JP3700550B2 - Sludge treatment method - Google Patents

Sludge treatment method Download PDF

Info

Publication number
JP3700550B2
JP3700550B2 JP2000215640A JP2000215640A JP3700550B2 JP 3700550 B2 JP3700550 B2 JP 3700550B2 JP 2000215640 A JP2000215640 A JP 2000215640A JP 2000215640 A JP2000215640 A JP 2000215640A JP 3700550 B2 JP3700550 B2 JP 3700550B2
Authority
JP
Japan
Prior art keywords
sludge
treatment
mixed
polymer flocculant
treatment method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000215640A
Other languages
Japanese (ja)
Other versions
JP2002028696A (en
Inventor
康裕 大井
裕弘 麦林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2000215640A priority Critical patent/JP3700550B2/en
Publication of JP2002028696A publication Critical patent/JP2002028696A/en
Application granted granted Critical
Publication of JP3700550B2 publication Critical patent/JP3700550B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Sludge (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、汚泥濃縮槽以降の汚泥処理プロセスにおける汚泥スラリーおよび汚泥の脱水ケーキの臭気発生を防止することができる汚泥処理方法に関し、さらに詳しくは、下水処理場などの汚泥スラリーを脱水するまでの各プロセスと脱水ケーキの貯留、保管で発生する硫化水素やメチルメルカプタン等の悪臭物質に由来する臭気の発生を全プロセスに亘って効果的に防止することができる汚泥処理方法に関する。
【0002】
【従来の技術】
下水処理場、し尿処理場や食品・紙パルプ工場等の有機性排水の処理に際しては、各種の汚泥が発生し、これらの汚泥の処理プロセス(汚泥スラリー,汚泥脱水ケーキ)が悪臭の主たる発生源となっている。
図1に下水処理場の汚泥処理プロセスの例と臭気発生箇所を記載する。
図1に示した▲1▼濃縮初沈汚泥貯留槽、▲2▼汚泥混合貯留槽、▲3▼汚泥供給タンク、▲4▼汚泥脱水機では、汚泥スラリー中に存在する硫化水素を主とする悪臭物質が揮散し、作業環境の悪化をきたしている。同時に、揮散した硫化水素による電気関係設備の腐食、硫化水素が生物酸化されて生ずる硫酸による機器腐食も生ずる。
脱水ケーキでは、貯留、保管中に腐敗が進み、含イオウ蛋白質の分解により主としてメチルメルカプタンが発生する。
【0003】
そこでこれらの問題を解決するために提案された従来の技術を以下に説明するが、汚泥の臭気分解、発生防止を▲1▼〜▲4▼の汚泥スラリー系(以下、スラリー系と記す)と脱水ケーキ系(以下、ケーキ系と記す)に分けて説明する。
【0004】
スラリー系の臭気処理剤としては、過酸化水素、亜塩素酸塩等の強力な酸化剤や鉄、亜鉛、銅等の金属塩が知られており、実際に適用されている。
亜塩素酸塩は即効性に優れているが、薬剤はすぐに消費され、▲1▼〜▲4▼の長い滞留時間に亘る臭気防止は不可能であった。
過酸化水素は反応性がやや遅い分、臭気低減の効果に持続性があるが、それでもその効果の持続は1時間程度に過ぎず、▲1▼〜▲4▼の長い滞留時間に亘る臭気防止は不可能であった。
また、これらの酸化剤はケーキ系に対してほとんど無効であった。
一方、金属塩は、スラリー系、ケーキ系の両者に対して効果を有するが、銅塩を除いて効果水準が低く、満足できるものではなかった。銅塩は添加量を増加すれば効果は優れるものの、重金属であるため、環境汚染の問題から一般には受け入れ難い方法である。
【0005】
また、ケーキ系の臭気処理剤・方法としては、各種有機系殺菌・静菌剤並びにそれらを用いた方法が提案されているが、人体に対する安全性の問題からシャンプーの配合剤としても使用されているジンクピリチオンがよく使われている。
しかし、このジンクピリチオン単独では効果が十分でないため、特開2000−70999号公報に示されるように亜鉛塩、鉄塩等の金属塩との併用が行われているが、ケーキ系の臭気防止期間は最大2日程度で、汚泥の性状によっては効果が不十分であった。
【0006】
さらに、スラリー系、ケーキ系の両方の臭気防止を図る方法としては、特開平5−253599号公報に示されるように亜塩素酸塩と次亜塩素酸塩、およびさらにケーキ系の効果を高めるために静菌系消臭剤を併用する方法が提案されている。
しかし、この方法でのケーキ系の臭気防止効果は、実用コストの静菌剤を併用しても室内評価レベルで2〜3日に過ぎず、その効果の持続性が十分ではなかった。また、図1の▲1▼▲2▼の臭気対策はできなかった。
【0007】
【発明が解決しようとする課題】
前述のようにスラリー系およびケーキ系の両方の臭気防止を全プロセスに亘って効果的に防止することができる従来技術はなかった。
そこで本発明は、下水処理場等の汚泥の濃縮後から脱水および脱水ケーキの貯留、搬出さらにケーキ搬入先に至る汚泥処理プロセス全体に亘って臭気を防止できる汚泥処理方法を提案することを目的とする。また、使用する薬剤が人体、環境に対して安全であることを目標とする。
【0008】
【課題を解決するための手段】
本出願人は、これまでの臭気防止剤が既に発生している臭気の分解、固定、即ち消臭剤との観点から検討が行われていたのに対し、臭気発生防止方法、防止剤の観点から臭気発生に直接的又は間接的に関与する微生物活動を停止させ、且つ人体および環境への影響の少ない手段とその組み合わせについて鋭意検討し、有効な汚泥処理方法を得た。
即ち本発明は、請求項1に示すように、下水処理場で発生する初沈汚泥と余剰汚泥との混合汚泥からの臭気の発生を防止させる汚泥処理方法であって、前記混合汚泥のpHを低下させて5.5以下に調整するとともに、前記混合汚泥を加熱処理することなく前記混合汚泥中に銅塩を添加することなく亜硝酸イオンを添加することを特徴とする汚泥処理方法に関するものである。
尚、通常汚泥pHは5〜6.5であり、そもそもpH低下剤を添加する以前からpH5程度以下のものもあるが、当初からpH5.5以下の汚泥に対してもさらにpHを低下させる場合も適用対象としている。
また、請求項2に示すように、さらに、有機系静菌剤を混合汚泥に添加する方法をも提案する。
また、請求項3に示すように、有機系二塩基酸又は第二鉄塩のうちの少なくとも一方によって汚泥を所定pHに低下させる方法をも提案する。
また、請求項4に示すように、混合汚泥への亜硝酸イオン添加4時間後の混合汚泥中の亜硝酸イオン濃度を33mg/L以上とさせる方法をも提案する。
また、請求項5に示すように、さらに、混合汚泥を高分子凝集剤により凝集処理してろ過した後の濃縮汚泥にpH低下剤を添加してpHを5以下に調整した後に脱水処理する方法をも提案する。
また、請求項6に示すように、さらに、混合汚泥を高分子凝集剤により凝集処理した後に脱水処理した脱水ケーキにpH低下剤を添加する方法をも提案する。
また、請求項7に示すように、さらに、分子内に架橋構造が導入されたカチオン系高分子凝集剤により汚泥脱水処理する方法をも提案する。
また、請求項8に示すように、さらに、分子内にカチオン基およびアニオン基が導入された両性高分子凝集剤により汚泥脱水処理する方法をも提案する。
【0009】
腐敗、臭気発生に係わる硫酸還元菌や一般の微生物の至適pHが概ね中性域にあることから、pH低下によるスラリー系の臭気防止効果を、各種pH条件、各種臭気処理剤にて検討したところ、使用したpH低下剤の種類にかかわらずpH低下による臭気防止時間の延長(持続性)が確認され、pHとして5.5以下、好ましくは4.5未満が有効であることを見いだした。尚、pHが3.5未満になると、高分子凝集剤による汚泥の凝集、固液分離が不可能になる。したがって、凝集、固液分離工程よりも前段においてpH調整する際には、pHは3.5以上にすることが好ましい。しかしながら、後述する通り、凝集、固液分離工程よりも後段でpH調整する場合はこの限りではない。
また、臭気発生に係わる硫酸還元菌に対して静菌剤として作用する亜硝酸塩を用いた場合、pH低下により亜硝酸塩の消費速度が低下し、臭気防止時間が著しく延長できることを見いだした。
但し、亜硝酸塩以外の臭気処理剤、例えば過酸化水素、亜塩素酸塩等の酸化剤、亜鉛塩等の金属塩では、pH低下での効果はあるものの、有用な相加又は相乗効果は認められなかった。
【0010】
前記知見に基づき、pH低下によるケーキ系の臭気防止効果についても、各種pH条件、各種臭気処理剤について検討したところ、pH低下剤の種類にかかわらずpH低下による臭気防止時間の延長(持続性)が確認され、pH5.5以下、好ましくは4.5未満が有効であることを見いだした。
尚、亜硝酸塩以外の酸化剤、亜鉛塩などを併用しても、pH低下での効果はあるものの、有用な相加又は相乗効果は認められなかった。
【0011】
一方、人体および環境に対する影響の小さい静菌剤は、概して菌の活動抑制作用が小さいことが知られている。しかし、ソルビン酸、安息香酸、パラオキシ安息香酸、デヒドロ酢酸、ジンクピリチオンは、人体および環境に対する影響が小さいにもかかわらず、亜硝酸塩の併用とpH低下で著しく効果が向上することを見いだした。即ち亜硝酸塩と上述の有機系静菌剤とを組み合わせてケーキ系の臭気処理剤として好適に用いることができる。
尚、亜硝酸塩は、少なくともpH低下剤の添加と同時であるか、或いはpH低下剤を添加した後であれば、脱臭対象箇所又はその直前の位置に添加しても良いし、汚泥スラリー中に添加しても良い。また、有機系静菌剤は、添加場所に限定はなく、例えば送泥ポンプの出口の送泥ラインや、脱水直前の凝集反応槽に添加することができるが、脱水工程の直前に添加することが好ましい。即ち、この有機系静菌剤を添加後、脱水工程に流入するまでの時間は短いほど良く、温度条件にも依存するが、常温で15分以内に、さらには3分以内にすることがより好ましい。
【0012】
前記のようにpH低下剤の種類、即ち塩酸、硫酸等の無機酸、有機酸、或いは第二鉄塩の何れでも、pHレベルが同じであればほぼ同一の効果となるが、強酸である無機酸を使用する場合、少しでも過剰添加になるとpHが3.5未満に低下し易く、高分子凝集剤による汚泥の凝集、固液分離が不可能になる。そのため、弱酸を使用することが望ましく、さらに取り扱いの安全性から、有機酸、特にフマル酸、アジピン酸、コハク酸、リンゴ酸等の有機系二塩基酸が有効であることを見いだした。
また、pHは低い方が臭気防止効果の持続時間は長くなり、臭気防止の観点からはpHは低い方が好ましい。しかし、論述する通り、pHが低い程、特にpHが4以下の条件では、汚泥の高分子凝集剤による凝集効果が不良となり、汚泥の脱水処理に不都合が生じる。そこで、本出願人は種々の酸および高分子凝集剤を検討したところ、酸として第二鉄塩を使用した場合には論述する両性高分子凝集剤を使用することにより、pH3.5程度まで汚泥の凝集、脱水処理が可能であることを見いだした。
