算して、パルス諸元測定制御器6からのパルス諸元測定指示5が示す範囲においてA/D変換器2の出力するパルス量子化信号3より所定のレベル値を算出し、それを図2に二点鎖線で示したパルス幅測定レベル11として出力する。
【0022】
次いで立ち上がり検出器12において、パルス諸元測定指示5が出力されている期間中、パルス量子化信号3が増加したときのレベルとその時刻を保持しておき、パルス諸元測定指示5の出力終了後、図2に示すように、その保持データ中からパルス幅測定レベル11に最も近いレベルのパルス量子化信号3の立ち上がり時刻13を検出し、それをパルス幅算出器16に出力する。また、立ち下がり検出器14においても同様に、パルス諸元測定指示5が出力されている期間中、パルス量子化信号3が減少したときのレベルとその時刻を保持しておき、パルス諸元測定指示5の出力終了後、図2に示すように、その保持データからパルス幅測定レベル11に最も近いレベルのパルス量子化信号3の立ち下がり時刻15を検出し、それをパルス幅算出器16に出力する。パルス幅算出器16はこの立ち下がり時刻15および立ち上がり時刻13を、立ち上がり検出器12あるいは立ち下がり検出器14より受け取ると、両者の差を取ってパルス幅17を算出し、それを相関器18に出力する。
【0023】
また、立ち上がり/立ち下がり総数カウンタ21はA/D変換器2の出力するパルス量子化信号3(パルスビデオ信号1)について、そのパルス波形上の立ち上がり回数の総数をカウントする。すなわち、パルス量子化信号3のパルス波形は図4に示すように、1つのパルス波形の中間部分において波形が細かく立ち上がり/立ち下がりを繰り返している。図中の「△」は立ち上がり点を、「▽」は立ち下がり点をそれぞれ示しており、図示の例では、立ち上がり総数、立ち下がり総数はともに6回である。立ち上がり/立ち下がり総数カウンタ21はカウントした立ち上がり総数22(立ち上がり回数の総数)のデータをパルス波形の特徴量として相関器18に出力する。
【0024】
なお、この立ち上がり/立ち下がり総数カウンタ21はパルス波形の立ち下がり回数の総数をカウントし、その立ち下がり総数を特徴量として相関器18に出力するものであってもよい。
【0025】
次いで相関器18は、ピークレベル検出器8で検出されたピークレベル9、パルス幅算出器16が算出したパルス幅17、およびこの立ち上がり/立ち下がり総数カウンタ21でカウントされた立ち上がり総数22をもとに、パルスビデオ信号1のパルス波形の相関をとって目標の識別を行う。
【0026】
以上のように、この参考例1によれば、ピークレベル9およびパルス幅17に加えて、パルス量子化信号3のパルス波形上の立ち上がり総数22もしくは立ち下がり総数でもパルス波形の相関をとっているので、ピークレベル9およびパルス幅17ばかりでなく、パルス量子化信号3の立ち上がり総数22もしくは立ち下がり総数も用いた目標の識別が行われるため、目標を識別する確度を向上させることができるという効果が得られる。
【0027】
参考例2
なお、上記参考例1では、パルス量子化信号3のパルス波形上の立ち上がり総数22もしくは立ち下がり総数を特徴量として目標の識別を行うものについて説明したが、パルス波形の中間部における立ち上がり時間と立ち下がり時間の比率を、目標識別の特徴量としてもよい。図5はそのようなこの発明の参考例2による目標識別装置の構成を示すブロック図である。
【0028】
図において、1はパルスビデオ信号、2はA/D変換器、3はパルス量子化信号、4はスレッショルドレベル、5はパルス諸元測定指示、6はパルス諸元測定制御器、7はタイマ、8はピークレベル検出器、9はピークレベル、10はパルス幅測定レベル算出器、11はパルス幅測定レベル、12は立ち上がり検出器、13は立ち上がり時刻、14は立ち下がり検出器、15は立ち下がり時刻、16はパルス幅算出器、17はパルス幅、18は相関器であり、これらは図1に同一符号を付して示したものに相当する要素であるため、それらの詳細な説明は省略する。
【0029】
また、23はA/D変換器2からのパルス量子化信号3、およびパルス諸元測定制御器6からのパルス諸元測定指示5が入力されて、パルス量子化信号3のパルス波形の中間部における立ち上がり時間と当該パルス波形のパルス幅とを比較し、パルス中間部における立ち上がり時間の比率を算出する、特徴量検出手段としての中間パルス立ち上がり比率算出器である。24はこの中間パルス立ち上がり比率算出器23より相関器18に入力されて、相関処理のための1つのデータとなる、パルスビデオ信号1のパルス波形の特徴量としての立ち上がり比率データである。なお、相関器18はピークレベル検出器8で検出されたピークレベル9、パルス幅算出器16で算出されたパルス幅17、およびこの中間パルス立ち上がり比率算出器23で算出された立ち上がり比率データ24によってパルスビデオ信号1の相関をとっている点で、図1に同一符号を付して示した参考例1のそれとは異なっている。
【0030】
次に動作について説明する。
参考例1の場合と同様に、A/D変換器2は入力されたパルスビデオ信号1を一定の時間間隔でサンプリングしてパルス量子化信号3を生成する。パルス諸元測定制御器6ではこのパルス量子化信号3を所定のスレッショルドレベル4と比較し、パルス量子化信号3がスレッショルドレベル4より高くなってから低くなるまでの間、パルス諸元測定指示5を出力(有意に)する。ピークレベル検出器8はこのパルス諸元測定指示5が出力されている期間、その時点までの最大レベル値を順次検出して保持してゆき、パルス諸元測定指示5の出力終了後、保持している最大レベルの値をピークレベル9として出力する。次いで、パルス幅測定レベル算出器10はこのピークレベル検出器8が検出したピークレベル9より逆算して、パルス諸元測定指示5が示す範囲においてA/D変換器2の出力するパルス量子化信号3より所定のレベル値を算出し、そのレベル値をパルス幅測定レベル11として出力する。
【0031】
立ち上がり検出器12はパルス量子化信号3が増加したときのレベルとその時刻を保持しておき、パルス諸元測定指示5の出力終了後、その保持データからパルス幅測定レベル11に最も近いレベルのパルス量子化信号3を検出して、その時刻を立ち上がり時刻13としてパルス幅算出器16に出力する。また、立ち下がり検出器14も同様に、パルス量子化信号3が減少したときのレベルとその時刻を保持しておき、パルス諸元測定指示5の出力終了後、その保持データからパルス幅測定レベル11に最も近いレベルのパルス量子化信号3を検出して、その時刻を立ち下がり時刻15としてパルス幅算出器16に出力する。パルス幅算出器16はこれら立ち下がり時刻15と立ち上がり時刻13の差を取り、パルス幅17を算出して相関器18に出力する。
【0032】
中間パルス立ち上がり比率算出器23はA/D変換器2の出力するパルス量子化信号3(パルスビデオ信号1)の変動から、パルス波形上の立ち上がりの時間的な比率を算出して立ち上がり比率データ24を出力する。すなわち、パルス量子化信号3のパルス波形は図6に示すように、1つのパルス波形の中間部分において波形が細かく立ち上がり/立ち下がりを繰り返している。中間パルス立ち上がり比率算出器23は図中のパルス幅(パルス全体の時間)中に矢印を付けて示す部分の合計時間であるパルス立ち上がり時間を検出し、パルス幅に対するこのパルス立ち上がり時間の比率を算出して、それを立ち上がり比率データ24として相関器18に出力する。なお、このパルス量子化信号3の中間部における立ち上がり時間の比率としての立ち上がり比率データ24は、図6のパルス幅内に矢印を付けて示したパルス立ち上がり時間と、無印で示したパルス立ち下がり時間の比率を用いてもよい。
【0033】
次いで相関器18は、ピークレベル検出器8で検出されたピークレベル9、パルス幅算出器16が算出したパルス幅17、およびこの中間パルス立ち上がり比率算出器23で算出された立ち上がり比率データ24により、パルスビデオ信号1のパルス波形の相関をとって目標を識別する。
【0034】
以上のように、この参考例2によれば、ピークレベル9およびパルス幅17に加えて、パルス量子化信号3の中間部における立ち上がり時間の割合でもパルス波形の相関をとっているので、ピークレベル9およびパルス幅17ばかりでなく、パルスビデオ信号1の中間部における立ち上がり時間の比率も用いた目標の識別が行われるため、目標を識別する確度を向上させることができるという効果が得られる。
【0035】
参考例3
また、目標識別の特徴量としては、上記参考例1あるいは参考例2で説明したものだけでなく、例えばレーダ覆域形状を特徴量として用い、目標の識別を行うようにしてもよい。図7はそのようなこの発明の参考例3による目標識別装置の構成を示すブロック図であり、相当部分には図1と同一符号を付してその説明を省略する。
