JP2007196141A - Sludge treatment method - Google Patents

Sludge treatment method Download PDF

Info

Publication number
JP2007196141A
JP2007196141A JP2006018108A JP2006018108A JP2007196141A JP 2007196141 A JP2007196141 A JP 2007196141A JP 2006018108 A JP2006018108 A JP 2006018108A JP 2006018108 A JP2006018108 A JP 2006018108A JP 2007196141 A JP2007196141 A JP 2007196141A
Authority
JP
Japan
Prior art keywords
sludge
concentrated
nitrite
mixed
adjusted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006018108A
Other languages
Japanese (ja)
Inventor
Yasuhiro Oi
康裕 大井
Yasuhiro Mugibayashi
裕弘 麦林
Hidenobu Kojima
英順 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2006018108A priority Critical patent/JP2007196141A/en
Publication of JP2007196141A publication Critical patent/JP2007196141A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Sludge (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sludge treatment method which enables the easy execution of pH adjustment using a component contained in sludge to dispense with a pH controller or to reduce its consumption, facilitates the adjustment to target pH, and is capable of more enhancing a malodor preventing effect than when the pH controller is used. <P>SOLUTION: In the sludge treatment method for mixing primary sedimentation sludge 10 produced in a wastewater disposal plant or its concentrated sludge with excess sludge 9 or its concentrated sludge to subject them to dehydration treatment, the drawn primary sedimentation sludge from a first sedimentation basin is adjusted to an average SS concentration of 2 wt.% or above to be subjected to acid-putrefaction to be adjusted to a pH of 5.3 or below by a produced organic acid and a nitrite is added to the pH adjusted sludge to be mixed with excess sludge or its concentrated sludge or the nitrite is added to the mixed sludge. Then, the nitrite added sludge is subjected to dehydration treatment to prevent the occurrence of a malodor. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、有機性排水の処理場で発生する初沈汚泥またはその濃縮汚泥と、濃縮余剰汚泥を混合して脱水処理する汚泥処理方法に関し、さらに詳細には、汚泥に亜硝酸塩を添加することにより、臭気の発生を効果的に防止することができる汚泥処理方法に関するものである。   The present invention relates to a sludge treatment method in which primary sludge generated in a treatment plant for organic wastewater or concentrated sludge thereof and concentrated excess sludge are mixed and dehydrated, and more specifically, nitrite is added to sludge. The present invention relates to a sludge treatment method that can effectively prevent the generation of odor.

下水、食品工業排水、紙パルプ工業排水などの有機性排水の処理方法として、活性汚泥処理方法のような好気性処理方法がある。このような好気性処理では、被処理排水はまず最初沈殿池で固液分離され、分離液は活性汚泥処理のような好気性生物処理を受け、好気性処理液は最終沈殿池で固液分離され、分離液は処理水として放流される。最初沈殿池では分離汚泥が初沈汚泥として排出される。最終沈殿池では分離汚泥の大部分は返送汚泥として、好気性処理工程に返送され、一部は余剰汚泥として排出される。このような好気性処理で発生する初沈汚泥および余剰汚泥は、通常混合して脱水処理されるが、一般的にはそれぞれを濃縮して混合し、脱水剤を加えて機械脱水される。   As a method for treating organic wastewater such as sewage, food industry wastewater, and pulp and paper wastewater, there is an aerobic treatment method such as an activated sludge treatment method. In such aerobic treatment, the wastewater to be treated is first solid-liquid separated in the settling basin, the separated liquid is subjected to aerobic biological treatment such as activated sludge treatment, and the aerobic treatment liquid is solid-liquid separated in the final sedimentation basin. The separated liquid is discharged as treated water. In the first settling basin, the separated sludge is discharged as the first settling sludge. In the final sedimentation basin, most of the separated sludge is returned to the aerobic treatment process as return sludge, and part is discharged as excess sludge. The initially settled sludge and excess sludge generated by such an aerobic treatment are usually mixed and dehydrated, but generally they are concentrated and mixed, and mechanically dehydrated by adding a dehydrating agent.

このような汚泥処理においては、汚泥スラリーを脱水するまでの各工程、脱水ケーキの貯留、保管工程などで、硫化水素、メチルメルカプタンなどのイオウ化合物、アンモニア、トリメチルアミンなどの窒素化合物、吉草酸、イソ酪酸などの低級脂肪酸、アルデヒド類など悪臭物質が発生し、環境を悪化させている。このため汚泥処理工程において、防臭剤を添加して、悪臭物質の発生を防止する汚泥処理方法が検討されている。     In such sludge treatment, sulfur compounds such as hydrogen sulfide and methyl mercaptan, nitrogen compounds such as ammonia and trimethylamine, valeric acid, Malodorous substances such as lower fatty acids such as butyric acid and aldehydes are generated and the environment is deteriorated. For this reason, in the sludge treatment process, a sludge treatment method in which a deodorizer is added to prevent the generation of malodorous substances has been studied.

特許文献1(特開2000−202494号)には、好気性処理で発生する初沈汚泥および余剰汚泥の混合汚泥に、亜硝酸塩、亜硫酸塩または亜硫酸水素塩を添加し、15分間以上経過後、汚泥を脱水する方法が示されている。また特許文献2(特開2002−28696号)には、初沈汚泥および余剰汚泥の混合汚泥に、pH調整剤として有機性二塩基酸、第二鉄塩などを添加し、pH5.5以下に低下させた調整汚泥に、静菌剤として亜硝酸塩を存在させ、汚泥を脱水する方法が示されている。   In Patent Document 1 (Japanese Patent Laid-Open No. 2000-202494), nitrite, sulfite, or hydrogen sulfite is added to the mixed sludge of primary sedimentation sludge and excess sludge generated by aerobic treatment, and after 15 minutes or more, A method for dewatering sludge is shown. In addition, in Patent Document 2 (Japanese Patent Application Laid-Open No. 2002-28696), organic dibasic acid, ferric salt, etc. are added as a pH adjuster to the mixed sludge of primary settling sludge and excess sludge, and the pH is adjusted to 5.5 or less. A method of dehydrating sludge by allowing nitrite to be present as a bacteriostatic agent in the reduced adjusted sludge is shown.

これらの方法は、汚泥スラリーおよび脱水ケーキの臭気分解および臭気発生防止をはかるもので、有効な脱臭効果が得られる汚泥の脱水技術である。しかしこれらの方法では、静菌剤としての亜硝酸塩の臭気防止効果を高めるために、有機性二塩基酸、第二鉄塩などのpH調整剤を多量に添加する必要があるため、処理コストが高くなる。また所定pHとするためのpH調整剤の必要量が、汚泥変化に伴い変動するため、pH低下が不足であったり、pH低下が行き過ぎて、脱水時の高分子凝集剤(高分子脱水剤)の凝集・脱水効果を低下させることがあるなどの問題点がある。
特開2000−202494号 特開2002−28696号
These methods are sludge dewatering techniques that can effectively decompose the sludge slurry and dehydrated cake and prevent the generation of odor, and provide an effective deodorizing effect. However, in these methods, in order to increase the odor prevention effect of nitrite as a bacteriostatic agent, it is necessary to add a large amount of a pH adjuster such as an organic dibasic acid or a ferric salt, so that the processing cost is low. Get higher. Moreover, since the necessary amount of the pH adjusting agent for adjusting to a predetermined pH fluctuates with sludge change, the pH decrease is insufficient or the pH decrease is excessive, and the polymer flocculant during dehydration (polymer dehydrating agent) There is a problem that the agglomeration / dehydration effect may be reduced.
JP 2000-202494 A JP 2002-28696 A

本発明の課題は、汚泥に含まれる成分を利用して効率よくpH調整することができ、このためpH調整剤が不要であるか、あるいはその使用量が少なくてすみ、目標pHへの調整が容易であって、しかもpH調整剤を用いる場合よりも臭気防止効果を高めることができる汚泥処理方法を提案することである。   The problem of the present invention is that the pH contained in the sludge can be efficiently adjusted, so that a pH adjuster is unnecessary or the amount used is small, and the adjustment to the target pH is possible. It is easy to propose a sludge treatment method that can enhance the odor prevention effect as compared with the case of using a pH adjuster.

本発明は、次の汚泥処理方法である。
(1) 排水処理で発生する初沈汚泥またはその濃縮汚泥と、余剰汚泥またはその濃縮汚泥とを混合して脱水処理する汚泥処理方法であって、
初沈汚泥またはその濃縮汚泥を酸性腐敗させることにより、生成する有機酸によって汚泥の平均pHを5.3未満に調整する汚泥調整工程と、
調整汚泥と余剰汚泥またはその濃縮汚泥とを混合する汚泥混合工程と、
調整汚泥、余剰汚泥、その濃縮汚泥または混合汚泥に亜硝酸塩を添加する亜硝酸塩添加工程と、
亜硝酸塩添加汚泥を脱水処理する脱水処理工程と
を含む汚泥処理方法。
(2) 汚泥調整工程が、最初沈澱池における引き抜き初沈汚泥の平均SS濃度が2重量%以上になるように滞留、濃縮して、濃縮汚泥を酸性腐敗させ、濃縮汚泥のpHを低下させる工程を含む上記(1)記載の方法。
(3) 汚泥調整工程が、引き抜き初沈汚泥を貯留し、さらに酸性腐敗を進行させてpH5未満に調整する工程を含む上記(1)または(2)記載の方法。
(4) 調整汚泥に亜硝酸塩を添加し、亜硝酸塩を添加した調整汚泥と余剰汚泥またはその濃縮汚泥とを汚泥混合工程で混合する上記(1)ないし(3)のいずれかに記載の方法。
(5) 汚泥混合工程で調整汚泥と余剰汚泥またはその濃縮汚泥とを混合した後、混合汚泥に亜硝酸塩を添加する上記(1)ないし(3)のいずれかに記載の方法。
(6) 調整汚泥、濃縮余剰汚泥または混合汚泥に第二鉄塩またはアルミニウム塩を添加する汚泥pH低下工程をさらに含む上記(1)ないし(5)のいずれかに記載の方法。
The present invention is the following sludge treatment method.
(1) A sludge treatment method in which a primary sludge generated in wastewater treatment or its concentrated sludge and surplus sludge or its concentrated sludge are mixed and dehydrated.
A sludge adjustment step of adjusting the average pH of the sludge to less than 5.3 by the organic acid produced by acidifying the first settling sludge or its concentrated sludge;
A sludge mixing step of mixing the adjusted sludge and excess sludge or its concentrated sludge;
A nitrite addition step of adding nitrite to the adjusted sludge, surplus sludge, its concentrated sludge or mixed sludge,
And a dehydration process for dehydrating nitrite-added sludge.
(2) The sludge adjustment step is a step of staying and concentrating so that the average SS concentration of the extracted initial sedimentation sludge in the first sedimentation basin is 2% by weight or more, acidifying the concentrated sludge, and lowering the pH of the concentrated sludge The method according to (1) above, comprising:
(3) The method according to (1) or (2) above, wherein the sludge adjusting step includes a step of storing the extracted initially settled sludge and further adjusting the pH to less than 5 by advancing acidic decay.
(4) The method according to any one of (1) to (3) above, wherein nitrite is added to the adjusted sludge, and the adjusted sludge to which nitrite is added and the excess sludge or the concentrated sludge thereof are mixed in the sludge mixing step.
(5) The method according to any one of (1) to (3) above, wherein after adjusting sludge and excess sludge or concentrated sludge thereof are mixed in the sludge mixing step, nitrite is added to the mixed sludge.
(6) The method according to any one of (1) to (5), further including a sludge pH lowering step of adding ferric salt or aluminum salt to the adjusted sludge, concentrated excess sludge, or mixed sludge.

