JP3705241B2 - 導電性摺動性樹脂成形品 - Google Patents

導電性摺動性樹脂成形品 Download PDF

Info

Publication number
JP3705241B2
JP3705241B2 JP2002149487A JP2002149487A JP3705241B2 JP 3705241 B2 JP3705241 B2 JP 3705241B2 JP 2002149487 A JP2002149487 A JP 2002149487A JP 2002149487 A JP2002149487 A JP 2002149487A JP 3705241 B2 JP3705241 B2 JP 3705241B2
Authority
JP
Japan
Prior art keywords
fine carbon
conductive
carbon fiber
molded product
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002149487A
Other languages
English (en)
Other versions
JP2003335871A (ja
Inventor
功一 鷺坂
Original Assignee
油化電子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 油化電子株式会社 filed Critical 油化電子株式会社
Priority to JP2002149487A priority Critical patent/JP3705241B2/ja
Publication of JP2003335871A publication Critical patent/JP2003335871A/ja
Application granted granted Critical
Publication of JP3705241B2 publication Critical patent/JP3705241B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば電気電子分野や、自動車分野などにおける導電性摺動部品として好適な摺動性に優れた導電性成形品に関するものであり、より具体的には複写機やプリンターの各種ローラの軸受けにおける除電機能や、電気接点機能を併せ持った軸受け部品や、スイッチング部品、半導体デバイス製造プロセスにおいて使用されるカセットやトレイ、更にハードディスクドライブにおけるランプなどとして好適な導電性摺動性樹脂成形品に関する。
【0002】
【従来の技術】
従来、導電性樹脂部品には、熱可塑性樹脂にカーボンブラックや炭素繊維などの導電性成分を添加した樹脂組成物を成形したものが使用されてきた。しかしながら、これらの導電性樹脂組成物は、導電性成分の脱落に起因して、摺動性を著しく損なうという問題がある。即ち、これらの導電性樹脂成形品では、相手材との摺動による自材の摩耗による成形品表面からの導電性成分の脱落、脱落した導電性成分が研磨粉となることによる自材の更なる摩耗及び相手材の損傷といった問題が生じる。このようなことから、従来の導電性樹脂成形品では、摺動性部品への適用は困難であるとされていた。
【0003】
ところで、ポータブルコンピュータの記憶装置として用いられる磁気ディスク装置として、図1のようなものがある。この磁気ディスク装置11は、箱状のハウジング12を備えている。このハウジング12の内部は、外気から遮閉された清浄な気密空間をなしており、この気密空間に円盤状の磁気ディスク13や、この磁気ディスク13の表面上を浮上することでデータの記録・再生を行なう磁気ヘッド14のような各種の機能部品が収容されている。
【0004】
磁気ヘッド14は、サスペンションアーム15の先端部に支持されている。サスペンションアーム15は、弾性変形が可能な薄い金属板にて構成され、その磁気ヘッド14とは反対側の端部が枢軸10によりハウジング12に回動可能に枢支されている。そして、このサスペンションアーム15は、ボイスコイルモータ16によって回動されるようになっており、このサスペンションアーム15の回動により、磁気ヘッド14が磁気ディスク13の半径方向に移動される。
【0005】
この磁気ディスク装置11は、磁気ディスク13の停止時に、磁気ヘッド14を磁気ディスク13の表面から離した状態で保持し、必要に応じて磁気ディスク13の表面にロードする、いわゆるランプロード方式のものであり、磁気ディスク13の外周縁部に隣接した位置に、サスペンションアーム15が摺動可能に接するランプ17を備えている。
【0006】
このランプ17は、ハウジング12の底壁にねじ止めされたランプボデー17Aを有している。
【0007】
このランプ17は、サスペンションアーム15の回動方向に延びるガイド面18を有している。このガイド面は、磁気ディスク13に近づくに従い、この磁気ディスク13の表面に向けて傾斜されている。そのため、磁気ディスク13の停止時にサスペンションアーム15を磁気ディスク13の外周縁部付近まで回動させると、このサスペンションアーム15がガイド面に摺動可能に乗り上げ、磁気ヘッド14が磁気ディスク13の表面から離脱された退避位置(ガイド面18位置)に保持される。また、磁気ディスク装置11の起動時には、サスペンションアーム15がガイド面に沿って滑り落ち、上記退避位置にある磁気ヘッド14が磁気ディスク13の表面にロードされる。
【0008】
従って、このランプロード方式によると、パソコンを移動させる際等に装備された磁気ディスク装置の磁気ヘッド14と磁気ディスク13とが接触することもなく、磁気ヘッド14や磁気ディスク13の破損が防止できるといった利点がある。
【0009】
従来、このハードディスクドライブ用ランプとしては、主にポリアセタール樹脂成形品が使用されてきたが、非導電性であるために帯電が生じ易いという欠点があり、最近のハードディスクの高容量化、高密度化に伴い、ランプの帯電による磁気ヘッドへのダメージが問題となってきている。
【0010】
しかし、導電性を付与するために、ランプの成形材料として、ポリアセタール樹脂にカーボンブラックや炭素繊維などの導電性フィラー材を添加した導電性樹脂組成物を用いると、サスペンションアームとの摩擦摺動によって、導電性フィラー材が脱落して、パーティクルや摩耗粉が発生し、これにより磁気ヘッドや磁気ディスクが破壊するという問題が生じる。また、特に、炭素繊維(一般に繊維径7〜12μm、繊維長さ50〜500μm)を充填した場合には、サスペンションの傷付きの問題もある。
【0011】
【発明が解決しようとする課題】
本発明は、ハードディスクドライブ用ランプ等として好適な、摺動性及び導電性に優れた導電性摺動性樹脂成形品を提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明の導電性摺動性樹脂成形品は、(A)熱可塑性樹脂50〜98.9重量%と、(B)平均繊維径が200nm以下で、長さ/径比が10以上の微細炭素繊維0.1〜20重量%と、(C)潤滑成分1〜30重量%とを含む導電性樹脂組成物を成形してなる成形品であって、該成形品の表面近傍(0.1〜10μm)において、前記微細炭素繊維の屈曲度が0°以上であることを特徴とする。
【0013】
本発明では、導電性フィラーとして屈曲した微細な炭素繊維を用いることにより、この屈曲した微細炭素繊維の樹脂に対するアンカー効果で、摺動面での微細炭素繊維の脱落が少なくなり、その結果、摺動性(耐摩耗性)が向上する。また、微細炭素繊維同士が絡み合った状態で分散するようになるため、より脱落しにくくなり、耐摩耗性が改善されると共に、導電性も向上する。
【0014】