【0036】
図において、25はA/D変換器2からのパルス量子化信号3、およびパルス諸元測定制御器6からのパルス諸元測定指示5が入力されて、連続したパルスビデオ信号1のレベル値の変動の度合いを算出する、特徴量検出手段としてのレベル変動算出器である。26はこのレベル変動算出器25が出力するパルスビデオ信号1のレベル値の変動の度合いを受けてレーダ覆域形状を算出する、特徴量検出手段としての覆域形状算出器であり、27はこの覆域形状算出器26より相関器18に出力される、パルスビデオ信号1のパルス波形の特徴量としての覆域形状データである。なお、相関器18はピークレベル検出器8で検出されたピークレベル9、パルス幅算出器16で算出されたパルス幅17、およびこの覆域形状算出器26で算出された覆域形状データ27によってパルスビデオ信号1の相関をとっている点で、上記各実施の形態における相関器18とは異なっている。
【0037】
次に動作について説明する。
この参考例3においても、上記各実施の形態の場合と同様に、A/D変換器2でパルスビデオ信号1をサンプリングし、得られたパルス量子化信号3をパルス諸元測定制御器6で所定のスレッショルドレベル4と比較する。パルス諸元測定制御器6はパルス量子化信号3がスレッショルドレベル4を超えている期間パルス諸元測定指示5を出力し、ピークレベル検出器8はこのパルス諸元測定指示5の出力期間中パルス量子化信号3の量大レベル値を保持し、パルス諸元測定指示5の出力終了後、保持している最大レベルの値をピークレベル9として出力する。パルス幅測定レベル算出器10はこのピークレベル9より逆算して、パルス諸元測定指示5が示す範囲においてA/D変換器2の出力するパルス量子化信号3より所定のレベル値を算出し、そのレベル値をパルス幅測定レベル11として出力する。
【0038】
また、立ち上がり検出器12はパルス量子化信号3が増加したときのレベルと時刻を保持し、パルス諸元測定指示5の出力終了後、パルス幅測定レベル11に最も近いパルス量子化信号3の時刻を立ち上がり時刻13として出力する。立ち下がり検出器14も同様に、パルス量子化信号3が減少したときのレベルと時刻を保持し、パルス諸元測定指示5の出力終了後、パルス幅測定レベル11に最も近いパルス量子化信号3の時刻を立ち下がり時刻15として出力する。パルス幅算出器16はこれら立ち下がり時刻15と立ち上がり時刻13の差よりパルス幅17を算出して相関器18に出力する。
【0039】
レベル変動算出器25はA/D変換器2の出力するパルス量子化信号3を受けると、そのパルスビデオ信号1のレベルを求めて蓄積し、連続するパルスビデオ信号1のレベル変動の度合いを算出して覆域形状算出器26に出力する。覆域形状算出器26においては、入力されたレベル変動の度合いからレーダ覆域形状を算出し、それを覆域形状データ27として相関器18に出力する。ここで、レーダ覆域形状とは、レーダが目標を捉えることのできる最大遠点をつないだ範囲のことであり、レーダを中心とした同心円上で、レーダから放射される電波の強度(パルス信号のレベル)から推定することができる。すなわち、同心円上のポイントでパルス信号のレベルが高ければ、それだけレーダ覆域が広いということになる。
【0040】
次いで相関器18は、ピークレベル検出器8で検出されたピークレベル9、パルス幅算出器16が算出したパルス幅17、およびこの覆域形状算出器26で算出された覆域形状データ27により、パルスビデオ信号1のパルス波形の相関をとって目標を識別する。
【0041】
以上のように、この参考例3によれば、ピークレベル9およびパルス幅17に加えて、覆域形状データ27でもパルス波形の相関をとっているので、ピークレベル9およびパルス幅17ばかりでなく、レーダ覆域形状も用いた目標の識別が行われるため、目標を識別する確度を向上させることができるという効果が得られる。
【0042】
実施の形態1
また、目標識別の特徴量としては、上記参考例1参考例3で説明したものだけでなく、例えば連続する受信レーダ波のパルス列における立ち上がり傾斜の変動を特徴量として用い、目標の識別を行うようにしてもよい。図8はそのようなこの発明の実施の形態1による目標識別装置の構成を示すブロック図であり、相当部分には図1と同一符号を付してその説明を省略する。
【0043】
図において、28は立ち上がり検出器12で検出された立ち上がり時刻13を受け、A/D変換器2の出力するパルス量子化信号3の立ち上がり傾斜を検出する、特徴量検出手段としての立ち上がり傾斜検出器である。29はこの立ち上がり傾斜検出器28から出力される立ち上がり傾斜のデータをパルス列に対応して記録し、パルス列内での傾斜の変動の度合いを算出する、特徴量検出手段としてのパルス列変動パターン算出器であり、30はこのパルス列変動パターン算出器29より相関器18に出力される、パルスビデオ信号1のパルス波形の特徴量としてのパルス列変動パターンデータである。なお、相関器18はピークレベル検出器8で検出されたピークレベル9、パルス幅算出器16で算出されたパルス幅17、およびこのパルス列変動パターン算出器29で算出されたパルス列変動パターンデータ30によってパルスビデオ信号1の相関をとっている点で、上記各実施の形態における相関器18とは異なっている。
【0044】
次に動作について説明する。
ここで、この実施の形態1においても、A/D変換器2でのパルスビデオ信号1のサンプリングによるパルス量子化信号3の生成、パルス諸元測定制御器6でのパルス量子化信号3とスレッショルドレベル4との比較によるパルス諸元測定指示5の生成、ピークレベル検出器8でのパルス諸元測定指示5の出力期間中におけるピークレベル9の検出、パルス幅測定レベル算出器10でのパルス諸元測定指示5の範囲内におけるパルス量子化信号3からのパルス幅測定レベル11の算出、立ち上がり検出器12でのパルス諸元測定指示5の出力終了後における立ち上がり時刻13の検出、立ち下がり検出器14でのパルス諸元測定指示5の出力終了後における立ち下がり時刻15の検出、パルス幅算出器16での立ち下がり時刻15と立ち上がり時刻13との差からパルス幅17を算出などの諸動作は、上記各実施の形態の場合と同一である。
【0045】
また、立ち上がり傾斜検出器28では、立ち上がり検出器12で検出された立ち上がり時刻13と、A/D変換器2の出力するパルス量子化信号3とを受けて、各パルス量子化信号3のパルス波形の立ち上がり傾斜を順次検出し、それをパルス列変動パターン算出器29へ出力する。ここで、パルスビデオ信号1のパルス波形の立ち上がり部分の傾斜角度は立ち上がり傾斜と呼ばれ、図9ではこの立ち上がり傾斜を弧状の矢印で示している。連続する各パルスビデオ信号1ではその立ち上がり傾斜が図9に示すように変動しており、この立ち上がり傾斜が変化する様子を変動パターンとして用いている。すなわち、このようなパルス量子化信号3(パルスビデオ信号1)の立ち上がり傾斜のデータを受けたパルス列変動パターン算出器29では、この立ち上がり傾斜検出器28から出力される立ち上がり傾斜のデータをパルス列に対応して記録し、それよりパルス列内での傾斜の変動の度合いを算出して、それをパルス列変動パターンデータ30として相関器18に出力する。
【0046】
次いで相関器18は、ピークレベル検出器8で検出されたピークレベル9、パルス幅算出器16が算出したパルス幅17、およびこのパルス列変動パターン算出器29で算出されたパルス列変動パターンデータ30により、パルスビデオ信号1のパルス波形の相関をとって目標を識別する。
【0047】
以上のように、この実施の形態1によれば、ピークレベル9およびパルス幅17に加えて、立ち上がり傾斜の変動の度合いに基づいたパルス列変動パターンデータ30でもパルス波形の相関をとっているので、ピークレベル9およびパルス幅17ばかりでなく、当該パルス列変動パターンデータ30も用いた目標の識別が行われるため、目標を識別する確度を向上させることができるという効果が得られる。
【0048】
実施の形態2
なお、上記実施の形態1では、立ち上がり傾斜の変動の度合いに基づいたパルス列変動パターンデータを特徴量として目標の識別を行うものについて説明したが、立ち下がり傾斜の変動の度合いに基づくパルス列変動パターンデータを目標識別の特徴量とするようにしてもよい。図10はそのようなこの発明の実施の形態2による目標識別装置の構成を示すブロック図であり、相当部分には図8と同一符号を付してその説明を省略する。
【0049】