【0013】
スラリー系の汚泥pHを低下させるには、前記pH低下剤を亜硝酸塩と同時であるか或いはその前段であって、脱臭対象箇所又はその直前の位置に添加しても良いし、汚泥スラリー中に添加しても良いが、特にケーキ系のpHを大きく低下させてケーキ臭気防止期間を効果的且つ経済的に高める方法として、脱水ケーキ又はベルトプレス脱水の重力ろ過物に対して前記pH低下剤、特に第二鉄塩或いは前記有機系二塩基酸粉末を添加、混合する方法を採ることができる。本方法を採用することによって、pHは3.5未満にまで低下することが可能となる。
また、スラリー系において、pH低下剤(前添加)を添加した効果がケーキ系において持続している際には特に必要ない場合もあるが、さらなる効果の持続を目的としてpH低下剤(後添加)を追加する場合も前記と同様の方法を採れば良い。
【0014】
汚泥pHが低下することで、通常のカチオン系高分子凝集剤による凝集、固液分離効果が低下する。この時、分子内に架橋構造が一定以上導入されたカチオン系高分子凝集剤を用いることにより、良好な凝集、固液分離、脱水性が得られることを見いだした。尚、このような高分子凝集剤としては、現在エマルジョンポリマーの形態でしか製品化されていない。
また、特にpH低下剤として第二鉄塩を用いる場合には、分子内にカチオン基およびアニオン基が導入された両性高分子凝集剤を用いることにより、低pH域の広いpH範囲で良好な凝集、固液分離、脱水が行えることも見いだした。
【0015】
【発明の実施の形態】
図1は、前記のように下水処理場の汚泥処理プロセスの一例を示すフローであるが、原水は、最初沈殿池へ導かれ、初沈汚泥が分離される。最初沈殿池の上澄水は、必要に応じて凝集剤を添加した後、エアレーションタンクへ送られ、活性汚泥法により生物的処理が行われる。エアレーションタンクの処理水は、必要に応じて凝集剤を添加した後、最終沈殿池へ送られ、汚泥が分離され、上澄水はそのまま或いは必要な処理が施された後、放流される。分離された汚泥は、一部が返送汚泥としてエアレーションタンクに返送され、残余は余剰汚泥として余剰汚泥貯槽に貯留され、機械濃縮された後、濃縮余剰汚泥貯槽に貯留される。最初沈殿池から分離された初沈汚泥は、重力濃縮された後、▲1▼濃縮初沈汚泥貯槽に導かれる。この▲1▼濃縮初沈汚泥貯槽から初沈汚泥が、濃縮余剰汚泥貯槽から余剰汚泥がそれぞれ▲2▼汚泥混合貯留槽に送られ、混合された混合汚泥が▲3▼汚泥供給タンクへ移送され、▲4▼脱水機にて脱水され、脱水ケーキホッパーから脱水ケーキとして搬出される。
【0016】
〔1〕本発明はこのような下水汚泥の他、し尿、食品、紙パルプ工場等の有機汚泥全般に適用できる。
汚泥のpHは下水の混合生汚泥(初沈汚泥と余剰汚泥の混合汚泥)では通常5.0〜6.5の範囲にあり、その他の有機汚泥のpHも概ね同じ範囲にある。したがって、前述の通り、もともとpHが5程度以下の汚泥も存在するが、さらにpHを低下させることによって臭気発生防止時間は更に延長させることができるため、本発明では、このようなpHが低い汚泥に対してもpH低下剤を添加して更にpHを低下させることをも含むものである。スラリー系において、十分な期間臭気を防止させるためには、pH調整には、即ちpH低下剤としては、亜硝酸分解作用を有するスルファミン酸を除く、どのような酸を用いても臭気防止効果には大きな差はない。
ケーキ系の臭気防止時間の延長には、さらに大きくpHを低下し、4.0程度以下に調整すると非常に有効である。しかし、このpH4.0以下の条件では、pH低下剤として第二鉄塩を用いてpHを下げた場合を除き、どのような高分子凝集剤を用いても汚泥を機械脱水可能なレベルまで凝集させることができない。
pH低下剤として第二鉄塩を用いた場合はpH3.5程度までなら、分子内にカチオン基およびアニオン基を導入した両性高分子凝集剤で凝集可能である。
【0017】
〔2〕ケーキ系の臭気発生時間延長が特に要求される場合には、脱水ケーキ、或いは汚泥の凝集、ろ過後の濃縮物に更にpH低下剤を添加して混合することにより、汚泥の凝集、固液分離に影響を与えることなくケーキのpHを大きく低下でき、臭気発生防止時間を延長できる。例えばこのpH低下剤の添加は、ベルトプレス脱水機の重力脱水部が好ましい。また、前述のように脱水ケーキに第二鉄塩或いは酸を添加することも可能であるが、この場合には混合装置が必要となる。
【0018】
〔3〕前述のpH低下剤にて汚泥スラリーのpHを低下させた場合、一般的に高分子凝集剤として使用されるカチオンポリマーでは凝集不良を生ずる。これは、カチオン基の反応相手である汚泥のアニオン(カルボキシル基)がpH低下に応じて非解離となるためと考えられる。このような条件下では、分子内に架橋構造が一定以上導入されたカチオン系高分子凝集剤(エマルジョンポリマー)が特異的に有効である。このような架橋構造が導入された高分子凝集剤の物性は、次の通りである。
エマルジョンポリマーを10モルNaCl中にポリマー成分として0.5%に溶解し、これを13000rpmで1時間超遠心分離を行う。この上部液を採取して215nmで紫外線吸光度(A)を測定する。超遠心処理をしない溶液の吸光度をBとしてΔUVを次式で求める。
ΔUV=(B−A)/B
ΔUVが0.3以上のポリマーが本発明の架橋構造を一定以上有するエマルジョンポリマーである。因みに通常(分子内に架橋構造を有しない)のカチオン系高分子凝集剤であるエマルジョンポリマー及び粉末ポリマーのΔUVは0.1未満である。
また、特にpH低下剤として第二鉄塩を用いた場合は、分子内にカチオン基およびアニオン基が導入された両性高分子凝集剤(ポリマー)が良好な凝集性を示し、両性ポリマー中のアニオン比率を高めることでpH4程度以下でも凝集、脱水が可能である。
尚、このような高分子凝集剤は、有機系静菌剤と同じ位置に添加しても良いし、別途凝集反応槽を設け、そこに添加しても良い。
【0019】
〔4〕スラリー系、およびケーキ系の臭気防止に使用される亜硝酸塩の種類には特に制限がなく、例えばアルカリ金属塩、アルカリ土類類金属塩等を使用することができる。この亜硝酸塩は、好ましくは脱臭対象箇所又はその直前の位置に添加され、図示例では、重力濃縮槽、▲1▼濃縮初沈汚泥貯槽、▲2▼汚泥混合貯留槽等が好適である。
【0020】
〔5〕pH低下剤として使用する第二鉄塩の種類についても特に制限がなく、通常塩化第二鉄、硫酸第二鉄、ポリ硫酸第二鉄を使用できるが、腐食性の低い硫酸塩を使用することが好ましい。
【0021】
〔6〕pH低下剤として使用する有機系二塩基酸は粉末、水溶液の何れの添加形態でも良いが、脱水ケーキ或いは凝集・ろ過物に添加する場合は粉末とする。また、特に脱水ケーキに酸が移行し易い溶解度の小さいフマル酸、アジピン酸が好ましい。
【0022】
〔7〕亜硝酸塩と組み合わしてなる有機系静菌剤は、ケーキ固形分に効率良く移行し、ろ液側への流出を最小にすることがケーキ系の臭気抑制時間延長には極めて重要である。そこでこのケーキ系静菌剤は脱水工程の直前に添加すること、およびジンクピリチオン、ソルビン酸、安息香酸、デヒドロ酢酸等の有機系静菌剤はアルカリ塩等の溶液ではなく、不溶性金属塩のスラリー、粉末形態、粉末スラリーで添加することが効率的である。この有機系静菌剤は、前述のように添加場所に限定はないが、図示例では▲3▼汚泥供給タンクから▲4▼脱水機に添加すれば良く、常温で15分以内に脱水されるように添加することが好ましい。
【0023】
【実施例】
以下に、実施例を挙げて本発明を詳しく説明するが、本発明はこれらの実施例に何等限定されるものではない。
【0024】
1.試験方法
(1)汚泥
汚泥はA下水処理場の初沈重力濃縮汚泥と余剰延伸濃縮汚泥を別個に採取し、この全固形物濃度(TS)を測定後、それぞれの濃度を厚木市市水で2.50%に調整した後、初沈汚泥60%、余剰汚泥40%に混合し、供試試料とした。このような処理を行う理由は、臭気の発生や、臭気処理剤の効果が各汚泥の混合比率や濃度によって大きく異なるため、試験日時が異なる試験結果を直接比較できるよう汚泥条件をできるだけ同一化するためである。
【0025】
(2)スラリー系臭気防止試験
2.5%調整汚泥1000mlを1Lビーカーに採り、pH低下剤を添加混合後、直ちに所定量の亜硝酸ナトリウムを添加混合した。試料は25℃の恒温室に保管し、1〜24時間の硫化水素(H2S)、メチルメルカプタン(MM)の濃度推移を測定した。硫化水素、メチルメルカプタンの濃度は、汚泥50mlを空隙容積(汚泥50mlを除く)600ccの容器に採り、1分間激しく振盪して悪臭ガス成分を揮散させた後、ガステック社製検知管にて測定した。この測定値(ppm)から次式にしたがって、汚泥中に含まれる硫化水素およびメチルメルカプタンの濃度を計算した。
2S汚泥中濃度(mg/l)=測定ガス濃度(ppm)×1.16(*1)×0.01832(*2)=A(ppm)
MM汚泥中濃度(mg/l)=測定ガス濃度(ppm)×1.82(*3)×0.023(*4)=B(ppm)
*1)無処理汚泥で悪臭ガス測定後、空気を置換して再度振盪、ガス測定を硫化水素の測定数値が0ppmになるまで繰り返し行う。その全測定値合算値を1回目測定値で割った商が1.16である。この係数により1回目の測定値から、気液平衡等で揮散しなかった硫化水素分を含めたトータルを推算する。
*2)硫化水素1ミリモル(34mg)が22.4L中に存在すると1000ppmになるため、汚泥中の硫化水素濃度(A-2 mg/l)は次式となる。
A-2=34/22400×600×A/1000×1000/50=0.0182(mg/l)
*3)前記*1)と同様の操作でメチルメルカプタンの1回目測定値から全メチルメルカプタンを推算する係数を求めて、係数1.82を得た。
*4)メチルメルカプタン1ミリモルは48mgであるため、前記*2)と同様に、汚泥中のメチルメルカプタン濃度(B-2 mg/l)は次式となる。
B-2=48/22400×600×B/1000×1000/50=0.0230(mg/l)
また、臭気物質測定とともに汚泥中の亜硝酸塩残留濃度の測定を行った。
【0026】
(3)ケーキ系臭気防止試験
2.5%調整汚泥200mlを300mlビーカーに採取し、pH低下処理と亜硝酸塩添加を行った後、1時間室温で保管する。その後、有機系静菌剤を添加し、直ちに高分子凝集剤で凝集、重力ろ過を行い、ベルトプレス脱水を想定した圧搾試験装置で重力ろ過物の全量を、0.05MPaの圧力で120秒間、圧搾脱水を行い、脱水ケーキを得る。脱水ケーキ全量を、開封したテトラパックに入れ、開封口をヒートシールする。ケーキ量1gに対して、空気25ccをシリンジで注入し(ケーキは約20g、空気は500ccになる)、これを30℃の恒温室に保管し、24時間ごとに硫化水素、メチルメルカプタンの測定を行った。
【0027】
実施例1;pH低下によるスラリー系の臭気防止持続時間の測定試験
前記試験方法(2)に沿ってスラリー系における臭気物質(硫化水素およびメチルメルカプタン)の濃度の測定、並びに亜硝酸塩残留濃度の測定を行った。
硫化水素(H2S)濃度の測定結果を表1に、メチルメルカプタン(MM)濃度の測定結果を表2、また亜硝酸塩残留濃度の測定結果を表3に示した。尚、以下の条件の比較例も同様に試験し、その測定結果を併記した。
比較例1−0:ブランク
比較例1−1:pH低下処理無しで静菌剤(亜硝酸塩)適用
比較例1−2:pH5.5以上の低下処理して静菌剤(亜硝酸塩)適用
比較例1−3:pH低下処理して亜硝酸塩以外の臭気処理剤(亜塩素酸塩)適用
比較例1−4:pH低下処理無しで亜硝酸塩以外の臭気処理剤(過酸化水素)適用
比較例1−5:pH低下処理して亜硝酸塩以外の臭気処理剤(過酸化水素)適用
【0028】
【表1】