本発明において、処理の対象となる汚泥は、排水処理場で発生する初沈汚泥および余剰汚泥である。このような汚泥は、下水、し尿、食品工業排水、紙パルプ工業排水などの有機性排水の処理方法として一般に行われている活性汚泥処理方法等の好気性処理方法において、最初沈殿池で分離される初沈汚泥、および最終沈殿池で分離され、余剰汚泥として排出される余剰汚泥である。これらの汚泥は、濃縮汚泥の混合汚泥として脱水処理されるが、濃縮は混合の前でも、後でもよい。   In this invention, the sludge used as the object of a process is the primary sedimentation sludge and excess sludge which generate | occur | produce in a wastewater treatment plant. Such sludge is first separated in a sedimentation basin in an aerobic treatment method such as an activated sludge treatment method generally used as a treatment method for organic wastewater such as sewage, human waste, food industry wastewater, and pulp and paper wastewater. First sludge and surplus sludge that is separated and discharged as surplus sludge. These sludges are dehydrated as mixed sludge of concentrated sludge, but the concentration may be before or after mixing.

本発明では、汚泥調整工程において、これらの汚泥のうち初沈汚泥またはその濃縮汚泥を意図的に腐敗させて、pH5.3未満に調整する。ここでは汚泥の腐敗による有機酸生成により、pHが低下するが、腐敗とそれに伴うpH低下が起こり易いのは、炭水化物、脂肪等の有機酸を生成するような有機物を多量に含む初沈汚泥である。余剰汚泥は、微生物が主体であり、有機酸を生成するような有機物および有機酸自体はすでに分解しているため、pHは中性で、pH低下も起こり難い。このため本発明では、初沈汚泥またはその濃縮汚泥を腐敗させ、生成有機酸によりpH5.3未満に調整する。   In the present invention, in the sludge adjusting step, among these sludges, the initial settling sludge or its concentrated sludge is intentionally spoiled and adjusted to a pH of less than 5.3. Here, the pH decreases due to the production of organic acid due to the decay of sludge, but decay and the accompanying pH decrease are likely to occur in primary sludge containing a large amount of organic substances that produce organic acids such as carbohydrates and fats. is there. The surplus sludge is mainly composed of microorganisms, and the organic substances that generate organic acids and the organic acids themselves are already decomposed, so that the pH is neutral and the pH is not easily lowered. For this reason, in the present invention, the initial settling sludge or its concentrated sludge is spoiled and adjusted to a pH of less than 5.3 with the generated organic acid.

本発明において初沈汚泥とは、生物処理工程の最初沈澱池で分離される汚泥であるが、最終沈殿池から発生する余剰汚泥の30%程度以下を最初沈澱池に戻して、原水とともに固液分離する処理方法において、最初沈澱池で分離される汚泥も含む。余剰汚泥の全量を最初沈殿に戻す旧来型の処理の場合でも、本発明の方法は適用できるが、余剰汚泥分が多いので、余剰汚泥を含まない場合に比較して、最初沈澱池での汚泥濃縮が進み難く、pH低下速度も遅いため、臭気防止効果が減少し、あるいは亜硝酸の必要添加量が増加する。また、濃縮汚泥濃度が低いため、脱水すべき汚泥スラリー容量が増加する。   In the present invention, the initial sedimentation sludge is sludge separated in the first sedimentation basin of the biological treatment process, but about 30% or less of the excess sludge generated from the final sedimentation basin is returned to the first sedimentation basin, together with the raw water. In the processing method to isolate | separate, the sludge isolate | separated by a sedimentation basin first is also included. The method of the present invention can be applied even in the case of the conventional treatment in which the entire amount of excess sludge is returned to the initial sedimentation. However, since there is a lot of excess sludge, the sludge in the first sedimentation basin is compared with the case where the excess sludge is not included. Concentration is difficult to proceed and the pH reduction rate is slow, so the odor prevention effect is reduced or the required amount of nitrous acid is increased. Moreover, since the concentration of concentrated sludge is low, the sludge slurry capacity to be dewatered increases.

初沈汚泥またはその濃縮汚泥と、余剰汚泥またはその濃縮汚泥とを混合した後に、混合汚泥を腐敗させると、腐敗は進行しても有機酸生成が少なく、pH低下速度は遅く、不安定で、目的のpHに調整することが困難である。またこの場合は、腐敗させる過程での臭気発生が激しく、汚泥処理工程の臭気防止をはかる本来の目的に相反する。これに加え、汚泥腐敗の進行により汚泥の脱水性が悪化し、脱水ケーキ含水率が上昇し、ケーキ処分量、処分費用が増加する。このように汚泥を意図的に腐敗させ、pH低下させるには、酸性腐敗が起こり易い初沈汚泥が適している。このため本発明では、余剰汚泥もしはその濃縮濃縮汚泥と混合する前の、初沈汚泥を酸性腐敗させ、生成する有機酸によって汚泥の平均pHをpH5.3未満、好ましくはpH5.0未満に調整する。   After mixing primary sludge or its concentrated sludge and surplus sludge or its concentrated sludge, the mixed sludge is spoiled. It is difficult to adjust to the target pH. Further, in this case, odor generation is severe in the process of decay, which is contrary to the original purpose of preventing odor in the sludge treatment process. In addition to this, the dewaterability of sludge deteriorates due to the progress of sludge decay, the moisture content of the dehydrated cake increases, and the amount of cake disposal and disposal costs increase. Thus, in order to intentionally rot the sludge and lower the pH, the first settling sludge that is susceptible to acidic rot is suitable. For this reason, in the present invention, the excess sludge before acid mixing with the concentrated concentrated sludge is acidified and the average pH of the sludge is reduced to less than pH 5.3, preferably less than 5.0 by the organic acid produced. adjust.

下水等の通常の有機性排水の処理場では、最初沈殿池で原水中の有機性固形物を沈殿させ、分離液を好気性反応槽(曝気槽)に送り、生物処理を行う。最初沈澱池から引き抜かれた汚泥(初沈汚泥)は、重力濃縮槽に送って濃縮を行うが、この際重力濃縮槽に投入する引抜き初沈汚泥の濃度は1.0重量%以下が一般的で、そのpHは流入下水よりやや低い程度、具体的にはpH6.0〜6.5である。引抜き初沈汚泥濃度を高くすると、炭酸ガス発生等の濃縮阻害が起こり、重力濃縮機能が低下し、好ましくない。以上の留意点は下水道維持管理指針2003年度版後編308、309ページに記載されている。   In ordinary organic wastewater treatment plants such as sewage, organic solids in raw water are first precipitated in a settling basin, and the separated liquid is sent to an aerobic reaction tank (aeration tank) for biological treatment. The sludge drawn from the first sedimentation basin (primary sedimentation sludge) is sent to the gravity concentration tank for concentration. The concentration of the first sedimentation sludge drawn into the gravity concentration tank is generally 1.0% by weight or less. The pH is slightly lower than the inflowing sewage, specifically, pH 6.0 to 6.5. If the concentration of the drawn initial sludge is increased, concentration inhibition such as generation of carbon dioxide gas occurs, and the gravity concentration function is lowered, which is not preferable. The points to be noted above are described in pages 308 and 309 of the sewerage maintenance management guideline 2003 edition.

本発明において、初沈汚泥またはその濃縮汚泥を酸性腐敗させ、pH5.3未満、好ましくはpH5.0未満に調整するためには、前述の下水道維持管理指針で推奨される処理と逆に、最初沈澱池における引抜き汚泥のSS濃度が2重量%以上、好ましくは2.5重量%以上になるように滞留、濃縮して初沈汚泥を引き抜くのが好ましい。これにより最初沈澱池内の堆積汚泥相内では、汚泥が高濃度に濃縮されるとともに、主として炭水化物系有機物が腐敗して有機酸を生成し、これが汚泥相内に留まり、蓄積してpHが低下する。流入下水有機物の基質の相違にもよるが、多くの引き抜き汚泥はこの操作でpH5.3未満に調整される。   In the present invention, in order to acidify the first settled sludge or its concentrated sludge and adjust the pH to less than 5.3, preferably less than 5.0, the first treatment sludge is contrary to the treatment recommended in the guidelines for sewerage maintenance. It is preferable to draw out the initial sedimentation sludge by staying and concentrating so that the SS concentration of the extracted sludge in the sedimentation basin is 2% by weight or more, preferably 2.5% by weight or more. As a result, in the sediment sludge phase in the first sedimentation basin, the sludge is concentrated to a high concentration, and mainly the carbohydrate-based organic matter is spoiled to produce an organic acid, which remains in the sludge phase and accumulates to lower the pH. . Depending on the substrate of the incoming sewage organic matter, most of the extracted sludge is adjusted to a pH of less than 5.3 by this operation.

一般的には引抜き初沈汚泥を重力濃縮槽で重力濃縮させるが、本発明においてSS濃度が2重量%以上になるように濃縮された初沈汚泥を、重力濃縮槽で濃縮することは、前述の下水道維持管理指針に記載されている通り困難である。したがって本発明では、従来の重力濃縮槽は濃縮した初沈汚泥の中継、貯留槽として使用することができる。また初沈汚泥のpH低下が不十分な場合でも、重力濃縮槽を利用した貯留槽で貯留時間を調整して、汚泥をpH5.3未満に調整することができる。   Generally, the drawn initial settling sludge is gravity concentrated in a gravity concentration tank. In the present invention, the concentration of the initial settling sludge concentrated so that the SS concentration becomes 2% by weight or more in the gravity concentration tank is described above. This is difficult as described in the guidelines for sewerage maintenance. Therefore, in the present invention, the conventional gravity concentration tank can be used as a relay and storage tank for concentrated primary sedimentation sludge. Even when the pH of the initial settling sludge is insufficient, the storage time can be adjusted in a storage tank using a gravity concentration tank, and the sludge can be adjusted to a pH of less than 5.3.