図において、31は立ち下がり検出器14で検出された立ち下がり時刻15を受け、A/D変換器2の出力するパルス量子化信号3の立ち下がり傾斜を検出して、その立ち下がり傾斜のデータをパルス列変動パターン算出器29に出力する、特徴量検出手段としての立ち下がり傾斜検出器である。32はパルス列に応じた立ち下がり傾斜のデータより、パルス列変動パターン算出器29にて算出された、パルスビデオ信号1のパルス波形の特徴量としてのパルス列変動パターンデータである。
【0050】
なお、パルス列変動パターン算出器29は立ち下がり傾斜検出器31から出力される立ち下がり傾斜のデータをパルス列に対応して記録し、パルス列内での傾斜の変動の度合いを算出して、それをパルス列変動パターンデータ32として相関器18に出力している点で、図8に同一符号を付して示した実施の形態1におけるそれとは異なっている。また、相関器18もピークレベル検出器8で検出されたピークレベル9、パルス幅算出器16で算出されたパルス幅17、およびこのパルス列変動パターン算出器29で算出されたパルス列変動パターンデータ32によってパルスビデオ信号1の相関をとっている点で、上記各実施の形態における相関器18とは異なっている。
【0051】
次に動作について説明する。
ここで、この実施の形態2においても、A/D変換器2でのパルスビデオ信号1のサンプリングによるパルス量子化信号3の生成、パルス諸元測定制御器6でのパルス量子化信号3とスレッショルドレベル4との比較によるパルス諸元測定指示5の生成、ピークレベル検出器8でのパルス諸元測定指示5の出力期間中におけるピークレベル9の検出、パルス幅測定レベル算出器10でのパルス諸元測定指示5の範囲内におけるパルス量子化信号3からのパルス幅測定レベル11の算出、立ち上がり検出器12でのパルス諸元測定指示5の出力終了後における立ち上がり時刻13の検出、立ち下がり検出器14でのパルス諸元測定指示5の出力終了後における立ち下がり時刻15の検出、パルス幅算出器16での立ち下がり時刻15と立ち上がり時刻13との差からパルス幅17を算出などの諸動作は、上記各実施の形態の場合と同一である。
【0052】
また、立ち下がり傾斜検出器31では、立ち下がり検出器14で検出された立ち下がり時刻15と、A/D変換器2の出力するパルス量子化信号3とを受けて、各パルス量子化信号3のパルス波形の立ち下がり傾斜を順次検出し、それをパルス列変動パターン算出器29へ出力する。ここで、パルスビデオ信号1のパルス波形の立ち下がり部分の傾斜角度は立ち下がり傾斜と呼ばれ、図11ではこの立ち下がり傾斜を弧状の矢印で示している。連続する各パルスビデオ信号1ではその立ち下がり傾斜が図11に示すように変動しており、この立ち下がり傾斜が変化する様子を変動パターンとして用いている。すなわち、このようなパルス量子化信号3(パルスビデオ信号1)の立ち下がり傾斜のデータを受けたパルス列変動パターン算出器29では、この立ち下がり傾斜検出器31から出力される立ち下がり傾斜のデータをパルス列に対応して記録し、それよりパルス列内での傾斜の変動の度合いを算出して、それをパルス列変動パターンデータ32として相関器18に出力する。
【0053】
次いで相関器18は、ピークレベル検出器8で検出されたピークレベル9、パルス幅算出器16が算出したパルス幅17、およびこのパルス列変動パターン算出器29で算出されたパルス列変動パターンデータ32により、パルスビデオ信号1のパルス波形の相関をとって目標を識別する。
【0054】
以上のように、この実施の形態2によれば、ピークレベル9およびパルス幅17に加えて、立ち下がり傾斜の変動の度合いに基づいたパルス列変動パターンデータ32でもパルス波形の相関をとっているので、ピークレベル9およびパルス幅17ばかりでなく、当該パルス列変動パターンデータ32も用いた目標の識別が行われるため、目標を識別する確度を向上させることができるという効果が得られる。
【0055】
実施の形態3
なお、上記実施の形態1および実施の形態2では、パルス列の1つのパルス波形が始まる立ち上がり部分、もしくは1つのパルス波形が終わる立ち下がり部分における傾斜の変動の度合いに基づいたパルス列変動パターンデータを特徴量として目標の識別を行うものについて説明したが、1つのパルス波形の中間部において細かく立ち上がり/立ち下がりを繰り返している部分のうちの、各立ち上がり部分における傾斜の変動の度合いに基づいたパルス列変動パターンデータを目標識別の特徴量とするようにしてもよい。図12はそのようなこの発明の実施の形態3による目標識別装置の構成を示すブロック図であり、相当部分には図8と同一符号を付してその説明を省略する。
【0056】
図において、33は立ち上がり検出器12で検出された立ち上がり時刻13を受け、A/D変換器2の出力するパルス量子化信号3における中間部の各立ち上がり傾斜を含めた全ての立ち上がり傾斜の検出を行い、その立ち上がり傾斜のデータを中間立ち上がり傾斜として順次パルス列変動パターン算出器29に出力する、特徴量検出手段としての中間立ち上がり傾斜検出器である。34はパルス列に応じた中間立ち上がり傾斜のデータより、パルス列変動パターン算出器29にて算出された、パルスビデオ信号1のパルス波形の特徴量としてのパルス列変動パターンデータである。
【0057】
なお、パルス列変動パターン算出器29は中間立ち上がり傾斜検出器33から出力される中間立ち上がり傾斜のデータをパルス列に対応して記録し、パルス列内での傾斜の変動の度合いを算出して、それをパルス列変動パターンデータ34を出力している点で、図8、図10に同一符号を付して示した実施の形態1あるいは実施の形態2におけるそれとは異なっている。また、相関器18もピークレベル検出器8で検出されたピークレベル9、パルス幅算出器16で算出されたパルス幅17、およびこのパルス列変動パターン算出器29で算出されたパルス列変動パターンデータ34によってパルスビデオ信号1の相関をとっている点で、上記各実施の形態における相関器18とは異なっている。
【0058】
次に動作について説明する。
ここで、この実施の形態3においても、A/D変換器2でのパルスビデオ信号1のサンプリングによるパルス量子化信号3の生成、パルス諸元測定制御器6でのパルス量子化信号3とスレッショルドレベル4との比較によるパルス諸元測定指示5の生成、ピークレベル検出器8でのパルス諸元測定指示5の出力期間中におけるピークレベル9の検出、パルス幅測定レベル算出器10でのパルス諸元測定指示5の範囲内におけるパルス量子化信号3からのパルス幅測定レベル11の算出、立ち上がり検出器12でのパルス諸元測定指示5の出力終了後における立ち上がり時刻13の検出、立ち下がり検出器14でのパルス諸元測定指示5の出力終了後における立ち下がり時刻15の検出、パルス幅算出器16での立ち下がり時刻15と立ち上がり時刻13との差からパルス幅17を算出などの諸動作は、上記各実施の形態の場合と同一である。
【0059】
また、中間立ち上がり傾斜検出器33では、立ち上がり検出器12で検出された立ち上がり時刻13と、A/D変換器2の出力するパルス量子化信号3を受けて、各パルス量子化信号3のパルス波形における中間部の立ち上がり傾斜を順次検出する。ここで、パルスビデオ信号1の1つのパルス波形は、その中間部において細かく立ち上がり/立ち下がりを繰り返している。中間立ち上がり傾斜検出器33はそのようなパルス波形のパルス量子化信号3における中間部の各立ち上がり傾斜も含めた全ての立ち上がり傾斜を検出し、中間立ち上がり傾斜として出力する。この中間立ち上がり傾斜検出器33で検出された各立ち上がり傾斜は、連続する各パルスビデオ信号1毎に変動しており、この数値が変化する様子を変動パターンとして用いている。このようなパルス量子化信号3(パルスビデオ信号1)の中間立ち上がり傾斜を受けたパルス列変動パターン算出器29では、その中間立ち上がり傾斜のデータをパルス列に対応して記録し、パルス列内での各立ち上がり傾斜の変動の度合いを算出して、それをパルス列変動パターンデータ34として相関器18に出力する。
【0060】
次いで相関器18は、ピークレベル検出器8で検出されたピークレベル9、パルス幅算出器16が算出したパルス幅17、およびこのパルス列変動パターン算出器29で算出されたパルス列変動パターンデータ34により、パルスビデオ信号1のパルス波形の相関をとって目標を識別する。
【0061】
以上のように、この実施の形態3によれば、ピークレベル9およびパルス幅17に加えて、中間立ち上がり傾斜の変動の度合いに基づいたパルス列変動パターンデータ34でもパルス波形の相関をとっているので、ピークレベル9およびパルス幅17ばかりでなく、当該パルス列変動パターンデータ34も用いた目標の識別が行われるため、目標を識別する確度を向上させることができるという効果が得られる。
【0062】
実施の形態4