Figure 0003700550
【表2】
Figure 0003700550
【表3】
Figure 0003700550
【0029】
表1〜3より明らかなように、pH低下剤の種類にかかわらずpH5.5以下に調整するとともに静菌剤である亜硝酸塩を用いることにより、スラリー系における硫化水素やメチルメルカプタンの濃度を1〜24時間もの長時間に亘って低く抑えることが確認された。
【0030】
実施例2;pH低下時の各種高分子凝集剤による脱水試験
分子内に架橋構造が導入されたカチオン系高分子凝集剤(架橋カチオンと略記する)および分子内にカチオン基およびアニオン基が導入された両性高分子凝集剤(両性と略記する)を用いた場合の通常のカチオン系高分子凝集剤(通常カチオンと略記する)との凝集、脱水性を評価するため、フロック径、ろ液量、ろ過速度を測定した。
測定結果を表4に示した。尚、以下の条件の比較例も同様に試験し、その結果を併記した。
比較例2−0:ブランク
比較例2−1:強酸(硫酸)にてpH低下処理して通常高分子凝集剤適用
比較例2−2:ポリ硫酸鉄にてpH低下処理して通常高分子凝集剤適用
比較例2−3:フマル酸にてpH低下処理して通常高分子凝集剤適用
【0031】
【表4】
Figure 0003700550
【0032】
表4より明らかなように、pH低下させた条件では通常の高分子凝集剤ではフロック径も小さく、ろ過速度も遅く、汚泥を機械脱水可能なレベルまで凝集させることができなかった。しかし、このpH低下させた条件でも、特定の高分子凝集剤(架橋カチオンや両性)を用いることにより、従来と同様の凝集、脱水性が得られることが確認された。
【0033】
実施例3;pH低下によるケーキ系の臭気防止持続時間の測定試験
前記試験方法(3)に沿ってケーキ系における臭気物質(硫化水素およびメチルメルカプタン)の濃度の測定を行った。
硫化水素(H2S)濃度の測定結果を表5に、メチルメルカプタン(MM)濃度の測定結果を表6に示した。尚、以下の条件の比較例も同様に試験し、その測定結果を併記した。
比較例3−0:ブランク
比較例3−1:pH低下処理無しで亜硝酸塩のみ適用
比較例3−2:pH低下処理無しで亜硝酸塩と有機系静菌剤(ZPt)とを適用
比較例3−3:pH低下処理して有機系静菌剤(ZPt)のみ適用
比較例3−4:pH低下処理無しで亜硝酸塩と有機系静菌剤(ソルビン酸)とを適用
比較例3−5:pH低下処理して有機系静菌剤(ソルビン酸)のみ適用
比較例3−6:pH低下処理無しで亜硝酸塩と有機系静菌剤(安息香酸)とを適用
尚、ZPtはジンクピリチオンの略記である。
【0034】
【表5】
Figure 0003700550
【表6】
Figure 0003700550
【0035】
表5,6より明らかなように、pH低下剤の種類にかかわらずpH5.5以下に調整するとともに亜硝酸塩と有機系静菌剤を組み合わせて用いることにより、ケーキ系における硫化水素やメチルメルカプタンの濃度を1〜4日間もの長期間に亘って低く抑えることができることが確認された。
【0036】
実施例4;pH低下剤後添加によるケーキ系の臭気防止持続時間の測定試験
凝集ろ過物へ、pH低下剤を後添加(追加)した場合のケーキ系における臭気物質(硫化水素およびメチルメルカプタン)の濃度の測定を前記実施例3よりもさらに長い時間で行った。
硫化水素(H2S)濃度の測定結果を表7に、メチルメルカプタン(MM)濃度の測定結果を表8に示した。尚、以下の条件の比較例も同様に試験し、その測定結果を併記した。
比較例4−0:ブランク
比較例4−1:先添加および後添加pH低下剤無し以外は同様
【0037】
【表7】
Figure 0003700550
【表8】
Figure 0003700550
【0038】
表7,8より明らかなように、pH低下剤を後添加しない場合(実施例4−11〜13)では5〜6日程度で臭気発生が認められたが、pH低下剤をケーキや重力ろ過物に後添加(追加)することにより、更なる効果の持続延長が得られることが確認された。
【0039】
【発明の効果】
以上説明したように本発明の汚泥処理方法は、下水処理場で発生する初沈汚泥と余剰汚泥との混合汚泥のpHを低下させて5.5以下に調整するとともに、混合汚泥中に亜硝酸イオンを存在させることにより、硫化水素やメチルメルカプタン等の臭気の発生を全プロセスに亘って効果的に防止することができる。
さらに、この条件でも他の処理、例えば混合汚泥の凝集、脱水処理に関して何等支障なく実施することができる高分子凝集剤をも提案するので、汚泥処理全体のシステムに何等支障を生ずることがない。
また、本発明は、スラリー系、ケーキ系の何れかに限定されるものではなく、しかも加熱処理することなく、銅塩を添加することもないので、人体、環境に対して安全であって、特殊な設備等を増設する必要もなく実用的価値が高いものである。
【図面の簡単な説明】
【図1】下水処理場の汚泥処理プロセスの例と臭気発生箇所を示すフロー(流れ系統図)である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sludge treatment method capable of preventing the generation of odor in a sludge slurry and a sludge dewatering cake in a sludge treatment process subsequent to a sludge concentration tank, and more specifically, until a sludge slurry such as a sewage treatment plant is dehydrated. The present invention relates to a sludge treatment method capable of effectively preventing the generation of odors originating from malodorous substances such as hydrogen sulfide and methyl mercaptan generated during storage and storage of each process and dehydrated cake.
[0002]
[Prior art]
Various types of sludge are generated when treating organic wastewater from sewage treatment plants, human waste treatment plants, food and pulp and paper mills, etc., and these sludge treatment processes (sludge slurry, sludge dewatered cake) are the main sources of bad odor. It has become.
FIG. 1 shows an example of a sludge treatment process at a sewage treatment plant and an odor generation location.
In (1) concentrated initial sedimentation sludge storage tank, (2) sludge mixed storage tank, (3) sludge supply tank, and (4) sludge dehydrator shown in FIG. 1, mainly hydrogen sulfide present in the sludge slurry is used. Odorous substances are emitted and the working environment is getting worse. At the same time, corrosion of electrical equipment due to volatilized hydrogen sulfide, and equipment corrosion due to sulfuric acid produced by biooxidation of hydrogen sulfide also occur.
In a dehydrated cake, decay proceeds during storage and storage, and methyl mercaptan is mainly generated by the decomposition of sulfur-containing proteins.
[0003]
Therefore, conventional techniques proposed to solve these problems will be described below. Sludge sludge system (1) to (4) is referred to as sludge slurry system (hereinafter referred to as slurry system) to prevent sludge odor decomposition and generation. The description will be divided into dehydrated cake systems (hereinafter referred to as cake systems).
[0004]
As slurry-based odor treating agents, strong oxidizing agents such as hydrogen peroxide and chlorite and metal salts such as iron, zinc and copper are known and are actually applied.
Chlorite is excellent in immediate effect, but the drug is consumed immediately, and it is impossible to prevent odor over a long residence time of (1) to (4).
Hydrogen peroxide has a slightly slower reactivity, but has a lasting effect on odor reduction, but it lasts only about 1 hour, preventing odors over a long residence time of (1) to (4). Was impossible.
Also, these oxidizers were almost ineffective for the cake system.
On the other hand, the metal salt has an effect on both the slurry system and the cake system, but the effect level is low except for the copper salt, which is not satisfactory. Although the effect of copper salt is excellent if the amount of addition is increased, it is a heavy metal, so it is generally unacceptable because of environmental pollution.
[0005]
In addition, as a cake-based odor treatment agent / method, various organic disinfectants / bacteriostatic agents and methods using them have been proposed, but they are also used as a shampoo compound because of safety issues to the human body. Zinc pyrithione is often used.
However, since this zinc pyrithione alone is not effective enough, it is used in combination with a metal salt such as a zinc salt or an iron salt as disclosed in JP-A-2000-70999. Up to about 2 days, the effect was insufficient depending on the properties of the sludge.
[0006]
Furthermore, as a method for preventing both slurry-based and cake-based odors, as shown in JP-A-5-253599, in order to enhance the effects of chlorite and hypochlorite, and further the cake system. A method of using a bacteriostatic deodorant in combination is proposed.
However, the odor prevention effect of the cake system by this method is only 2-3 days at the indoor evaluation level even when a bacteriostatic agent of practical cost is used in combination, and the sustainability of the effect is not sufficient. In addition, odor countermeasures (1) and (2) in FIG. 1 could not be taken.
[0007]
[Problems to be solved by the invention]
As mentioned above, there has been no prior art that can effectively prevent both slurry-based and cake-based odors throughout the entire process.
Therefore, the present invention aims to propose a sludge treatment method capable of preventing odors throughout the sludge treatment process from the concentration of sludge in a sewage treatment plant, etc., to the storage and discharge of dewatered and dehydrated cake, and further to the cake destination. To do. In addition, the goal is to ensure that the drugs used are safe for the human body and the environment.
[0008]
[Means for Solving the Problems]
While the present applicant has been studying from the viewpoint of decomposition and fixation of odors that have been generated by odor inhibitors so far, that is, from the viewpoint of deodorants, the viewpoint of odor generation prevention methods and inhibitors In addition, the microbial activity directly or indirectly involved in the generation of odors was stopped, and intensive studies were conducted on the means and combinations thereof with little influence on the human body and the environment, and an effective sludge treatment method was obtained.
That is, the present invention, as shown in claim 1, A sludge treatment method for preventing the generation of odor from mixed sludge of primary sludge and excess sludge generated at a sewage treatment plant, wherein the mixing While adjusting the sludge pH to 5.5 or lower, The mixing without heating the mixed sludge In the sludge Add nitrite ion without adding copper salt The present invention relates to a sludge treatment method characterized by this.
In addition, the normal sludge pH is 5 to 6.5, and in the first place, there are those whose pH is about 5 or less before the addition of the pH lowering agent, but when the pH is further lowered even for sludge whose pH is 5.5 or less from the beginning. Is also applicable.
As shown in claim 2, Add organic bacteriostatic agent to mixed sludge A method is also proposed.
As shown in claim 3, Sludge is lowered to a predetermined pH by at least one of organic dibasic acid or ferric salt. A method is also proposed.
As shown in claim 4, The concentration of nitrite ions in the mixed sludge 4 hours after the addition of nitrite ions to the mixed sludge is 33 mg / L or more. A method is also proposed.