汚泥混合工程は、pH5.3未満に調整された調整汚泥と、余剰汚泥またはその濃縮汚泥とを混合する工程である。この汚泥混合は、次の亜硝酸塩添加工程の前に行っても、後で行ってもよい。亜硝酸塩添加工程の前に汚泥混合を行う場合は、混合汚泥に亜硝酸塩添加を行う。亜硝酸塩添加工程の後に汚泥混合を行う場合は、調整汚泥、余剰汚泥、またはその濃縮汚泥に亜硝酸塩添加し、その後亜硝酸塩添加調整汚泥と余剰汚泥またはその濃縮汚泥とを混合することになる。   The sludge mixing step is a step of mixing the adjusted sludge adjusted to a pH of less than 5.3 and the excess sludge or its concentrated sludge. This sludge mixing may be performed before or after the next nitrite addition step. When sludge mixing is performed before the nitrite addition step, nitrite is added to the mixed sludge. When sludge mixing is performed after the nitrite addition step, nitrite is added to the adjusted sludge, excess sludge, or its concentrated sludge, and then the nitrite addition adjusted sludge and the excess sludge or its concentrated sludge are mixed.

亜硝酸塩添加工程は、調整汚泥、余剰汚泥、その濃縮汚泥または混合汚泥に亜硝酸塩を添加する工程である。亜硝酸塩添加を汚泥混合工程の前に行う場合は、調整汚泥、余剰汚泥、またはその濃縮汚泥に亜硝酸塩を添加することができ、汚泥混合工程の後に行う場合は、混合汚泥に亜硝酸塩を添加することができる。これらの中では、調整汚泥または混合汚泥に亜硝酸塩を添加するのが好ましい。亜硝酸塩としては、亜硝酸ナトリウム、亜硝酸カリウム等が挙げられる。亜硝酸塩の添加量は、初沈汚泥またはその濃縮汚泥と濃縮余剰汚泥の合計容量に対して、亜硝酸イオンとして20〜200mg/L、好ましくは40〜150mg/Lである。   The nitrite addition step is a step of adding nitrite to the adjusted sludge, excess sludge, its concentrated sludge, or mixed sludge. When adding nitrite before the sludge mixing process, nitrite can be added to the adjusted sludge, excess sludge, or its concentrated sludge, and when adding after the sludge mixing process, nitrite is added to the mixed sludge. can do. Among these, it is preferable to add nitrite to adjusted sludge or mixed sludge. Examples of the nitrite include sodium nitrite and potassium nitrite. The amount of nitrite added is 20 to 200 mg / L, preferably 40 to 150 mg / L, as nitrite ions with respect to the total capacity of the primary sedimentation sludge or its concentrated sludge and concentrated excess sludge.

引き抜き初沈汚泥のpHが5.3未満に調整された調整汚泥に亜硝酸塩を添加する場合は、引抜き汚泥およびその汚泥が導かれる貯留槽、あるいは、中継・貯留槽に転用した重力濃縮槽等に、亜硝酸塩を添加することができる。貯留槽、あるいは中継・貯留槽に転用した重力濃縮槽でさらに調整汚泥のpH低下を図る場合は、これらの槽、これらの槽からの引抜き汚泥、あるいはその投入先である濃縮余剰汚泥との混合汚泥の貯留槽等に亜硝酸塩を添加することができる。調整汚泥と濃縮余剰汚泥との混合汚泥に亜硝酸塩を添加する場合は、混合汚泥の貯留槽等に亜硝酸塩を添加することができる。   When adding nitrite to the adjusted sludge whose pH of the initially extracted sludge is adjusted to less than 5.3, the drawn sludge and the storage tank to which the sludge is guided, or the gravity concentration tank converted to a relay / storage tank, etc. In addition, nitrite can be added. When further reducing the pH of the adjusted sludge in a storage tank or a gravity concentration tank diverted to a relay / storage tank, mixing with these tanks, withdrawn sludge from these tanks, or concentrated excess sludge as the destination Nitrite can be added to sludge storage tanks. When adding nitrite to mixed sludge of adjusted sludge and concentrated excess sludge, nitrite can be added to a mixed sludge storage tank or the like.

亜硝酸塩の添加時(さらにpH低下調整剤を添加する場合は、両者の添加時)から脱水処理に至るまでの時間は、0.3〜48時間、好ましくは3〜12時間とすることができる。一般的に初沈汚泥と余剰汚泥の混合汚泥の貯留槽の汚泥平均滞留時間は1時間以上あるが、昼間のみの脱水運転の場合、添加した亜硝酸塩が夜間に消費、分解される場合があるが、この場合には脱水開始1時間程度前に、亜硝酸塩を一括して追加添加することができる。   The time from the addition of nitrite (when adding a pH lowering regulator to both) to the dehydration treatment can be 0.3 to 48 hours, preferably 3 to 12 hours. . In general, the average sludge retention time of the mixed sludge storage tank of primary sludge and excess sludge is 1 hour or more, but in the case of dehydration operation only during the daytime, the added nitrite may be consumed and decomposed at night. In this case, however, nitrite can be additionally added all at once about 1 hour before the start of dehydration.

pH5程度5.3未満の調整汚泥と濃縮余剰汚泥を混合すると、一方の濃縮余剰汚泥のpHは6程度であるため、混合汚泥はpH5未満からpH5.5程度となる。混合汚泥のpHが5.5程度でも亜硝酸による汚泥スラリー、およびその脱水ケーキの消臭効果が発揮されるが、特に脱水ケーキの消臭効果を高めるためには、混合汚泥をpH5未満に調整することが好ましい。混合汚泥をpH5未満に調整するためには、汚泥調整工程における腐敗時間を長くして、調整汚泥をpH4.7程度とすると良い。このほか調整汚泥、濃縮余剰汚泥または混合汚泥にpH低下調整剤として第二鉄塩またはアルミニウム塩を添加して、混合汚泥をpH5未満に調整することもできる。   When the adjusted sludge having a pH of about 5 and less than 5.3 is mixed with the concentrated excess sludge, the pH of one of the concentrated excess sludge is about 6, so that the mixed sludge is less than pH 5 to about pH 5.5. Even if the pH of the mixed sludge is about 5.5, the sludge slurry by nitrous acid and the deodorizing effect of the dehydrated cake are exhibited. In order to enhance the deodorizing effect of the dehydrated cake, the mixed sludge is adjusted to less than pH 5. It is preferable to do. In order to adjust the mixed sludge to less than pH 5, the septic time in the sludge adjusting step is lengthened and the adjusted sludge is adjusted to about pH 4.7. In addition, the mixed sludge can be adjusted to a pH of less than 5 by adding a ferric salt or an aluminum salt as a pH lowering adjusting agent to the adjusted sludge, concentrated excess sludge or mixed sludge.

このpH低下調整剤には、第二鉄塩として、具体的には塩化第二鉄、ポリ硫酸第二鉄、およびアルミニウム塩として、具体的には塩化アルミニウム、硫酸アルミニウムなどを使用することができる。これらの第二鉄塩、アルミニウム塩は、混合汚泥のpH低下作用による亜硝酸塩による消臭効果強化のほか、余剰汚泥中の溶解性りんを金属塩として固定するので、汚泥処理返流水として水処理工程に戻るりんを削減し、結果として、放流水のりん汚濁量を軽減することができる。第二鉄塩、アルミニウム塩の添加量は、いずれも液体製品として、対濃縮余剰汚泥に対し1000−10000mg/Lである。   In this pH lowering regulator, ferric chloride, specifically ferric chloride, polyferric sulfate, and aluminum salt, specifically, aluminum chloride, aluminum sulfate and the like can be used. . These ferric salts and aluminum salts not only enhance the deodorization effect by nitrite due to the pH lowering action of the mixed sludge, but also fix the soluble phosphorus in the excess sludge as a metal salt, so water treatment as sludge treatment return water Phosphorus returning to the process can be reduced, and as a result, the amount of phosphorus contamination in the discharged water can be reduced. The addition amount of a ferric salt and an aluminum salt is 1000-10000 mg / L with respect to a concentrated excess sludge as a liquid product.

pH低下調整剤の添加場所は、濃縮余剰汚泥槽、濃縮余剰汚泥の汚泥混合槽への移送ライン、汚泥混合槽のいずれでも良い。ただし、汚泥混合槽に亜硝酸塩と第二鉄塩またはアルミニウム塩の両者を添加する場合は、両薬品が直接、あるいは高濃度で接触しないように、添加場所等に留意するのが好ましい。   The addition site of the pH lowering regulator may be any of the concentrated surplus sludge tank, the transfer line of the concentrated surplus sludge to the sludge mixing tank, and the sludge mixing tank. However, when both nitrite and ferric salt or aluminum salt are added to the sludge mixing tank, it is preferable to pay attention to the place of addition so that both chemicals do not contact directly or at a high concentration.

脱水処理工程では、上記の亜硝酸塩添加汚泥を脱水処理する。ここで脱水処理する亜硝酸塩添加汚泥は、亜硝酸塩添加工程で調整汚泥に亜硝酸塩を添加し、亜硝酸塩を添加した調整汚泥と余剰汚泥またはその濃縮汚泥とを汚泥混合工程で混合した混合汚泥、汚泥混合工程で調整汚泥と余剰汚泥またはその濃縮汚泥とを混合し、混合汚泥に亜硝酸塩添加工程で亜硝酸塩を添加した混合汚泥、さらにこれらの汚泥に塩添加工程で第二鉄塩またはアルミニウム塩を添加した混合汚泥などが挙げられる。   In the dehydration process, the nitrite-added sludge is dehydrated. The nitrite-added sludge to be dehydrated here is a mixed sludge in which nitrite is added to the adjusted sludge in the nitrite addition step, and the adjusted sludge to which nitrite is added and the excess sludge or its concentrated sludge are mixed in the sludge mixing step, Mixing sludge and excess sludge or its concentrated sludge in the sludge mixing process, mixing the sludge to add nitrite in the nitrite addition process, and ferric salt or aluminum salt in these sludges in the salt addition process Mixed sludge to which is added.