また、上記実施の形態3では、連続したパルスビデオ信号1のパルス列において、立ち上がり傾斜の変動の度合いを特徴量として目標の識別を行うものについて説明したが、パルス列中の関連のあるパルスビデオ信号1を1つのグループにまとめ、そのグループ内での立ち上がり傾斜の変動の度合いを特徴量として目標の識別を行うようにしてもよい。図13はそのようなこの発明の実施の形態4による目標識別装置の構成を示すブロック図であり、相当部分には図8と同一符号を付してその説明を省略する。
【0063】
図において、35は立ち上がり傾斜検出器28から出力されるパルス量子化信号3の立ち上がり傾斜のデータをグループパルスに対応して記録し、グループパルス内での傾斜の変動の度合いを算出する、特徴量検出手段としてのグループパルス変動パターン算出器である。36はこのグループパルス変動パターン算出器35より相関器18に出力される、パルスビデオ信号1のパルス波形の特徴量としてのグループパルス変動パターンデータである。なお、相関器18はピークレベル検出器8で検出されたピークレベル9、パルス幅算出器16で算出されたパルス幅17、およびこのグループパルス変動パターン算出器35で算出されたグループパルス変動パターンデータ36によってパルスビデオ信号1の相関をとっている点で、上記各実施の形態における相関器18とは異なっている。
【0064】
次に動作について説明する。
ここで、この実施の形態4においても、A/D変換器2でのパルスビデオ信号1のサンプリングによるパルス量子化信号3の生成、パルス諸元測定制御器6でのパルス量子化信号3とスレッショルドレベル4との比較によるパルス諸元測定指示5の生成、ピークレベル検出器8でのパルス諸元測定指示5の出力期間中におけるピークレベル9の検出、パルス幅測定レベル算出器10でのパルス諸元測定指示5の範囲内におけるパルス量子化信号3からのパルス幅測定レベル11の算出、立ち上がり検出器12でのパルス諸元測定指示5の出力終了後における立ち上がり時刻13の検出、立ち下がり検出器14でのパルス諸元測定指示5の出力終了後における立ち下がり時刻15の検出、パルス幅算出器16での立ち下がり時刻15と立ち上がり時刻13との差からパルス幅17を算出などの諸動作は、上記各実施の形態の場合と同一である。
【0065】
また、立ち上がり傾斜検出器28では、立ち上がり検出器12で検出された立ち上がり時刻13と、A/D変換器2の出力するパルス量子化信号3とを受けて、各パルス量子化信号3のパルス波形の立ち上がり傾斜を順次検出し、それをグループパルス変動パターン算出器35へ出力する。ここで、連続して入力されたパルスビデオ信号1のパルス列は、図14に示すように、互いに関連する何種類かのパルスビデオ信号1を含んでいる。実施の形態4ではこのパルス列内の関連のあるパルスビデオ信号1をそれぞれグループとしてまとめ、各グループ内のパルスビデオ信号1の立ち上がり傾斜が変化する様子を変動パターンとして用いている。図14には○で囲んだ番号1を付した4つのパルスビデオ信号1によるグループ、番号2を付した2つのパルスビデオ信号1によるグループ、および番号3を付した2つのパルスビデオ信号1によるグループが例示されている。
【0066】
グループパルス変動パターン算出器35では、そのようなパルス列より関連するパルスビデオ信号1のグループの1つを選択する。次いでそのグループ内の各パルス(グループパルス)に対応して、立ち上がり傾斜検出器28から出力される立ち上がり傾斜のデータを記録し、グループパルス内での各パルスビデオ信号1(パルス量子化信号3)の立ち上がり傾斜の変動の度合いを、実施の形態1の場合と同様にして算出する。この立ち上がり傾斜の変動の度合いはグループパルス変動パターンデータ36として、グループパルス変動パターン算出器35より相関器18に出力される。
【0067】
次いで相関器18は、ピークレベル検出器8で検出されたピークレベル9、パルス幅算出器16が算出したパルス幅17、およびこのグループパルス変動パターン算出器35で算出されたグループパルス変動パターンデータ36により、パルスビデオ信号1のパルス波形の相関をとって目標を識別する。
【0068】
以上のように、この実施の形態4によれば、ピークレベル9およびパルス幅17に加えて、グループパルスの立ち上がり傾斜の変動の度合いに基づいたグループパルス変動パターンデータ36でもパルス波形の相関をとっているので、ピークレベル9およびパルス幅17ばかりでなく、当該グループパルス変動パターンデータ36も用いた目標の識別が行われるため、目標を識別する確度を向上させることができるという効果が得られる。
【0069】
実施の形態5
また、上記実施の形態4では、立ち上がり傾斜の変動の度合いに基づいたグループパルス変動パターンデータを特徴量として目標の識別を行うものについて説明したが、立ち下がり傾斜の変動の度合いに基づくグループパルス変動パターンデータを目標識別の特徴量とするようにしてもよい。図15はそのようなこの発明の実施の形態5による目標識別装置の構成を示すブロック図であり、相当部分には図10および図13と同一符号を付してその説明を省略する。
【0070】
図において、37は立ち下がり傾斜検出器31にて検出されたパルス量子化信号3の立ち下がり傾斜のデータをもとに、グループパルス変動パターン算出器35が算出したパルスビデオ信号1のパルス波形の特徴量としてのグループパルス変動パターンデータである。なお、グループパルス変動パターン算出器35は立ち下がり傾斜検出器31から出力される立ち下がり傾斜のデータをグループパルスに対応して記録し、それよりグループパルス内での傾斜の変動の度合いを算出して、グループパルス変動パターンデータ37を出力している点で、図13に同一符号を付して示した実施の形態4におけるそれとは異なっている。また、相関器18もピークレベル検出器8で検出されたピークレベル9、パルス幅算出器16で算出されたパルス幅17、およびこのグループパルス変動パターン算出器35で算出されたグループパルス変動パターンデータ37によってパルスビデオ信号1の相関をとっている点で、上記各実施の形態における相関器18とは異なっている。
【0071】
次に動作について説明する。
ここで、この実施の形態5においても、A/D変換器2でのパルスビデオ信号1のサンプリングによるパルス量子化信号3の生成、パルス諸元測定制御器6でのパルス量子化信号3とスレッショルドレベル4との比較によるパルス諸元測定指示5の生成、ピークレベル検出器8でのパルス諸元測定指示5の出力期間中におけるピークレベル9の検出、パルス幅測定レベル算出器10でのパルス諸元測定指示5の範囲内におけるパルス量子化信号3からのパルス幅測定レベル11の算出、立ち上がり検出器12でのパルス諸元測定指示5の出力終了後における立ち上がり時刻13の検出、立ち下がり検出器14でのパルス諸元測定指示5の出力終了後における立ち下がり時刻15の検出、パルス幅算出器16での立ち下がり時刻15と立ち上がり時刻13との差からパルス幅17を算出などの諸動作は、上記各実施の形態の場合と同一である。
【0072】
また、立ち下がり傾斜検出器31では、立ち下がり検出器14で検出された立ち下がり時刻15と、A/D変換器2の出力するパルス量子化信号3とを受けて、各パルス量子化信号3のパルス波形の立ち下がり傾斜を順次検出し、それをグループパルス変動パターン算出器35へ出力する。この場合も、連続して入力されたパルスビデオ信号1のパルス列は実施の形態4と同様に、パルス列内の関連のあるパルスビデオ信号1をそれぞれグループとしてまとめ、各グループ内のパルスビデオ信号1の立ち下がり傾斜が変化する様子を変動パターンとして用いている。
【0073】
グループパルス変動パターン算出器35では、そのようなパルス列より関連するパルスビデオ信号1のグループの1つを選択する。次いでそのグループ内の各パルス(グループパルス)に対応して立ち下がり傾斜検出器31から出力される立ち下がり傾斜のデータを記録し、グループパルス内での各パルスビデオ信号1(パルス量子化信号3)の立ち下がり傾斜の変動の度合いを、実施の形態2の場合と同様に算出する。この立ち下がり傾斜の変動の度合いはグループパルス変動パターンデータ37として、グループパルス変動パターン算出器35より相関器18に出力される。
【0074】
次いで相関器18は、ピークレベル検出器8で検出されたピークレベル9、パルス幅算出器16が算出したパルス幅17、およびそのグループパルス変動パターン算出器35で算出されたグループパルス変動パターンデータ37により、パルスビデオ信号1のパルス波形の相関をとって目標を識別する。
【0075】