As shown in claim 5, Further, the sludge is mixed with a polymer flocculant and filtered, and then the pH is adjusted to 5 or less by adding a pH reducing agent to the concentrated sludge and then dehydrated. A method is also proposed.
As shown in claim 6, Furthermore, a pH lowering agent is added to the dewatered cake that has been dewatered after the mixed sludge is coagulated with the polymer flocculant. A method is also proposed.
Further, as shown in claim 7, a method for sludge dewatering treatment using a cationic polymer flocculant having a crosslinked structure introduced in the molecule is also proposed.
Further, as shown in claim 8, there is further proposed a method for sludge dewatering treatment using an amphoteric polymer flocculant having a cation group and an anion group introduced in the molecule.
[0009]
Since the optimum pH of sulfate-reducing bacteria and general microorganisms related to spoilage and odor generation is almost in the neutral range, the slurry system's odor prevention effect due to pH reduction was examined under various pH conditions and various odor treatment agents. However, the extension (sustainability) of the odor prevention time due to pH reduction was confirmed regardless of the type of pH reducing agent used, and the pH was found to be 5.5 or less, preferably less than 4.5. When the pH is less than 3.5, sludge aggregation and solid-liquid separation with the polymer flocculant are impossible. Therefore, when the pH is adjusted before the aggregation and solid-liquid separation steps, the pH is preferably 3.5 or more. However, as will be described later, this is not the case when the pH is adjusted after the aggregation and solid-liquid separation step.
Moreover, when nitrite which acts as a bacteriostatic agent for sulfate-reducing bacteria involved in odor generation is used, it has been found that the consumption rate of nitrite decreases due to pH reduction, and the odor prevention time can be significantly extended.
However, odor treatment agents other than nitrite, such as oxidants such as hydrogen peroxide and chlorite, and metal salts such as zinc salts, have an effect of lowering pH, but have a useful additive or synergistic effect. I couldn't.
[0010]
Based on the above findings, we also examined various pH conditions and various odor treatment agents for the odor prevention effect of cake system due to pH reduction, and extended odor prevention time due to pH reduction regardless of the type of pH lowering agent (sustainability). And a pH of 5.5 or less, preferably less than 4.5 was found to be effective.
Even when an oxidizing agent other than nitrite, a zinc salt, or the like was used in combination, a useful additive or synergistic effect was not recognized although there was an effect of lowering the pH.
[0011]
On the other hand, bacteriostatic agents having a small effect on the human body and the environment are generally known to have a small activity-inhibiting effect on bacteria. However, sorbic acid, benzoic acid, p-hydroxybenzoic acid, dehydroacetic acid, and zinc pyrithione have been found to be remarkably improved by the combined use of nitrite and lowering of pH, although the influence on human body and environment is small. That is, nitrite and the above-mentioned organic bacteriostatic agent can be used in combination as a cake-based odor treatment agent.
In addition, nitrite may be added at least at the same time as the addition of the pH lowering agent, or after adding the pH lowering agent, and may be added to the deodorizing target site or the position immediately before it, and in the sludge slurry. It may be added. In addition, the organic bacteriostatic agent is not limited to the place where it is added. For example, it can be added to the mud feed line at the outlet of the mud pump or the agglomeration reaction tank just before dehydration, but it must be added just before the dehydration step. Is preferred. That is, it is better that the time from the addition of this organic bacteriostatic agent to the dehydration process is shorter, and depending on the temperature conditions, it should be within 15 minutes at room temperature and even within 3 minutes. preferable.
[0012]
As described above, any kind of pH lowering agent, that is, an inorganic acid such as hydrochloric acid or sulfuric acid, an organic acid, or a ferric salt has almost the same effect as long as the pH level is the same. In the case of using an acid, if it is excessively added, the pH is easily lowered to less than 3.5, and sludge aggregation and solid-liquid separation by the polymer flocculant become impossible. For this reason, it is desirable to use a weak acid, and from the viewpoint of safety in handling, it has been found that organic dibasic acids such as fumaric acid, adipic acid, succinic acid and malic acid are effective.
Further, the lower the pH, the longer the duration of the odor prevention effect, and the lower the pH is preferable from the viewpoint of odor prevention. However, as will be discussed, the lower the pH, the worse the coagulation effect of the sludge with the polymer flocculant, especially when the pH is 4 or less, and there is a disadvantage in the sludge dewatering treatment. Therefore, the present applicant examined various acids and polymer flocculants, and when ferric salt was used as the acid, the amphoteric polymer flocculant described below was used to make sludge to about pH 3.5. It was found that the agglomeration and dehydration treatment can be performed.
[0013]
In order to lower the sludge pH of the slurry system, the pH lowering agent may be added simultaneously with nitrite or in the preceding stage, and may be added to the deodorization target site or the position immediately before it, or in the sludge slurry. Although it may be added, particularly as a method of effectively and economically increasing the cake odor prevention period by greatly reducing the pH of the cake system, the pH lowering agent for the dehydrated cake or belt press dewatered gravity filtrate, In particular, a method of adding and mixing a ferric salt or the organic dibasic acid powder can be employed. By employing this method, the pH can be lowered to less than 3.5.
In addition, in the slurry system, it may not be particularly necessary when the effect of adding the pH lowering agent (pre-addition) is sustained in the cake system, but the pH lowering agent (post-addition) for the purpose of sustaining further effects. The same method as described above may be adopted when adding.
[0014]
By reducing the sludge pH, the effect of aggregation and solid-liquid separation by a normal cationic polymer flocculant is reduced. At this time, it has been found that good aggregation, solid-liquid separation, and dehydration can be obtained by using a cationic polymer flocculant having a cross-linked structure introduced into the molecule for a certain period. Incidentally, such a polymer flocculant is currently commercialized only in the form of an emulsion polymer.
In particular, when using a ferric salt as a pH-lowering agent, good agglomeration can be achieved in a wide pH range in a low pH range by using an amphoteric polymer flocculant having a cationic group and an anionic group introduced in the molecule. It was also found that solid-liquid separation and dehydration can be performed.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a flow showing an example of the sludge treatment process in the sewage treatment plant as described above, but the raw water is first guided to the settling basin, and the first settling sludge is separated. The supernatant water of the first sedimentation basin is added to a flocculant as necessary, and then sent to an aeration tank, where biological treatment is performed by an activated sludge method. The treated water in the aeration tank is added with a flocculant as necessary, and then sent to the final sedimentation basin, the sludge is separated, and the supernatant water is discharged as it is or after being subjected to necessary treatment. Part of the separated sludge is returned to the aeration tank as return sludge, and the remainder is stored as excess sludge in an excess sludge storage tank, mechanically concentrated, and then stored in a concentrated excess sludge storage tank. The first settling sludge separated from the first settling basin is gravity concentrated and then guided to (1) the concentrated first settling sludge storage tank. (1) The initial settling sludge from the concentrated initial settling sludge storage tank and the excess sludge from the concentrated excess sludge storage tank are respectively sent to (2) sludge mixing storage tank, and the mixed mixed sludge is transferred to (3) sludge supply tank. (4) Dehydrated by a dehydrator and carried out as a dehydrated cake from a dehydrated cake hopper.