亜硝酸塩添加汚泥を脱水処理方法としては公知の方法が採用できる。例えば汚泥スラリーを、遠心脱水機、ベルトプレス脱水機、スクリュープレス脱水機、フィルタープレス脱水機、真空脱水機などを用いて脱水することができる。汚泥スラリーには、脱水性を向上するために、脱水機に投入する前段に、または脱水機内に脱水剤として、例えばアニオン系高分子凝集剤、カチオン系高分子凝集剤、両性高分子凝集剤、消石灰などを添加して脱水することができる。   A well-known method can be adopted as a method for dehydrating nitrite-added sludge. For example, the sludge slurry can be dehydrated using a centrifugal dehydrator, a belt press dehydrator, a screw press dehydrator, a filter press dehydrator, a vacuum dehydrator, or the like. In order to improve the dewaterability of the sludge slurry, the anionic polymer flocculant, the cationic polymer flocculant, the amphoteric polymer flocculant, etc. It can be dehydrated by adding slaked lime.

上記の処理では、初沈汚泥またはその濃縮汚泥を腐敗させ、生成有機酸によりpH5.3未満に調整した調整汚泥、または余剰汚泥、その濃縮汚泥との混合汚泥に亜硝酸塩を添加しているので、亜硝酸添加後汚泥から脱水工程、およびその脱水ケーキ貯留までの臭気発生を防止することができる。この場合、汚泥に含まれる成分を利用してpH調整するので、効率よくpH調整することができ、このためpH調整剤が不要であるか、あるいはその使用量が少なくてすむ。そして目標pHへの調整が容易であり、しかもpH調整剤を用いる場合よりも臭気防止効果を高めることができる。   In the above treatment, nitrite is added to the sewage sludge or its sludge that has been spoiled and adjusted sludge adjusted to a pH of less than 5.3 with the generated organic acid, or surplus sludge and mixed sludge with its concentrated sludge. Odor generation from sludge after nitrous acid addition to dehydration process and storage of the dehydrated cake can be prevented. In this case, since the pH is adjusted by using the components contained in the sludge, the pH can be adjusted efficiently, so that a pH adjuster is unnecessary or the amount of use can be reduced. And adjustment to target pH is easy, and also the odor prevention effect can be heightened rather than the case where a pH adjuster is used.

以上の通り、本発明によれば、初沈汚泥またはその濃縮汚泥を腐敗させ、生成有機酸によりpH5.3未満に調整し、調整汚泥、余剰汚泥、その濃縮汚泥または混合汚泥に亜硝酸塩を添加し、臭気の発生を防止して脱水処理するようにしたので、汚泥に含まれる成分を利用して効率よくpH調整することができ、このためpH調整剤が不要であるか、あるいはその使用量が少なくてすみ、目標pHへの調整が容易であって、しかもpH調整剤を用いる場合よりも臭気防止効果を高めることができる。   As described above, according to the present invention, the initial settling sludge or its concentrated sludge is spoiled, adjusted to a pH of less than 5.3 with the generated organic acid, and nitrite is added to the adjusted sludge, excess sludge, its concentrated sludge or mixed sludge In addition, since the dehydration treatment is performed while preventing the generation of odor, the pH can be adjusted efficiently by using the components contained in the sludge, and therefore a pH adjuster is unnecessary or the amount used. Therefore, the adjustment to the target pH is easy, and the effect of preventing odor can be enhanced as compared with the case of using a pH adjuster.

以下、本発明の実施形態を図面により説明する。なお、%は重量%である。図1は本発明の実施形態の汚泥処理方法を示すフロー図であり、従来の下水処理装置をそのまま使用する構成となっている。図1において、1は最初沈澱池、2は好気性反応槽(曝気槽)、3は最終沈澱池であり、これらは好気性生物処理装置を構成している。好気性生物処理は、原水4を最初沈澱池1で固液分離し、分離液5を好気性反応槽2で好気性生物処理し、反応液6を最終沈澱池3で固液分離し、分離液を処理水7として放流し、分離汚泥の一部を返送汚泥8として返送し、残部を余剰汚泥9として取出す。最初沈澱池1の分離汚泥は初沈汚泥10として取出す。   Embodiments of the present invention will be described below with reference to the drawings. In addition,% is weight%. FIG. 1 is a flowchart showing a sludge treatment method according to an embodiment of the present invention, which is configured to use a conventional sewage treatment apparatus as it is. In FIG. 1, 1 is an initial settling pond, 2 is an aerobic reaction tank (aeration tank), and 3 is a final settling pond, and these constitute an aerobic biological treatment apparatus. In the aerobic biological treatment, the raw water 4 is firstly solid-liquid separated in the precipitation basin 1, the separation liquid 5 is aerobically biologically treated in the aerobic reaction tank 2, and the reaction liquid 6 is solid-liquid separated in the final precipitation basin 3 and separated. The liquid is discharged as treated water 7, a part of the separated sludge is returned as return sludge 8, and the remainder is taken out as excess sludge 9. The separated sludge from the first settling basin 1 is taken out as the first settling sludge 10.

11は重力濃縮槽であり、ここで初沈汚泥10を重力濃縮し、重力濃縮汚泥貯槽12へ送って貯留する。これらは初沈汚泥の中継・貯留層として使用し、ここで初沈汚泥のpH低下を図る。13は余剰汚泥貯槽であり、ここで余剰汚泥9を貯留する。14は余剰汚泥濃縮装置で、遠心濃縮装置等が使用され、ここで余剰汚泥貯槽13の余剰汚泥を濃縮し、濃縮余剰汚泥貯槽15へ送って貯留する。16は汚泥混合貯槽であり、ここで重力濃縮汚泥貯槽12の重力濃縮汚泥と、濃縮余剰汚泥貯槽15の濃縮余剰汚泥を混合して貯留する。17は汚泥脱水装置で、遠心脱水機、ベルトプレス脱水機等が使用され、ここで汚泥混合貯槽16の混合汚泥を脱水処理し、脱水ケーキを脱水ケーキ貯槽18へ送って貯留する。脱水ケーキ貯槽18の脱水ケーキは焼却炉19で焼却されるか、あるいは他の処理のため搬出される。   Reference numeral 11 denotes a gravity concentration tank. Here, the first settling sludge 10 is concentrated by gravity and sent to the gravity concentration sludge storage tank 12 for storage. These are used as a relay / reservoir for primary sedimentation sludge, where the pH of primary sedimentation sludge is reduced. 13 is a surplus sludge storage tank, and the surplus sludge 9 is stored here. 14 is a surplus sludge concentrator, and a centrifugal concentrator or the like is used, where the surplus sludge in the surplus sludge storage tank 13 is concentrated and sent to the concentrated surplus sludge storage tank 15 for storage. Reference numeral 16 denotes a sludge mixed storage tank, in which the gravity concentrated sludge in the gravity concentrated sludge storage tank 12 and the concentrated excess sludge in the concentrated excess sludge storage tank 15 are mixed and stored. 17 is a sludge dewatering device, which uses a centrifugal dewaterer, a belt press dewaterer, etc., where the mixed sludge in the sludge mixed storage tank 16 is dehydrated, and the dehydrated cake is sent to the dehydrated cake storage tank 18 for storage. The dehydrated cake in the dehydrated cake storage tank 18 is incinerated in the incinerator 19 or is carried out for other processing.

上記のフローは、従来の下水処理装置をそのまま使用する構成となっているが、最初沈澱池1では初沈汚泥10を貯めて濃縮する運転条件とし、引抜き汚泥量を少なくする。この結果、引抜き汚泥濃度は2%から3%と濃縮され、pHも5.3未満となる。重力濃縮槽11は、中継槽、または初沈汚泥pHを更に下げるための貯留、調整槽として使用する。初沈汚泥10が引抜きの段階で、pH5.3未満に安定してなっている場合は、重力濃縮槽11で亜硝酸塩を添加することができる。重力濃縮汚泥貯槽12は中継槽として用いられており、ここで重力濃縮汚泥を貯留して酸性腐敗させ、pH低下させて調整することもできる。初沈汚泥10が引抜きの段階で、pH5.3未満に安定してなっている場合は、重力濃縮汚泥貯槽12を省略することもできるが、これがある場合は、ここで亜硝酸塩を添加することもできる。これらは、処理施設の設備状況、最初沈殿汚泥の貯留・腐敗によるpH低下度合によって適切な運用を決めることができる。   The above flow is configured to use a conventional sewage treatment apparatus as it is, but in the first sedimentation basin 1, the initial sludge 10 is stored and concentrated, and the amount of drawn sludge is reduced. As a result, the drawn sludge concentration is concentrated from 2% to 3%, and the pH is less than 5.3. The gravity concentration tank 11 is used as a relay tank or a storage and adjustment tank for further lowering the initial sedimentation sludge pH. When the initial settling sludge 10 is stabilized at a pH of less than 5.3 at the time of drawing, nitrite can be added in the gravity concentration tank 11. Gravity-enriched sludge storage tank 12 is used as a relay tank, where gravity-enriched sludge can be stored, acidified, and adjusted by reducing pH. If the initial settling sludge 10 is stable at a pH of less than 5.3 at the extraction stage, the gravity concentrated sludge storage tank 12 can be omitted, but if this is present, add nitrite here. You can also. Appropriate operations can be determined for these depending on the equipment status of the treatment facility and the degree of pH decrease due to the storage and decay of the first sludge.

余剰汚泥9は、余剰汚泥貯槽13を経て、遠心、浮上、および重力方式の余剰汚泥濃縮装置14で濃縮され、濃縮余剰汚泥貯槽15に送られて貯留される。汚泥混合貯槽16では、重力濃縮汚泥貯槽12の初沈汚泥またはその濃縮汚泥と、濃縮余剰汚泥貯槽15の濃縮余剰汚泥が混合されて貯留される。この工程までに亜硝酸塩を添加していない場合は、汚泥混合貯留槽16に亜硝酸塩を添加する。   The surplus sludge 9 passes through the surplus sludge storage tank 13, is concentrated by a centrifugal, levitation, and gravity-type surplus sludge concentrator 14, and is sent to the concentrated surplus sludge storage tank 15 for storage. In the sludge mixing storage tank 16, the initially settled sludge in the gravity concentrated sludge storage tank 12 or its concentrated sludge and the concentrated excess sludge in the concentrated excess sludge storage tank 15 are mixed and stored. When nitrite is not added by this step, nitrite is added to the sludge mixed storage tank 16.

亜硝酸塩を添加した濃縮調整汚泥に第二鉄塩、アルミニウム塩を添加する場合は、濃縮余剰汚泥貯槽15、汚泥混合貯槽16へ投入する途中の汚泥、および汚泥混合貯槽16のいずれかに添加し、混合することができる。   When ferric salt or aluminum salt is added to the concentrated adjusted sludge to which nitrite is added, it is added to either the concentrated surplus sludge storage tank 15, the sludge being added to the sludge mixed storage tank 16, or the sludge mixed storage tank 16. Can be mixed.

通常の汚泥処理工程で特に臭気発生が大きい場所は、重力濃縮槽11、重力濃縮汚泥貯槽12、汚泥混合貯槽16、汚泥脱水装置17の初沈汚泥が存在する処理プロセスであり、余剰汚泥処理系、特に余剰汚泥濃縮装置14以前では、臭気問題は少ない。、重力濃縮槽11、重力濃縮汚泥貯槽12、汚泥混合貯槽16等は密閉構造とすることにより、消臭が可能であるが、汚泥脱水装置17は密閉構造とすることは困難であり、臭気が発生する。これに対し本発明では、pH調整と亜硝酸塩添加により、臭気発生問題の大きい汚泥処理プロセスのほとんどで消臭が可能となる。   The place where odor generation is particularly large in the normal sludge treatment process is a treatment process in which the first settling sludge of the gravity concentration tank 11, the gravity concentration sludge storage tank 12, the sludge mixing storage tank 16, and the sludge dewatering device 17 is present, and the excess sludge treatment system. In particular, before the surplus sludge concentrator 14, there are few odor problems. The gravity concentration tank 11, the gravity concentration sludge storage tank 12, the sludge mixed storage tank 16 and the like can be deodorized by having a sealed structure, but the sludge dewatering device 17 is difficult to have a sealed structure, and the odor appear. On the other hand, in the present invention, deodorization is possible in most of the sludge treatment processes having a large odor generation problem by adjusting pH and adding nitrite.

亜硝酸塩の消臭作用は、(a)すでに発生している硫化水素、メチルメルカプタンなど、下水汚泥系の悪臭主因の硫黄系化合物の分解作用のほか、(b)腐敗細菌類の活動を停止させる静菌作用と考えられる。
汚泥スラリーの臭気発生防止、脱水ケーキの臭気発生防止は上記(b)の作用によると考えられる。このため脱水ケーキの臭気発生防止には、その脱水前の汚泥スラリーで、20mg/L程度以上の亜硝酸イオン濃度を少なくとも1時間、好ましくは3時間保持することが重要である。
The deodorizing action of nitrite includes (a) the decomposition action of sulfur compounds that are the main cause of odor of sewage sludge such as hydrogen sulfide, methyl mercaptan, etc., and (b) stop the activity of spoilage bacteria It is considered to be bacteriostatic.
It is thought that the odor generation prevention of the sludge slurry and the odor generation prevention of the dewatered cake are due to the action (b). For this reason, in order to prevent odor generation of the dehydrated cake, it is important to maintain a nitrite ion concentration of about 20 mg / L or more in the sludge slurry before dehydration for at least 1 hour, preferably 3 hours.

一方亜硝酸イオンは汚泥中の微生物で生物化学的に分解されるため、時間とともにその濃度は消費、減少し、消失する。この亜硝酸の消費速度はpHに依存し、pH中性では速く、pH低下に伴い速度低下し、pH4.5−4.7程度で最小値を記録する。 pH4.5以下では、再び速度上昇に転じるが、これは、生物化学的分解ではなく、亜硝酸の不安定化による化学分解と考えられる。初沈汚泥の腐敗・有機酸生成によるpH低下は、pH4.7程度まで速やかに進行し、その後のpH低下はほとんどなく、最低pHでも4.4程度である。したがって、本発明の初沈汚泥処理法で、亜硝酸塩の効果を最適化できる条件が初沈汚泥自体の性質を利用して得られる。   On the other hand, since nitrite ions are biochemically decomposed by microorganisms in the sludge, their concentrations are consumed, decreased, and disappear over time. The consumption rate of nitrous acid depends on pH, and is fast at neutral pH, decreases with decreasing pH, and records a minimum value at about pH 4.5-4.7. When the pH is 4.5 or less, the rate starts to increase again. This is not a biochemical decomposition but a chemical decomposition caused by destabilization of nitrous acid. The pH decrease due to the decay of the first settling sludge and the generation of the organic acid proceeds rapidly to about pH 4.7, there is almost no subsequent pH decrease, and the minimum pH is about 4.4. Therefore, the conditions for optimizing the effect of nitrite can be obtained by utilizing the properties of the primary sedimentation sludge itself in the primary sedimentation sludge treatment method of the present invention.

初沈汚泥を腐敗させpH5.3未満とした汚泥では、人為的に酸あるいは第二鉄塩でpH5.3未満とした汚泥に対し、pHが同じでも、前者の方が亜硝酸塩添加による臭気発生防止効果が優れる。この臭気防止効果向上の理由としては、次のことが考えられる。
1)pHは同じであっても酸の当量が多く、その分亜硝酸の生物分解速度を更に低下させている。
2)腐敗、酸性化の段階で、汚泥の微生物相の優先種等の変化を生じ、これが、亜硝酸塩の腐敗菌等の静菌作用を受けた後の微生物相の構成にも、人為的酸性化の場合との違いを生じ、結果として特に脱水ケーキの臭気発生防止効果を更に向上させた。
In the sludge whose pH is less than 5.3 by septicing the initial settling sludge, the former is more odorous by adding nitrite to the sludge which is less than pH 5.3 with acid or ferric salt, even if the pH is the same. Excellent prevention effect. The following can be considered as a reason for this odor prevention effect improvement.
1) Even if pH is the same, there are many equivalents of acid, and the biodegradation rate of nitrous acid is further reduced accordingly.
2) At the stage of spoilage and acidification, changes in the preferred species of sludge microflora occur, and this is also an artificial acidity in the composition of the microflora after receiving bacteriostatic action such as rot of nitrite. As a result, the effect of preventing odor generation of the dehydrated cake was further improved.

A下水処理場の最初沈殿汚泥および余剰汚泥を用いて、本発明の汚泥処理方法を実施した。A処理場は、図1のフローにおいて、余剰汚泥濃縮装置14は遠心濃縮機、汚泥脱水装置17はベルトプレス脱水機であり、脱水ケーキは焼却処理される処理プロセスとなっている。   The sludge treatment method of the present invention was carried out using the first settling sludge and excess sludge from the A sewage treatment plant. In the flow shown in FIG. 1, the surplus sludge concentrating device 14 is a centrifugal concentrator, the sludge dewatering device 17 is a belt press dewatering machine, and the dewatered cake is incinerated.

上記の処理プロセスにおいて、通常運転における初沈汚泥は、引抜きポンプをタイマーにより間欠運転して引抜いている。ポンプ稼動は2時間毎に5分間である。この初沈汚泥を、ポンプ稼動直後の0.5分後から1.0分後までに引抜かれる高濃度汚泥(以下、高濃度初沈汚泥(A1)と記す)と、同ポンプ稼動3.5分後から5分後のほとんど固形分のない汚泥(以下、低濃度初沈汚泥(A2)と記す)の両方の引抜き初沈汚泥を採取した。高濃度初沈汚泥の採取時pHは5.34、水温23℃、試験時分析SS濃度は3.03%であった。低濃度初沈汚泥の採取時pHは6.61、水温22℃、試験時分析SS濃度は0.14%であった。ポンプ稼動後半の汚泥固形分がなくなっている低濃度初沈汚泥の採取時の運転状況は、一般に最初沈殿池、およびこの汚泥が投入される重力濃縮槽の管理として推奨されている条件である。なおポンプ稼動5分間の平均濃度(算術平均値)は0.93%、同pH6.13であった。   In the above treatment process, the initial settling sludge in normal operation is extracted by intermittently operating the extraction pump with a timer. The pump runs every 5 hours for 5 minutes. This first settling sludge is extracted with high concentration sludge (hereinafter referred to as high concentration first settling sludge (A1)) from 0.5 minutes to 1.0 minute immediately after pump operation, and the pump operation 3.5. Both drawn sludges with almost no solid content (hereinafter referred to as low-concentration primary sedimentation sludge (A2)) after 5 minutes were collected. The pH of the high concentration initial sedimentation sludge was 5.34, the water temperature was 23 ° C., and the analysis SS concentration during the test was 3.03%. The pH of the low concentration initial sedimentation sludge was 6.61, the water temperature was 22 ° C., and the analysis SS concentration during the test was 0.14%. The operating conditions at the time of collecting low-concentration initial sedimentation sludge, in which the sludge solids in the latter half of the pump run out, are generally recommended conditions for managing the initial sedimentation basin and the gravity concentration tank into which this sludge is charged. The average concentration (arithmetic average value) of the pump for 5 minutes was 0.93% and the pH was 6.13.

上記の試験結果より、最初沈澱池で適度に滞留、濃縮し、汚泥pH低下させる設定条件として、最初沈殿池での滞留時間を想定して、高濃度初沈汚泥を22−23℃で所定時間保管して、調整汚泥とした。3時間保管したもの(以下、高濃度初沈3(A3)と記す)、8時間保管したもの(以下、高濃度初沈8(A4)と記す)、16時間保管したもの(以下、高濃度初沈16(A5)と記す)、24時間保管したもの(以下、高濃度初沈24(A6)と記す)を調整汚泥として用いた。   From the above test results, it is assumed that the residence time in the first sedimentation basin is set as a setting condition for appropriately retaining and concentrating in the first sedimentation basin and lowering the sludge pH. Stored as adjusted sludge. Those stored for 3 hours (hereinafter referred to as high concentration initial precipitation 3 (A3)), those stored for 8 hours (hereinafter referred to as high concentration initial precipitation 8 (A4)), those stored for 16 hours (hereinafter referred to as high concentration) First sedimentation 16 (A5)) and 24 hours storage (hereinafter referred to as high concentration first sedimentation 24 (A6)) were used as the adjusted sludge.

汚泥の準備:
高濃度最初沈殿汚泥(A1)1容量と、低濃度初沈汚泥(A2)2容量を混合し、300mmΦ、1.5m高さの試験重力濃縮槽で12時間濃縮し、濃縮汚泥(以下、室内重力濃縮汚泥(B)と記す)を得た。上記混合汚泥の重力濃縮前のpHは6.01、SS濃度は0.96%であり、重力濃縮後の汚泥pHは5.64、SS濃度は3.01%であった。またA処理場の重力濃縮槽引抜き汚泥(以下、実機重力濃縮汚泥(C)と記す)を採取した。その採取時pHは5.57、水温24℃で、SS濃度は3.17%であった。
Sludge preparation:
Mix 1 volume of high-concentration initial sedimentation sludge (A1) and 2 volumes of low-concentration primary sedimentation sludge (A2) and concentrate for 12 hours in a test gravity concentration tank of 300 mmΦ and 1.5 m height. Gravity-enriched sludge (B) is obtained. The mixed sludge had a pH before gravity concentration of 6.01 and an SS concentration of 0.96%, and the sludge after gravity concentration had a pH of 5.64 and an SS concentration of 3.01%. Moreover, the gravity concentration tank extraction sludge (hereinafter referred to as the actual gravity concentration sludge (C)) of the A treatment plant was collected. At the time of collection, the pH was 5.57, the water temperature was 24 ° C., and the SS concentration was 3.17%.

一方、濃縮余剰汚泥貯槽15から濃縮余剰汚泥(D)を採取し、前記高濃度初沈汚泥(A1)、高濃度初沈(A3)〜(A6)、室内重力濃縮汚泥(B)、または実設備重力濃縮汚泥(C)と混合して混合汚泥とした。濃縮余剰汚泥(D)採取時のpHは6.14、水温24℃で、SS濃度は3.32%であった。濃縮余剰汚泥(D)と、前記高濃度初沈汚泥(A1)、高濃度初沈(A3)〜(A6)、室内重力濃縮汚泥(B)、または実設備重力濃縮汚泥(C)との混合条件は、実設備実績に合わせて、容量比で濃縮余剰汚泥(D)35%、後7種の初沈系汚泥65%とした。   On the other hand, the concentrated excess sludge (D) is collected from the concentrated excess sludge storage tank 15, and the high concentration primary sedimentation sludge (A1), high concentration primary sedimentation (A3) to (A6), indoor gravity concentrated sludge (B), or actual It mixed with equipment gravity concentration sludge (C), and it was set as mixed sludge. At the time of collecting the concentrated excess sludge (D), the pH was 6.14, the water temperature was 24 ° C., and the SS concentration was 3.32%. Mixing of concentrated excess sludge (D) with the high-concentration primary sedimentation sludge (A1), high-concentration primary sedimentation (A3) to (A6), indoor gravity concentrated sludge (B), or actual equipment gravity concentrated sludge (C) The conditions were 35% concentrated excess sludge (D) by volume ratio and 65% of the first seven types of primary sedimentation sludge in accordance with the actual equipment performance.

上記の混合汚泥について、脱水試験を行った。汚泥採取から脱水試験開始までの時間は、高濃度最初沈殿汚泥が短い時間でpH低下が起こるので、採取後できるだけ早く試験を開始した。採取から試験開始までの時間は3時間であった。   The above mixed sludge was subjected to a dehydration test. The time from the sludge collection to the start of the dehydration test was such that the pH drop occurred in a short time in the high concentration first precipitated sludge, so the test was started as soon as possible after collection. The time from collection to the start of the test was 3 hours.

試験、評価方法:
1)試験汚泥、薬注汚泥の保管条件;
汚泥を気体不透過性の容量0.85Lの食品等保管袋(商品名:マイティーパック)に採取、密封し、振盪器で緩やかな攪拌を行った。室温は23℃に設定した。
Testing and evaluation methods:
1) Storage conditions for test sludge and chemical sludge;
The sludge was collected and sealed in a gas impermeable storage bag (product name: mighty pack) with a capacity of 0.85 L, and gently stirred with a shaker. The room temperature was set at 23 ° C.

2)汚泥スラリー臭気試験;
マイティーパック内の汚泥を約60mL取り出し、内50mLをシリンジで採取し、500mLポリエチレン瓶(全容積630mL)に取り、蓋をして、振盪器で2分間激しく振盪後、硫化水素およびメチルメルカプタン検知管にて、容器内のガス濃度を測定した。
2) Sludge slurry odor test;
About 60 mL of sludge in the Mighty pack is taken out, 50 mL of it is collected with a syringe, taken into a 500 mL polyethylene bottle (total volume 630 mL), covered, shaken vigorously for 2 minutes with a shaker, hydrogen sulfide and methyl mercaptan detector tube Then, the gas concentration in the container was measured.

3)脱水ケーキ調整条件;
所定の薬注、保管が完了した汚泥200mLを採取し、カチオン系高分子凝集剤クリフィックスCP111(栗田工業(株)製)溶液で凝集フロックを形成させ、重力ろ過を行い、その全量を、ろ布を介して0.04Mpaの圧力で120秒間圧搾脱水し、脱水ケーキを得た。なお、比較例10、11ではカチオン系凝集剤の凝集力が減退するため、両性高分子凝集剤クリベストP359(栗田工業(株)製)を併用して凝集操作を行った。
3) Dehydrated cake adjustment conditions;
Collect 200 mL of sludge after the prescribed chemical injection and storage, form aggregated flocs with the cationic polymer flocculant CLIFIX CP111 (manufactured by Kurita Kogyo Co., Ltd.), perform gravity filtration, and filter the total amount. The dehydrated cake was obtained by pressing and dewatering for 120 seconds at a pressure of 0.04 Mpa through a cloth. In Comparative Examples 10 and 11, the aggregating power of the cationic aggregating agent was decreased, so that the aggregating operation was performed using the amphoteric polymer aggregating agent Crivest P359 (manufactured by Kurita Kogyo Co., Ltd.).

4)脱水ケーキの保管条件;
脱水ケーキ全量(26gから28gの範囲)を、気体不透過性のガス採取袋(商品名:テドラーバック)の一端を切って入れ、切り口をヒートシーラーで塞ぎ、袋内には200mLの空気と500mLの窒素ガスを封入した。封入口を密閉し、この袋を30℃恒温器に保管した。
5)脱水ケーキ臭気の測定;
所定時間保管ケーキの袋内の硫化水素、メチルメルカプタンを検知管にて測定した。
4) Storage conditions for dehydrated cake;
Put the whole amount of dehydrated cake (range 26g to 28g) by cutting one end of a gas-impermeable gas sampling bag (trade name: Tedlar bag), plug the cut end with a heat sealer, and put 200mL of air and 500mL in the bag. Nitrogen gas was sealed. The sealing port was sealed, and this bag was stored in a 30 ° C. thermostat.
5) Measurement of dehydrated cake odor;
Hydrogen sulfide and methyl mercaptan in the bag of the cake stored for a predetermined time were measured with a detector tube.

6)添加薬剤の内容;
亜硝酸塩は、亜硝酸ナトリウム38%溶液を用い、初沈系汚泥に添加する場合は、亜硝酸イオンとして100mg/Lを添加し、混合汚泥に添加する場合は、65mg/Lを添加した。初沈系汚泥への添加量100mg/Lは、混合汚泥に対しては65mg/Lとなる。
塩化第二鉄(記載記号FC)、ポリ硫酸第二鉄(同PFS)、塩化アルミニウム(LAC)はいずれも液体製品を使用した。FCは鉄13%、PFSは鉄11%、LACはアルミナ(A1203)を10%含む製品である。添加は濃縮余剰汚泥に対して行い、実施例4、5、6について、汚泥pHがほぼ同じになるよう設定した。
6) Contents of the additive drug;
As the nitrite, a 38% sodium nitrite solution was used. When added to the primary sedimentation sludge, 100 mg / L was added as nitrite ions, and when added to the mixed sludge, 65 mg / L was added. The addition amount 100 mg / L to the primary sedimentation sludge is 65 mg / L for the mixed sludge.
Liquid products were all used for ferric chloride (description symbol FC), polyferric sulfate (PFS), and aluminum chloride (LAC). FC is a product containing 13% iron, PFS 11% iron, and LAC 10% alumina (A1203). The addition was performed on the concentrated surplus sludge, and the sludge pH was set to be substantially the same for Examples 4, 5, and 6.

7)亜硝酸イオンの分析;
前記2)のスラリー臭気試験の残り汚泥を前記カチオン系高分子凝集剤クリフィックスCP111で凝集し、清澄水を得て、亜硝酸イオン測定キット(メルク社製、商品名RQフレックス;日本での販売会社関東化学(株))にて計測した。
7) Analysis of nitrite ion;
The sludge remaining in the slurry odor test of 2) above is aggregated with the cationic polymer flocculant CLIFIX CP111 to obtain clear water, and a nitrite ion measurement kit (Merck Co., Ltd., trade name RQ Flex; sold in Japan) (Measured by Kanto Chemical Co., Inc.)

以下、参考例1〜2、比較例1〜2、実施例1〜7の脱水試験について述べるが、その試験条件および結果は表1〜2に示されている。   Hereinafter, although the dehydration test of Reference Examples 1-2, Comparative Examples 1-2, and Examples 1-7 is described, the test conditions and results are shown in Tables 1-2.

Figure 2007196141
Figure 2007196141

〔参考例1〜2〕:
参考例1は、濃縮余剰汚泥(D)と実設備重力濃縮汚泥(C)との混合汚泥、参考例2は、濃縮余剰汚泥(D)と室内重力濃縮汚泥(B)との混合汚泥を、亜硝酸イオンの添加なしで脱水処理した例である。臭気発生防止対策を行わない場合、初沈汚泥の重力濃縮汚泥からは振盪法で200−400ppmの硫化水素および10−20ppmのメチルメルカプタンが発生する。脱水ケーキでは1日以内に100ppm以上のメチルメルカプタンを発生し、耐えられない臭気となる。なお、臭気強度3(楽に感知できる臭い)となる濃度は硫化水素0.063ppm、メチルメルカプタン0.0041ppmで、メチルメルカプタンの方が硫化水素の15倍の悪臭影響がある。
[Reference Examples 1-2]:
Reference Example 1 is a mixed sludge of concentrated excess sludge (D) and actual equipment gravity concentrated sludge (C), Reference Example 2 is a mixed sludge of concentrated excess sludge (D) and indoor gravity concentrated sludge (B), This is an example of dehydration without adding nitrite ions. When no odor generation prevention measures are taken, 200-400 ppm of hydrogen sulfide and 10-20 ppm of methyl mercaptan are generated from the gravity-concentrated sludge of the first settling sludge by a shaking method. A dehydrated cake generates 100 ppm or more of methyl mercaptan within one day, resulting in an unbearable odor. The concentrations at which the odor intensity is 3 (a odor that can be easily detected) are 0.063 ppm of hydrogen sulfide and 0.0041 ppm of methyl mercaptan, and methyl mercaptan has a foul odor effect 15 times that of hydrogen sulfide.

〔比較例1〜2〕:
比較例1は実設備重力濃縮汚泥(C)、比較例2は室内重力濃縮汚泥(B)のいずれも濃度約3%の初沈濃縮汚泥に亜硝酸イオン100mg/Lを添加して、5時間貯留、保管後に、濃縮余剰汚泥(D)を混合し5時間貯留、保管し、脱水処理を行った。
比較例1〜2では亜硝酸イオン100mg/L添加後5時間で、亜硝酸イオンは消失し、濃縮余剰汚泥混合後の汚泥スラリーからは臭気発生する。脱水ケーキは、1日後は無処理の参考例1〜2に対し臭気が低減するものの、2日目以降では無処理と優位差がなく、激しい臭気発生を見る。

Figure 2007196141
[Comparative Examples 1-2]:
Comparative Example 1 is the actual equipment gravity concentrated sludge (C), and Comparative Example 2 is the indoor gravity concentrated sludge (B). After storage and storage, the concentrated excess sludge (D) was mixed, stored and stored for 5 hours, and dehydrated.
In Comparative Examples 1 and 2, nitrite ions disappear after 5 hours from the addition of 100 mg / L of nitrite ions, and odor is generated from the sludge slurry after mixing the concentrated excess sludge. Although the deodorized cake is reduced in odor compared to untreated Reference Examples 1 and 2 after 1 day, there is no significant difference from untreated after 2nd day, and intense odor generation is observed.
Figure 2007196141

〔実施例1、2、3、4〕:
実施例1は高濃度初沈3(A3)、実施例2は高濃度初沈8(A4)、実施例3は高濃度初沈16(A5)、実施例4は高濃度初沈24(A6)のいずれも濃度約3%の初沈汚泥に亜硝酸イオン100mg/Lを添加して、5時間貯留、保管後に、濃縮余剰汚泥(D)を混合し5時間貯留、保管し、脱水処理を行った。
実施例1では、最初沈殿汚泥のpHが5.28まで下がり、5時間後に亜硝酸イオンが残留し、濃縮汚泥混合後の臭気発生防止、脱水ケーキ臭気防止効果がある程度得られる。
初沈汚泥のpHを5未満とした実施例2〜4では、上記比較例1〜2に比し、5時間後に62mg/L以上の亜硝酸イオンが残留し、濃縮余剰汚泥混合後の汚泥スラリーの臭気発生を完全に防止する。そして脱水ケーキ臭気発生も1日以上防止、その効果は最初沈殿汚泥のpHを低くしておくほど大きい。
なお、硫化水素、メチルメルカプタンとも、10ppm以下を良好な臭気防止ができている評価、一方メチルメルカプタン100ppm以上を甚だしい悪臭が生じている状況と評価される。
[Examples 1, 2, 3, 4]:
Example 1 is high concentration initial precipitation 3 (A3), Example 2 is high concentration initial precipitation 8 (A4), Example 3 is high concentration initial precipitation 16 (A5), and Example 4 is high concentration initial precipitation 24 (A6). ) Add 100mg / L of nitrite ion to the initial sedimentation sludge with a concentration of about 3%, store and store for 5 hours, mix concentrated excess sludge (D), store and store for 5 hours, and perform dehydration treatment went.
In Example 1, the pH of the initially precipitated sludge falls to 5.28, and nitrite ions remain after 5 hours, and the effects of preventing odor generation and dehydrated cake odor after mixing the concentrated sludge are obtained to some extent.
In Examples 2 to 4 in which the pH of the initial settling sludge was less than 5, 62 mg / L or more of nitrite ions remained after 5 hours as compared with Comparative Examples 1 and 2, and the sludge slurry after mixing the concentrated excess sludge Completely prevents odor generation. And the generation of dehydrated cake odor is also prevented for more than one day, and the effect is greater as the pH of the precipitated sludge is initially lowered.
It should be noted that both hydrogen sulfide and methyl mercaptan are evaluated as being capable of satisfactorily preventing odors at 10 ppm or less, while those having methyl mercaptan as 100 ppm or more are evaluated as having a bad odor.

〔実施例5、6、7〕:
実施例5、6、7は、実施例2において、それぞれ濃縮余剰汚泥のpHを、塩化第二鉄(FC)、ポリ硫酸第二鉄(PFS)、塩化アルミニウム(LAC)にて下げ、初沈汚泥混合後のpHを5未満とした例である。この場合は、特に脱水ケーキの臭気発生防止効果が向上し、臭気発生防止期間が5日以上となる。
[Examples 5, 6, and 7]:
In Examples 5, 6, and 7, in Example 2, the pH of the concentrated excess sludge was lowered with ferric chloride (FC), polyferric sulfate (PFS), and aluminum chloride (LAC), respectively. In this example, the pH after mixing the sludge is less than 5. In this case, the odor generation preventing effect of the dehydrated cake is improved, and the odor generation preventing period is 5 days or longer.

以下、比較例3〜8、実施例8〜14の脱水試験について述べるが、その試験条件および結果は表3、表4に示されている。   Hereinafter, although the dehydration test of Comparative Examples 3-8 and Examples 8-14 is described, the test conditions and results are shown in Tables 3 and 4.

Figure 2007196141
Figure 2007196141

〔比較例3、4〕:
比較例3は実設備重力濃縮汚泥(C)、比較例4は室内重力濃縮汚泥(B)のいずれも濃度約3%の初沈濃縮汚泥に、それぞれ濃縮余剰汚泥(D)を混合した後、混合汚泥に亜硝酸イオン65mg/Lを添加して、5時間貯留、保管し、脱水処理を行った。
比較例1、2の最初沈殿汚泥に亜硝酸塩を添加し、その後濃縮余剰汚泥を混合した場合と比較すると、やや改善するが、混合汚泥スラリー5時間保管、脱水ケーキ1日保管とも臭気が発生し、効果は不満足である。
[Comparative Examples 3 and 4]:
Comparative Example 3 is the actual equipment gravity concentrated sludge (C), and Comparative Example 4 is the indoor gravity concentrated sludge (B), after mixing the concentrated excess sludge (D) with the primary sedimentation sludge having a concentration of about 3%. Nitrite ions 65 mg / L were added to the mixed sludge, stored and stored for 5 hours, and dehydrated.
Compared to the case where nitrite is added to the first precipitated sludge of Comparative Examples 1 and 2 and then the concentrated excess sludge is mixed, it is slightly improved, but the mixed sludge slurry is stored for 5 hours and dehydrated cake is stored for 1 day. The effect is unsatisfactory.

〔実施例8、9、10、11〕:
実施例8は高濃度初沈3(A3)、実施例9は高濃度初沈8(A4)、実施例10は高濃度初沈16(A5)、実施例11は高濃度初沈24(A6)のいずれも濃度約3%の初沈濃縮汚泥に、それぞれ濃縮余剰汚泥(D)を混合した後、混合汚泥に亜硝酸イオン65mg/Lを添加して、5時間貯留、保管し、脱水処理を行った。
初沈汚泥pHを5未満とした実施例9、10、11では実施例3、4と同様に、ケーキ臭気発生防止期間が2日以上となった。
初沈濃縮汚泥がpH5.18の実施例8では、混合汚泥スラリー臭気を5時間以上防止し、脱水ケーキ臭気発生も1日まで防止するが、pH5未満とした実施例9、10、11では、ケーキ臭気発生防止期間が2日以上となり、効果が大きく向上する。

Figure 2007196141
[Examples 8, 9, 10, 11]:
Example 8 is high concentration initial precipitation 3 (A3), Example 9 is high concentration initial precipitation 8 (A4), Example 10 is high concentration initial precipitation 16 (A5), and Example 11 is high concentration initial precipitation 24 (A6). In each case, after mixing concentrated excess sludge (D) with primary sedimentation sludge with a concentration of about 3%, nitrite ions 65 mg / L are added to the mixed sludge, stored and stored for 5 hours, and dehydrated. Went.
In Examples 9, 10, and 11 where the initial sludge pH was less than 5, the cake odor generation prevention period was 2 days or longer as in Examples 3 and 4.
In Example 8 where the primary sediment concentration sludge has a pH of 5.18, mixed sludge slurry odor is prevented for 5 hours or more and dehydrated cake odor generation is also prevented for up to 1 day, but in Examples 9, 10 and 11 where the pH is less than 5, The cake odor generation prevention period is 2 days or more, and the effect is greatly improved.
Figure 2007196141

〔実施例12、13、14〕:
実施例12、13、14は、実施例9において、それぞれ混合汚泥のpHを、塩化第二鉄(FC)、ポリ硫酸第二鉄(PFS)、塩化アルミニウム(LAC)にて下げ、初沈汚泥混合後のpHを5未満とした例である。すなわち濃縮余剰汚泥のpHをFC、PFS、LACで4.7とし、pH5未満の最初沈殿汚泥と混合し、混合汚泥pH5未満で亜硝酸塩を添加した場合であり、脱水ケーキ臭気発生を5日以上防止した。
[Examples 12, 13, and 14]:
In Examples 12, 13, and 14, in Example 9, the pH of the mixed sludge was lowered with ferric chloride (FC), polyferric sulfate (PFS), and aluminum chloride (LAC), respectively. In this example, the pH after mixing is less than 5. That is, when the pH of the concentrated excess sludge is 4.7 with FC, PFS, and LAC, mixed with the first precipitated sludge with a pH of less than 5, and nitrite is added with the mixed sludge with a pH of less than 5, the generation of dehydrated cake odor occurs for more than 5 days. Prevented.

〔比較例5、6、7、8〕:
比較例5、6、7、8は、室内重力濃縮汚泥(B)のいずれも濃度約3%の初沈濃縮汚泥に、それぞれ濃縮余剰汚泥(D)を混合した後、濃縮余剰汚泥にFCまたはLACを添加し、混合汚泥pHを低下させた比較例である。混合汚泥pH5未満とした、比較例6、7、8では、脱水ケーキの臭気発生防止効果は2日までである。これに対し、前記実施例10、11は、濃縮余剰汚泥混合後pHが5.05、4.97と、比較例6、7、8よりやや高いか同等であるのに、3日および5日以上の臭気発生防止効果がある。
[Comparative Examples 5, 6, 7, 8]:
In Comparative Examples 5, 6, 7, and 8, each of the indoor gravity concentrated sludges (B) was mixed with the primary settled sludge having a concentration of about 3% and the concentrated excess sludge (D), respectively, and then the concentrated excess sludge was FC or This is a comparative example in which LAC was added to lower the mixed sludge pH. In Comparative Examples 6, 7, and 8 where the mixed sludge has a pH of less than 5, the effect of preventing the odor generation of the dehydrated cake is up to 2 days. On the other hand, in Examples 10 and 11, the pH after mixing of the concentrated excess sludge was 5.05 and 4.97, which is slightly higher than or equal to Comparative Examples 6, 7, and 8, but 3 days and 5 days. There is an effect of preventing the above odor generation.

〔実施例5、6、7の溶解性りん固定効果〕
参考例2、比較例2ならびに実施例2〜7における溶解性りん(PO−P) 測定した結果を表5、表6に示し、実施例5〜7の固定りん(PO−P)を測定した結果を表6に示す。
実施例5、6、7において、混合汚泥pHを5未満とするために添加したFC、PFS、LACは、pH低下効果のみならず、汚泥中の溶解性りん(PO−P)を固定する効果を有することが示されている。
この結果、汚泥脱水ろ液の溶解性りんを削減する目的で、上記無機凝集剤を使用する場合の除去効率(添加金属1モル当たりで固定削減できるりんモル数)は概ね0.65であるが、本発明はそれと同等以上のりん削減効果を有することが分かる。
[Solubility Phosphorus Fixation Effect of Examples 5, 6, and 7]
Solubilized phosphorus (PO 4 -P) in Reference Example 2, Comparative Example 2 and Examples 2 to 7 The measurement results are shown in Tables 5 and 6, and the fixed phosphorus (PO 4 -P) in Examples 5 to 7 is shown. Table 6 shows the measurement results.
In Examples 5, 6, and 7, FC, PFS, and LAC added to make the mixed sludge pH less than 5 fix not only the pH lowering effect but also soluble phosphorus (PO 4 -P) in the sludge. It has been shown to have an effect.
As a result, for the purpose of reducing the soluble phosphorus in the sludge dehydrated filtrate, the removal efficiency when using the inorganic flocculant (number of moles of phosphorus that can be fixed and reduced per mole of added metal) is approximately 0.65. It can be seen that the present invention has a phosphorus reduction effect equivalent to or higher than that.

Figure 2007196141
Figure 2007196141

Figure 2007196141
Figure 2007196141

有機性排水の処理場で発生する初沈汚泥またはその濃縮汚泥と、濃縮余剰汚泥を混合して脱水処理する汚泥処理方法、特に汚泥に亜硝酸塩を添加することにより、臭気の発生を効果的に防止することができる汚泥処理方法に利用できる。   A sludge treatment method that mixes dewatered primary sludge generated in an organic wastewater treatment plant or concentrated sludge with concentrated excess sludge, especially by adding nitrite to the sludge, thereby effectively generating odor. It can be used in sludge treatment methods that can be prevented.

実施形態の汚泥処理方法を示すフロー図である。It is a flowchart which shows the sludge processing method of embodiment.

符号の説明Explanation of symbols

1 最初沈澱池、2 好気性反応槽、3 最終沈澱池、4 原水、5 分離液、6 反応液、7 処理水、8 返送汚泥、9余剰汚泥、10 初沈汚泥、11 重力濃縮槽、12 重力濃縮汚泥貯槽、13 余剰汚泥貯槽、14 余剰汚泥濃縮装置、15 濃縮余剰汚泥貯槽、16 汚泥混合貯槽、17 汚泥脱水装置、18 脱水ケーキ貯槽、19 焼却炉 1 First sedimentation basin, 2 Aerobic reaction tank, 3 Final sedimentation tank, 4 Raw water, 5 Separation liquid, 6 Reaction liquid, 7 Treated water, 8 Return sludge, 9 Surplus sludge, 10 Initial sedimentation sludge, 11 Gravity concentration tank, 12 Gravity-concentrated sludge storage tank, 13 surplus sludge storage tank, 14 surplus sludge concentrator, 15 concentrated surplus sludge storage tank, 16 sludge mixing storage tank, 17 sludge dewatering device, 18 dehydrated cake storage tank, 19 incinerator

Claims (6)

排水処理で発生する初沈汚泥またはその濃縮汚泥と、余剰汚泥またはその濃縮汚泥とを混合して脱水処理する汚泥処理方法であって、
初沈汚泥またはその濃縮汚泥を酸性腐敗させることにより、生成する有機酸によって汚泥の平均pHを5.3未満に調整する汚泥調整工程と、
調整汚泥と余剰汚泥またはその濃縮汚泥とを混合する汚泥混合工程と、
調整汚泥、余剰汚泥、その濃縮汚泥または混合汚泥に亜硝酸塩を添加する亜硝酸塩添加工程と、
亜硝酸塩添加汚泥を脱水処理する脱水処理工程と
を含む汚泥処理方法。
A sludge treatment method in which a primary sludge generated by wastewater treatment or its concentrated sludge and excess sludge or its concentrated sludge are mixed and dehydrated,
A sludge adjustment step of adjusting the average pH of the sludge to less than 5.3 by the organic acid produced by acidifying the first settling sludge or its concentrated sludge;
A sludge mixing step of mixing the adjusted sludge and excess sludge or its concentrated sludge;
A nitrite addition step of adding nitrite to the adjusted sludge, surplus sludge, its concentrated sludge or mixed sludge,
And a dehydration process for dehydrating nitrite-added sludge.
汚泥調整工程が、最初沈澱池における引き抜き初沈汚泥の平均SS濃度が2重量%以上になるように滞留、濃縮して、濃縮汚泥を酸性腐敗させ、濃縮汚泥のpHを低下させる工程を含む請求項1記載の方法。 The sludge adjustment step includes a step of staying and concentrating so that the average SS concentration of the initially-settled initial sludge in the first sedimentation basin is 2% by weight or more, acidifying the concentrated sludge, and lowering the pH of the concentrated sludge. Item 2. The method according to Item 1. 汚泥調整工程が、引き抜き初沈汚泥を貯留し、さらに酸性腐敗を進行させてpH5未満に調整する工程を含む請求項1または2記載の方法。 The method according to claim 1 or 2, wherein the sludge adjusting step includes a step of storing the extracted initially settled sludge and further adjusting the pH to less than 5 by advancing acidic decay. 調整汚泥に亜硝酸塩を添加し、亜硝酸塩を添加した調整汚泥と余剰汚泥またはその濃縮汚泥とを汚泥混合工程で混合する請求項1ないし3のいずれかに記載の方法。 The method according to any one of claims 1 to 3, wherein nitrite is added to the adjusted sludge, and the adjusted sludge to which nitrite is added and the excess sludge or the concentrated sludge are mixed in the sludge mixing step. 汚泥混合工程で調整汚泥と余剰汚泥またはその濃縮汚泥とを混合した後、混合汚泥に亜硝酸塩を添加する請求項1ないし3のいずれかに記載の方法。 The method according to any one of claims 1 to 3, wherein nitrite is added to the mixed sludge after the adjusted sludge and the excess sludge or the concentrated sludge thereof are mixed in the sludge mixing step. 調整汚泥、濃縮余剰汚泥または混合汚泥に第二鉄塩またはアルミニウム塩を添加する汚泥pH低下工程をさらに含む請求項1ないし5のいずれかに記載の方法。 The method according to any one of claims 1 to 5, further comprising a sludge pH lowering step of adding ferric salt or aluminum salt to the adjusted sludge, concentrated excess sludge or mixed sludge.
JP2006018108A 2006-01-26 2006-01-26 Sludge treatment method Pending JP2007196141A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006018108A JP2007196141A (en) 2006-01-26 2006-01-26 Sludge treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006018108A JP2007196141A (en) 2006-01-26 2006-01-26 Sludge treatment method

Publications (1)

Publication Number Publication Date
JP2007196141A true JP2007196141A (en) 2007-08-09

Family

ID=38451266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006018108A Pending JP2007196141A (en) 2006-01-26 2006-01-26 Sludge treatment method

Country Status (1)

Country Link
JP (1) JP2007196141A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0250850A (en) * 1988-08-12 1990-02-20 Tokyo Electric Co Ltd Printing control method of thermal printer
JP2013166108A (en) * 2012-02-15 2013-08-29 Kurita Water Ind Ltd Deodorizing method and deodorant kit
JP2015073950A (en) * 2013-10-09 2015-04-20 神鋼環境メンテナンス株式会社 Organic waste water treatment plant, and method for operating the same
JP2016022421A (en) * 2014-07-18 2016-02-08 栗田工業株式会社 Sludge treatment method
JP2019005676A (en) * 2017-06-20 2019-01-17 栗田工業株式会社 Method of managing sludge treatment
CN112110622A (en) * 2020-09-08 2020-12-22 天津壹新环保工程有限公司 Sludge sterilization treatment device and process

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0250850A (en) * 1988-08-12 1990-02-20 Tokyo Electric Co Ltd Printing control method of thermal printer
JP2013166108A (en) * 2012-02-15 2013-08-29 Kurita Water Ind Ltd Deodorizing method and deodorant kit
JP2015073950A (en) * 2013-10-09 2015-04-20 神鋼環境メンテナンス株式会社 Organic waste water treatment plant, and method for operating the same
JP2016022421A (en) * 2014-07-18 2016-02-08 栗田工業株式会社 Sludge treatment method
JP2019005676A (en) * 2017-06-20 2019-01-17 栗田工業株式会社 Method of managing sludge treatment
JP7005956B2 (en) 2017-06-20 2022-01-24 栗田工業株式会社 Sludge treatment management method
CN112110622A (en) * 2020-09-08 2020-12-22 天津壹新环保工程有限公司 Sludge sterilization treatment device and process

Similar Documents

Publication Publication Date Title
Burton The potential contribution of separation technologies to the management of livestock manure
US4108771A (en) Elimination of odors from organic wastes
US7566400B2 (en) Wastewater chemical/biological treatment method and apparatus
US20060273044A1 (en) Chemical treatment for control of sulfide odors in waste materials
US20090255863A1 (en) Wastewater treatment apparatus
Díaz et al. Robustness of the microaerobic removal of hydrogen sulfide from biogas
JP2007196141A (en) Sludge treatment method
KR100707975B1 (en) Treatment method for livestock waste water including highly concentrated organic materials
JP6376951B2 (en) Phosphorus recovery equipment and phosphorus recovery method
WO2014103549A1 (en) Method for treating sewage
JP2002028696A (en) Method for treating sludge
CN107814461A (en) The processing unit and method of a kind of cyanide containing wastewater
JP3605821B2 (en) Deodorizer and method for deodorizing cake
US20220281765A1 (en) Compositions and method for wastewater treatment
JP3856218B2 (en) Startup method of activated sludge treatment equipment
JP2007196172A (en) Liquid extract of humic substance, solidifying agent, concentrating agent and method for treating organic waste water by using them
JPH10323685A (en) Biological odorproofing deodorization method and excess-sludge digestion volume reduction method
JP3059944B2 (en) Wastewater purification method
JP3059945B2 (en) Improvement method of purification treatment equipment
JP3181521B2 (en) Water treatment method and water treatment device
JP5963656B2 (en) Sludge treatment apparatus and phosphorus production method
JP2000140894A (en) Equipment for treatment of sludge
JP2004216252A (en) Method for suppressing odor of dehydrated sludge cake
CN207596671U (en) A kind of processing unit of cyanide containing wastewater
JP2000351000A (en) Deodorant for dewatered sludge cake and method for preventing generation of odor