以上のように、この実施の形態5によれば、ピークレベル9およびパルス幅17に加えて、グループパルスの立ち下がり傾斜の変動の度合いに基づいたグループパルス変動パターンデータ37でもパルス波形の相関をとっているので、ピークレベル9およびパルス幅17ばかりでなく、当該グループパルス変動パターンデータ37も用いた目標の識別が行われるため、目標を識別する確度を向上させることができるという効果が得られる。
【0076】
実施の形態6
なお、上記実施の形態4および実施の形態5では、グループパルス内の1つのパルス波形が始まる立ち上がり部分、もしくは1つのパルス波形が終わる立ち下がり部分における傾斜の変動の度合いに基づくグループパルス変動パターンデータを特徴量として目標の識別を行うものについて説明したが、1つのパルス波形の中間部において細かく立ち上がり/立ち下がりを繰り返している部分のうちの、各立ち上がり部分における傾斜の変動の度合いに基づくグループパルス変動パターンデータを目標識別の特徴量とするようにしてもよい。図16はそのようなこの発明の実施の形態6による目標識別装置の構成を示すブロック図であり、相当部分には図12および図13と同一符号を付してその説明を省略する。
【0077】
図において、38は中間立ち上がり傾斜検出器33にて検出されたパルスビデオ信号1の中間部の各立ち上がり傾斜のデータをもとに、グループパルス変動パターン算出器35が算出したパルスビデオ信号1のパルス波形の特徴量としてのグループパルス変動パターンデータである。なお、グループパルス変動パターン算出器35は中間立ち上がり傾斜検出器33から出力されるパルスビデオ信号1の中間部の立ち上がり傾斜のデータをグループパルスに対応して記録し、それよりグループパルス内での傾斜の変動の度合いを算出して、グループパルス変動パターンデータ38を出力している点で、図13および図15に同一符号を付して示した実施の形態4もしくは実施の形態5におけるそれとは異なっている。また、相関器18もピークレベル検出器8で検出されたピークレベル9、パルス幅算出器16で算出されたパルス幅17、およびそのグループパルス変動パターン算出器35で算出されたグループパルス変動パターンデータ38によってパルスビデオ信号1の相関をとっている点で、上記各実施の形態における相関器18とは異なっている。
【0078】
次に動作について説明する。
ここで、この実施の形態6においても、A/D変換器2でのパルスビデオ信号1のサンプリングによるパルス量子化信号3の生成、パルス諸元測定制御器6でのパルス量子化信号3とスレッショルドレベル4との比較によるパルス諸元測定指示5の生成、ピークレベル検出器8でのパルス諸元測定指示5の出力期間中におけるピークレベル9の検出、パルス幅測定レベル算出器10でのパルス諸元測定指示5の範囲内におけるパルス量子化信号3からのパルス幅測定レベル11の算出、立ち上がり検出器12でのパルス諸元測定指示5の出力終了後における立ち上がり時刻13の検出、立ち下がり検出器14でのパルス諸元測定指示5の出力終了後における立ち下がり時刻15の検出、パルス幅算出器16での立ち下がり時刻15と立ち上がり時刻13との差からパルス幅17を算出などの諸動作は、上記各実施の形態の場合と同一である。
【0079】
また、中間立ち上がり傾斜検出器33は立ち上がり検出器12で検出された立ち上がり時刻13と、A/D変換器2の出力するパルス量子化信号3とを受けて、各パルス量子化信号3のパルス波形の立ち上がり傾斜を順次検出し、それをグループパルス変動パターン算出器35へ出力する。この場合も、連続して入力されたパルスビデオ信号1のパルス列は実施の形態4と同様に、パルス列内の関連のあるパルスビデオ信号1をそれぞれグループとしてまとめ、各グループ内のパルスビデオ信号1の立ち上がり傾斜が変化する様子を変動パターンとして用いている。
【0080】
グループパルス変動パターン算出器35では、そのようなパルス列より関連するパルスビデオ信号1のグループの1つを選択する。次いでそのグループ内の各パルス(グループパルス)に対応して中間立ち上がり傾斜検出器33から出力される中間立ち上がり傾斜のデータを記録し、グループパルス内での各パルスビデオ信号1(パルス量子化信号3)の立ち上がり傾斜の変動の度合いを、実施の形態3の場合と同様に算出する。この立ち上がり傾斜の変動の度合いはグループパルス変動パターンデータ38として、グループパルス変動パターン算出器35より相関器18に出力される。
【0081】
次いで相関器18は、ピークレベル検出器8で検出されたピークレベル9、パルス幅算出器16が算出したパルス幅17、およびこのグループパルス変動パターン算出器35で算出されたグループパルス変動パターンデータ38により、パルスビデオ信号1のパルス波形の相関をとって目標を識別する。
【0082】
以上のように、この実施の形態6によれば、ピークレベル9およびパルス幅17に加えて、グループパルスの中間立ち上がり傾斜の変動の度合いに基づいたグループパルス変動パターンデータ38でもパルス波形の相関をとっているので、ピークレベル9およびパルス幅17ばかりでなく、当該グループパルス変動パターンデータ38も用いた目標の識別が行われるため、目標を識別する確度を向上させることができるという効果が得られる。
【0083】
【発明の効果】
以上のように、この発明によれば、目標の位置を算出する際に、ピークレベル検出器で検出したピークレベル、およびパルス幅算出器で算出したパルス幅に加えて、パルス波形の立ち上がり/立ち下がりの総数、パルス波形の中間部における立ち上がり/立ち下がりの比率、レーダ覆域形状などの特徴量も用いて、パルス信号の相関をとるように構成したので、ピークレベルおよびパルス幅のみで相関をとった場合より高い確度で目標の違いを識別することが可能となり、目標の位置を短時間で精度よく算出することができる目標識別装置が得られるという効果がある。
【図面の簡単な説明】
【図1】 この発明の参考例1による目標識別装置の構成を示すブロック図である。
【図2】 参考例1における各信号のタイミングを示す波形図である。
【図3】 参考例1におけるピークレベルの検出を説明するための模式図である。
【図4】 参考例1における立ち上がり総数のカウントを説明するための模式図である。
【図5】 この発明の参考例2による目標識別装置の構成を示すブロック図である。
【図6】 参考例2における立ち上がり比率の算出を説明するための模式図である。
【図7】 この発明の参考例3による目標識別装置の構成を示すブロック図である。
【図8】 この発明の実施の形態1による目標識別装置の構成を示すブロック図である。
【図9】 実施の形態1における立ち上がり傾斜の変動度合いの検出を説明するための模式図である。
【図10】 この発明の実施の形態2による目標識別装置の構成を示すブロック図である。
【図11】 実施の形態2における立ち下がり傾斜の変動度合いの検出を説明するための模式図である。
【図12】 この発明の実施の形態3による目標識別装置の構成を示すブロック図である。
【図13】 この発明の実施の形態4による目標識別装置の構成を示すブロック図である。
【図14】 実施の形態4におけるグループパルスを説明するための模式図である。
【図15】 この発明の実施の形態5による目標識別装置の構成を示すブロック図である。
【図16】 この発明の実施の形態6による目標識別装置の構成を示すブロック図である。
【図17】 従来の目標識別装置の構成を示すブロック図である。
【符号の説明】
1 パルスビデオ信号(パルス信号)、2 A/D変換器、3 パルス量子化信号、4 スレッショルドレベル(基準値)、5 パルス諸元測定指示、6 パルス諸元測定制御器、7 タイマ、8 ピークレベル検出器、9 ピークレベル、10 パルス幅測定レベル算出器、11 パルス幅測定レベル、12 立ち上がり検出器、13 立ち上がり時刻、14 立ち下がり検出器、15 立ち下がり時刻、16 パルス幅算出器、17 パルス幅、18 相関器、21 立ち上がり/立ち下がり総数カウンタ(特徴量検出手段)、22 立ち上がり総数(特徴量)、23 中間パルス立ち上がり比率算出器(特徴量検出手段)、24 立ち上がり比率データ(特徴量)、25 レベル変動算出器(特徴量検出手段)、26 覆域形状算出器(特徴量検出手段)、27 覆域形状データ(特徴量)、28 立ち上がり傾斜検出器(特徴量検出手段)、29 パルス列変動パターン算出器(特徴量検出手段)、30 パルス列変動パターンデータ(特徴量)、31 立ち下がり傾斜検出器(特徴量検出手段)、32 パルス列変動パターンデータ(特徴量)、33 中間立ち上がり傾斜検出器(特徴量検出手段)、34 パルス列変動パターンデータ(特徴量)、35 グループパルス変動パターン算出器(特徴量検出手段)、36 グループパルス変動パターンデータ(特徴量)、37 グループパルス変動パターンデータ(特徴量)、38 グループパルス変動パターンデータ(特徴量)。