[0016]
[1] In addition to such sewage sludge, the present invention can be applied to organic sludge such as human waste, food, and pulp and paper mills.
The pH of sludge is usually in the range of 5.0 to 6.5 in the mixed raw sludge of sewage (mixed sludge of primary sludge and excess sludge), and the pH of other organic sludge is also in the same range. Therefore, as described above, there is originally sludge having a pH of about 5 or less. However, since the odor generation prevention time can be further extended by further lowering the pH, the sludge having such a low pH is used in the present invention. In addition, the method further includes lowering the pH by adding a pH lowering agent. In a slurry system, in order to prevent odor for a sufficient period of time, it is effective for pH adjustment, that is, as a pH lowering agent, any acid except sulfamic acid having nitrous acid decomposition action can be used to prevent odor. There is no big difference.
For extending the odor prevention time of the cake system, it is very effective to further reduce the pH and adjust it to about 4.0 or less. However, under the conditions of pH 4.0 or lower, sludge can be agglomerated to a level that allows mechanical dewatering using any polymer flocculant, except when the pH is lowered using ferric salt as a pH lowering agent. I can't let you.
When a ferric salt is used as the pH lowering agent, it can be aggregated with an amphoteric polymer flocculant in which a cation group and an anion group are introduced into the molecule, up to about pH 3.5.
[0017]
[2] When it is particularly required to extend the odor generation time of the cake system, coagulation of sludge by adding a pH-lowering agent to the dewatered cake or coagulation of sludge, and adding the pH reducing agent to the concentrate after filtration. The pH of the cake can be greatly reduced without affecting solid-liquid separation, and the odor generation prevention time can be extended. For example, the addition of the pH lowering agent is preferably performed in the gravity dehydration part of a belt press dehydrator. Further, as described above, it is possible to add a ferric salt or an acid to the dehydrated cake, but in this case, a mixing device is required.
[0018]
[3] When the pH of the sludge slurry is lowered with the above-described pH reducing agent, a cationic polymer generally used as a polymer flocculant causes poor aggregation. This is presumably because the anion (carboxyl group) of the sludge that is the reaction partner of the cation group becomes non-dissociated as the pH decreases. Under such conditions, a cationic polymer flocculant (emulsion polymer) having a cross-linked structure introduced into the molecule at a certain level is particularly effective. The physical properties of the polymer flocculant into which such a crosslinked structure is introduced are as follows.
The emulsion polymer is dissolved in 10% NaCl as a polymer component to 0.5%, and this is ultracentrifuged at 13000 rpm for 1 hour. The upper liquid is collected and the ultraviolet absorbance (A) is measured at 215 nm. ΔUV is determined by the following equation, where B is the absorbance of the solution not subjected to ultracentrifugation.
ΔUV = (B−A) / B
A polymer having a ΔUV of 0.3 or more is an emulsion polymer having the crosslinked structure of the present invention at a certain level. Incidentally, the ΔUV of an emulsion polymer and a powder polymer which are ordinary cationic polymer flocculants (having no cross-linked structure in the molecule) is less than 0.1.
In particular, when a ferric salt is used as a pH lowering agent, an amphoteric polymer flocculant (polymer) having a cation group and an anion group introduced into the molecule exhibits good cohesion, and the anion in the amphoteric polymer By increasing the ratio, aggregation and dehydration are possible even at a pH of about 4 or less.
Such a polymer flocculant may be added at the same position as the organic bacteriostatic agent, or a separate agglutination reaction tank may be provided and added thereto.
[0019]
[4] There are no particular limitations on the type of nitrite used for slurry-based and cake-based odor prevention. For example, alkali metal salts, alkaline earth metal salts, and the like can be used. This nitrite is preferably added to a location to be deodorized or at a position immediately before it, and in the illustrated example, a gravity concentration tank, {circle around (1)} concentrated initial sedimentation sludge storage tank, and {circle around (2)} sludge mixed storage tank are suitable.
[0020]
[5] There is no particular restriction on the type of ferric salt used as a pH lowering agent, and usually ferric chloride, ferric sulfate, and polyferric sulfate can be used. It is preferable to use it.
[0021]
[6] The organic dibasic acid used as the pH lowering agent may be added either in the form of a powder or an aqueous solution, but when added to a dehydrated cake or agglomerated / filtered product, it is a powder. In particular, fumaric acid and adipic acid, which have a low solubility so that the acid can easily migrate to the dehydrated cake, are preferred.
[0022]
[7] An organic bacteriostatic agent combined with nitrite is extremely important for extending the odor control time of a cake system by efficiently transferring to cake solids and minimizing the outflow to the filtrate side. is there. Therefore, this cake-based bacteriostatic agent is added immediately before the dehydration step, and organic bacteriostatic agents such as zinc pyrithione, sorbic acid, benzoic acid, and dehydroacetic acid are not solutions of alkali salts, but slurries of insoluble metal salts, It is efficient to add in powder form or powder slurry. The organic bacteriostatic agent is not limited to the place of addition as described above, but in the illustrated example, it may be added from (3) sludge supply tank to (4) dehydrator and dehydrated at room temperature within 15 minutes. It is preferable to add such that.
[0023]
【Example】
EXAMPLES The present invention will be described in detail below with reference to examples, but the present invention is not limited to these examples.
[0024]
1. Test method
(1) Sludge
For sludge, first-sediment gravity-concentrated sludge and excess stretch-concentrated sludge from A sewage treatment plant were collected separately, and after measuring the total solids concentration (TS), each concentration was adjusted to 2.50% with Atsugi City water. After that, it was mixed with 60% primary sludge and 40% surplus sludge to obtain a test sample. The reason for this treatment is that the generation of odor and the effect of the odor treatment agent vary greatly depending on the mixing ratio and concentration of each sludge, so that the sludge conditions are made as uniform as possible so that test results with different test dates can be directly compared. Because.
[0025]
(2) Slurry odor prevention test
1000 ml of 2.5% adjusted sludge was taken in a 1 L beaker, and after adding and mixing the pH lowering agent, a predetermined amount of sodium nitrite was immediately added and mixed. Samples are stored in a constant temperature room at 25 ° C. and hydrogen sulfide (H 2 S) and methyl mercaptan (MM) concentration transitions were measured. The concentration of hydrogen sulfide and methyl mercaptan was measured with a gas-tech detector tube after 50 ml of sludge was taken in a 600 cc container with a void volume (excluding 50 ml of sludge) and shaken vigorously for 1 minute to evaporate malodorous gas components. did. The concentration of hydrogen sulfide and methyl mercaptan contained in the sludge was calculated from this measured value (ppm) according to the following formula.
H 2 S sludge concentration (mg / l) = measured gas concentration (ppm) x 1.16 (* 1) x 0.01832 (* 2) = A (ppm)
MM sludge concentration (mg / l) = measured gas concentration (ppm) x 1.82 (* 3) x 0.023 (* 4) = B (ppm)
* 1) After measuring malodorous gas with untreated sludge, replace the air, shake again, and repeat the gas measurement until the hydrogen sulfide measurement value reaches 0 ppm. The quotient obtained by dividing the total measured value by the first measured value is 1.16. Based on this coefficient, the total including the hydrogen sulfide that was not volatilized due to gas-liquid equilibrium or the like is estimated from the first measurement value.
* 2) When 1 mmol (34 mg) of hydrogen sulfide is present in 22.4 L, it becomes 1000 ppm, so the hydrogen sulfide concentration (A-2 mg / l) in the sludge is as follows.