なお、微細炭素繊維の屈曲度は、成形品の樹脂成分を溶媒やイオンスパッタリング等で除去して、微細炭素繊維を露出させるか、又は成形品より切り出した超薄切片を電子顕微鏡観察することによって測定することができる。屈曲度は図2に示すように微細炭素繊維2を顕微鏡で観察し、同一繊維上の、繊維径の5倍{繊維径(図2のd)を測定し、デバイダ等で繊維に沿って5回計る等の方法による}離れた任意の2点A,Bを選び、それぞれの点に接線L,Lを引いて、接線L,Lの交差する点Qの外角(図2にαで示す)を測定する。10点の平均値をとり、屈曲度とする。
【0015】
すなわち、繊維が直線的であればこの屈曲度は0°となり、半円で180°、円を描けば360°となる。
【0016】
本発明において、微細炭素繊維の屈曲度は、40°以上である。
【0017】
また、本発明においては、成形品の表面近傍(0.1〜10μm)の25μm当たりの微細炭素繊維ネットワークに囲まれた部分の個数が200以下で、かつ囲まれた部分の面積の平均値(x(μm))と標準偏差(σ(μm))の積(x・σ)が10(μm以上であると、摺動性及び導電性がより一層改善され、好ましい。即ち、このことは微細炭素繊維がお互いに絡み合って分散していることを意味しており、その結果、導電性が向上するだけでなく、摩擦による微細炭素繊維の脱落の防止効果がより大きくなり、その結果、摺動性も向上する。
【0018】
本発明において、微細炭素繊維で囲まれた部分の個数及び面積の平均値と標準偏差の積は、以下の方法で測定される値として定義される。
【0019】
▲1▼ 成形体の表面から、0.1〜10μmの範囲で超薄切片を、厚み70〜100nmで切り出す。
【0020】
▲2▼ ▲1▼の超薄切片を透過型顕微鏡(4万倍)で撮影した微細炭素繊維の分散画像について次の解析を行う。
まず、5μm×5μmの範囲の画像を、1個当りの画素の大きさが9.77nm×9.77nmである512×512個の画素でデジタル画像に変換する。これによって微細炭素繊維が存在している画素がオン、存在していない画素がオフとなり、2値化処理される。この際、2値化処理をより高精度、かつ容易に行うために、予め原画像を別の紙などにトレースした画像をデジタル化しても良い。なお、図3にこのトレース図の一例を示す。図3(1)は微細炭素繊維が比較的均一に分散しており、図3(2)ではある程度凝集している。
【0021】
▲3▼ 上下左右に3個連続して隣接し合う3×3=9個の画素中の1画素でもオンである場合には、この9画素すべてがオンであるとする画像処理(膨張処理)を画像全面にわたって施す。
図4(a)〜(d)に、1画素のみオンの場合の第1回目の膨張処理(画像処理)を示す。具体的には、図4(a)に示すように、ある範囲にオンが1点存在したとき、全ての3×3の画素をスキャンして、オンの画素がその中に含まれる場合、その9画素を全てオンとする{図4(b),(c),(d)}。結果的にオンであった1画素の周囲5×5画素がオンとなる{図4(d)}。
また、図4(e),(f)に示すように、膨張処理によって分断された微細炭素繊維が結合する。
1回の膨張処理により、微細炭素繊維は縦及び横方向に4画素分膨張する。
5回の画像処理により、当初の撮像では近接しているか互いに離反していた微細炭素繊維画像が繋がりあった太いものとなる。
【0022】
▲4▼ そこで、この第5回目の処理後のフィブリル画像の幅方向(太さ方向)の中心の画素のみをオンとして残し、他の画素はオフとする。即ち、画像の中心線を1画素の連続体に置き換える。
図5(a),(b)はこの一例を示す模式図である。
【0023】
▲5▼ 上記▲4▼により得られた中心線画像について、上記▲3▼と同一の膨張処理を2回繰り返す。得られた画像中の連続線を「微細炭素繊維ネットワーク」と定義する。
図6は、このようにして得られた微細炭素繊維ネットワークを有した画像の一例を示す模式図である。
【0024】
▲6▼ この微細炭素繊維ネットワークにより囲まれた閉じた領域の個数を「微細炭素繊維ネットワークに囲まれた部分」と定義する。なお、視野(画像)の縁に交わっている領域は解析の対象外とする。
この「微細炭素繊維ネットワークに囲まれた部分」の個数(N)、及び「微細炭素繊維ネットワークに囲まれた部分」の個々の面積を測定する。次に、得られた個々の面積の測定値より、面積の平均値(x(μm))及び面積の標準偏差(σ(μm))を計算する。その後、平均値(x(μm))と標準偏差(σ(μm))の積を算出する。なお、標準偏差(σ(μm))は、以下の式で算出される。
【数1】
Figure 0003705241
ここで、
x ;「微細炭素繊維ネットワークに囲まれた部分」の面積の平均値
;「微細炭素繊維ネットワークに囲まれた部分」の個々の面積
N ;「微細炭素繊維ネットワークに囲まれた部分」の個数
【0025】
▲7▼ 上記▲6▼を5つの視野に対して同様に行い、その平均値をとる。このようにして得られた平均値を本発明の「微細炭素繊維ネットワークに囲まれた部分の個数」及び「微細炭素繊維ネットワークに囲まれた部分の面積の平均値と標準偏差の積」と定義する。
【0026】
以下に、このような本発明の微細炭素繊維ネットワークパラメータと、本発明の導電性発現効果との関係について、図7を参照して詳細に説明する。
【0027】
図7の(A)は、微細炭素繊維がお互いに絡み合うことなく均一に分散した状態を示す。本発明に係る上記画像処理により、微細炭素繊維ネットワークは均一かつ微細になり、その結果、微細炭素繊維ネットワークに囲まれた部分の個数(N)は多くなり、面積及びその平均値(x(μm))は小さく、また面積の標準偏差(σ(μm))は小さくなる。従って、面積の平均値(x(μm))と面積の標準偏差(σ(μm))の積も小さくなる。
かかる分散状態では、微細炭素繊維同士の電気的な接触が不十分となり、導電性は低下しやすくなる。即ち、所望の導電性を得るためには、多量の微細炭素繊維の添加を必要とする。
【0028】
これに対して、図7の(B)のように、微細炭素繊維が適度に凝集かつ分散した状態になると、微細炭素繊維ネットワークに囲まれた部分の個数(N)は少なくなり、面積及びその平均値(x(μm))は大きくなる。また、微細炭素繊維の粗密に起因して、面積の大小のばらつきも大きくなるために、面積の標準偏差(σ(μm))は大きくなる。従って、面積の平均値(x(μm))と面積の標準偏差(σ(μm))の積も大きくなる。
このように微細炭素繊維がお互いに絡み合いながら適度に凝集した状態においては、優れた導電性が発現される。
【0029】
なお、図7の(C)に示すように、微細炭素繊維の絡み合いが大きくなりすぎて塊状に凝集した場合、前述の画像処理を行っても微細炭素繊維ネットワークは形成されない。
【0030】
本発明では、この微細炭素繊維ネットワークに囲まれた部分の個数(N)が180以下で、かつ囲まれた部分の面積の平均値(x(μm))と標準偏差(σ(μm))の積が12(μm以上である。
これは、図7の(B)のように、微細炭素繊維が適度に絡み合いながら、比較的不均一に分散している状態を、定量的に表している。
【0031】
なお、本発明に係る「微細炭素繊維ネットワークに囲まれた部分」の個数及び面積の平均値と標準偏差の積は、共に微細炭素繊維の分散の不均一性、即ち微細炭素繊維の凝集の度合いを表しているが、個数は微視的な凝集度合いを示しており、面積の平均値と標準偏差の積がそれよりも巨視的な凝集度合いを表している。
【0032】
なお、上記測定に当たり、導電性樹脂組成物中の潤滑成分や添加成分などの微細炭素繊維のネットワークに無関係な成分については、上述の測定視野の範囲から除く必要がある。即ち、微細炭素繊維のみが存在する視野を選ぶか、又は必要に応じて小さい視野範囲に分割して測定を行うようにする。
【0033】
本発明において、該熱可塑性樹脂は、ポリフェニレンサルファイド樹脂であることが好ましい。
【0034】
本発明の成形品を、ハードディスクドライブ用ランプなどの帯電防止部品として使用する場合、導電性は高すぎず低すぎない半導電性の領域で、均一であることが必要であり、望ましい表面抵抗値は一般的には10〜1012Ω程度である。