Claims (6)

  1. 受信されたパルス状のレーダ波のパルス信号が入力され、それを一定の時間間隔でサンプリングしてディジタル信号に変換し、パルス量子化信号として出力するA/D変換器と、
    前記A/D変換器からのパルス量子化信号を、あらかじめ定められた基準値と比較してパルス諸元測定指示を出力するパルス諸元測定制御器と、
    前記A/D変換器より出力されたパルス量子化信号よりパルス信号のピークレベルを検出するピークレベル検出器と、
    前記ピークレベル検出器が検出したピークレベルの値からパルス幅測定レベルを算出するパルス幅測定レベル算出器と、
    前記パルス幅測定レベル算出器が算出したパルス幅測定レベルの値と、前記A/D変換器からのパルス量子化信号より、パルス信号の立ち上がり時刻を検出する立ち上がり検出器と、
    前記パルス幅測定レベル算出器が算出したパルス幅測定レベルの値と、前記A/D変換器からのパルス量子化信号より、パルス信号の立ち下がり時刻を検出する立ち下がり検出器と、
    前記立ち上がり検出器からのパルス信号の立ち上がり時刻と、前記立ち下がり検出器からのパルス信号の立ち下がり時刻より、パルス信号のパルス幅を算出するパルス幅算出器と、
    前記A/D変換器より出力されたパルス量子化信号より、パルス信号の特徴量を検出する特徴量検出手段と、
    時間を計測して、前記立ち上がり検出器および立ち下がり検出器に時刻データを供給するタイマと、
    前記ピークレベル検出器で検出されたピークレベル、パルス幅算出器で算出されたパルス幅、および特徴量検出手段で検出されたパルス信号の特徴量に基づいて、パルス信号の相関をとる相関器と、
    前記特徴量検出手段として、A/D変換器より出力されたパルス量子化信号を受けて、パルス信号の立ち上がり傾斜を検出する立ち上がり傾斜検出器と、
    前記立ち上がり傾斜検出器が検出したパルス信号の立ち上がり傾斜のデータを受け、その変動の度合いよりパルス列変動パターンデータを算出するパルス列変動パターン算出器とを用い、
    前記相関器が、前記パルス列変動パターン算出器で算出されたパルス列変動パターンデータと、ピークレベル検出器で検出されたピークレベル、およびパルス幅算出器で算出されたパルス幅に基づいて、パルス信号の相関をとるものであることを特徴とする目標識別装置。
  2. 受信されたパルス状のレーダ波のパルス信号が入力され、それを一定の時間間隔でサンプリングしてディジタル信号に変換し、パルス量子化信号として出力するA/D変換器と、
    前記A/D変換器からのパルス量子化信号を、あらかじめ定められた基準値と比較してパルス諸元測定指示を出力するパルス諸元測定制御器と、
    前記A/D変換器より出力されたパルス量子化信号よりパルス信号のピークレベルを検出するピークレベル検出器と、
    前記ピークレベル検出器が検出したピークレベルの値からパルス幅測定レベルを算出するパルス幅測定レベル算出器と、
    前記パルス幅測定レベル算出器が算出したパルス幅測定レベルの値と、前記A/D変換器からのパルス量子化信号より、パルス信号の立ち上がり時刻を検出する立ち上がり検出器と、
    前記パルス幅測定レベル算出器が算出したパルス幅測定レベルの値と、前記A/D変換 器からのパルス量子化信号より、パルス信号の立ち下がり時刻を検出する立ち下がり検出器と、
    前記立ち上がり検出器からのパルス信号の立ち上がり時刻と、前記立ち下がり検出器からのパルス信号の立ち下がり時刻より、パルス信号のパルス幅を算出するパルス幅算出器と、
    前記A/D変換器より出力されたパルス量子化信号より、パルス信号の特徴量を検出する特徴量検出手段と、
    時間を計測して、前記立ち上がり検出器および立ち下がり検出器に時刻データを供給するタイマと、
    前記ピークレベル検出器で検出されたピークレベル、パルス幅算出器で算出されたパルス幅、および特徴量検出手段で検出されたパルス信号の特徴量に基づいて、パルス信号の相関をとる相関器と、
    前記特徴量検出手段として、A/D変換器より出力されたパルス量子化信号を受けて、パルス信号の立ち下がり傾斜を検出する立ち下がり傾斜検出器と、
    前記立ち下がり傾斜検出器が検出したパルス信号の立ち下がり傾斜のデータを受け、その変動の度合いよりパルス列変動パターンデータを算出するパルス列変動パターン算出器とを用い、
    前記相関器が、前記パルス列変動パターン算出器で算出されたパルス列変動パターンデータと、ピークレベル検出器で検出されたピークレベル、およびパルス幅算出器で算出されたパルス幅に基づいて、パルス信号の相関をとるものであることを特徴とする目標識別装置。
  3. 受信されたパルス状のレーダ波のパルス信号が入力され、それを一定の時間間隔でサンプリングしてディジタル信号に変換し、パルス量子化信号として出力するA/D変換器と、
    前記A/D変換器からのパルス量子化信号を、あらかじめ定められた基準値と比較してパルス諸元測定指示を出力するパルス諸元測定制御器と、
    前記A/D変換器より出力されたパルス量子化信号よりパルス信号のピークレベルを検出するピークレベル検出器と、
    前記ピークレベル検出器が検出したピークレベルの値からパルス幅測定レベルを算出するパルス幅測定レベル算出器と、
    前記パルス幅測定レベル算出器が算出したパルス幅測定レベルの値と、前記A/D変換器からのパルス量子化信号より、パルス信号の立ち上がり時刻を検出する立ち上がり検出器と、
    前記パルス幅測定レベル算出器が算出したパルス幅測定レベルの値と、前記A/D変換器からのパルス量子化信号より、パルス信号の立ち下がり時刻を検出する立ち下がり検出器と、
    前記立ち上がり検出器からのパルス信号の立ち上がり時刻と、前記立ち下がり検出器からのパルス信号の立ち下がり時刻より、パルス信号のパルス幅を算出するパルス幅算出器と、
    前記A/D変換器より出力されたパルス量子化信号より、パルス信号の特徴量を検出する特徴量検出手段と、
    時間を計測して、前記立ち上がり検出器および立ち下がり検出器に時刻データを供給するタイマと、
    前記ピークレベル検出器で検出されたピークレベル、パルス幅算出器で算出されたパルス幅、および特徴量検出手段で検出されたパルス信号の特徴量に基づいて、パルス信号の相関をとる相関器と、
    前記特徴量検出手段として、A/D変換器より出力されたパルス量子化信号を受けて、パルス信号の中間部分における各立ち上がり傾斜を中間立ち上がり傾斜として検出する中間立ち上がり傾斜検出器と、
    前記中間立ち上がり傾斜検出器が検出したパルス信号の各中間立ち上がり傾斜のデータ を受け、その変動の度合いよりパルス列変動パターンデータを算出するパルス列パターン算出器とを用い、
    前記相関器が、前記パルス列パターン算出器で算出されたパルス列変動パターンデータと、ピークレベル検出器で検出されたピークレベル、およびパルス幅算出器で算出されたパルス幅に基づいて、パルス信号の相関をとるものであることを特徴とする目標識別装置。
  4. 受信されたパルス状のレーダ波のパルス信号が入力され、それを一定の時間間隔でサンプリングしてディジタル信号に変換し、パルス量子化信号として出力するA/D変換器と、
    前記A/D変換器からのパルス量子化信号を、あらかじめ定められた基準値と比較してパルス諸元測定指示を出力するパルス諸元測定制御器と、