A-2 = 34/22400 x 600 x A / 1000 x 1000/50 = 0.0182 (mg / l)
* 3) A coefficient for estimating the total methyl mercaptan was obtained from the first measurement value of methyl mercaptan by the same operation as * 1), and a coefficient of 1.82 was obtained.
* 4) Since 1 millimol of methyl mercaptan is 48 mg, the methyl mercaptan concentration (B-2 mg / l) in the sludge is expressed by the following formula, as in * 2).
B-2 = 48/22400 x 600 x B / 1000 x 1000/50 = 0.0230 (mg / l)
In addition to the measurement of odorous substances, the residual concentration of nitrite in sludge was measured.
[0026]
(3) Cake odor prevention test
200 ml of 2.5% adjusted sludge is collected in a 300 ml beaker, subjected to pH reduction treatment and nitrite addition, and stored at room temperature for 1 hour. Thereafter, an organic bacteriostatic agent is added, immediately aggregated with a polymer flocculant, gravity filtered, and the total amount of gravity filtrated material in a squeeze test apparatus assuming belt press dehydration is maintained at a pressure of 0.05 MPa for 120 seconds. Press dehydration to obtain a dehydrated cake. Put the entire amount of dehydrated cake in the opened Tetra Pak and heat seal the opening. 25 cc of air is injected with a syringe for 1 g of cake (cake is about 20 g, air is 500 cc) and stored in a thermostatic chamber at 30 ° C., and hydrogen sulfide and methyl mercaptan are measured every 24 hours. went.
[0027]
Example 1: Measurement test of odor prevention duration of slurry system due to pH drop
According to the test method (2), the concentration of odorous substances (hydrogen sulfide and methyl mercaptan) in the slurry system and the residual concentration of nitrite were measured.
Hydrogen sulfide (H 2 S) Concentration measurement results are shown in Table 1, methyl mercaptan (MM) concentration measurement results are shown in Table 2, and nitrite residual concentration measurement results are shown in Table 3. In addition, the comparative example of the following conditions was tested similarly and the measurement result was written together.
Comparative Example 1-0: Blank
Comparative Example 1-1: Application of bacteriostatic agent (nitrite) without pH reduction treatment
Comparative Example 1-2: Applying a bacteriostatic agent (nitrite) after lowering the pH to 5.5 or higher
Comparative Example 1-3: Odor treatment agent (chlorite) other than nitrite applied after pH reduction treatment
Comparative Example 1-4: Application of odor treatment agent (hydrogen peroxide) other than nitrite without pH reduction treatment
Comparative Example 1-5: Application of odor treatment agent (hydrogen peroxide) other than nitrite after pH reduction treatment
[0028]
[Table 1]
Figure 0003700550
[Table 2]
Figure 0003700550
[Table 3]
Figure 0003700550
[0029]
As is clear from Tables 1 to 3, the concentration of hydrogen sulfide and methyl mercaptan in the slurry system is adjusted to 1 by adjusting the pH to 5.5 or less regardless of the type of pH lowering agent and using nitrite which is a bacteriostatic agent. It was confirmed that it was kept low for a long time of up to 24 hours.
[0030]
Example 2: Dehydration test with various polymer flocculants when pH is lowered
When a cationic polymer flocculant with a crosslinked structure introduced into the molecule (abbreviated as a crosslinked cation) and an amphoteric polymer flocculant with an introduced cationic group or anionic group (abbreviated as amphoteric) In order to evaluate agglomeration and dehydration properties with a normal cationic polymer flocculant (usually abbreviated as a cation), a floc diameter, a filtrate amount, and a filtration rate were measured.
The measurement results are shown in Table 4. In addition, the comparative example of the following conditions was tested similarly and the result was written together.
Comparative Example 2-0: Blank
Comparative Example 2-1: pH reduction treatment with strong acid (sulfuric acid) and usually polymer flocculant applied
Comparative Example 2-2: A polymer flocculant is usually applied after a pH reduction treatment with polyiron sulfate.
Comparative Example 2-3: pH-lowering treatment with fumaric acid, usually applying polymer flocculant
[0031]
[Table 4]
Figure 0003700550
[0032]
As is apparent from Table 4, under the conditions where the pH was lowered, the usual polymer flocculant had a small floc diameter, a slow filtration rate, and sludge could not be agglomerated to a level capable of mechanical dehydration. However, it was confirmed that the same aggregation and dehydration properties as before can be obtained by using a specific polymer flocculant (cross-linking cation or amphoteric) even under this pH lowered condition.
[0033]
Example 3 Measurement test of odor prevention duration of cake system due to pH drop
The concentration of odorous substances (hydrogen sulfide and methyl mercaptan) in the cake system was measured according to the test method (3).
Hydrogen sulfide (H 2 The measurement results of S) concentration are shown in Table 5, and the measurement results of methyl mercaptan (MM) concentration are shown in Table 6. In addition, the comparative example of the following conditions was tested similarly and the measurement result was written together.
Comparative Example 3-0: Blank
Comparative Example 3-1: Only nitrite is applied without pH reduction treatment
Comparative Example 3-2: Applying nitrite and organic bacteriostatic agent (ZPt) without pH reduction treatment
Comparative Example 3-3: Only organic bacteriostatic agent (ZPt) is applied after pH reduction treatment
Comparative Example 3-4: Applying nitrite and organic bacteriostatic agent (sorbic acid) without pH reduction treatment
Comparative Example 3-5: Only organic bacteriostatic agent (sorbic acid) is applied after pH reduction treatment
Comparative Example 3-6: Applying nitrite and organic bacteriostatic agent (benzoic acid) without pH reduction treatment
ZPt is an abbreviation for zinc pyrithione.
[0034]
[Table 5]
Figure 0003700550
[Table 6]
Figure 0003700550
[0035]
As is clear from Tables 5 and 6, by adjusting the pH to 5.5 or less regardless of the type of the pH reducing agent and using a combination of nitrite and an organic bacteriostatic agent, hydrogen sulfide and methyl mercaptan in the cake system can be used. It was confirmed that the concentration can be kept low over a long period of 1 to 4 days.
[0036]
Example 4: Measurement test of odor prevention duration of cake system by post-addition of pH lowering agent
The concentration of odorous substances (hydrogen sulfide and methyl mercaptan) in the cake system when a pH-lowering agent was added (added) to the aggregated filtrate was measured in a longer time than in Example 3.
Hydrogen sulfide (H 2 S) concentration measurement results are shown in Table 7, and methyl mercaptan (MM) concentration measurement results are shown in Table 8. In addition, the comparative example of the following conditions was tested similarly and the measurement result was written together.
Comparative Example 4-0: Blank
Comparative Example 4-1 Same as above except no addition and post-addition pH lowering agent
[0037]
[Table 7]
Figure 0003700550
[Table 8]
Figure 0003700550
[0038]
As is clear from Tables 7 and 8, in the case where no pH lowering agent was added later (Examples 4-11 to 13), odor generation was observed in about 5 to 6 days. It was confirmed that the prolonged extension of the effect can be obtained by adding (adding) to the product.
[0039]
【The invention's effect】
As described above, the sludge treatment method of the present invention is Of sludge mixed with primary sludge and surplus sludge generated at a sewage treatment plant lower the pH 5.5 or less While adjusting Mixed sludge inside Nitrite ion The presence of odor effectively prevents the generation of odors such as hydrogen sulfide and methyl mercaptan throughout the entire process.
Furthermore, even under this condition, other processing such as Mixed sludge Since a polymer flocculant that can be carried out without any trouble with respect to the agglomeration and dehydration treatment is also proposed, there will be no trouble in the entire sludge treatment system.
The present invention is not limited to either a slurry system or a cake system, Without heat treatment, no copper salt is added, It is safe for the human body and the environment, and it is necessary to add special equipment. Without It has a high practical value.
[Brief description of the drawings]
FIG. 1 is a flow (flow system diagram) showing an example of a sludge treatment process in a sewage treatment plant and locations where odors are generated.

Claims (8)

下水処理場で発生する初沈汚泥と余剰汚泥との混合汚泥からの臭気の発生を防止させる汚泥処理方法であって、前記混合汚泥のpHを低下させて5.5以下に調整するとともに、前記混合汚泥を加熱処理することなく前記混合汚泥中に銅塩を添加することなく亜硝酸イオンを添加することを特徴とする汚泥処理方法。 A sludge treatment method for preventing the occurrence of odor from the mixing sludge with primary sludge and excess sludge from sewage treatment plants, as well as adjusted to 5.5 or less by lowering the pH of the mixed sludge, the A sludge treatment method comprising adding nitrite ions without adding a copper salt to the mixed sludge without heat-treating the mixed sludge. さらに、有機系静菌剤を混合汚泥に添加することを特徴とする請求項1に記載の汚泥処理方法。 Furthermore, an organic bacteriostatic agent is added to mixed sludge, The sludge treatment method of Claim 1 characterized by the above-mentioned. 有機系二塩基酸又は第二鉄塩のうちの少なくとも一方によって汚泥を所定pHに低下させることを特徴とする請求項1に記載の汚泥処理方法。The sludge treatment method according to claim 1, wherein the sludge is lowered to a predetermined pH by at least one of an organic dibasic acid or a ferric salt . 混合汚泥への亜硝酸イオン添加4時間後の混合汚泥中の亜硝酸イオン濃度を33mg/L以上とさせることを特徴とする請求項1〜3の何れか一項に記載の汚泥処理方法。The sludge treatment method according to any one of claims 1 to 3, wherein the concentration of nitrite ions in the mixed sludge after 4 hours from the addition of nitrite ions to the mixed sludge is 33 mg / L or more . さらに、混合汚泥を高分子凝集剤により凝集処理してろ過した後の濃縮汚泥にpH低下剤を添加してpHを5以下に調整した後に脱水処理することを特徴とする請求項1〜3の何れか一項に記載の汚泥処理方法。 The mixed sludge is further subjected to a coagulation treatment with a polymer flocculant and filtered, and then the pH is adjusted to 5 or less by adding a pH reducing agent to the concentrated sludge, followed by dehydration treatment . The sludge treatment method according to any one of the above. さらに、混合汚泥を高分子凝集剤により凝集処理した後に脱水処理した脱水ケーキにpH低下剤を添加することを特徴とする請求項1〜5の何れか一項に記載の汚泥処理方法。The sludge treatment method according to any one of claims 1 to 5, further comprising adding a pH lowering agent to the dewatered cake obtained by coagulating the mixed sludge with the polymer flocculant and then dewatering . さらに、分子内に架橋構造が導入されたカチオン系高分子凝集剤により汚泥脱水処理することを特徴とする請求項1〜6の何れか一項に記載の汚泥処理方法。  The sludge dewatering method according to any one of claims 1 to 6, further comprising a sludge dewatering treatment with a cationic polymer flocculant having a crosslinked structure introduced in the molecule. さらに、分子内にカチオン基およびアニオン基が導入された両性高分子凝集剤により汚泥脱水処理することを特徴とする請求項1〜6の何れか一項に記載の汚泥処理方法。  The sludge dewatering method according to any one of claims 1 to 6, further comprising a sludge dewatering treatment with an amphoteric polymer flocculant having a cationic group and an anion group introduced into the molecule.
JP2000215640A 2000-07-17 2000-07-17 Sludge treatment method Expired - Lifetime JP3700550B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000215640A JP3700550B2 (en) 2000-07-17 2000-07-17 Sludge treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000215640A JP3700550B2 (en) 2000-07-17 2000-07-17 Sludge treatment method

Publications (2)

Publication Number Publication Date
JP2002028696A JP2002028696A (en) 2002-01-29
JP3700550B2 true JP3700550B2 (en) 2005-09-28

Family

ID=18711031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000215640A Expired - Lifetime JP3700550B2 (en) 2000-07-17 2000-07-17 Sludge treatment method

Country Status (1)

Country Link
JP (1) JP3700550B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2849020B1 (en) * 2002-12-23 2005-07-01 Otv Sa METHOD OF PURIFYING SLUDGE AND / OR FERMENTESCIBLE EFFLUENTS AND INSTALLATION FOR CARRYING OUT SUCH A METHOD
JP5280602B2 (en) * 2003-01-30 2013-09-04 水ing株式会社 Odor generation prevention method
JP2005000764A (en) * 2003-06-10 2005-01-06 Ebara Engineering Service Co Ltd Sludge slurry dehydration method and equipment
JP5282767B2 (en) * 2010-06-15 2013-09-04 栗田工業株式会社 Odor generation prevention method
JP5855845B2 (en) * 2011-05-12 2016-02-09 水ing株式会社 Sludge treatment agent, sludge treatment method and sludge treatment apparatus using the same
JP5982852B2 (en) * 2012-02-15 2016-08-31 栗田工業株式会社 Deodorization method and deodorant kit
JP5635553B2 (en) * 2012-04-04 2014-12-03 水ing株式会社 Odor generation prevention method for dehydrated cake
JP6162375B2 (en) * 2012-07-23 2017-07-12 日立造船株式会社 Method for recovering phosphoric acid from waste
JP6172838B2 (en) * 2012-12-28 2017-08-02 無臭元工業株式会社 Wastewater treatment method
JP5666644B2 (en) * 2013-03-22 2015-02-12 水ing株式会社 Odor generation prevention method for dehydrated cake
JP6121247B2 (en) * 2013-06-04 2017-04-26 水ing株式会社 Deodorizing cake deodorizing method and apparatus
JP6216240B2 (en) * 2013-12-10 2017-10-18 無臭元工業株式会社 Wastewater treatment method
US9896366B2 (en) 2014-02-26 2018-02-20 Ecolab Usa Inc. Alternative additives to enhance slurry dewatering
JP6393373B2 (en) * 2017-06-14 2018-09-19 日立造船株式会社 Method for recovering phosphoric acid from waste

Also Published As

Publication number Publication date
JP2002028696A (en) 2002-01-29

Similar Documents

Publication Publication Date Title
JP3700550B2 (en) Sludge treatment method
US4108771A (en) Elimination of odors from organic wastes
JP3674939B2 (en) Deodorizing method and deodorizing agent for dehydrated cake
JP2007196141A (en) Sludge treatment method
JP3605821B2 (en) Deodorizer and method for deodorizing cake
JP2000351000A (en) Deodorant for dewatered sludge cake and method for preventing generation of odor
JP5990706B2 (en) Method for suppressing hydrogen sulfide generation in sludge treatment process
JP2938331B2 (en) How to deodorize dehydrated cake
JP2945402B2 (en) Sludge deodorant
JP2004216252A (en) Method for suppressing odor of dehydrated sludge cake
JP4145406B2 (en) Method for preventing phosphorus from being eluted in sludge and phosphorus elution preventing agent for sludge
JPH06134492A (en) Deodorizing agent of dehydrated sludge cake and preparation method thereof
JP5982852B2 (en) Deodorization method and deodorant kit
JP2005073942A (en) Deodorizer and deodorizing method for dehydration cake
WO2023181430A1 (en) Metal salt aggregating agent
JP4149069B2 (en) Bromide-free process for organic concentrates
JPS591118B2 (en) How to treat organic wastewater
JP3628285B2 (en) Deodorant for sludge dewatering cake and deodorizing method
JP3900512B2 (en) Odor generation prevention method for dehydrated cake
JPS63205198A (en) Deodorant
RU2201403C1 (en) Method of water ozonization
JP2005334832A (en) Deodorant for sludge or dehydrated cake and sludge or dehydrated cake deodorizing method
JP4611471B2 (en) Deodorization method of sludge dewatering cake
CN112919673A (en) Method for treating heavy metal micro-polluted water
JP2002102891A (en) Method for preventing malodor of sludge and dehydrated cake

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050704

R150 Certificate of patent or registration of utility model

Ref document number: 3700550

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080722

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090722

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090722

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100722

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110722

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120722

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130722

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 9

EXPY Cancellation because of completion of term