【0035】
このような表面抵抗値を得るために、本発明の成形品においては、潤滑成分は非導電性で、かつ前記熱可塑性樹脂中に島状に分散して分散相を形成しており、微細炭素繊維が実質的に連続相中に分散していることが好ましい。
【0036】
これは、次のような理由による。
【0037】
即ち、平均繊維径200nm以下の微細炭素繊維は、従来の炭素繊維やカーボンブラックに比べて、僅かな添加量で導電性を発現することができるため、低発塵性、成形品外観、成形性に優れる点で、優れた導電性フィラーとして知られている。
【0038】
しかしながら、このような微細炭素繊維を含有する熱可塑性樹脂成形品は、その導電性が成形加工の条件により大きく変動しやすく、半導電性領域の抵抗値を均一にコントロールすることが困難であった。本発明者はこの理由について検討した結果、以下のような結論に至った。
【0039】
即ち、微細炭素繊維を含有する熱可塑性樹脂成形品中では、微細炭素繊維は、熱可塑性のマトリックス樹脂中で互いに絡み合った状態で分散して存在しており、絡み合った微細炭素繊維により導電性のネットワークが形成されることによって導電性が発現する。
【0040】
この熱可塑性樹脂成形品は、微細炭素繊維を含む熱可塑性樹脂組成物の射出成形などの成形加工により、溶融、流動、冷却固化のプロセスを経て成形されるが、この際、流動時に生じる剪断力によって、図8(a)に示す如く、マトリックス樹脂1中で微細炭素繊維2が配向する結果、微細炭素繊維2同士の絡み合いや接触が不十分となり、導電性は低いものとなる。
【0041】
次に、マトリックス樹脂1中で配向した微細炭素繊維2は、冷却固化プロセスの初期においてマトリックス樹脂1の温度が高い(粘度が低い)間に、図8(b)、更には図8(c)に示す如く、その配向が緩和して、導電性ネットワークが形成され、その結果導電性は向上する。この現象は、微細炭素繊維2を極端に配向させた条件で成形した低い導電性(高い抵抗値)を有する成形品を、再度加熱することによって、加熱した部分の導電性が向上することで検証される。かかる現象は射出成形、押し出し成形のように、完全に樹脂を溶融させ、これを流動させる成形プロセスのみならず、真空成形のように、半溶融状態のシートを延伸して成形する成形法においても同様に起こり、延伸過程における微細炭素繊維の配向と、冷却過程での配向の緩和により導電性(抵抗値)が変動する。
【0042】
上述の導電性発現メカニズムを踏まえて、成形品の導電性を確保するためには、微細炭素繊維の配向を緩和して、微細炭素繊維の接触を確保する必要がある。即ち、例えば、図8(a)のように微細炭素繊維2が十分に配向した状態では、一般に1012Ω以上の低い導電性であり、図8(c)のように微細炭素繊維2の配向が十分に緩和した状態では、一般に10Ω未満の導電性であり、図8(b)のような状態に微細炭素繊維2の配向が適度に緩和した状態では、10〜1010Ωの範囲の半導電性となる。しかしながら、微細炭素繊維の配向を所望の導電性が得られるように緩和させることは、微細炭素繊維の配向及びその緩和の状況が、成形条件に対して特に敏感に変化するため、再現性良く実現することが困難であり、また、複雑な形状を有する成形品においては、同一の成形品内においても、部位によって抵抗値が異なるものとなり、各部位の抵抗値を均一にコントロールすることも極めて困難である。
【0043】
例えば、射出成形品においては、樹脂の注入口であるゲート付近や薄肉部では、大きな剪断力を受けるために微細炭素繊維が配向して導電性が低く(抵抗値が高く)なり易く、一方、流動末端では剪断力が低いために微細炭素繊維の配向性が低く導電性が高く(抵抗値が低く)なり易い。ゲート付近の導電性を向上(抵抗値を低下)させるために、冷却速度を低下させたり、微細炭素繊維の添加量を増やすと、流動末端の抵抗値が低くなり、結果的に抵抗値の均一性は確保できない。また、一般に、剪断速度や冷却速度は、成形品の表面付近で大きくなり、かつ成形条件による影響も受けやすくなる。従って、帯電防止部品など多くの導電性樹脂成形品は、特に表面抵抗値の変動が大きくなりやすい。
【0044】
本発明者は、かかる成形加工プロセスにおける微細炭素繊維の配向及び配向の緩和による導電性発現のメカニズムを踏まえて、導電性の成形品を安定的に得るために検討した結果、(A)成分のマトリックス樹脂中に(C)成分の潤滑成分の島状の分散相を形成することにより、良好な導電性を実現することができることを見出した。
【0045】
本発明では、マトリックス樹脂である(A)成分の熱可塑性樹脂に、(C)成分の潤滑成分を熱可塑性樹脂と相溶させること無く島状に分散させ、微細炭素繊維は熱可塑性樹脂中に連続相を形成しており、(C)成分の潤滑成分の分散相は、本来の非導電又は低導電性が維持されていることが望ましい。
【0046】
かかる(C)成分の潤滑成分の分散相は、微細炭素繊維の配向の緩和を阻害する効果、及び微細炭素繊維によって形成された導電性ネットワークを部分的に分断する効果を発揮し、導電性が過度に高くなる(抵抗値が過度に低くなる)ことが防止できる。その結果、例えば射出成形品のゲート付近や、薄肉部の導電性を向上させる(抵抗値を低下させる)ために、冷却速度を低下させたり、微細炭素繊維の添加量を増加させても、流動末端等での過度の導電性の増大(抵抗値の低下)が無く、均一な成形品が得られる。
【0047】
【発明の実施の形態】
以下に本発明の導電性摺動性樹脂成形品の実施の形態を詳細に説明する。
【0048】
まず、本発明に係る導電性樹脂組成物の構成成分について説明する。
【0049】
<(A)熱可塑性樹脂>
本発明で使用する熱可塑性樹脂は、例えばポリカーボネート、ポリブチレンテレフタレート、ポリアミド、ABS樹脂、AS樹脂、ポリエチレン、ポリプロピレン、ポリアセタール、ポリアミドイミド、ポリエーテルスルホン、ポリエチレンテレフタレート、ポリイミド、ポリフェニレンオキシド、ポリフェニレンサルファイド、ポリフェニルスルホン、ポリスチレン、熱可塑性ポリウレタン、液晶性ポリエステル、ポリエーテルエーテルケトン等の熱可塑性樹脂或いはこれらの混合物が挙げられ、これらは、成形品の使用目的に応じて機械的強度、成形性等の特性から適宜選択することができる。
【0050】
上記の熱可塑性樹脂の中でも、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリフェニレンサルファイド、ポリアミド、ポリエーテルエーテルケトンなどの結晶性樹脂や、液晶性ポリエステルなどの液晶性樹脂が摺動性に優れている点で望ましい。とりわけ、ポリフェニレンサルファイド樹脂は、摺動性に優れるだけでなく、耐熱性、寸法精度、コストなどのバランスに優れているので望ましい。
【0051】
ポリフェニレンサルファイドには、架橋タイプ、リニアタイプがあるが、リニアタイプでかつ300℃,20kg荷重での溶融粘度が500Pa・s以上のものが、導電性と摺動性のバランスが良好となる点で本発明に好適である。
【0052】
<(B)微細炭素繊維>
本発明で使用される微細炭素繊維は、繊維径が200nm以下、長さ/径比が10以上の炭素繊維であり、一般的には気相成長法により製造される。例えば、特表平8−508534号公報に記載されている炭素フィブリルを使用することができる。
【0053】
炭素フィブリルは、当該フィブリルの円柱状軸に実質的に同心的に沿って沈着されているグラファイト外層を有し、その繊維中心軸は直線状でなく、うねうねと曲がりくねった管状の形態を有する。
【0054】
微細な管状の形態を有する炭素フィブリルの壁厚み(管状体の壁厚)は、通常3.5〜75nm程度である。これは、通常、炭素フィブリルの外径の約0.1〜0.4倍に相当する。
【0055】
炭素フィブリルはその少なくとも一部分が凝集体の形態である場合、樹脂組成物中に、面積ベースで測定して約50μmより大きい径を有するフィブリル凝集体、望ましくは10μmよりも大きい径を有するフィブリル凝集体を含有していないことが、所望の導電性を発現するための添加量が少なくてすみ、機械物性を低下させない点で望ましい。
【0056】
微細炭素繊維としては平均繊維径が200nm以下、望ましくは100nm以下、さらに望ましくは50nm以下である。微細炭素繊維の繊維径は製法に依存するので分布があるが、ここで言う平均繊維径とは顕微鏡観察して5点測定した平均値である。
【0057】
微細炭素繊維の平均繊維径がこれより大きいと、樹脂組成物中で繊維同士の接触が不十分となり、導電性を発現させるために多量の添加が必要となり、その結果、摺動性を損なう。また、微細炭素繊維の平均繊維径が大きいと屈曲度が低下する傾向がある。
【0058】
一方、微細炭素繊維の平均繊維径は0.1nm以上、特に0.5nm以上であることが望ましい。平均繊維径がこれより小さい微細炭素繊維は、製造が著しく困難であり、製品のコストアップを招く。
【0059】
また、微細炭素繊維は、長さと径の比(長さ/径比、即ちアスペクト比)が10以上のもの、好ましくは20以上、より好ましくは100以上、とりわけ好ましくは1000以上のものを用いる。このような長さ/径比のものであれば、導電性ネットワークを形成しやすく、少量添加で優れた導電性を発現することができる。
【0060】
なお、微細炭素繊維の繊維径、長さ(長さ/径比)は、例えば、得られた成形品の樹脂成分を溶媒やイオンスパッタリング等で除去して、微細炭素繊維を露出させて電子顕微鏡で観察するか、或いは成形品より切り出した超薄切片を電子顕微鏡観察することにより測定することができ、このような電子顕微鏡の観察において10本の実測値の平均値で得られる。
【0061】
本発明で使用する微細炭素繊維は、成形品の表面近傍(0.1〜10μm)において、その屈曲度が40°以上のものである。屈曲度は樹脂へのアンカー効果及び微細炭素繊維同士の絡み易さの目安となる値であり、樹脂へのアンカー効果で摺動時の成形品からの脱落が防止されると共に、微細炭素繊維が絡み合いネットワークを形成することにより導電性ネットワークが形成されて良好な導電性が発現することができる。微細炭素繊維の屈曲度がこれよりも小さいと成形品表面から脱落し易くなり、摺動性が低下すると共に微細炭素繊維同士の絡み合いが低減して導電性が低下する。
【0062】
例えば、従来の炭素繊維(ピッチ系、PAN系)は、繊維直径が7〜13μm程度の、剛直かつ直線的な繊維であり、屈曲度は10°未満となる。かかる直線的な繊維では、樹脂へのアンカー効果が得られず、成形品表面からの脱落が大きくなり、その結果摺動性(耐摩耗性)が低下すると共に、お互いの絡み合いが生じることはなく、ネットワーク構造を形成することは難しい。
【0063】
本発明に好適な物性を有する炭素フィブリルは、市販品を使用することができ、例えば、ハイペリオンカタリシスインターナショナル社の「BN」が使用可能であるが、マスターバッチ等の成形条件、成形品の製造条件、特に混練の条件によって屈曲度が変化するので、条件を経験的に得ることが重要となる。
【0064】
本発明に係る導電性樹脂組成物中の微細炭素繊維の割合は、0.1〜20重量%、好ましくは0.1〜10重量%である。微細炭素繊維の含有量がこれより多いと得られる成形品の摺動性が低下し、少ないと導電性が発現しない。
【0065】
前述の如く、本発明の導電性摺動性樹脂成形品については、成形品の表面近傍(0.1〜10μm)の25μm当たりの微細炭素繊維ネットワークに囲まれた部分の個数が200以下で、かつ囲まれた部分の面積の平均値(x(μm))と標準偏差(σ(μm))の積(x・σ)が10(μm以上であることが好ましい。
【0066】
この微細炭素繊維ネットワークに囲まれた部分の個数の範囲は、望ましくは180以下、20以上であり、また面積の平均値と標準偏差の積は望ましくは12以上、200以下である。
これよりも個数が多い、又は積が小さいと、導電性が著しく低下したり、微細炭素繊維の多量添加が必要となり、摺動性を損なう。
一方、これよりも個数が少ない、又は積が大きいものは、分散が不均一となりすぎるために、導電性が低下する。
【0067】
ところで、ハードディスクランプなどの高密度デバイス用の帯電防止部品には、特に優れた静電気特性が要求される。即ち、帯電特性に優れること(帯電電荷を速やかに散逸すること)だけでなく、デバイス自体が帯電した際に、帯電したデバイスとの接触時に生じる接触電流が少ないことが要求される。
【0068】
本発明では、特に、「微細炭素繊維ネットワークに囲まれた部分」の個数(N)が200以下、100以上、より望ましくは180以下、100以上、かつ面積の平均値(x(μm))と標準偏差(σ(μm))の積が10以上、25以下、より望ましくは12以上、25以下であると、帯電防止性が良好となるだけでなく、電子デバイス等が接触した際に生じる接触電流が少ない点で望ましい。
【0069】
これは、以下の理由による。
即ち、微細炭素繊維ネットワークに囲まれた部分の個数が200より多い、或いは面積と標準偏差の積が10未満であると、微細炭素繊維のネットワークが均一に分散するため、微細炭素繊維同士の接触が不十分となり、その結果、帯電負荷の散逸が不十分となり、帯電が生じやすくなる。
一方、この個数が100未満、或いは面積と標準偏差の積が25を超えると、ネットワークの粗密が大きくなり、ネットワークが密の部分の導電性が局部的に高くなり、その結果、接触電流を増大させる。
【0070】
<(C)潤滑成分>
本発明の潤滑成分としては、ポリエチレンなどのポリオレフィン樹脂、ポリテトラフルオロエチレンなどのフッ素含有樹脂、黒鉛、二硫化モリブデン等の固体潤滑剤、ワックス、潤滑油(エステル系、オレフィン系、シリコン系、鉱物油)などが挙げられる。本発明の成形品を帯電防止部品として使用する場合、潤滑成分としては非導電性のものが望ましく、中でも高密度ポリエチレン、ポリテトラフルオロエチレンが、摺動性改良効果が大きい点で好ましい。
【0071】
潤滑成分はマトリックス樹脂の熱可塑性樹脂中で島状に分散して分散相を形成していることが好ましく、この分散相の平均粒径は、微細炭素繊維の平均繊維径の5倍以上で、かつ100μm以下であることが望ましい。分散粒径がこの範囲を外れると摺動性が損なわれる。
【0072】
また、本発明に係る導電性樹脂組成物中の潤滑成分の含有量は1〜30重量%である。潤滑成分の含有量がこれより少ないと摺動性が低下し、多いと機械的強度や成形性を損なう。
【0073】
特に、潤滑成分の含有量(重量%)と微細炭素繊維の含有量(重量%)との比(潤滑成分/微細炭素繊維)が1以上であると、摺動性が特に向上するため好ましい。
【0074】
なお、(A)成分の熱可塑性樹脂中に分散する(C)成分の潤滑成分の分散相の大きさや形状は、(C)成分の粒子径、(C)成分の粘度、(C)成分と(A)成分との粘度比、相溶性、製造時の混練条件等によって異なる。また、(C)成分の分散相は、成形加工の流動時において、流動方向に引き延ばされて、繊維状又は層状に配向した分散相が形成される場合もある。本発明の成形品をハードディスクドライブ用ランプなどの帯電防止部品に使用する場合、(C)成分の潤滑成分の分散相の大きさは、分散相の短径(即ち、直径が最小となる点で測定した値)が50μm以下であると、均一な半導電性が得られる点で好ましい。(C)成分の潤滑成分の分散相の短径が50μmより大きいと、本発明の効果が十分に得られず、導電性が過度に増大(抵抗値が過度に低下)して導電性の均一性が損なわれることとなる。
【0075】
その理由を以下に説明する。分散相の短径が大きい、即ち分散が粗いと、分散相の間の距離が大きくなる。分散相と分散相の間隔、即ち(C)成分が存在しない部分では、微細炭素繊維の緩和を阻害する効果や、導電性ネットワークを分断する効果が無いので、導電性の過度の増大を防止できない。そのため、本発明の効果を得るためには、大量の(C)成分の添加が必要となるが、この場合には強度や摺動性が低下するだけでなく、(A)成分と(C)成分の相が反転し、炭素微細繊維を含有する(A)成分が分散相(島)となり、導電性の極端な低下を引き起こす。
【0076】
従って、(C)成分の分散相の短径は50μm以下であり、(C)成分の分散相間の平均距離は、微細炭素繊維の平均直径の10倍以上10,000倍以下であることが好ましい。
【0077】
また、(C)成分が、(A)成分と分子状に相溶し、完全に均一に分散すると、微細炭素繊維の配向の緩和を阻害する効果及び導電性ネットワークを分断する効果が小さくなり、本発明の効果は得られない。
【0078】
本発明では特に、(C)成分の分散相の短径が、炭素微細繊維の平均繊維直径の2〜200倍、望ましくは2〜50倍であると、本発明の効果が大きい点で望ましい。なお、(C)成分の潤滑成分の分散相の短径とは、顕微鏡を用いて30点測定した値の平均である。
【0079】
<添加成分>
本発明においては、必要に応じて、樹脂組成物中に本発明の目的を損なわない範囲で熱可塑性樹脂、微細炭素繊維及び潤滑成分以外の任意の添加成分を配合することができる。
【0080】
例えば、ケッチェンブラック、ファーネスブラック、アセチレンブラックなど各種カーボンブラック、炭素繊維(PAN系、ピッチ系)、ガラス繊維、シリカ繊維、シリカ・アルミナ繊維、チタン酸カリウム繊維、ほう酸アルミニウム繊維等の無機繊維状強化材、アラミド繊維、ポリイミド繊維、フッ素樹脂繊維等の有機繊維状強化材、タルク、炭酸カルシウム、マイカ、ガラスビーズ、ガラスパウダー、ガラスバルーン等の無機充填材、パラフィンオイル等の可塑剤、酸化防止剤、熱安定剤、光安定剤、紫外線吸収剤、中和剤、滑剤、相溶化剤、防曇剤、アンチブロッキング剤、スリップ剤、分散剤、着色剤、防菌剤、蛍光増白剤等といった各種添加剤を挙げることができる。
【0081】
特に、直径5〜20μm、長さ10μm〜10mmの炭素繊維を、導電性熱可塑性樹脂100重量部に対して、1〜100重量部、望ましくは5〜30重量部添加すると、導電性が良好となる。この場合、炭素繊維は、原料としてのポリアクリロニトリルを焼成して製造されたPAN系炭素繊維や、ピッチを原料とするピッチ系炭素繊維などが使用できる。
【0082】
<製造方法>
本発明に係る導電性樹脂組成物は、通常の熱可塑性樹脂の加工方法で製造することができる。例えば(A),(B)及び(C)成分と更に必要に応じて配合される添加成分の全てを予め混合した後、バンバリーミキサー、ロール、ブラベンダー、単軸混練押し出し機、二軸混練押し出し機、ニーダーなどで溶融混練することによって製造することができる。
【0083】
また、本発明の導電性摺動性樹脂成形品は、このような導電性樹脂組成物を各種の溶融成形法を用いて成形することにより製造することができる。成形法としては、具体的には圧縮成形、押し出し成形、真空成形、ブロー成形、射出成形などを挙げることができる。これらの成形法の中でも、特に射出成形法、真空成形法において、顕著な効果を得ることができる。
【0084】
なお、本発明の成形品を帯電防止部品として使用する場合、本発明に係る導電性樹脂組成物を製造する際には、予め(A)成分の一部に高濃度の(B)成分を添加したマスターバッチを製造し、その後このマスターバッチを(A)成分と(C)成分で希釈して製造すると、(C)成分の分散相中に(B)成分の微細炭素繊維が過度に混入しないので、半導電性の範囲にコントロールし易くなり、好ましい。また、(A)成分の全量に(B)成分の全量を予め混合し、その後、(C)成分を添加して混合しても良い。
【0085】
本発明の導電性摺動性樹脂成形品は、表面抵抗が1×1010Ω以下の導電性を有するが、ハードディスク用ランプなどの電子デバイス向け帯電防止部品として使用する場合には、表面抵抗値を10〜1010Ω、望ましくは10〜10Ωの半導電性範囲にコントロールすると、帯電が生じにくく、かつ接触電流が少ない点で好ましい。
【0086】
このような表面抵抗値の制御は、(C)成分の粘度、(A)成分と(C)成分との粘度比、(B)成分及び(C)成分の配合割合や、成形条件(樹脂温度、金型温度、成形圧力等)を適宜調節し、(B)成分の微細炭素繊維の配向及びその緩和度合い、(C)成分の分散相による微細炭素繊維の導電性ネットワークの分断及び微細炭素繊維の配向の緩和の阻害の程度を制御すれば良い。
【0087】
なお、一般に表面抵抗値とは、測定サンプルの厚みや幅方向への電流の回り込みを考慮して、抵抗値を形状要因で換算することにより(Ω/□)の単位で得られるが、複雑な形状の成形品の場合、この換算が極めて困難である。一方、実用においては、形状を含んだ上での見かけの抵抗値が重要であり、必ずしも形状で換算された単位(Ω/□)を用いる必要はない。従って、本発明においては、上記表面抵抗値(Ω)で評価する。
【0088】
【実施例】
以下に実施例及び比較例を挙げて本発明をより具体的に説明する。
【0089】
なお、実施例及び比較例で用いた配合原料は次の通りである。
(A)成分
PPS樹脂1;大日本インキ(株)製ポリフェニレンサルファイド樹脂
商品名「トープレン LD10」(300℃,20kg荷重での溶融粘度1000Pa・s,リニアタイプ)
PPS樹脂2;大日本インキ(株)製ポリフェニレンサルファイド樹脂
商品名「トープレン K4」(300℃,20kg荷重での溶融粘度200Pa・s,架橋タイプ)
(B)成分
微細炭素繊維;ハイペリオンカタリシスインターナショナル社製炭素フィブリル
(C)成分
PTFE;旭硝子(株)製ポリテトラフルオロエチレン 商品名「フルオン L169J」
その他
カーボンブラック;電気化学工業(株)製アセチレンブラック 商品名「デンカブラック」
炭素繊維;三菱化学産資(株)製炭素繊維 商品名「ダイヤリード K223GM」
【0090】
実施例1〜5、比較例1〜3
表1に示す成分配合で各材料を混合し、2軸押出機(池貝鉄鋼社製「PCM45」、L/D=32(L;スクリュー長、D;スクリュー径))を用いて、バレル温度300℃、スクリュー回転数200rpmにて溶融混練して、導電性PPS樹脂組成物のペレットを得た。
【0091】
なお、微細炭素繊維は、予めPPS樹脂に15重量%添加したマスターバッチを製造し、これを残る成分で希釈して所定の配合量とした。
【0092】
得られた導電性PPS樹脂組成物の成形品について、下記の評価を行い結果を表1に示した。
【0093】
[1] 表面抵抗値
各導電性PPS樹脂組成物を用いて、75ton射出成型機にて、表1に示すシリンダ温度及び金型温度で射出速度15〜17cc/secにて、100mm×100mm×2mm厚み(フィルムゲート)の抵抗値測定用シートサンプルを成形した。この抵抗値測定用シートサンプルについて、ダイヤインスツルメント社製ハイレスタUPを使用して、UAプローブ(2探針プローブ、プローブ間距離20mm、プローブ直径2mm)を用いて、表面抵抗値1×10Ω未満の場合には印加電圧10Vにて、表面抵抗値1×10Ω以上の場合には印加電圧100Vにて、シートサンプル中央部の表面抵抗値を測定した。
【0094】
[2] 炭素繊維の繊維径及び長さ/径比と屈曲度の測定
実施例1〜5及び比較例3では、[1]で得たサンプルの中央部(抵抗測定部)の表面から0.1〜10μmの範囲で、流れ方向に沿って表面に対してほぼ垂直な方向に超薄切片を切り出した。同一条件で切り出した切片を、エポキシ樹脂に包埋した後、断面を切り出して切片の厚みを測定した結果、85nmであった。
この超薄切片について、前述の如く、微細炭素繊維上の繊維径の5倍離れた2点の接線の角度を測定し、屈曲度を求めた(10点の平均値)。
また、この顕微鏡観察にて、微細炭素繊維の10本の繊維径及び繊維長を測定して平均値を求めた結果、繊維径10nm、長さ/径比20以上であった。なお、超薄切片を作製する際に、繊維の一部が切断される為に、正確な繊維長を測定することができないが、上記の値であることを確認した。
比較例2では、[1]で得たサンプルの中央部(抵抗値測定部)の表面付近よりサンプリングした試料片を340℃のホットプレート上で潰した後、透過光学顕微鏡にて観察し、屈曲度を測定した。また、この顕微鏡観察にて、炭素繊維の繊維径、繊維長さを測定した結果、繊維径12.5μm、長さ/径比8であった。
【0095】
[3] 微細炭素繊維により囲まれた部分の個数及び面積の平均値と標準偏差の積
[2]の超薄切片を透過型顕微鏡で40000倍にて撮影した微細炭素繊維の分散画像について、以下の解析を行った。解析には、アビオニクス社製画像解析装置(タイプ;スピカ2)を使用した。
【0096】
先ず5μm×5μmの範囲の画像を、CCDカメラを用いて積分入力(16回)にてコンピュータに取り込み、9.77nm×9.77nm(512×512)の画素でデジタル画像とした(以下、前記の定義の通りの手順に従って微細炭素繊維が存在している画素がオン、存在していない画素がオフとする)。微細炭素繊維ネットワークにより囲まれた部分の個数、及びこの囲まれた部分の面積の平均値と標準偏差の積を算出した。
【0097】
[4] 分散相の短径
[1]の抵抗値測定用シートサンプルの中央部(抵抗測定部)について、(C)成分の分散相の短径を測定した。なお、微細炭素繊維を含有する射出成形品は、その表面近傍において最も剪断力が大きく、冷却速度が速く、その結果導電性が低くなる。従って、成形品の表面抵抗値や実用的な帯電特性は、表面近傍の分散状態に支配される。そこで、この分散相の短径の測定では、表面から50μmの深さの範囲で分散相を観察した。
【0098】
また、実施例1〜5の(C)成分の分散相形状は、樹脂の流動方向に沿ってわずかに引き延ばされていることが確認され、そのため流動方向が最も大きく、また深さ方向が最も小さい直径となることが確認された。従って、分散相の直径を深さ方向に測定した値を短径とした。
【0099】
以上より、サンプルから樹脂の流動方向に沿った断面の薄切片を切り出し、これを染色処理した後に、透過型電子顕微鏡にて分散相を観察し、分散相の30個をランダムに選び、それぞれ短径を測定し、その平均値を算出したところ、4〜22μmの範囲であることを確認した。
【0100】
なお、この顕微鏡観察において、(C)成分の分散相中に微細炭素繊維が殆ど存在しないことを確認した。
【0101】
[5] 成形品の摩擦係数、摩耗量及び耐傷つき性
[1]の抵抗値測定用シートサンプルの中央部(抵抗測定部)を切り出してサンプルとし、図9(a)(リングの底面図),(b)(正面図)に示す如く、摩擦リング3の摺動面3Aでサンプル4を摩擦するリングオンディスク法(JTトーシ社製 伊藤式摩耗試験器)により下記条件で摩擦評価を行った。また、試験後のシートサンプルの摩擦リングによる摩擦面を観察し、耐傷つき性を評価した(傷なし:○,傷若干あり:△,傷あり:×)。
摩擦リング:材質S45C
荷重:20kg
回転数:500rpm
試験時間:3hr
【0102】
【表1】
Figure 0003705241
【0103】
表1より、本発明の導電性摺動性樹脂成形品は、導電性、摺動性に優れることがわかる。
【0104】
なお、実施例1及び比較例3の抵抗値測定用シートサンプルについて、前述の表面抵抗値の測定方法に従って、ゲート付近、サンプル中央部及び末端部の表面抵抗値を各々測定した結果、表2に示す通り、比較例1では、同一サンプル上の抵抗値のばらつきが大きいが、本発明に係る実施例1のものは抵抗値のばらつきが小さく、半導電性の均一性に優れることが確認された。
【0105】
【表2】
Figure 0003705241
【0106】
実施例6,7、比較例4,5
実施例1,3及び比較例1,2で調製した樹脂組成物で、25ton射出成形機を用い、表3に示す成形条件で図10(a)(正面図),(b)(平面図),(c)(斜視図)に示す評価用ランプ20を成形した。図10において、Gはゲート部を示す。
【0107】
得られた評価用ランプのサスペンション摺接部より評価サンプルをサンプリングし、実施例6,7は実施例1と同様に、また、比較例5は比較例2と同様にして、炭素繊維の屈曲度と、微細炭素繊維により囲まれた部分の個数及び面積の平均値と標準偏差の積を求め、結果を表3に示した。
【0108】
また、下記評価方法で帯電量及びノイズ電流値と、サスペンション付着物及び傷つきの評価を行い、結果を表3に示した。
【0109】
(i) 帯電量及びノイズ電流値
下記の機器を用いて測定した。
チャージプレートモニター;ヒューグエレクトロニクス社製
表面電位計;モンローエレクトロニクス社製 244A
オシロスコープ;レクロイ社製 LC584A
電流プローブ;テクトロニクス社製 CT1
【0110】
i−1.帯電量は次の通り測定した。
(1) チャージプレートモニター上に、評価用ランプをねじで固定したアルミニウム板を置いた。
(2) 評価用ランプ及びアルミニウム板が帯電ゼロで、かつ接地から絶縁された状態で、評価用ランプの上方よりコロナチャージによって、プレートモニターが1000Vになるまで、帯電させた。
(3) 評価用ランプを載せているアルミニウム板を接地して、接地後3秒後の表面電位を測定した。
【0111】
i−2.ノイズ電流値は次の通り測定した。
(1) チャージプレートモニター上に、評価用ランプをねじで固定したアルミニウム板を置いた。
(2) チャージプレートモニターを使用して、評価用ランプ及びアルミニウム板に1000Vを3秒間充電させた後、接地から切り離して絶縁した。
(3) 3秒後に接地プローブを評価用ランプに接触させて、プローブを流れる接触電流を測定した。この場合、接触電流はナノ秒オーダーの交流電流が流れ、次第に減衰するので、最も高い電流値をノイズ電流値とした。
(4) 上記測定を3回繰り返し、測定値を平均した。
【0112】
(ii) サスペンション付着物及び傷つき
評価用ランプをハードディスクに組み込んで、サスペンションのロード、アンロードを2000回(2000往復)繰り返した。その後、ランプ及びサスペンション摺接部に付着した摩耗粉及びサスペンションの傷つきを顕微鏡にて観察し、下記評価基準で評価した。
[サスペンション付着物]
○ … 摩耗粉が全く観察されない。
△ … ランプの摺動面付近及びサスペンションに僅かな摩耗粉が付着している。
× … 周囲に多量の摩耗粉が散乱している。
[サスペンション傷つき]
○ … サスペンションに傷は全く観察されない。
△ … 僅かな傷付きがある。
× … 相当量の傷付きがある。
【0113】
【表3】
Figure 0003705241
【0114】
【発明の効果】
以上詳述した通り、本発明によれば、摺動性及び導電性に優れた導電性摺動性樹脂成形品が提供される。
【図面の簡単な説明】
【図1】一般的な磁気ディスク装置の内部を示す平面図である。
【図2】本発明に係る微細炭素繊維の屈曲度の測定方法の説明図である。
【図3】微細炭素繊維撮像のトレース図である。
【図4】微細炭素繊維に囲まれた部分の個数及び面積を求めるための画像処理方法を示す模式図である。
【図5】微細炭素繊維に囲まれた部分の個数及び面積を求めるための画像処理方法を示す模式図である。
【図6】微細炭素繊維に囲まれた部分の個数及び面積を求めるための画像処理方法を示す模式図である。
【図7】微細炭素繊維ネットワークの状態と本発明に係るパラメータとの関係を示す説明図である。
【図8】微細炭素繊維による導電性ネットワークを説明する模式図である。
【図9】実施例におけるリングオンディスク法による摩擦評価方法を説明する図であって、(a)図は摩擦リングの底面図、(b)図は摩擦試験方法の正面図である。
【図10】実施例で作成した評価用ランプを示す図であって、(a)図は正面図、(b)図は平面図、(c)図は斜視図である。
【符号の説明】
1 マトリックス樹脂
2 微細炭素繊維
3 摩擦リング
4 サンプル
11 磁気ディスク装置
12 ハウジング
13 磁気ディスク
14 磁気ヘッド
15 サスペンションアーム
17 ランプ
20 評価用ランプ

Claims (4)

  1. (A)熱可塑性樹脂50〜98.9重量%と、
    (B)平均繊維径が200nm以下で、長さ/径比が10以上の微細炭素繊維0.1〜20重量%と、
    (C)潤滑成分1〜30重量%とを含む導電性樹脂組成物を成形してなる成形品であって、
    該成形品の表面近傍(0.1〜10μm)において、前記微細炭素繊維の屈曲度が0°以上であることを特徴とする導電性摺動成形品。
  2. 請求項1において、該成形品の表面近傍(0.1〜10μm)の25μm当たりの微細炭素繊維ネットワークに囲まれた部分の個数が200以下で、かつ囲まれた部分の面積の平均値(x(μm))と標準偏差(σ(μm))の積(x・σ)が10(μm以上であることを特徴とする導電性摺動性樹脂成形品。
  3. 請求項1又は2において、該熱可塑性樹脂が、ポリフェニレンサルファイド樹脂であることを特徴とする導電性摺動性樹脂成形品。
  4. 請求項1ないし3のいずれか1項において、該潤滑成分が非導電性で、かつ前記熱可塑性樹脂中に島状に分散して分散相を形成しており、該微細炭素繊維が実質的に連続相中に分散していることを特徴とする導電性摺動性樹脂成形品。
JP2002149487A 2002-05-23 2002-05-23 導電性摺動性樹脂成形品 Expired - Lifetime JP3705241B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002149487A JP3705241B2 (ja) 2002-05-23 2002-05-23 導電性摺動性樹脂成形品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002149487A JP3705241B2 (ja) 2002-05-23 2002-05-23 導電性摺動性樹脂成形品

Publications (2)

Publication Number Publication Date
JP2003335871A JP2003335871A (ja) 2003-11-28
JP3705241B2 true JP3705241B2 (ja) 2005-10-12

Family

ID=29706397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002149487A Expired - Lifetime JP3705241B2 (ja) 2002-05-23 2002-05-23 導電性摺動性樹脂成形品

Country Status (1)

Country Link
JP (1) JP3705241B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7932315B2 (en) 2005-01-07 2011-04-26 Asahi Kasei Chemicals Corporation Inner part of hard disk drive
JP2007099887A (ja) * 2005-10-04 2007-04-19 Kyooka:Kk ヘッドスタックアッセンブリ保護治具と、そのための樹脂組成物
JP5170856B2 (ja) * 2006-12-28 2013-03-27 Ntn株式会社 導電性摺動材組成物
JP2009280746A (ja) * 2008-05-23 2009-12-03 Tokyo Institute Of Technology 均一な表面抵抗率を有する複合材料部材
EP2998354A4 (en) * 2013-05-13 2016-12-07 Eagle Ind Co Ltd PTFE Resin composition
CN105324435A (zh) 2013-06-12 2016-02-10 沙特基础全球技术有限公司 具有低颗粒污染的耐磨组合物以及制备那些组合物的方法
JP6379821B2 (ja) * 2014-08-01 2018-08-29 Dic株式会社 ポリアリーレンスルフィド樹脂組成物、その製造方法、成形体、フィルム又はシート、電子写真用転写ベルトおよび画像形成装置
EP3892434A4 (en) * 2018-12-05 2022-08-03 Furukawa Electric Co., Ltd. CELLULOSIC FIBER DISPERSIVE RESIN COMPOSITE, MOLDING AND COMPOSITE

Also Published As

Publication number Publication date
JP2003335871A (ja) 2003-11-28

Similar Documents

Publication Publication Date Title
US6545081B1 (en) Synthetic resin composition
CN106896665B (zh) 电子照相用导电性构件、其制造方法、处理盒和电子照相设备
US11307509B2 (en) Electro-conductive member, method for producing same, process cartridge and electrophotographic image forming apparatus
WO2010050616A1 (ja) 帯電ローラ、プロセスカートリッジ及び電子写真装置
JP3705241B2 (ja) 導電性摺動性樹脂成形品
WO2005078008A1 (en) Stock shape for machining and production process thereof
JP5448260B2 (ja) 転写帯電部材および画像形成装置
JP2003156902A (ja) 画像形成装置用ベルト、スリーブ又はチューブ
JP2004134515A (ja) 電磁波シールド部品
JP3925304B2 (ja) 磁気ディスク装置用ランプ
JP2021091220A (ja) 樹脂成形体及び静電気対策部品
JP4328554B2 (ja) 導電性部材、これを用いた電子写真装置およびプロセスカートリッジ
Greijer et al. Tuneable conductivity at extreme electric fields in ZnO tetrapod-silicone composites for high-voltage power cable insulation
JP4039886B2 (ja) 導電性成形品
JP2002275276A (ja) 導電性成形品
JP4214654B2 (ja) 磁気ヘッド搬送用トレイ
JP2005290328A (ja) 低汚染性の射出成形体
JP3722065B2 (ja) 帯電防止性樹脂成形品
JP4473298B2 (ja) 導電性部材の製造方法
KR100646150B1 (ko) 자기디스크용 자기저항효과 헤드반송 트레이
JP4945175B2 (ja) 接触式帯電/除電用導電シート
JP5242026B2 (ja) 接触式帯電/除電用導電シート
JP2014051604A (ja) 導電性熱可塑性樹脂組成物およびその成形品
JP2003082115A (ja) 帯電防止部品
JP4083253B2 (ja) シームレスベルト

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050718

R150 Certificate of patent or registration of utility model

Ref document number: 3705241

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090805

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100805

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100805

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110805

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120805

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130805

Year of fee payment: 8

EXPY Cancellation because of completion of term