    前記A/D変換器より出力されたパルス量子化信号よりパルス信号のピークレベルを検出するピークレベル検出器と、
    前記ピークレベル検出器が検出したピークレベルの値からパルス幅測定レベルを算出するパルス幅測定レベル算出器と、
    前記パルス幅測定レベル算出器が算出したパルス幅測定レベルの値と、前記A/D変換器からのパルス量子化信号より、パルス信号の立ち上がり時刻を検出する立ち上がり検出器と、
    前記パルス幅測定レベル算出器が算出したパルス幅測定レベルの値と、前記A/D変換器からのパルス量子化信号より、パルス信号の立ち下がり時刻を検出する立ち下がり検出器と、
    前記立ち上がり検出器からのパルス信号の立ち上がり時刻と、前記立ち下がり検出器からのパルス信号の立ち下がり時刻より、パルス信号のパルス幅を算出するパルス幅算出器と、
    前記A/D変換器より出力されたパルス量子化信号より、パルス信号の特徴量を検出する特徴量検出手段と、
    時間を計測して、前記立ち上がり検出器および立ち下がり検出器に時刻データを供給するタイマと、
    前記ピークレベル検出器で検出されたピークレベル、パルス幅算出器で算出されたパルス幅、および特徴量検出手段で検出されたパルス信号の特徴量に基づいて、パルス信号の相関をとる相関器と、
    前記特徴量検出手段として、A/D変換器より出力されたパルス量子化信号を受けて、パルス信号の立ち上がり傾斜を検出する立ち上がり傾斜検出器と、
    前記立ち上がり傾斜検出器が検出したパルス信号の立ち上がり傾斜のデータを受け、その変動の度合いよりグループパルス変動パターンデータを算出するグループパルス変動パターン算出器とを用い、
    前記相関器が、前記グループパルス変動パターン算出器で算出されたグループパルス変動パターンデータと、ピークレベル検出器で検出されたピークレベル、およびパルス幅算出器で算出されたパルス幅に基づいて、パルス信号の相関をとるものであることを特徴とする目標識別装置。
  5. 受信されたパルス状のレーダ波のパルス信号が入力され、それを一定の時間間隔でサンプリングしてディジタル信号に変換し、パルス量子化信号として出力するA/D変換器と、
    前記A/D変換器からのパルス量子化信号を、あらかじめ定められた基準値と比較してパルス諸元測定指示を出力するパルス諸元測定制御器と、
    前記A/D変換器より出力されたパルス量子化信号よりパルス信号のピークレベルを検出するピークレベル検出器と、
    前記ピークレベル検出器が検出したピークレベルの値からパルス幅測定レベルを算出するパルス幅測定レベル算出器と、
    前記パルス幅測定レベル算出器が算出したパルス幅測定レベルの値と、前記A/D変換 器からのパルス量子化信号より、パルス信号の立ち上がり時刻を検出する立ち上がり検出器と、
    前記パルス幅測定レベル算出器が算出したパルス幅測定レベルの値と、前記A/D変換器からのパルス量子化信号より、パルス信号の立ち下がり時刻を検出する立ち下がり検出器と、
    前記立ち上がり検出器からのパルス信号の立ち上がり時刻と、前記立ち下がり検出器からのパルス信号の立ち下がり時刻より、パルス信号のパルス幅を算出するパルス幅算出器と、
    前記A/D変換器より出力されたパルス量子化信号より、パルス信号の特徴量を検出する特徴量検出手段と、
    時間を計測して、前記立ち上がり検出器および立ち下がり検出器に時刻データを供給するタイマと、
    前記ピークレベル検出器で検出されたピークレベル、パルス幅算出器で算出されたパルス幅、および特徴量検出手段で検出されたパルス信号の特徴量に基づいて、パルス信号の相関をとる相関器と、
    前記特徴量検出手段として、A/D変換器より出力されたパルス量子化信号を受けて、パルス信号の立ち下がり傾斜を検出する立ち下がり傾斜検出器と、
    前記立ち下がり傾斜検出器が検出したパルス信号の立ち下がり傾斜のデータを受け、その変動の度合いよりグループパルス変動パターンデータを算出するグループパルス変動パターン算出器とを用い、
    前記相関器が、前記グループパルス変動パターン算出器で算出されたグループパルス変動パターンデータと、ピークレベル検出器で検出されたピークレベル、およびパルス幅算出器で算出されたパルス幅に基づいて、パルス信号の相関をとるものであることを特徴とする目標識別装置。
  6. 受信されたパルス状のレーダ波のパルス信号が入力され、それを一定の時間間隔でサンプリングしてディジタル信号に変換し、パルス量子化信号として出力するA/D変換器と、
    前記A/D変換器からのパルス量子化信号を、あらかじめ定められた基準値と比較してパルス諸元測定指示を出力するパルス諸元測定制御器と、
    前記A/D変換器より出力されたパルス量子化信号よりパルス信号のピークレベルを検出するピークレベル検出器と、
    前記ピークレベル検出器が検出したピークレベルの値からパルス幅測定レベルを算出するパルス幅測定レベル算出器と、
    前記パルス幅測定レベル算出器が算出したパルス幅測定レベルの値と、前記A/D変換器からのパルス量子化信号より、パルス信号の立ち上がり時刻を検出する立ち上がり検出器と、
    前記パルス幅測定レベル算出器が算出したパルス幅測定レベルの値と、前記A/D変換器からのパルス量子化信号より、パルス信号の立ち下がり時刻を検出する立ち下がり検出器と、
    前記立ち上がり検出器からのパルス信号の立ち上がり時刻と、前記立ち下がり検出器からのパルス信号の立ち下がり時刻より、パルス信号のパルス幅を算出するパルス幅算出器と、
    前記A/D変換器より出力されたパルス量子化信号より、パルス信号の特徴量を検出する特徴量検出手段と、
    時間を計測して、前記立ち上がり検出器および立ち下がり検出器に時刻データを供給するタイマと、
    前記ピークレベル検出器で検出されたピークレベル、パルス幅算出器で算出されたパルス幅、および特徴量検出手段で検出されたパルス信号の特徴量に基づいて、パルス信号の相関をとる相関器と、
    前記特徴量検出手段として、A/D変換器より出力されたパルス量子化信号を受けて、 パルス信号の中間部分における各立ち上がり傾斜を中間立ち上がり傾斜として検出する中間立ち上がり傾斜検出器と、
    前記中間立ち上がり傾斜検出器の検出したパルス信号の各中間立ち上がり傾斜のデータを受け、その変動の度合いよりグループパルス変動パターンデータを算出するグループパルス変動パターン算出器とを用い、
    前記相関器が、前記グループパルス変動パターン算出器で算出されたグループパルス変動パターンデータと、ピークレベル検出器で検出されたピークレベル、およびパルス幅算出器で算出されたパルス幅に基づいて、パルス信号の相関をとるものであることを特徴とする目標識別装置。
JP2001017470A 2001-01-25 2001-01-25 目標識別装置 Expired - Fee Related JP3706031B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001017470A JP3706031B2 (ja) 2001-01-25 2001-01-25 目標識別装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001017470A JP3706031B2 (ja) 2001-01-25 2001-01-25 目標識別装置

Publications (2)

Publication Number Publication Date
JP2002221567A JP2002221567A (ja) 2002-08-09
JP3706031B2 true JP3706031B2 (ja) 2005-10-12

Family

ID=18883677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001017470A Expired - Fee Related JP3706031B2 (ja) 2001-01-25 2001-01-25 目標識別装置

Country Status (1)

Country Link
JP (1) JP3706031B2 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004095057A1 (ja) 2003-04-24 2004-11-04 Fujitsu Limited レーダ装置
JP4682535B2 (ja) * 2004-05-26 2011-05-11 日本電気株式会社 目標類別方法および装置
JP4525790B2 (ja) * 2007-07-04 2010-08-18 セイコーエプソン株式会社 送電装置、電子機器及び波形モニタ回路
US7847438B2 (en) 2007-07-04 2010-12-07 Seiko Epson Corporation Power transmission device, electronic instrument, and waveform monitoring circuit
JP4600462B2 (ja) * 2007-11-16 2010-12-15 セイコーエプソン株式会社 送電制御装置、送電装置、電子機器及び無接点電力伝送システム
JP4600464B2 (ja) * 2007-11-22 2010-12-15 セイコーエプソン株式会社 送電制御装置、送電装置、電子機器及び無接点電力伝送システム
KR101061661B1 (ko) 2008-01-09 2011-09-01 세이코 엡슨 가부시키가이샤 송전 제어 장치, 송전 장치, 무접점 전력 전송 시스템, 전자 기기 및 송전 제어 방법
JP5697497B2 (ja) * 2011-03-14 2015-04-08 三菱電機株式会社 レーダ受信機及びパルスレーダ装置
WO2016174929A1 (ja) 2015-04-28 2016-11-03 古野電気株式会社 信号処理装置、及びレーダ装置
JP6257573B2 (ja) * 2015-11-06 2018-01-10 三菱電機株式会社 超音波センサ装置
DE102019112447A1 (de) 2019-05-13 2020-11-19 Jenoptik Optical Systems Gmbh Verfahren und Auswerteeinheit zur Ermittlung eines Zeitpunkts einer Flanke in einem Signal

Also Published As

Publication number Publication date
JP2002221567A (ja) 2002-08-09

Similar Documents

Publication Publication Date Title
US9182500B2 (en) Method and system for amplitude digitization of nuclear radiation pulses
JP3378166B2 (ja) パルス信号分類装置
JP3706031B2 (ja) 目標識別装置
US4162443A (en) Speed measuring systems
CA1048138A (en) Ranging system with resolution of correlator ambiguities
JP6304321B2 (ja) 測距センサおよび測距方法
US4394695A (en) Method and apparatus for evaluating recording systems
US20130038485A1 (en) Data analysis method and apparatus for estimating time-axis positions of peak values within a signal based on a series of sample values of the signal
US20020009177A1 (en) Energy dispersive X-ray analyzer
JP2005354676A (ja) 信号処理回路及び方法ないしこの方法を用いた時間遅延検出装置及び物体位置特定装置
US5637994A (en) Waveform measurement
US4985844A (en) Statistical waveform profiler employing counter/timer
JP4853699B2 (ja) 課電式電路事故探査装置
JP6578817B2 (ja) 信号処理装置及び放射線測定装置
CN106918731A (zh) 一种数字示波器及其信号频率测量方法
ATE526880T1 (de) Verfahren und apparat zur verbesserten strahlendetektion
JPH06201673A (ja) クロマトグラムのピーク検出方法
JPH068806B2 (ja) 超音波測定装置
JP3528441B2 (ja) パルスハイトアナライザー
JPH09281215A (ja) パルス信号分類方法および装置
JP3068673B2 (ja) 超音波送受波装置
JP2999108B2 (ja) 超音波探傷信号の波形ピーク連続検出方法及び検出装置
JPS5945175B2 (ja) 比例計数管におけるバツクグラウンド効果の減少方法および装置
JP3755025B2 (ja) 探索型の信号検出装置、信号検出方法、信号検出プログラム及びそのプログラムを記録した記録媒体
KR100495538B1 (ko) 방사선 검출기의 검출신호 크기와 입력시각 기록 시스템및 방법

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050727

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080805

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090805

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090805

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100805

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110805

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110805

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120805

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees