WO2023181430A1 - Metal salt aggregating agent - Google Patents
Metal salt aggregating agent Download PDFInfo
- Publication number
- WO2023181430A1 WO2023181430A1 PCT/JP2022/023668 JP2022023668W WO2023181430A1 WO 2023181430 A1 WO2023181430 A1 WO 2023181430A1 JP 2022023668 W JP2022023668 W JP 2022023668W WO 2023181430 A1 WO2023181430 A1 WO 2023181430A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- metal salt
- ions
- salt flocculant
- flocculant
- water
- Prior art date
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 106
- 239000002184 metal Substances 0.000 title claims abstract description 106
- 150000003839 salts Chemical class 0.000 title claims abstract description 106
- 230000004931 aggregating effect Effects 0.000 title abstract 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 84
- -1 aluminum ions Chemical class 0.000 claims abstract description 55
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims abstract description 48
- 229910052742 iron Inorganic materials 0.000 claims abstract description 46
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims abstract description 35
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 31
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 10
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims abstract description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 79
- 239000010802 sludge Substances 0.000 claims description 49
- 241000588724 Escherichia coli Species 0.000 claims description 37
- 238000000034 method Methods 0.000 claims description 35
- 239000002351 wastewater Substances 0.000 claims description 19
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 17
- 244000000010 microbial pathogen Species 0.000 claims description 14
- 230000001877 deodorizing effect Effects 0.000 claims description 12
- 230000005484 gravity Effects 0.000 claims description 8
- 239000003638 chemical reducing agent Substances 0.000 claims description 2
- 239000012024 dehydrating agents Substances 0.000 claims description 2
- 239000002781 deodorant agent Substances 0.000 claims description 2
- 239000000460 chlorine Substances 0.000 abstract description 26
- 229910052801 chlorine Inorganic materials 0.000 abstract description 13
- 238000002156 mixing Methods 0.000 abstract description 9
- 238000003860 storage Methods 0.000 abstract description 9
- 239000007788 liquid Substances 0.000 abstract description 4
- 239000002699 waste material Substances 0.000 abstract description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract 1
- 229910052593 corundum Inorganic materials 0.000 abstract 1
- 229910001845 yogo sapphire Inorganic materials 0.000 abstract 1
- 239000000126 substance Substances 0.000 description 30
- 239000008394 flocculating agent Substances 0.000 description 22
- 239000003814 drug Substances 0.000 description 21
- 239000010865 sewage Substances 0.000 description 21
- 238000012360 testing method Methods 0.000 description 20
- 229940079593 drug Drugs 0.000 description 19
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 18
- 230000000694 effects Effects 0.000 description 17
- 238000002347 injection Methods 0.000 description 14
- 239000007924 injection Substances 0.000 description 14
- KCZFLPPCFOHPNI-UHFFFAOYSA-N alumane;iron Chemical compound [AlH3].[Fe] KCZFLPPCFOHPNI-UHFFFAOYSA-N 0.000 description 13
- 238000006243 chemical reaction Methods 0.000 description 12
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 11
- 238000011156 evaluation Methods 0.000 description 11
- 230000009467 reduction Effects 0.000 description 11
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 10
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 10
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 10
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 10
- 229910052698 phosphorus Inorganic materials 0.000 description 10
- 239000011574 phosphorus Substances 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- 229910052757 nitrogen Inorganic materials 0.000 description 9
- 238000004062 sedimentation Methods 0.000 description 9
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 7
- 238000005189 flocculation Methods 0.000 description 7
- 230000016615 flocculation Effects 0.000 description 7
- 239000000701 coagulant Substances 0.000 description 6
- 230000018044 dehydration Effects 0.000 description 6
- 238000006297 dehydration reaction Methods 0.000 description 6
- 229910021645 metal ion Inorganic materials 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 239000006228 supernatant Substances 0.000 description 6
- 150000001768 cations Chemical class 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000003311 flocculating effect Effects 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 238000004065 wastewater treatment Methods 0.000 description 5
- 241000894006 Bacteria Species 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 238000004659 sterilization and disinfection Methods 0.000 description 4
- 230000001629 suppression Effects 0.000 description 4
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 3
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000004332 deodorization Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000001879 gelation Methods 0.000 description 3
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 3
- 239000011259 mixed solution Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- 230000000249 desinfective effect Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000010797 grey water Substances 0.000 description 2
- 239000010800 human waste Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 235000014413 iron hydroxide Nutrition 0.000 description 2
- NCNCGGDMXMBVIA-UHFFFAOYSA-L iron(ii) hydroxide Chemical compound [OH-].[OH-].[Fe+2] NCNCGGDMXMBVIA-UHFFFAOYSA-L 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 244000052769 pathogen Species 0.000 description 2
- 230000001717 pathogenic effect Effects 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- 238000009287 sand filtration Methods 0.000 description 2
- LPXPTNMVRIOKMN-UHFFFAOYSA-M sodium nitrite Chemical compound [Na+].[O-]N=O LPXPTNMVRIOKMN-UHFFFAOYSA-M 0.000 description 2
- JLPUXFOGCDVKGO-TUAOUCFPSA-N (-)-geosmin Chemical compound C1CCC[C@]2(O)[C@@H](C)CCC[C@]21C JLPUXFOGCDVKGO-TUAOUCFPSA-N 0.000 description 1
- 239000001075 (4R,4aR,8aS)-4,8a-dimethyl-1,2,3,4,5,6,7,8-octahydronaphthalen-4a-ol Substances 0.000 description 1
- 239000004912 1,5-cyclooctadiene Substances 0.000 description 1
- LFYXNXGVLGKVCJ-FBIMIBRVSA-N 2-methylisoborneol Chemical compound C1C[C@@]2(C)[C@](C)(O)C[C@@H]1C2(C)C LFYXNXGVLGKVCJ-FBIMIBRVSA-N 0.000 description 1
- LFYXNXGVLGKVCJ-UHFFFAOYSA-N 2-methylisoborneol Natural products C1CC2(C)C(C)(O)CC1C2(C)C LFYXNXGVLGKVCJ-UHFFFAOYSA-N 0.000 description 1
- 241000223935 Cryptosporidium Species 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 241001263478 Norovirus Species 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229940037003 alum Drugs 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- JLPUXFOGCDVKGO-UHFFFAOYSA-N dl-geosmin Natural products C1CCCC2(O)C(C)CCCC21C JLPUXFOGCDVKGO-UHFFFAOYSA-N 0.000 description 1
- DTGKSKDOIYIVQL-UHFFFAOYSA-N dl-isoborneol Natural products C1CC2(C)C(O)CC1C2(C)C DTGKSKDOIYIVQL-UHFFFAOYSA-N 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000012851 eutrophication Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 235000003891 ferrous sulphate Nutrition 0.000 description 1
- 239000011790 ferrous sulphate Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 229930001467 geosmin Natural products 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 1
- RUTXIHLAWFEWGM-UHFFFAOYSA-H iron(3+) sulfate Chemical compound [Fe+3].[Fe+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O RUTXIHLAWFEWGM-UHFFFAOYSA-H 0.000 description 1
- 229910000359 iron(II) sulfate Inorganic materials 0.000 description 1
- 229910000360 iron(III) sulfate Inorganic materials 0.000 description 1
- 239000002075 main ingredient Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 235000010288 sodium nitrite Nutrition 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/52—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
- C02F1/5236—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
- C02F1/5245—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents using basic salts, e.g. of aluminium and iron
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L9/00—Disinfection, sterilisation or deodorisation of air
- A61L9/01—Deodorant compositions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D21/00—Separation of suspended solid particles from liquids by sedimentation
- B01D21/01—Separation of suspended solid particles from liquids by sedimentation using flocculating agents
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/52—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F11/00—Treatment of sludge; Devices therefor
- C02F11/12—Treatment of sludge; Devices therefor by de-watering, drying or thickening
- C02F11/14—Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents
- C02F11/143—Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents using inorganic substances
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/26—Nature of the water, waste water, sewage or sludge to be treated from the processing of plants or parts thereof
- C02F2103/28—Nature of the water, waste water, sewage or sludge to be treated from the processing of plants or parts thereof from the paper or cellulose industry
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2303/00—Specific treatment goals
- C02F2303/02—Odour removal or prevention of malodour
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2303/00—Specific treatment goals
- C02F2303/04—Disinfection
Definitions
- the present invention relates to metal salt flocculants and various chemicals containing iron ions and aluminum ions used in wastewater treatment.
- the present invention also relates to a metal salt flocculant and various drugs that also have the effect of removing E. coli.
- iron-based and aluminum-based metal salt flocculants are applied to the water being treated to improve the quality of effluent water, reduce the amount of waste, ensure smooth operation, and extend the life of the facility. It is used by inserting it into the Typical iron-based flocculants include ferric chloride, polyferric sulfate, and ferrous sulfate solutions, and aluminum-based flocculants include aluminum sulfate, aluminum chloride, and polyaluminum chloride. .
- Ferric polysulfate is one of the representative examples of iron-based inorganic flocculants, and is widely used in sewage treatment plants and human waste treatment because it has deodorizing and dephosphorizing effects.
- Polyferric sulfate is represented by the general formula ([Fe 2 (OH)n(SO 4 ) 3-n/2 ]m, where 0 ⁇ n ⁇ 2, m is a natural number), and is composed of ferric sulfate, which is an iron-based raw material. It can be obtained by a method such as adding sodium nitrite and an oxidizing agent as a catalyst to a monoferric (FeSO 4 ) solution to allow an oxidation reaction to proceed (Patent Document 1).
- Polyaluminum chloride (commonly known as PAC) is one of the representative examples of aluminum-based inorganic flocculants.It has a high ability to treat suspended solids and soluble organic matter, has a wide optimum pH range, and is not affected by water temperature. It is widely used in water treatment plants because it is possible to reduce the concentration of coagulant added and the water after treatment is not colored.
- inorganic flocculants with a high concentration of the main inorganic component have a higher flocculating effect, which makes it possible to reduce the amount of chemicals used and is also advantageous in terms of transportation.
- polyferric sulfate a higher concentration (total iron concentration of 12.5% or more) compared to regular products (total iron concentration of 11.0 to 12.5%) and reducing the water content, , has high flocculation ability and dewatering ability, and can reduce product transportation costs.
- Patent Documents 5 and 6 disclose a method for producing a highly basic aluminum chloride solution with an Al 2 O 3 concentration of 5 to 25 wt%
- Patent Document 6 discloses a method for producing a highly basic aluminum chloride solution with an Al 2 O 3 concentration of 16 to 25%.
- a highly concentrated flocculant containing aluminum as a main ingredient is disclosed.
- Patent Documents 7 and 8 disclose an inorganic flocculant having an Al/Fe weight ratio of 1/30 to 1/2
- Patent Document 8 discloses an iron-containing flocculant having an Al/Fe molar ratio of 0.06 to 1.0. Discloses a flocculant using waste hydrochloric acid.
- a metal salt flocculant containing iron ions and aluminum ions is that adding iron-based polyferric sulfate to reducing wastewater may cause some coloring, so to prevent this, aluminum chloride or It is known to use a flocculant containing sulfuric acid. Additionally, in paper factories and the like, iron-based flocculants are sometimes mixed with the aluminum-based chemicals that are mainly used in order to impart a deodorizing effect. However, it is known that problems may occur depending on the combination. For example, a combination of aluminum chloride and ferric polysulfate provides a high aggregation effect, but is highly corrosive and has storage stability problems such as alum precipitation due to temperature drop.
- Patent Documents 7 and 8 Furthermore, in metal salt flocculants containing iron ions and aluminum ions, in Patent Documents 7 and 8, the main cation is iron ions, but metal salt flocculants with a composition in which aluminum ions are present in a large amount relative to iron ions are used. The preparation of the iron-containing polyaluminum chloride has not been previously reported.
- the first objective of the present invention is to mix and combine polyferric sulfate and polyaluminum chloride, both of which are known to have high flocculation ability, compared to when each is used alone.
- a second object of the present invention is to provide a metal salt flocculant that also has the effect of removing E. coli.
- the metal salt flocculant of the present invention is composed of the following technical means.
- a metal salt flocculant in which the total content of aluminum ions and iron ions is 5.7 moles or less in 1 liter of the metal salt flocculant, and the molar ratio of chloride ions to iron ions (Cl/ Fe) is 28 or more, the molar ratio of aluminum ions (SO 4 /Al 2 O 3 ) in terms of sulfate ions and aluminum oxide is 0.15 or less, and the removal rate of E. coli is higher than 83%. Flocculant.
- [2] The metal salt flocculant according to [1], wherein the molar ratio of chloride ions to iron ions (Cl/Fe) is 50 or more and 104 or less.
- the metal salt flocculant according to [1] or [2] which has an E. coli removal rate of higher than 90%.
- the metal salt flocculant according to [1] or [2] which has a pH of 3.7 to 4.2 (100 times diluted solution) and a specific gravity of 1.35 to 1.45.
- [6] A water quality improving agent containing the metal salt flocculant according to [1] or [2].
- a method for treating sludge wastewater comprising the step of adding the metal salt flocculant according to [1] or [2] to sludge wastewater.
- a method for purifying and deodorizing water the method comprising the step of adding the metal salt flocculant described in [1] or [2] to water in which pathogenic microorganisms are thought to be present.
- the metal salt flocculant of the present invention by mixing and combining polyferric sulfate and polyaluminum chloride, which are known to have a high flocculating ability, the metal salt flocculant has a high flocculating ability.
- a metal salt flocculant containing iron ions and aluminum ions which has excellent storage stability and can be applied to a wide range of treated wastewater having various characteristics.
- a metal salt flocculant which, in addition to the above-mentioned effects, further has an E. coli removing effect.
- FIG. 1 is a processing flow diagram of a sewage treatment plant (actual test field 1).
- FIG. 2 is a processing flow diagram of a sewage treatment plant (actual test field 2).
- FIG. 3 is a diagram showing the sludge capacity index (SVI) of the reaction tank.
- FIG. 4 is a diagram showing the change in TP concentration in the final sedimentation tank overflow water.
- Metal salt flocculant 1 The present inventors have discovered that by adding and mixing a predetermined amount of polyferric sulfate to polyaluminum chloride, a metal containing iron ions and aluminum ions has high storage stability and excellent water treatment performance. It was discovered that a salt flocculant can be obtained.
- the present invention provides a metal salt flocculant in which the total content of aluminum ions and iron ions is 5.7 moles or less in 1 liter of the metal salt flocculant, and the molar ratio of chloride ions to iron ions is (Cl/Fe) is 28 or more, and the molar ratio of aluminum ions (SO 4 /Al 2 O 3 ) in terms of sulfate ions and aluminum oxide is 0.15 or less.
- the gelation reaction of the polyaluminum chloride proceeds as the pH decreases.
- iron ions in the ferric polysulfate generate iron hydroxide and become insolubilized as the pH increases.
- sulfate ions necessary for stabilizing polyaluminum chloride are replenished and gelation is suppressed.
- stability can be maintained for iron ions in ferric polysulfate by reducing the supply of alkali.
- whether a water treatment agent can exist stably in a solution state (storage stability) is often determined by the cation concentration and the molar ratio of anions to cations.
- polyaluminum chloride as a flocculant often contains sulfate ions, and it is thought that these sulfate ions contribute to the flocculating properties and chemical stability of polyaluminum chloride.
- the chemical stability of the mixed solution is not only improved, but although it has not been confirmed.
- the proportion of a certain polynuclear complex may be high, and this may contribute to the improvement of the water treatment properties of the metal salt flocculant of the present invention. We estimate that it may be contributing.
- the metal salt flocculant of the present invention is a flocculant that has significant effects over a wide range of areas.
- the polyaluminum chloride used in the present invention preferably has an Al concentration in the range of 2 to 6 mol/L.
- the Fe concentration of the ferric polysulfate is preferably in the range of 2 to 4 mol/L. If the amount of ferric polysulfate added is small, the stability of the iron-containing polyaluminum chloride will be poor and it will not be possible to exhibit good flocculation ability. Moreover, if the amount added is large, the hydrolysis of the ferric polysulfate will progress and iron-based precipitates will precipitate as a by-product, which is not preferable.
- the metal salt flocculant obtained in the present invention preferably has a pH of 3.7 to 4.2 (100 times diluted solution) and a specific gravity of 1.35 to 1.45.
- the metal salt flocculant obtained by mixing is not only effective as a flocculant, but also has excellent performance in removing phosphorus, nitrogen, COD, or SS, and is effective in deodorization, dehydration, color reduction, bacteria and virus removal, and fluorine. It also has excellent performance in removing TOC. Therefore, by taking advantage of these properties, it can be used not only as a flocculant but also as a wide variety of wastewater treatment agents.
- the metal salt flocculant according to the first embodiment can be injected with the same equipment as ordinary polyaluminum chloride, as is clear from the actual machine test in the chromaticity reduction test described below. Additionally, since the amount of medicine used can be reduced, the frequency of transportation and reception by lorries will be reduced. This leads to reductions in required labor and personnel costs.
- Metal salt flocculant 2 Although the present invention has been mainly described with respect to the metal salt flocculant according to the first embodiment, the present invention is not limited to the above content. The differences from the metal salt flocculant according to the first embodiment will be mainly explained.
- metal salt flocculants in addition to the above-mentioned basic performance, also have the function of an E. coli remover. .
- the metal salt flocculant according to the second embodiment is a metal salt flocculant in which the total content of aluminum ions and iron ions is 5.7 mol or less in 1 liter of the metal salt flocculant.
- the molar ratio of chloride ions to iron ions (Cl/Fe) is 28 or more
- the molar ratio of aluminum ions (SO 4 /Al 2 O 3 ) in terms of sulfate ions and aluminum oxide is 0.15 or less
- E. coli The present invention relates to a metal salt flocculant having a removal rate of higher than 83%.
- sludge settling, etc. and E. coli removal can be performed in one step using one type of chemical, thereby simplifying the entire water treatment process. can. Furthermore, by making the chemicals used for water treatment multi-functional, the amount of chemicals used in the overall water treatment can be suppressed, and as a result, the energy required for transporting the chemicals can be reduced.
- the area has a high concentration of chlorine ions.
- the molar ratio of chloride ions to iron ions is preferably 28 or more, more preferably 50 or more and 104 or less. This is because if it is less than 28, the chemical stability of the drug is low and iron hydroxide is precipitated. This is because if it exceeds 104, side effects due to the coexistence of iron ions will be reduced, and there is a risk that residual chlorine contained in the treated water will be in an excessive amount.
- the removal rate of E. coli is more preferably higher than 90%. There is no upper limit to the removal rate of E. coli, and it is 100% or less or about 98%.
- the present invention is not limited to metal salt flocculants, but also relates to various methods that take advantage of the characteristics of the metal salt flocculants 1 and 2 described above.
- the present invention relates to sludge treatment and wastewater treatment in sewage treatment. That is, the present invention relates to a method for treating sludge wastewater, which includes a step of adding the metal salt flocculant 1 or 2 described above to the sludge wastewater.
- Metal Salt Flocculant 1 or 2 as described later in the Examples section, the following items are achieved: phosphorus/nitrogen removal performance, deodorizing property (hydrogen sulfide suppression effect), color reduction, and sludge settling property (SV value). It has good effects.
- the sedimentation properties of sludge are improved at an addition rate of about 50% of the added mass of polyaluminum chloride, and the phosphorus removal performance is equivalent to that of polyaluminum chloride.
- the metal salt flocculant 2 When the metal salt flocculant 2 is added, in addition to the above-mentioned performance, it also has the effect of removing pathogenic microorganisms, such as Escherichia coli.
- the removal rate of E. coli becomes higher than 83%, preferably higher than 90%.
- the removal rate of E. coli when polyaluminum chloride is added as a drug is about 75%
- Metal Salt Flocculant 2 although the amount added is less than 50% of the added mass of polyaluminum chloride, , the removal rate of E. coli can be greatly improved.
- sludge sedimentation, etc. and E. coli removal can be performed in one step using one type of chemical, so that it is possible to simultaneously simplify the work process and reduce the amount of chemicals used in the overall water treatment.
- the present invention also relates to a method for purifying and deodorizing waste water such as tap water and gray water. That is, the present invention also relates to a method for purifying and deodorizing water, which includes the step of adding the metal salt flocculant 1 or 2 described above to water in which pathogenic microorganisms are thought to be present. Despite the small amount of chemicals added, it is possible to purify and deodorize water due to its phosphorus and nitrogen removal performance, deodorizing properties (hydrogen sulfide suppression effect), color reduction, and pathogenic microorganism removal properties.
- the present invention has been described by way of embodiments, but the statements and drawings that form part of this disclosure should not be understood as limiting the present invention.
- the metal salt flocculant described in the embodiments can be used in a new usage method. That is, the present invention provides a new method for using a metal salt flocculant in which the metal salt flocculant 1 or 2 described above is used to remove pathogenic microorganisms in waste water, and a new method for using the metal salt flocculant 1 or 2 in the removal of pathogenic microorganisms in waste water.
- Metal salt flocculant 1 The following experiment was conducted on the metal salt flocculant according to the first embodiment. (Characteristics evaluation) The properties of the prepared metal salt flocculant were evaluated from the following viewpoints.
- Sludge settling property Activated sludge was filled in a 1-liter graduated cylinder, each drug to be evaluated was added thereto, and the sludge settling ability of each drug was evaluated based on the height of the sludge separated from solid and liquid after being allowed to stand for a predetermined period of time.
- SV in SVn represents the sludge volume
- n represents the elapsed time (minutes) after standing.
- the total amount of aluminum ions and iron ions in 1L is 5.7 moles or less
- the molar ratio of chloride ions to iron ions (Cl/Fe) is 28 or more
- the sedimentation properties (SV 10 , SV 30 ) of the sludge were measured after standing for 10 minutes and after standing for 30 minutes.
- M 3+ represents the total concentration of trivalent metal ions (ie, Al 3+ and Fe 3+ ) contained in the drug.
- the supernatant water after being left standing for 1 hour was analyzed for the amount of remaining components of TP, TN, COD, and SS.
- Table 2 the amount of each drug added was set so that M 3+ was the same for each drug.
- the test results are shown in Table 2.
- TS is an abbreviation for total evaporation residue (total solids), and here indicates the amount of sludge as solids.
- the metal salt flocculant of the present invention had the best sludge settling property (SV value) at a smaller amount than polyaluminum chloride or polyferric sulfate. . Particularly when paying attention to the SV 10 value, there was a significant difference in the initial sedimentation rate, which indicates that the drug has excellent immediate efficacy. Since the use of the metal salt flocculant of the present invention greatly improves the solid-liquid separability of treated water, it can be used in all types of water treatment equipment for the purpose of flocculation (e.g. flocculation tanks, biological reaction tanks, gravity concentration tanks, etc.). Available.
- flocculation tanks e.g. flocculation tanks, biological reaction tanks, gravity concentration tanks, etc.
- the metal salt flocculant of the present invention was able to remove more TP, TN, COD, and SS from supernatant water with a smaller amount added than polyaluminum chloride or polyferric sulfate. . Therefore, by using the metal salt flocculant of the present invention, it is possible to efficiently remove and recover the above-mentioned components, and therefore, it is expected to be effective in countering eutrophication and improving water quality. [Example 3]
- the removal rate of hydrogen sulfide was in the order of polyaluminum chloride ⁇ metal salt flocculant of the present invention ⁇ polyferric sulfate.
- the immobilization of sulfur by iron ions greatly contributes to suppressing hydrogen sulfide, so the metal salt flocculant of the present invention exhibited a higher hydrogen sulfide suppressing effect than ordinary polyaluminum chloride. Therefore, the metal salt flocculant of the present invention can also be used as a deodorizer in water treatment. Possible usage examples include sewage treatment plants, wastewater treatment facilities, pumping stations, and mud pumping facilities. [Example 4]
- the dehydration properties were good in the order of polyaluminum chloride ⁇ polyferric sulfate ⁇ the metal salt flocculant of the present invention.
- the metal salt flocculant of the present invention With the metal salt flocculant of the present invention, the moisture content of the cake was reduced by 1.5 points compared to when no chemical was added.
- the metal salt flocculant of the present invention can also be used in a dehydrator for the purpose of reducing the water content of sludge, which ultimately leads to a reduction in sludge transportation and treatment costs. [Example 5]
- Example 2 Chromaticity reduction characteristic
- the polyaluminum chloride (25 mg/L) used in Example 2 was placed at the end of the biological reaction tank of the sewage treatment plant with the flow shown in Figure 1 (daily average inflow water amount: approximately 33,000 m 3 /day, standard activated sludge method).
- the metal salt flocculant (14 mg/L) of the present invention was continuously injected for one week.
- the drug was added into the liquid in a biological reaction tank using a diaphragm metering pump.
- the amount of the drug added was set so that the trivalent metal ion concentrations were equal, as described above.
- Overflow water was periodically sampled from the final settling tank located after the biological reaction tank, and its chromaticity was measured.
- Table 5 Here, the average value and minimum value of chromaticity are weekly average values.
- the agent of the present invention is expected to be used not only for sewage but also for wastewater such as clean water and gray water.
- the metal salt flocculant of the present invention could be injected using the same equipment as ordinary polyaluminum chloride. Additionally, since the amount of medicine used can be reduced, the frequency of transportation and reception by lorries will be reduced, which will lead to a reduction in required labor and personnel costs.
- polyaluminum chloride (PAC) is added as a flocculant before the final reaction tank in another series (step flow type two-stage nitrification-denitrification method with coagulant).
- PAC polyaluminum chloride
- a portion of the treated water undergoes sand filtration, ozone treatment, and chlorine disinfection, and is then reused as water for nearby parks.
- PAC and high-concentration iron-aluminum were added to a treatment facility (A system) using a step flow type two-stage nitrification-denitrification method using a flocculant.
- the drug was injected at the front stage of the final tank of the reaction tank, and PAC and high-concentration iron-aluminum were injected for two weeks each using a metering pump (addition rate Comparative Example 1 (PAC): 34 mg/L, Example 6 (high-concentration iron-aluminum) ): 17 mg/L).
- a treatment facility (B system) using a standard activated sludge method (simulated step inflow type two-stage nitrification and denitrification method) was selected as a blank.
- Activated sludge from the final reaction tanks of systems A and B and overflow water from the final settling tank were periodically sampled to evaluate sludge settling properties and water quality. The test was conducted from November 26, 2020 to December 17, 2020.
- the sludge capacity index (SVI) of the reaction tank is shown in Figure 3.
- SVI sludge capacity index
- the SVI of the A system was 150 to 300 mL/g during PAC injection and 100 to 200 mL/g during high concentration iron-aluminum injection.
- the settling properties of sludge were improved by the injection of flocculant, and it was thought that especially high-concentration iron-aluminum had a higher flocculation effect.
- Figure 4 shows the change in TP concentration in the final sedimentation tank overflow water.
- the TP concentration of system A was constant between 0.05 and 0.50 mg/L during the injection period of PAC and high concentration iron-aluminum.
- the addition rate of high-concentration iron-aluminum was approximately 50% of PAC, it was shown that the same phosphorus removal could be performed because the metal ion concentration was the same as that of PAC.
- E. bacteria, odor substance removal evaluation Table 6 shows the analysis results of the number of E. coli bacteria, residual chlorine concentration, and odor substance concentration (geosmin, 2-methylisoborneol) in the final sedimentation tank overflow water.
- the number of E. coli in system A was lower than that of the blank system B, and the removal rate was about 75 to 83% during PAC injection and about 90% during high concentration iron aluminum injection.
- the residual chlorine (free residual chlorine/combined residual chlorine) concentration is the same for both A and B systems, and the values are low, and it is considered that the concentration does not have disinfecting power. It is generally thought that some of the pathogenic microorganisms in sewage (E.
- E. coli, norovirus, cryptosporidium, etc. are adsorbed to sludge, become entangled in flocs, and are removed from the treated water as they coagulate and settle.
- the number of E. coli is also correlated with the SVI values of A and B systems, and since there is no chlorine component with disinfecting power in the treated water, it is thought that E. coli was removed from the treated water through coagulation and precipitation in this test. Furthermore, no E. coli was detected in the recycled water that had undergone sand filtration, ozone treatment, and chlorine disinfection. Since the concentration of odorants was low in both Type A and Type B, and there was no significant difference in the analytical values, no superior deodorizing effect was confirmed by the injection of the flocculant in this test.
- Table 7 shows the measurement results of the color and turbidity of the final settling tank overflow water.
- the chromaticity of system A was lower than that of system B, and it could be said that the clarity of the treated water was improved by the injection of the flocculant.
- the chromaticity at the time of high-concentration iron-aluminum injection was 10 degrees, and the chromaticity decreased to the standard value level (10 degrees or less) for hydrophilic water.
- the turbidity was approximately 2.0 regardless of the type of flocculant, and no major difference was observed in the analytical values of the A and B systems.
- Reclaimed sewage water can be used as (1) water for flushing, (2) water for sprinkling, (3) water for landscaping, and (4) water for hydrophilic purposes.
- the water quality standards include E. coli count, turbidity, pH, appearance, and chromaticity. , there is an odor. Based on these items, the degree of water quality improvement due to the use of flocculants was evaluated. In this test, the blank treated water was excluded from the evaluation because the turbidity and odor concentration were low. As mentioned above, injection of a flocculant is effective in reducing chromaticity, and this test showed that it improved to the standard value level. Regarding the number of E.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- General Chemical & Material Sciences (AREA)
- Separation Of Suspended Particles By Flocculating Agents (AREA)
Abstract
The total content of aluminum ions and iron ions in 1 liter of this metal salt aggregating agent is 5.7 mol or less, wherein the mole ratio (Cl/Fe) between chlorine ions and iron ions is 28 or more, the mole ratio (SO4/Al2O3) between sulfate ions and aluminum ions in terms of aluminum oxide is 0.15 or less, and the coliform removal ratio is 83% or more. By virtue of mixing polyferric sulfate and polyaluminum chloride and using same in combination, this metal salt aggregating agent exhibits higher storage stability and aggregating performance compared with the case where polyferric sulfate and polyaluminum chloride are individually used, and this metal salt aggregating agent can also be applied to a wide range of treatment waste liquids having various characteristics. This metal salt aggregating agent also has a coliform removal action.
Description
本発明は、排水処理に使用される鉄イオンとアルミニウムイオンを含む金属塩凝集剤及び各種薬剤に関する。また本発明は大腸菌除去作用を併せ持つ金属塩凝集剤及び各種薬剤に関する。
The present invention relates to metal salt flocculants and various chemicals containing iron ions and aluminum ions used in wastewater treatment. The present invention also relates to a metal salt flocculant and various drugs that also have the effect of removing E. coli.
下水処理場やし尿処理場においては、放流水の水質改善、廃棄物量の削減、施設の円滑な運転や長寿命化を目的として、鉄系やアルミニウム系の金属塩凝集剤を被処理水等に対して投入して使用される。鉄系の凝集剤としては、塩化第二鉄、ポリ硫酸第二鉄、硫酸第一鉄溶液が代表的な凝集剤であり、アルミニウム系としては、硫酸バンド、塩化アルミニウム、ポリ塩化アルミニウムが挙げられる。
At sewage treatment plants and human waste treatment plants, iron-based and aluminum-based metal salt flocculants are applied to the water being treated to improve the quality of effluent water, reduce the amount of waste, ensure smooth operation, and extend the life of the facility. It is used by inserting it into the Typical iron-based flocculants include ferric chloride, polyferric sulfate, and ferrous sulfate solutions, and aluminum-based flocculants include aluminum sulfate, aluminum chloride, and polyaluminum chloride. .
ポリ硫酸第二鉄は、鉄系の無機凝集剤の代表例の一つで、脱臭および脱リン効果を有することから、下水処理場およびし尿処理において広く使用されている。ポリ硫酸第二鉄は、一般式(〔Fe2(OH)n(SO4)3-n/2〕m但し0<n≦2、mは自然数)で示され、鉄系原料である硫酸第一鉄(FeSO4)溶液に対して触媒として亜硝酸ナトリウム及び酸化剤を添加して、酸化反応を進行させる等の方法により得ることが出来る(特許文献1)。
ポリ塩化アルミニウム(通称PAC)は、アルミニウム系の無機凝集剤の代表例の一つで、懸濁質や溶解性有機物の処理性が高く、最適pH範囲が広い、水温の影響を受けがたく、凝集剤添加濃度の節減が可能且つ処理後の水が着色しないことなどから、浄水処理場において広く使用されている。PACは、ある一定の塩基度(=m/3n×100)を有する凝集剤で(特許文献2)、一般式Aln(OH)mCl3n-m(3n>m)で示され、塩酸または塩化アルミニウム溶液中に水酸化アルミニウムを加え、耐圧反応器内で加温・加圧させた方法によって得ることが出来る(特許文献3、4)。 Ferric polysulfate is one of the representative examples of iron-based inorganic flocculants, and is widely used in sewage treatment plants and human waste treatment because it has deodorizing and dephosphorizing effects. Polyferric sulfate is represented by the general formula ([Fe 2 (OH)n(SO 4 ) 3-n/2 ]m, where 0<n≦2, m is a natural number), and is composed of ferric sulfate, which is an iron-based raw material. It can be obtained by a method such as adding sodium nitrite and an oxidizing agent as a catalyst to a monoferric (FeSO 4 ) solution to allow an oxidation reaction to proceed (Patent Document 1).
Polyaluminum chloride (commonly known as PAC) is one of the representative examples of aluminum-based inorganic flocculants.It has a high ability to treat suspended solids and soluble organic matter, has a wide optimum pH range, and is not affected by water temperature. It is widely used in water treatment plants because it is possible to reduce the concentration of coagulant added and the water after treatment is not colored. PAC is a flocculant having a certain basicity (=m/3n×100) (Patent Document 2), has the general formula Aln(OH)mCl 3n-m (3n>m), and is a flocculant that has a certain basicity (=m/3n×100) and is expressed by the general formula Aln(OH)mCl 3n-m (3n>m), and is a flocculant that has a certain basicity (=m/3n×100). It can be obtained by adding aluminum hydroxide to a solution and heating and pressurizing it in a pressure-resistant reactor (Patent Documents 3 and 4).
ポリ塩化アルミニウム(通称PAC)は、アルミニウム系の無機凝集剤の代表例の一つで、懸濁質や溶解性有機物の処理性が高く、最適pH範囲が広い、水温の影響を受けがたく、凝集剤添加濃度の節減が可能且つ処理後の水が着色しないことなどから、浄水処理場において広く使用されている。PACは、ある一定の塩基度(=m/3n×100)を有する凝集剤で(特許文献2)、一般式Aln(OH)mCl3n-m(3n>m)で示され、塩酸または塩化アルミニウム溶液中に水酸化アルミニウムを加え、耐圧反応器内で加温・加圧させた方法によって得ることが出来る(特許文献3、4)。 Ferric polysulfate is one of the representative examples of iron-based inorganic flocculants, and is widely used in sewage treatment plants and human waste treatment because it has deodorizing and dephosphorizing effects. Polyferric sulfate is represented by the general formula ([Fe 2 (OH)n(SO 4 ) 3-n/2 ]m, where 0<n≦2, m is a natural number), and is composed of ferric sulfate, which is an iron-based raw material. It can be obtained by a method such as adding sodium nitrite and an oxidizing agent as a catalyst to a monoferric (FeSO 4 ) solution to allow an oxidation reaction to proceed (Patent Document 1).
Polyaluminum chloride (commonly known as PAC) is one of the representative examples of aluminum-based inorganic flocculants.It has a high ability to treat suspended solids and soluble organic matter, has a wide optimum pH range, and is not affected by water temperature. It is widely used in water treatment plants because it is possible to reduce the concentration of coagulant added and the water after treatment is not colored. PAC is a flocculant having a certain basicity (=m/3n×100) (Patent Document 2), has the general formula Aln(OH)mCl 3n-m (3n>m), and is a flocculant that has a certain basicity (=m/3n×100) and is expressed by the general formula Aln(OH)mCl 3n-m (3n>m), and is a flocculant that has a certain basicity (=m/3n×100). It can be obtained by adding aluminum hydroxide to a solution and heating and pressurizing it in a pressure-resistant reactor (
無機凝集剤は、一般的にその主たる無機成分の濃度が高いものが、凝集効果が高くなることから、薬剤使用量の削減をすることが可能となり、且つ輸送面でもメリットがある。例えば、ポリ硫酸第二鉄についても通常品(全鉄濃度が11.0~12.5%)と比較して高濃度(全鉄濃度が12.5%以上)として含有水分が少なくすることにより、高い凝集能力と脱水性を有し、製品輸送コストを低減することができる。
In general, inorganic flocculants with a high concentration of the main inorganic component have a higher flocculating effect, which makes it possible to reduce the amount of chemicals used and is also advantageous in terms of transportation. For example, by making polyferric sulfate a higher concentration (total iron concentration of 12.5% or more) compared to regular products (total iron concentration of 11.0 to 12.5%) and reducing the water content, , has high flocculation ability and dewatering ability, and can reduce product transportation costs.
日本国内で製造・販売されている水処理凝集剤用途のポリ塩化アルミニウムは、Al2O3濃度として約10%(重量パーセント)以上のスペックである(以下、通常品)。Al2O3濃度が15%を超えるような高濃度製品は、溶液の安定性の問題より、日本国内では販売されていないが、Al2O3濃度が10%を超えるポリ塩化アルミニウムの高濃度製品に関する発明は既に報告されている(特許文献5、6)。特許文献5では、Al2O3濃度が5~25wt%である高塩基性塩化アルミニウム溶液の製造方法を開示し、特許文献6では、Al2O3濃度が16~25%である塩基性塩化アルミニウムを主体とする高濃度凝集剤を開示している。
Polyaluminum chloride manufactured and sold in Japan for use as a water treatment flocculant has an Al 2 O 3 concentration of approximately 10% (weight percent) or more (hereinafter referred to as a regular product). High-concentration products with an Al 2 O 3 concentration exceeding 15% are not sold in Japan due to problems with solution stability, but high-concentration products with an Al 2 O 3 concentration exceeding 10% are not sold in Japan. Inventions related to products have already been reported (Patent Documents 5 and 6). Patent Document 5 discloses a method for producing a highly basic aluminum chloride solution with an Al 2 O 3 concentration of 5 to 25 wt%, and Patent Document 6 discloses a method for producing a highly basic aluminum chloride solution with an Al 2 O 3 concentration of 16 to 25%. A highly concentrated flocculant containing aluminum as a main ingredient is disclosed.
近年では、鉄系凝集剤とアルミニウム系凝集剤がそれぞれ有する特徴を発揮させるため、両者を混合して、鉄イオンとアルミニウムイオンを含む金属塩凝集剤として使用することが試みられるようになっている(特許文献7、8)。
特許文献7では、Al/Feの重量比が1/30~1/2である無機凝集剤を開示し、特許文献8では、Al/Feのモル比が0.06~1.0である含鉄廃塩酸を利用した凝集剤を開示している。 In recent years, attempts have been made to mix iron-based flocculants and aluminum-based flocculants and use them as a metal salt flocculant containing iron ions and aluminum ions, in order to bring out their respective characteristics. (Patent Documents 7 and 8).
Patent Document 7 discloses an inorganic flocculant having an Al/Fe weight ratio of 1/30 to 1/2, and Patent Document 8 discloses an iron-containing flocculant having an Al/Fe molar ratio of 0.06 to 1.0. Discloses a flocculant using waste hydrochloric acid.
特許文献7では、Al/Feの重量比が1/30~1/2である無機凝集剤を開示し、特許文献8では、Al/Feのモル比が0.06~1.0である含鉄廃塩酸を利用した凝集剤を開示している。 In recent years, attempts have been made to mix iron-based flocculants and aluminum-based flocculants and use them as a metal salt flocculant containing iron ions and aluminum ions, in order to bring out their respective characteristics. (Patent Documents 7 and 8).
Patent Document 7 discloses an inorganic flocculant having an Al/Fe weight ratio of 1/30 to 1/2, and Patent Document 8 discloses an iron-containing flocculant having an Al/Fe molar ratio of 0.06 to 1.0. Discloses a flocculant using waste hydrochloric acid.
鉄イオンとアルミニウムイオンを含む金属塩凝集剤の使用例としては、還元性の排水に鉄系のポリ硫酸第二鉄を添加すると一部着色する場合があるので、これを防ぐために、塩化アルミニウムや硫酸バンドを配合した凝集剤を使用することが知られている。また、製紙工場等では、主として使用されるアルミニウム系の薬剤に対して、消臭効果を付帯させるために鉄系凝集剤を混合することがある。
しかしながら、その組み合わせによっては、問題が発生することも知られている。
例えば、塩化アルミニウムとポリ硫酸第二鉄の組合せでは、高い凝集効果は得られるものの、腐食性が強く且つ温度の低下によりミョウバンを析出するなどの保存安定性に問題があった。硫酸バンドとポリ硫酸第二鉄の組合せでは、腐食性が弱く、安定性にも優れているが、他の凝集剤に比べて薬剤の添加量が多くなり、経済性に難があった。
また、アルミニウム系で最も高い凝集力を有するポリ塩化アルミニウムに対し、鉄系の塩化第二鉄やポリ硫酸第二鉄を混合した、鉄イオンとアルミニウムイオンを含む金属塩凝集剤の調製がこれまでに試みられてきたが、短期間でゲル化するなど保存安定性が極度に悪く、市販化には至っていない。
更に、鉄イオンとアルミニウムイオンを含む金属塩凝集剤において、特許文献7および8では陽イオンの主体が鉄イオンであるが、アルミニウムイオンが鉄イオンに対して多量である組成をもった金属塩凝集剤(鉄含有ポリ塩化アルミニウム)の調製は、これまでには報告されていない。 An example of the use of a metal salt flocculant containing iron ions and aluminum ions is that adding iron-based polyferric sulfate to reducing wastewater may cause some coloring, so to prevent this, aluminum chloride or It is known to use a flocculant containing sulfuric acid. Additionally, in paper factories and the like, iron-based flocculants are sometimes mixed with the aluminum-based chemicals that are mainly used in order to impart a deodorizing effect.
However, it is known that problems may occur depending on the combination.
For example, a combination of aluminum chloride and ferric polysulfate provides a high aggregation effect, but is highly corrosive and has storage stability problems such as alum precipitation due to temperature drop. Although the combination of sulfuric acid band and ferric polysulfate has low corrosivity and excellent stability, it requires a large amount of chemicals to be added compared to other flocculants, making it uneconomical.
In addition, metal salt flocculants containing iron and aluminum ions have been prepared by mixing iron-based ferric chloride and polyferric sulfate with polyaluminum chloride, which has the highest cohesive force among aluminum-based materials. However, storage stability was extremely poor, including gelation in a short period of time, and it has not been commercially available.
Furthermore, in metal salt flocculants containing iron ions and aluminum ions, in Patent Documents 7 and 8, the main cation is iron ions, but metal salt flocculants with a composition in which aluminum ions are present in a large amount relative to iron ions are used. The preparation of the iron-containing polyaluminum chloride has not been previously reported.
しかしながら、その組み合わせによっては、問題が発生することも知られている。
例えば、塩化アルミニウムとポリ硫酸第二鉄の組合せでは、高い凝集効果は得られるものの、腐食性が強く且つ温度の低下によりミョウバンを析出するなどの保存安定性に問題があった。硫酸バンドとポリ硫酸第二鉄の組合せでは、腐食性が弱く、安定性にも優れているが、他の凝集剤に比べて薬剤の添加量が多くなり、経済性に難があった。
また、アルミニウム系で最も高い凝集力を有するポリ塩化アルミニウムに対し、鉄系の塩化第二鉄やポリ硫酸第二鉄を混合した、鉄イオンとアルミニウムイオンを含む金属塩凝集剤の調製がこれまでに試みられてきたが、短期間でゲル化するなど保存安定性が極度に悪く、市販化には至っていない。
更に、鉄イオンとアルミニウムイオンを含む金属塩凝集剤において、特許文献7および8では陽イオンの主体が鉄イオンであるが、アルミニウムイオンが鉄イオンに対して多量である組成をもった金属塩凝集剤(鉄含有ポリ塩化アルミニウム)の調製は、これまでには報告されていない。 An example of the use of a metal salt flocculant containing iron ions and aluminum ions is that adding iron-based polyferric sulfate to reducing wastewater may cause some coloring, so to prevent this, aluminum chloride or It is known to use a flocculant containing sulfuric acid. Additionally, in paper factories and the like, iron-based flocculants are sometimes mixed with the aluminum-based chemicals that are mainly used in order to impart a deodorizing effect.
However, it is known that problems may occur depending on the combination.
For example, a combination of aluminum chloride and ferric polysulfate provides a high aggregation effect, but is highly corrosive and has storage stability problems such as alum precipitation due to temperature drop. Although the combination of sulfuric acid band and ferric polysulfate has low corrosivity and excellent stability, it requires a large amount of chemicals to be added compared to other flocculants, making it uneconomical.
In addition, metal salt flocculants containing iron and aluminum ions have been prepared by mixing iron-based ferric chloride and polyferric sulfate with polyaluminum chloride, which has the highest cohesive force among aluminum-based materials. However, storage stability was extremely poor, including gelation in a short period of time, and it has not been commercially available.
Furthermore, in metal salt flocculants containing iron ions and aluminum ions, in Patent Documents 7 and 8, the main cation is iron ions, but metal salt flocculants with a composition in which aluminum ions are present in a large amount relative to iron ions are used. The preparation of the iron-containing polyaluminum chloride has not been previously reported.
本発明の第一の目的は、共に高い凝集能力を有することが知られているポリ硫酸第二鉄とポリ塩化アルミニウムについて、これらを混合して組み合わせることで、それぞれを単独で用いた場合に比較して、より高い凝集能力を有しながら保存安定性にも優れ、さらに様々な特徴を有する広範囲の処理排液に対して適用可能な鉄イオンとアルミニウムイオンを含む金属塩凝集剤を提供することである。
本発明の第二の目的は、大腸菌除去作用を併せ持つ金属塩凝集剤を提供することである。 The first objective of the present invention is to mix and combine polyferric sulfate and polyaluminum chloride, both of which are known to have high flocculation ability, compared to when each is used alone. To provide a metal salt flocculant containing iron ions and aluminum ions, which has higher flocculation ability, has excellent storage stability, and can be applied to a wide range of treated wastewater having various characteristics. It is.
A second object of the present invention is to provide a metal salt flocculant that also has the effect of removing E. coli.
本発明の第二の目的は、大腸菌除去作用を併せ持つ金属塩凝集剤を提供することである。 The first objective of the present invention is to mix and combine polyferric sulfate and polyaluminum chloride, both of which are known to have high flocculation ability, compared to when each is used alone. To provide a metal salt flocculant containing iron ions and aluminum ions, which has higher flocculation ability, has excellent storage stability, and can be applied to a wide range of treated wastewater having various characteristics. It is.
A second object of the present invention is to provide a metal salt flocculant that also has the effect of removing E. coli.
これらの課題を解決するため、本発明の金属塩凝集剤は、次の技術的手段から構成されるものである。
[1] 金属塩凝集剤であって、金属塩凝集剤1リットル中に、アルミニウムイオンと鉄イオンの含有量の合計が5.7モル以下であり、塩素イオンと鉄イオンのモル比(Cl/Fe)が28以上であり、硫酸イオンと酸化アルミニウム換算でアルミニウムイオンのモル比(SO4/Al2O3)が0.15以下であり、大腸菌の除去率が83%よりも高い、金属塩凝集剤。
[2] 塩素イオンと鉄イオンのモル比(Cl/Fe)が、50以上104以下である[1]に記載の金属塩凝集剤。
[3] 大腸菌の除去率が90%よりも高い、[1]または[2]に記載の金属塩凝集剤。
[4] pHが3.7~4.2(100倍希釈溶液)、比重が1.35~1.45である[1]または[2]に記載の金属塩凝集剤。
[5] [1]または[2]に記載の金属塩凝集剤を含有する凝集剤。
[6] [1]または[2]に記載の金属塩凝集剤を含有する水質改善剤。
[7] [1]または[2]に記載の金属塩凝集剤を含有する消臭剤。
[8] [1]または[2]に記載の金属塩凝集剤を含有する脱水剤。
[9] [1]または[2]に記載の金属塩凝集剤を含有する排水の色度低下剤。
[10] 汚泥排水の処理方法であって、汚泥排水に[1]または[2]に記載の金属塩凝集剤を添加する工程を備える汚泥排水の処理方法。
[11] 水の浄化消臭方法であって、病原微生物が存在すると考えられる水に、[1]または[2]に記載の金属塩凝集剤を添加する工程を備える水の浄化消臭方法。
[12] [1]または[2]に記載の金属塩凝集剤を排水中の病原微生物の除去に用いる金属塩凝集剤の新たな使用方法。
[13] [1]または[2]に記載の金属塩凝集剤を排水中の大腸菌の除去に用いる金属塩凝集剤の新たな使用方法。 In order to solve these problems, the metal salt flocculant of the present invention is composed of the following technical means.
[1] A metal salt flocculant, in which the total content of aluminum ions and iron ions is 5.7 moles or less in 1 liter of the metal salt flocculant, and the molar ratio of chloride ions to iron ions (Cl/ Fe) is 28 or more, the molar ratio of aluminum ions (SO 4 /Al 2 O 3 ) in terms of sulfate ions and aluminum oxide is 0.15 or less, and the removal rate of E. coli is higher than 83%. Flocculant.
[2] The metal salt flocculant according to [1], wherein the molar ratio of chloride ions to iron ions (Cl/Fe) is 50 or more and 104 or less.
[3] The metal salt flocculant according to [1] or [2], which has an E. coli removal rate of higher than 90%.
[4] The metal salt flocculant according to [1] or [2], which has a pH of 3.7 to 4.2 (100 times diluted solution) and a specific gravity of 1.35 to 1.45.
[5] A flocculant containing the metal salt flocculant according to [1] or [2].
[6] A water quality improving agent containing the metal salt flocculant according to [1] or [2].
[7] A deodorant containing the metal salt flocculant according to [1] or [2].
[8] A dehydrating agent containing the metal salt flocculant according to [1] or [2].
[9] A wastewater color reducing agent containing the metal salt flocculant according to [1] or [2].
[10] A method for treating sludge wastewater, the method comprising the step of adding the metal salt flocculant according to [1] or [2] to sludge wastewater.
[11] A method for purifying and deodorizing water, the method comprising the step of adding the metal salt flocculant described in [1] or [2] to water in which pathogenic microorganisms are thought to be present.
[12] A new method for using the metal salt flocculant according to [1] or [2] for removing pathogenic microorganisms in wastewater.
[13] A new method for using the metal salt flocculant according to [1] or [2] for removing E. coli from wastewater.
[1] 金属塩凝集剤であって、金属塩凝集剤1リットル中に、アルミニウムイオンと鉄イオンの含有量の合計が5.7モル以下であり、塩素イオンと鉄イオンのモル比(Cl/Fe)が28以上であり、硫酸イオンと酸化アルミニウム換算でアルミニウムイオンのモル比(SO4/Al2O3)が0.15以下であり、大腸菌の除去率が83%よりも高い、金属塩凝集剤。
[2] 塩素イオンと鉄イオンのモル比(Cl/Fe)が、50以上104以下である[1]に記載の金属塩凝集剤。
[3] 大腸菌の除去率が90%よりも高い、[1]または[2]に記載の金属塩凝集剤。
[4] pHが3.7~4.2(100倍希釈溶液)、比重が1.35~1.45である[1]または[2]に記載の金属塩凝集剤。
[5] [1]または[2]に記載の金属塩凝集剤を含有する凝集剤。
[6] [1]または[2]に記載の金属塩凝集剤を含有する水質改善剤。
[7] [1]または[2]に記載の金属塩凝集剤を含有する消臭剤。
[8] [1]または[2]に記載の金属塩凝集剤を含有する脱水剤。
[9] [1]または[2]に記載の金属塩凝集剤を含有する排水の色度低下剤。
[10] 汚泥排水の処理方法であって、汚泥排水に[1]または[2]に記載の金属塩凝集剤を添加する工程を備える汚泥排水の処理方法。
[11] 水の浄化消臭方法であって、病原微生物が存在すると考えられる水に、[1]または[2]に記載の金属塩凝集剤を添加する工程を備える水の浄化消臭方法。
[12] [1]または[2]に記載の金属塩凝集剤を排水中の病原微生物の除去に用いる金属塩凝集剤の新たな使用方法。
[13] [1]または[2]に記載の金属塩凝集剤を排水中の大腸菌の除去に用いる金属塩凝集剤の新たな使用方法。 In order to solve these problems, the metal salt flocculant of the present invention is composed of the following technical means.
[1] A metal salt flocculant, in which the total content of aluminum ions and iron ions is 5.7 moles or less in 1 liter of the metal salt flocculant, and the molar ratio of chloride ions to iron ions (Cl/ Fe) is 28 or more, the molar ratio of aluminum ions (SO 4 /Al 2 O 3 ) in terms of sulfate ions and aluminum oxide is 0.15 or less, and the removal rate of E. coli is higher than 83%. Flocculant.
[2] The metal salt flocculant according to [1], wherein the molar ratio of chloride ions to iron ions (Cl/Fe) is 50 or more and 104 or less.
[3] The metal salt flocculant according to [1] or [2], which has an E. coli removal rate of higher than 90%.
[4] The metal salt flocculant according to [1] or [2], which has a pH of 3.7 to 4.2 (100 times diluted solution) and a specific gravity of 1.35 to 1.45.
[5] A flocculant containing the metal salt flocculant according to [1] or [2].
[6] A water quality improving agent containing the metal salt flocculant according to [1] or [2].
[7] A deodorant containing the metal salt flocculant according to [1] or [2].
[8] A dehydrating agent containing the metal salt flocculant according to [1] or [2].
[9] A wastewater color reducing agent containing the metal salt flocculant according to [1] or [2].
[10] A method for treating sludge wastewater, the method comprising the step of adding the metal salt flocculant according to [1] or [2] to sludge wastewater.
[11] A method for purifying and deodorizing water, the method comprising the step of adding the metal salt flocculant described in [1] or [2] to water in which pathogenic microorganisms are thought to be present.
[12] A new method for using the metal salt flocculant according to [1] or [2] for removing pathogenic microorganisms in wastewater.
[13] A new method for using the metal salt flocculant according to [1] or [2] for removing E. coli from wastewater.
本発明の金属塩凝集剤の第一の態様によれば、高い凝集能力を有することが知られているポリ硫酸第二鉄とポリ塩化アルミニウムを混合して組み合わせることで、高い凝集能力を有しながらも保存安定性に優れ、さらに様々な特徴を有する広範囲の処理排液に対して適用可能な、鉄イオンとアルミニウムイオンを含む金属塩凝集剤を提供することが可能となった。
本発明の第二の態様によれば、上記作用効果に加えて、更に大腸菌除去作用を持つ金属塩凝集剤が提供される。 According to the first aspect of the metal salt flocculant of the present invention, by mixing and combining polyferric sulfate and polyaluminum chloride, which are known to have a high flocculating ability, the metal salt flocculant has a high flocculating ability. However, it has become possible to provide a metal salt flocculant containing iron ions and aluminum ions, which has excellent storage stability and can be applied to a wide range of treated wastewater having various characteristics.
According to a second aspect of the present invention, there is provided a metal salt flocculant which, in addition to the above-mentioned effects, further has an E. coli removing effect.
本発明の第二の態様によれば、上記作用効果に加えて、更に大腸菌除去作用を持つ金属塩凝集剤が提供される。 According to the first aspect of the metal salt flocculant of the present invention, by mixing and combining polyferric sulfate and polyaluminum chloride, which are known to have a high flocculating ability, the metal salt flocculant has a high flocculating ability. However, it has become possible to provide a metal salt flocculant containing iron ions and aluminum ions, which has excellent storage stability and can be applied to a wide range of treated wastewater having various characteristics.
According to a second aspect of the present invention, there is provided a metal salt flocculant which, in addition to the above-mentioned effects, further has an E. coli removing effect.
〔金属塩凝集剤1〕
本発明者らは、ポリ塩化アルミニウムに対して、所定量のポリ硫酸第二鉄を添加・混合することで、保存安定性が高く、優れた水処理性能を有する鉄イオンとアルミニウムイオンを含む金属塩凝集剤が得られることを発見した。
即ち、本発明は、金属塩凝集剤であって、金属塩凝集剤1リットル中に、アルミニウムイオンと鉄イオンの含有量の合計が5.7モル以下であり、塩素イオンと鉄イオンのモル比(Cl/Fe)が28以上であり、硫酸イオンと酸化アルミニウム換算でアルミニウムイオンのモル比(SO4/Al2O3)が0.15以下である、金属塩凝集剤に関する。
一般的に、塩基度の高いポリ塩化アルミニウムに対して、塩基度の低いポリ硫酸第二鉄を配合すると、ポリ塩化アルミニウムはpHが下がることでゲル化反応が進行する。また、ポリ硫酸第二鉄における鉄イオンは、pHが上昇することで水酸化鉄を生成して不溶化する。しかし、本発明の金属塩凝集剤を構成するイオンの量的関係を所定範囲に調整することで、ポリ塩化アルミニウムの安定化に必要な硫酸イオンが補給され、ゲル化が抑制される。また、ポリ硫酸第二鉄の鉄イオンにとっては、アルカリの供給が低下することで安定性の維持が可能となる。
一般的に水処理剤が溶液の状態で安定的に存在できるか否か(保存安定性)は、陽イオン濃度、陽イオンに対する陰イオンのモル比によって決まる例が多い。そこで、Al+Fe[mol/L]、Cl/Fe(モル比)、SO4/Al2O3(モル比)を基準として、安定領域を定めた。なお、Cl/Al2O3とSO4/Feは使用薬剤(ポリ塩化アルミニウムとポリ硫酸第二鉄)で固有の値をとり、両薬剤の混合比を変えてもこれらモル比は変わらないことになるので、ここでは考慮する必要はない。
これにより、ポリ塩化アルミニウムを主成分とし、これにポリ硫酸第二鉄を添加・混合した鉄イオンとアルミニウムイオンを含む金属塩凝集剤を得ることができた。これは、本発明者らが見出した、従来技術にはない新たな知見である。 [Metal salt flocculant 1]
The present inventors have discovered that by adding and mixing a predetermined amount of polyferric sulfate to polyaluminum chloride, a metal containing iron ions and aluminum ions has high storage stability and excellent water treatment performance. It was discovered that a salt flocculant can be obtained.
That is, the present invention provides a metal salt flocculant in which the total content of aluminum ions and iron ions is 5.7 moles or less in 1 liter of the metal salt flocculant, and the molar ratio of chloride ions to iron ions is (Cl/Fe) is 28 or more, and the molar ratio of aluminum ions (SO 4 /Al 2 O 3 ) in terms of sulfate ions and aluminum oxide is 0.15 or less.
Generally, when polyferric sulfate having a low basicity is blended with polyaluminum chloride having a high basicity, the gelation reaction of the polyaluminum chloride proceeds as the pH decreases. Further, iron ions in the ferric polysulfate generate iron hydroxide and become insolubilized as the pH increases. However, by adjusting the quantitative relationship of the ions constituting the metal salt flocculant of the present invention within a predetermined range, sulfate ions necessary for stabilizing polyaluminum chloride are replenished and gelation is suppressed. In addition, stability can be maintained for iron ions in ferric polysulfate by reducing the supply of alkali.
Generally, whether a water treatment agent can exist stably in a solution state (storage stability) is often determined by the cation concentration and the molar ratio of anions to cations. Therefore, a stable region was determined based on Al+Fe [mol/L], Cl/Fe (molar ratio), and SO 4 /Al 2 O 3 (molar ratio). Note that Cl/Al 2 O 3 and SO 4 /Fe have specific values depending on the chemicals used (polyaluminum chloride and polyferric sulfate), and these molar ratios do not change even if the mixing ratio of both chemicals is changed. Therefore, there is no need to consider it here.
As a result, it was possible to obtain a metal salt flocculant containing iron ions and aluminum ions, which was mainly composed of polyaluminum chloride and mixed with polyferric sulfate. This is a new finding found by the present inventors that is not found in the prior art.
本発明者らは、ポリ塩化アルミニウムに対して、所定量のポリ硫酸第二鉄を添加・混合することで、保存安定性が高く、優れた水処理性能を有する鉄イオンとアルミニウムイオンを含む金属塩凝集剤が得られることを発見した。
即ち、本発明は、金属塩凝集剤であって、金属塩凝集剤1リットル中に、アルミニウムイオンと鉄イオンの含有量の合計が5.7モル以下であり、塩素イオンと鉄イオンのモル比(Cl/Fe)が28以上であり、硫酸イオンと酸化アルミニウム換算でアルミニウムイオンのモル比(SO4/Al2O3)が0.15以下である、金属塩凝集剤に関する。
一般的に、塩基度の高いポリ塩化アルミニウムに対して、塩基度の低いポリ硫酸第二鉄を配合すると、ポリ塩化アルミニウムはpHが下がることでゲル化反応が進行する。また、ポリ硫酸第二鉄における鉄イオンは、pHが上昇することで水酸化鉄を生成して不溶化する。しかし、本発明の金属塩凝集剤を構成するイオンの量的関係を所定範囲に調整することで、ポリ塩化アルミニウムの安定化に必要な硫酸イオンが補給され、ゲル化が抑制される。また、ポリ硫酸第二鉄の鉄イオンにとっては、アルカリの供給が低下することで安定性の維持が可能となる。
一般的に水処理剤が溶液の状態で安定的に存在できるか否か(保存安定性)は、陽イオン濃度、陽イオンに対する陰イオンのモル比によって決まる例が多い。そこで、Al+Fe[mol/L]、Cl/Fe(モル比)、SO4/Al2O3(モル比)を基準として、安定領域を定めた。なお、Cl/Al2O3とSO4/Feは使用薬剤(ポリ塩化アルミニウムとポリ硫酸第二鉄)で固有の値をとり、両薬剤の混合比を変えてもこれらモル比は変わらないことになるので、ここでは考慮する必要はない。
これにより、ポリ塩化アルミニウムを主成分とし、これにポリ硫酸第二鉄を添加・混合した鉄イオンとアルミニウムイオンを含む金属塩凝集剤を得ることができた。これは、本発明者らが見出した、従来技術にはない新たな知見である。 [Metal salt flocculant 1]
The present inventors have discovered that by adding and mixing a predetermined amount of polyferric sulfate to polyaluminum chloride, a metal containing iron ions and aluminum ions has high storage stability and excellent water treatment performance. It was discovered that a salt flocculant can be obtained.
That is, the present invention provides a metal salt flocculant in which the total content of aluminum ions and iron ions is 5.7 moles or less in 1 liter of the metal salt flocculant, and the molar ratio of chloride ions to iron ions is (Cl/Fe) is 28 or more, and the molar ratio of aluminum ions (SO 4 /Al 2 O 3 ) in terms of sulfate ions and aluminum oxide is 0.15 or less.
Generally, when polyferric sulfate having a low basicity is blended with polyaluminum chloride having a high basicity, the gelation reaction of the polyaluminum chloride proceeds as the pH decreases. Further, iron ions in the ferric polysulfate generate iron hydroxide and become insolubilized as the pH increases. However, by adjusting the quantitative relationship of the ions constituting the metal salt flocculant of the present invention within a predetermined range, sulfate ions necessary for stabilizing polyaluminum chloride are replenished and gelation is suppressed. In addition, stability can be maintained for iron ions in ferric polysulfate by reducing the supply of alkali.
Generally, whether a water treatment agent can exist stably in a solution state (storage stability) is often determined by the cation concentration and the molar ratio of anions to cations. Therefore, a stable region was determined based on Al+Fe [mol/L], Cl/Fe (molar ratio), and SO 4 /Al 2 O 3 (molar ratio). Note that Cl/Al 2 O 3 and SO 4 /Fe have specific values depending on the chemicals used (polyaluminum chloride and polyferric sulfate), and these molar ratios do not change even if the mixing ratio of both chemicals is changed. Therefore, there is no need to consider it here.
As a result, it was possible to obtain a metal salt flocculant containing iron ions and aluminum ions, which was mainly composed of polyaluminum chloride and mixed with polyferric sulfate. This is a new finding found by the present inventors that is not found in the prior art.
上記したように、ポリ塩化アルミニウムに対して塩化第二鉄やポリ硫酸第二鉄を混合して高性能の凝集剤を製造することは、これまでも試みられてきたが、混合液の保存安定性が悪いため成功に至らなかった。このような長年の課題を、本発明においては陰イオン/陽イオン(モル比)を調整することで解決したが、本発明者らは、次のメカニズムによるものではないかと推測している。
As mentioned above, attempts have been made to produce a high-performance flocculant by mixing polyaluminum chloride with ferric chloride or polyferric sulfate, but the storage stability of the mixed solution It was not successful due to bad nature. In the present invention, such a long-standing problem was solved by adjusting the anion/cation (molar ratio), and the present inventors speculate that this is due to the following mechanism.
すなわち、凝集剤としてのポリ塩化アルミニウムには硫酸イオンが含まれていることが多く、この硫酸イオンはポリ塩化アルミニウムの凝集特性や化学的安定性に寄与していると考えられている。
本発明においては、硫酸イオンの含有量を調整してポリ硫酸第二鉄の形態で硫酸イオンを添加することにより、混合液の化学的安定性が向上するばかりではなく、確認はできていないが、アルミニウムイオンと鉄イオンによって形成される多核錯体(多量体)において、ある特定の多核錯体の存在割合が多くなっているのかもしれず、これが本発明の金属塩凝集剤の水処理特性の向上に寄与しているのではないかと推定している。
実際に、以下に具体的に述べるように、本発明の金属塩凝集剤は、広範囲にわたり顕著な作用効果を有する凝集剤となっている。 That is, polyaluminum chloride as a flocculant often contains sulfate ions, and it is thought that these sulfate ions contribute to the flocculating properties and chemical stability of polyaluminum chloride.
In the present invention, by adjusting the content of sulfate ions and adding sulfate ions in the form of polyferric sulfate, the chemical stability of the mixed solution is not only improved, but although it has not been confirmed, Among the polynuclear complexes (multimers) formed by aluminum ions and iron ions, the proportion of a certain polynuclear complex may be high, and this may contribute to the improvement of the water treatment properties of the metal salt flocculant of the present invention. We estimate that it may be contributing.
In fact, as specifically described below, the metal salt flocculant of the present invention is a flocculant that has significant effects over a wide range of areas.
本発明においては、硫酸イオンの含有量を調整してポリ硫酸第二鉄の形態で硫酸イオンを添加することにより、混合液の化学的安定性が向上するばかりではなく、確認はできていないが、アルミニウムイオンと鉄イオンによって形成される多核錯体(多量体)において、ある特定の多核錯体の存在割合が多くなっているのかもしれず、これが本発明の金属塩凝集剤の水処理特性の向上に寄与しているのではないかと推定している。
実際に、以下に具体的に述べるように、本発明の金属塩凝集剤は、広範囲にわたり顕著な作用効果を有する凝集剤となっている。 That is, polyaluminum chloride as a flocculant often contains sulfate ions, and it is thought that these sulfate ions contribute to the flocculating properties and chemical stability of polyaluminum chloride.
In the present invention, by adjusting the content of sulfate ions and adding sulfate ions in the form of polyferric sulfate, the chemical stability of the mixed solution is not only improved, but although it has not been confirmed, Among the polynuclear complexes (multimers) formed by aluminum ions and iron ions, the proportion of a certain polynuclear complex may be high, and this may contribute to the improvement of the water treatment properties of the metal salt flocculant of the present invention. We estimate that it may be contributing.
In fact, as specifically described below, the metal salt flocculant of the present invention is a flocculant that has significant effects over a wide range of areas.
本発明で使用するポリ塩化アルミニウムは、Al濃度が2~6mol/Lの範囲が好適である。また、ポリ硫酸第二鉄は、Fe濃度が2~4mol/Lの範囲が好適である。
ポリ硫酸第二鉄の添加量が少ないと、鉄含有ポリ塩化アルミニウムの安定性が悪く、良好な凝集能力を発揮することができない。また、当該添加量が多いと、ポリ硫酸第二鉄の加水分解が進行し、副産物として鉄系の殿物が析出してしまうので好ましくない。
本発明で得られる金属塩凝集剤は、pHが3.7~4.2(100倍希釈溶液)であることが好ましく、比重が1.35~1.45であることが好ましい。 The polyaluminum chloride used in the present invention preferably has an Al concentration in the range of 2 to 6 mol/L. In addition, the Fe concentration of the ferric polysulfate is preferably in the range of 2 to 4 mol/L.
If the amount of ferric polysulfate added is small, the stability of the iron-containing polyaluminum chloride will be poor and it will not be possible to exhibit good flocculation ability. Moreover, if the amount added is large, the hydrolysis of the ferric polysulfate will progress and iron-based precipitates will precipitate as a by-product, which is not preferable.
The metal salt flocculant obtained in the present invention preferably has a pH of 3.7 to 4.2 (100 times diluted solution) and a specific gravity of 1.35 to 1.45.
ポリ硫酸第二鉄の添加量が少ないと、鉄含有ポリ塩化アルミニウムの安定性が悪く、良好な凝集能力を発揮することができない。また、当該添加量が多いと、ポリ硫酸第二鉄の加水分解が進行し、副産物として鉄系の殿物が析出してしまうので好ましくない。
本発明で得られる金属塩凝集剤は、pHが3.7~4.2(100倍希釈溶液)であることが好ましく、比重が1.35~1.45であることが好ましい。 The polyaluminum chloride used in the present invention preferably has an Al concentration in the range of 2 to 6 mol/L. In addition, the Fe concentration of the ferric polysulfate is preferably in the range of 2 to 4 mol/L.
If the amount of ferric polysulfate added is small, the stability of the iron-containing polyaluminum chloride will be poor and it will not be possible to exhibit good flocculation ability. Moreover, if the amount added is large, the hydrolysis of the ferric polysulfate will progress and iron-based precipitates will precipitate as a by-product, which is not preferable.
The metal salt flocculant obtained in the present invention preferably has a pH of 3.7 to 4.2 (100 times diluted solution) and a specific gravity of 1.35 to 1.45.
混合して得られた金属塩凝集剤は、凝集剤としてばかりではなく、リン、窒素、CODあるいはSSの除去性能において優れており、消臭、脱水、色度低下、細菌やウイルスの除去、フッ素やTOC除去においても優れた性能を有する。このため、これらの特性を生かして、凝集剤ばかりではなく、様々で広範囲の排水処理剤として使用することができる。
The metal salt flocculant obtained by mixing is not only effective as a flocculant, but also has excellent performance in removing phosphorus, nitrogen, COD, or SS, and is effective in deodorization, dehydration, color reduction, bacteria and virus removal, and fluorine. It also has excellent performance in removing TOC. Therefore, by taking advantage of these properties, it can be used not only as a flocculant but also as a wide variety of wastewater treatment agents.
(その他)
第一の実施形態に係る金属塩凝集剤は、後述の色度低下試験における実機試験からも明らかな通り、通常のポリ塩化アルミニウムと同設備で薬剤注入が可能である。また、薬剤の使用量を抑えられるため、ローリーの運搬・受入頻度が減少する。これにより必要労務や人件費の削減につながる。 (others)
The metal salt flocculant according to the first embodiment can be injected with the same equipment as ordinary polyaluminum chloride, as is clear from the actual machine test in the chromaticity reduction test described below. Additionally, since the amount of medicine used can be reduced, the frequency of transportation and reception by lorries will be reduced. This leads to reductions in required labor and personnel costs.
第一の実施形態に係る金属塩凝集剤は、後述の色度低下試験における実機試験からも明らかな通り、通常のポリ塩化アルミニウムと同設備で薬剤注入が可能である。また、薬剤の使用量を抑えられるため、ローリーの運搬・受入頻度が減少する。これにより必要労務や人件費の削減につながる。 (others)
The metal salt flocculant according to the first embodiment can be injected with the same equipment as ordinary polyaluminum chloride, as is clear from the actual machine test in the chromaticity reduction test described below. Additionally, since the amount of medicine used can be reduced, the frequency of transportation and reception by lorries will be reduced. This leads to reductions in required labor and personnel costs.
〔金属塩凝集剤2〕
本発明について、第一の実施形態に係る金属塩凝集剤について中心に説明してきてきたが、本発明は上記内容に限定されるものではない。第一の実施形態に係る金属塩凝集剤との相違点について中心に説明する。 [Metal salt flocculant 2]
Although the present invention has been mainly described with respect to the metal salt flocculant according to the first embodiment, the present invention is not limited to the above content. The differences from the metal salt flocculant according to the first embodiment will be mainly explained.
本発明について、第一の実施形態に係る金属塩凝集剤について中心に説明してきてきたが、本発明は上記内容に限定されるものではない。第一の実施形態に係る金属塩凝集剤との相違点について中心に説明する。 [Metal salt flocculant 2]
Although the present invention has been mainly described with respect to the metal salt flocculant according to the first embodiment, the present invention is not limited to the above content. The differences from the metal salt flocculant according to the first embodiment will be mainly explained.
水処理の現場では、上述したような汚泥沈降やリン・窒素除去等の工程の他に、大腸菌除去が行われていた。これらの汚泥沈降等と大腸菌除去は、従来は、別々の工程でそれぞれ異なる薬剤を用いて行われていた。
昨今、持続可能な開発目標(Sustainable Development Goals:SDGs)という言葉に代表されるように、環境負荷軽減への意識が高まってきている。水処理の分野でも、水処理に使用される薬剤の使用量を抑えることにより、薬剤を添加するポンプをはじめとする使用機器の消費電力の削減や、タンクローリによる薬剤の搬送時に放出される二酸化炭素の放出を抑えることが求められていた。
本発明者等は金属塩凝集剤の更なる機能の向上について誠意検討した結果、金属塩凝集剤が、上述の基本性能に加え、更に、大腸菌の除去剤としての機能を合わせ持つことを見出した。 At water treatment sites, in addition to processes such as sludge settling and phosphorus/nitrogen removal as described above, E. coli removal was also performed. Conventionally, sludge sedimentation and E. coli removal have been performed in separate steps using different chemicals.
In recent years, awareness of reducing environmental impact has been increasing, as exemplified by the term Sustainable Development Goals (SDGs). In the field of water treatment, by reducing the amount of chemicals used in water treatment, it is possible to reduce the power consumption of equipment such as pumps that add chemicals, and to reduce the amount of carbon dioxide released when transporting chemicals by tank truck. There was a need to suppress the release of
As a result of a sincere study on further improving the functions of metal salt flocculants, the present inventors discovered that metal salt flocculants, in addition to the above-mentioned basic performance, also have the function of an E. coli remover. .
昨今、持続可能な開発目標(Sustainable Development Goals:SDGs)という言葉に代表されるように、環境負荷軽減への意識が高まってきている。水処理の分野でも、水処理に使用される薬剤の使用量を抑えることにより、薬剤を添加するポンプをはじめとする使用機器の消費電力の削減や、タンクローリによる薬剤の搬送時に放出される二酸化炭素の放出を抑えることが求められていた。
本発明者等は金属塩凝集剤の更なる機能の向上について誠意検討した結果、金属塩凝集剤が、上述の基本性能に加え、更に、大腸菌の除去剤としての機能を合わせ持つことを見出した。 At water treatment sites, in addition to processes such as sludge settling and phosphorus/nitrogen removal as described above, E. coli removal was also performed. Conventionally, sludge sedimentation and E. coli removal have been performed in separate steps using different chemicals.
In recent years, awareness of reducing environmental impact has been increasing, as exemplified by the term Sustainable Development Goals (SDGs). In the field of water treatment, by reducing the amount of chemicals used in water treatment, it is possible to reduce the power consumption of equipment such as pumps that add chemicals, and to reduce the amount of carbon dioxide released when transporting chemicals by tank truck. There was a need to suppress the release of
As a result of a sincere study on further improving the functions of metal salt flocculants, the present inventors discovered that metal salt flocculants, in addition to the above-mentioned basic performance, also have the function of an E. coli remover. .
即ち、第二の実施形態に係る金属塩凝集剤は、金属塩凝集剤であって、金属塩凝集剤1リットル中に、アルミニウムイオンと鉄イオンの含有量の合計が5.7モル以下であり、塩素イオンと鉄イオンのモル比(Cl/Fe)が28以上であり、硫酸イオンと酸化アルミニウム換算でアルミニウムイオンのモル比(SO4/Al2O3)が0.15以下であり、大腸菌の除去率が83%よりも高い、金属塩凝集剤に関する。
That is, the metal salt flocculant according to the second embodiment is a metal salt flocculant in which the total content of aluminum ions and iron ions is 5.7 mol or less in 1 liter of the metal salt flocculant. , the molar ratio of chloride ions to iron ions (Cl/Fe) is 28 or more, the molar ratio of aluminum ions (SO 4 /Al 2 O 3 ) in terms of sulfate ions and aluminum oxide is 0.15 or less, and E. coli The present invention relates to a metal salt flocculant having a removal rate of higher than 83%.
第二の実施形態に係る金属塩凝集剤によれば、汚泥沈降等と大腸菌除去を、1種の薬剤を用いて1工程で行えることより、水処理全体の作業工程の簡略化を図ることができる。また、水処理に使用される薬剤の多機能化が図られることにより、水処理全体の薬剤の使用量が抑えられ、結果的に薬剤の搬送時のエネルギーを軽減することもできる。
According to the metal salt flocculant according to the second embodiment, sludge settling, etc. and E. coli removal can be performed in one step using one type of chemical, thereby simplifying the entire water treatment process. can. Furthermore, by making the chemicals used for water treatment multi-functional, the amount of chemicals used in the overall water treatment can be suppressed, and as a result, the energy required for transporting the chemicals can be reduced.
第二の実施形態に係る金属塩凝集剤が大腸菌を除去するメカニズムは、定かではないが、凝集沈殿効果により、大腸菌は汚泥と共にフロックに捕捉された後、最終沈殿池で余剰汚泥として排出されるためと考えられる。また、薬剤由来の残留塩素の影響により、殺菌作用が働くからであると考えられる。
The mechanism by which the metal salt flocculant according to the second embodiment removes E. coli is not clear, but due to the coagulation-sedimentation effect, E. coli is captured in flocs together with sludge, and then discharged as surplus sludge in the final settling tank. It is thought that this is because of this. It is also believed that the bactericidal effect is exerted by the influence of residual chlorine derived from the drug.
大腸菌の除去効果を向上させるためには、塩素イオンの濃度が高い領域であることが好ましい。具体的には、塩素イオンと鉄イオンのモル比(Cl/Fe)が、28以上であることが好ましく、50以上104以下であることがより好ましい。
28未満では薬剤の化学的安定性が低く水酸化鉄が析出するからである。104を超えると鉄イオンの共存による副次効果が低減するため、また処理水中に含まれる残留塩素が過剰量になるおそれがあるからである。処理水中の残留塩素が多い場合、消毒効果の持続性は高まるが、放流先の水域に生息する水生生物への悪影響が懸念される。
また大腸菌の除去率はより好ましくは90%よりも高い。大腸菌の除去率の上限に制限はなく、100%以下または98%程度である。 In order to improve the effect of removing E. coli, it is preferable that the area has a high concentration of chlorine ions. Specifically, the molar ratio of chloride ions to iron ions (Cl/Fe) is preferably 28 or more, more preferably 50 or more and 104 or less.
This is because if it is less than 28, the chemical stability of the drug is low and iron hydroxide is precipitated. This is because if it exceeds 104, side effects due to the coexistence of iron ions will be reduced, and there is a risk that residual chlorine contained in the treated water will be in an excessive amount. If there is a large amount of residual chlorine in the treated water, the disinfection effect will be more sustainable, but there are concerns that it may have a negative impact on aquatic organisms living in the water area to which it is discharged.
Moreover, the removal rate of E. coli is more preferably higher than 90%. There is no upper limit to the removal rate of E. coli, and it is 100% or less or about 98%.
28未満では薬剤の化学的安定性が低く水酸化鉄が析出するからである。104を超えると鉄イオンの共存による副次効果が低減するため、また処理水中に含まれる残留塩素が過剰量になるおそれがあるからである。処理水中の残留塩素が多い場合、消毒効果の持続性は高まるが、放流先の水域に生息する水生生物への悪影響が懸念される。
また大腸菌の除去率はより好ましくは90%よりも高い。大腸菌の除去率の上限に制限はなく、100%以下または98%程度である。 In order to improve the effect of removing E. coli, it is preferable that the area has a high concentration of chlorine ions. Specifically, the molar ratio of chloride ions to iron ions (Cl/Fe) is preferably 28 or more, more preferably 50 or more and 104 or less.
This is because if it is less than 28, the chemical stability of the drug is low and iron hydroxide is precipitated. This is because if it exceeds 104, side effects due to the coexistence of iron ions will be reduced, and there is a risk that residual chlorine contained in the treated water will be in an excessive amount. If there is a large amount of residual chlorine in the treated water, the disinfection effect will be more sustainable, but there are concerns that it may have a negative impact on aquatic organisms living in the water area to which it is discharged.
Moreover, the removal rate of E. coli is more preferably higher than 90%. There is no upper limit to the removal rate of E. coli, and it is 100% or less or about 98%.
本発明は金属塩凝集剤に限定されることはなく、上述の金属塩凝集剤1、2の特性を活かした、種々の方法にも関する。
The present invention is not limited to metal salt flocculants, but also relates to various methods that take advantage of the characteristics of the metal salt flocculants 1 and 2 described above.
〔汚泥排水の処理方法〕
本発明は、下水処理における汚泥処理や排水処理に関する。
即ち本発明は、汚泥排水に、上述の金属塩凝集剤1又は2を添加する工程を備える、汚泥排水の処理方法に関する。
金属塩凝集剤1又は2によれば、実施例の欄において後述する通り、りん・窒素除去性能、消臭特性(硫化水素の抑制効果)、色度低下、汚泥沈降性(SV値)の項目において良好な作用効果を奏する。また薬剤としてポリ塩化アルミニウムを用いた場合に比べて、ポリ塩化アルミニウムの添加質量の約50%の添加率で汚泥の沈降性が改善され、ポリ塩化アルミニウムと同等のりん除去性能を奏する。 [Sludge wastewater treatment method]
The present invention relates to sludge treatment and wastewater treatment in sewage treatment.
That is, the present invention relates to a method for treating sludge wastewater, which includes a step of adding themetal salt flocculant 1 or 2 described above to the sludge wastewater.
According toMetal Salt Flocculant 1 or 2, as described later in the Examples section, the following items are achieved: phosphorus/nitrogen removal performance, deodorizing property (hydrogen sulfide suppression effect), color reduction, and sludge settling property (SV value). It has good effects. Furthermore, compared to the case where polyaluminum chloride is used as a chemical, the sedimentation properties of sludge are improved at an addition rate of about 50% of the added mass of polyaluminum chloride, and the phosphorus removal performance is equivalent to that of polyaluminum chloride.
本発明は、下水処理における汚泥処理や排水処理に関する。
即ち本発明は、汚泥排水に、上述の金属塩凝集剤1又は2を添加する工程を備える、汚泥排水の処理方法に関する。
金属塩凝集剤1又は2によれば、実施例の欄において後述する通り、りん・窒素除去性能、消臭特性(硫化水素の抑制効果)、色度低下、汚泥沈降性(SV値)の項目において良好な作用効果を奏する。また薬剤としてポリ塩化アルミニウムを用いた場合に比べて、ポリ塩化アルミニウムの添加質量の約50%の添加率で汚泥の沈降性が改善され、ポリ塩化アルミニウムと同等のりん除去性能を奏する。 [Sludge wastewater treatment method]
The present invention relates to sludge treatment and wastewater treatment in sewage treatment.
That is, the present invention relates to a method for treating sludge wastewater, which includes a step of adding the
According to
金属塩凝集剤2を添加した場合、上述の性能に加え、更に、病原微生物、例えば大腸菌の除去作用を奏する。汚泥に金属塩凝集剤2を添加することにより、大腸菌の除去率が、83%よりも高くなり、好ましくは90%よりも高くなる。
薬剤としてポリ塩化アルミニウムを添加した際の大腸菌の除去率が75%程度であることを考えると、金属塩凝集剤2によれば、ポリ塩化アルミニウムの添加質量の50%以下の添加量でありながら、大腸菌の除去率を大幅に向上させることができる。
本方法によれば汚泥沈降等と大腸菌除去を1種の薬剤を用いて1工程で行えることより、水処理全体において、作業工程の簡略化と薬剤の使用量の低減を同時に図ることができる。 When the metal salt flocculant 2 is added, in addition to the above-mentioned performance, it also has the effect of removing pathogenic microorganisms, such as Escherichia coli. By adding the metal salt flocculant 2 to the sludge, the removal rate of E. coli becomes higher than 83%, preferably higher than 90%.
Considering that the removal rate of E. coli when polyaluminum chloride is added as a drug is about 75%, according to Metal Salt Flocculant 2, although the amount added is less than 50% of the added mass of polyaluminum chloride, , the removal rate of E. coli can be greatly improved.
According to this method, sludge sedimentation, etc. and E. coli removal can be performed in one step using one type of chemical, so that it is possible to simultaneously simplify the work process and reduce the amount of chemicals used in the overall water treatment.
薬剤としてポリ塩化アルミニウムを添加した際の大腸菌の除去率が75%程度であることを考えると、金属塩凝集剤2によれば、ポリ塩化アルミニウムの添加質量の50%以下の添加量でありながら、大腸菌の除去率を大幅に向上させることができる。
本方法によれば汚泥沈降等と大腸菌除去を1種の薬剤を用いて1工程で行えることより、水処理全体において、作業工程の簡略化と薬剤の使用量の低減を同時に図ることができる。 When the metal salt flocculant 2 is added, in addition to the above-mentioned performance, it also has the effect of removing pathogenic microorganisms, such as Escherichia coli. By adding the metal salt flocculant 2 to the sludge, the removal rate of E. coli becomes higher than 83%, preferably higher than 90%.
Considering that the removal rate of E. coli when polyaluminum chloride is added as a drug is about 75%, according to Metal Salt Flocculant 2, although the amount added is less than 50% of the added mass of polyaluminum chloride, , the removal rate of E. coli can be greatly improved.
According to this method, sludge sedimentation, etc. and E. coli removal can be performed in one step using one type of chemical, so that it is possible to simultaneously simplify the work process and reduce the amount of chemicals used in the overall water treatment.
〔水の浄化消臭方法〕
また本発明は、下水処理の他に、上水や中水等の排水の浄化消臭方法に関する。
即ち本発明は、病原微生物が存在すると考えられる水に、上述の金属塩凝集剤1又は2を添加する工程を備える水の浄化消臭方法にも関する。少ない薬剤の添加量にも関わらず、りん・窒素除去性能、消臭特性(硫化水素の抑制効果)、色度低下、病原微生物除去特性により水の浄化消臭を行うことができる。 [Water purification and deodorization method]
In addition to sewage treatment, the present invention also relates to a method for purifying and deodorizing waste water such as tap water and gray water.
That is, the present invention also relates to a method for purifying and deodorizing water, which includes the step of adding themetal salt flocculant 1 or 2 described above to water in which pathogenic microorganisms are thought to be present. Despite the small amount of chemicals added, it is possible to purify and deodorize water due to its phosphorus and nitrogen removal performance, deodorizing properties (hydrogen sulfide suppression effect), color reduction, and pathogenic microorganism removal properties.
また本発明は、下水処理の他に、上水や中水等の排水の浄化消臭方法に関する。
即ち本発明は、病原微生物が存在すると考えられる水に、上述の金属塩凝集剤1又は2を添加する工程を備える水の浄化消臭方法にも関する。少ない薬剤の添加量にも関わらず、りん・窒素除去性能、消臭特性(硫化水素の抑制効果)、色度低下、病原微生物除去特性により水の浄化消臭を行うことができる。 [Water purification and deodorization method]
In addition to sewage treatment, the present invention also relates to a method for purifying and deodorizing waste water such as tap water and gray water.
That is, the present invention also relates to a method for purifying and deodorizing water, which includes the step of adding the
〔その他の実施形態〕
上記のように、本発明は実施形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。
例えば、実施形態において説明した金属塩凝集剤を新たな使用方法において用いることができる。即ち、本発明は、上述の金属塩凝集剤1又は2を排水中の病原微生物の除去に用いる金属塩凝集剤の新たな使用方法や、上述の金属塩凝集剤1又は2を排水中の大腸菌の除去に用いる金属塩凝集剤の新たな使用方法にも関する。
このように、本発明はここでは記載していない様々な実施の形態等を含むことは勿論である。したがって、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。 [Other embodiments]
As described above, the present invention has been described by way of embodiments, but the statements and drawings that form part of this disclosure should not be understood as limiting the present invention. Various alternative embodiments, implementations, and operational techniques will be apparent to those skilled in the art from this disclosure.
For example, the metal salt flocculant described in the embodiments can be used in a new usage method. That is, the present invention provides a new method for using a metal salt flocculant in which themetal salt flocculant 1 or 2 described above is used to remove pathogenic microorganisms in waste water, and a new method for using the metal salt flocculant 1 or 2 in the removal of pathogenic microorganisms in waste water. It also relates to a new method of using metal salt flocculants for the removal of.
Thus, it goes without saying that the present invention includes various embodiments not described here. Therefore, the technical scope of the present invention is determined only by the matters specifying the invention in the claims that are reasonable from the above description.
上記のように、本発明は実施形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。
例えば、実施形態において説明した金属塩凝集剤を新たな使用方法において用いることができる。即ち、本発明は、上述の金属塩凝集剤1又は2を排水中の病原微生物の除去に用いる金属塩凝集剤の新たな使用方法や、上述の金属塩凝集剤1又は2を排水中の大腸菌の除去に用いる金属塩凝集剤の新たな使用方法にも関する。
このように、本発明はここでは記載していない様々な実施の形態等を含むことは勿論である。したがって、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。 [Other embodiments]
As described above, the present invention has been described by way of embodiments, but the statements and drawings that form part of this disclosure should not be understood as limiting the present invention. Various alternative embodiments, implementations, and operational techniques will be apparent to those skilled in the art from this disclosure.
For example, the metal salt flocculant described in the embodiments can be used in a new usage method. That is, the present invention provides a new method for using a metal salt flocculant in which the
Thus, it goes without saying that the present invention includes various embodiments not described here. Therefore, the technical scope of the present invention is determined only by the matters specifying the invention in the claims that are reasonable from the above description.
〔金属塩凝集剤1〕
第一の実施形態に係る金属塩凝集剤について、以下の実験を行った。
(特性評価)
調製した金属塩凝集剤について、次の観点から特性を評価した。
(1)汚泥沈降性(SV値)
1リットルのメスシリンダー内に活性汚泥を充填し、これに評価対象の各薬剤を添加し、所定時間の静置後に固液分離した汚泥高さから、それぞれの薬剤の汚泥沈降性を評価した。ここで、SVnにおけるSVは汚泥量(Sludge volume)、nは静置後の経過時間(分)を表す。
(2)T-P、T-N、COD、SS成分の除去特性
活性汚泥に対して評価対象の各薬剤を添加して1時間静置後の上澄み水について、その水質を検査した。T-Pは全リン量、T-Nは全窒素量、CODは化学的酸素要求量、SSは懸濁物質を表す。これらの成分の残存量[mg/L]から、これらの成分に対する各薬剤の除去特性を評価した。
(3)消臭特性(硫化水素の抑制効果)
生汚泥に対して評価対象の各薬剤を添加して4時間静置し、その上澄み水に含まれる硫化水素濃度(H2S[ppm])を、ガス検知器を用いて測定した。上澄み水に残留する硫化水素濃度が低いほど消臭特性が優れていると評価できる。
(4)脱水
消化汚泥に対して評価対象の各薬剤を添加し、加圧・脱水後のケーキの含水率[%]を測定した。
(5)色度低下
下水処理場の生物反応槽に評価対象の各薬剤を添加し、最終沈殿池における越流水の色度を測定した。
[実施例1] [Metal salt flocculant 1]
The following experiment was conducted on the metal salt flocculant according to the first embodiment.
(Characteristics evaluation)
The properties of the prepared metal salt flocculant were evaluated from the following viewpoints.
(1) Sludge settling property (SV value)
Activated sludge was filled in a 1-liter graduated cylinder, each drug to be evaluated was added thereto, and the sludge settling ability of each drug was evaluated based on the height of the sludge separated from solid and liquid after being allowed to stand for a predetermined period of time. Here, SV in SVn represents the sludge volume, and n represents the elapsed time (minutes) after standing.
(2) Removal characteristics of TP, TN, COD, and SS components Each of the chemicals to be evaluated was added to the activated sludge, and the supernatant water after being allowed to stand for 1 hour was examined for water quality. TP represents total phosphorus, TN represents total nitrogen, COD represents chemical oxygen demand, and SS represents suspended solids. The removal characteristics of each drug for these components were evaluated from the residual amount [mg/L] of these components.
(3) Deodorizing properties (hydrogen sulfide suppression effect)
Each chemical to be evaluated was added to the raw sludge and left to stand for 4 hours, and the concentration of hydrogen sulfide (H 2 S [ppm]) contained in the supernatant water was measured using a gas detector. It can be evaluated that the lower the concentration of hydrogen sulfide remaining in the supernatant water, the better the deodorizing properties.
(4) Dehydration Each chemical to be evaluated was added to the digested sludge, and the moisture content [%] of the cake after pressurization and dehydration was measured.
(5) Decrease in chromaticity Each chemical to be evaluated was added to the biological reaction tank of the sewage treatment plant, and the chromaticity of the overflow water in the final settling tank was measured.
[Example 1]
第一の実施形態に係る金属塩凝集剤について、以下の実験を行った。
(特性評価)
調製した金属塩凝集剤について、次の観点から特性を評価した。
(1)汚泥沈降性(SV値)
1リットルのメスシリンダー内に活性汚泥を充填し、これに評価対象の各薬剤を添加し、所定時間の静置後に固液分離した汚泥高さから、それぞれの薬剤の汚泥沈降性を評価した。ここで、SVnにおけるSVは汚泥量(Sludge volume)、nは静置後の経過時間(分)を表す。
(2)T-P、T-N、COD、SS成分の除去特性
活性汚泥に対して評価対象の各薬剤を添加して1時間静置後の上澄み水について、その水質を検査した。T-Pは全リン量、T-Nは全窒素量、CODは化学的酸素要求量、SSは懸濁物質を表す。これらの成分の残存量[mg/L]から、これらの成分に対する各薬剤の除去特性を評価した。
(3)消臭特性(硫化水素の抑制効果)
生汚泥に対して評価対象の各薬剤を添加して4時間静置し、その上澄み水に含まれる硫化水素濃度(H2S[ppm])を、ガス検知器を用いて測定した。上澄み水に残留する硫化水素濃度が低いほど消臭特性が優れていると評価できる。
(4)脱水
消化汚泥に対して評価対象の各薬剤を添加し、加圧・脱水後のケーキの含水率[%]を測定した。
(5)色度低下
下水処理場の生物反応槽に評価対象の各薬剤を添加し、最終沈殿池における越流水の色度を測定した。
[実施例1] [Metal salt flocculant 1]
The following experiment was conducted on the metal salt flocculant according to the first embodiment.
(Characteristics evaluation)
The properties of the prepared metal salt flocculant were evaluated from the following viewpoints.
(1) Sludge settling property (SV value)
Activated sludge was filled in a 1-liter graduated cylinder, each drug to be evaluated was added thereto, and the sludge settling ability of each drug was evaluated based on the height of the sludge separated from solid and liquid after being allowed to stand for a predetermined period of time. Here, SV in SVn represents the sludge volume, and n represents the elapsed time (minutes) after standing.
(2) Removal characteristics of TP, TN, COD, and SS components Each of the chemicals to be evaluated was added to the activated sludge, and the supernatant water after being allowed to stand for 1 hour was examined for water quality. TP represents total phosphorus, TN represents total nitrogen, COD represents chemical oxygen demand, and SS represents suspended solids. The removal characteristics of each drug for these components were evaluated from the residual amount [mg/L] of these components.
(3) Deodorizing properties (hydrogen sulfide suppression effect)
Each chemical to be evaluated was added to the raw sludge and left to stand for 4 hours, and the concentration of hydrogen sulfide (H 2 S [ppm]) contained in the supernatant water was measured using a gas detector. It can be evaluated that the lower the concentration of hydrogen sulfide remaining in the supernatant water, the better the deodorizing properties.
(4) Dehydration Each chemical to be evaluated was added to the digested sludge, and the moisture content [%] of the cake after pressurization and dehydration was measured.
(5) Decrease in chromaticity Each chemical to be evaluated was added to the biological reaction tank of the sewage treatment plant, and the chromaticity of the overflow water in the final settling tank was measured.
[Example 1]
(薬剤の調製と安定性評価)
Al濃度が5.08~5.87mol/Lの濃度が異なるポリ塩化アルミニウムに対して、Fe濃度が2.93mol/L、比重が1.484のポリ硫酸第二鉄をそれぞれの成分のSO4/Al2O3モル比として0.07~0.17の範囲で250mLポリ瓶内で混合・添加し、混合液200gを得た。得られたサンプルを、1g採取し、100mLの純水で希釈して溶液のpHを測定した。残りのサンプルは、比重を測定した後、常温下で1か月間保管して、その保存安定性を評価した。
ポリ塩化アルミニウムとポリ硫酸第二鉄との混合条件をそれぞれの成分モル量(AlおよびFe)で表示し、混合後の本発明の金属塩凝集剤の安定性を表1に示す。 (Drug preparation and stability evaluation)
For polyaluminum chloride with different Al concentrations from 5.08 to 5.87 mol/L, polyferric sulfate with an Fe concentration of 2.93 mol/L and a specific gravity of 1.484 was added to SO 4 of each component. /Al 2 O 3 molar ratio in the range of 0.07 to 0.17 was mixed and added in a 250 mL plastic bottle to obtain 200 g of a mixed solution. 1 g of the obtained sample was collected, diluted with 100 mL of pure water, and the pH of the solution was measured. After measuring the specific gravity of the remaining samples, they were stored at room temperature for one month to evaluate their storage stability.
Table 1 shows the mixing conditions of polyaluminum chloride and polyferric sulfate in molar amounts of each component (Al and Fe), and the stability of the metal salt flocculant of the present invention after mixing.
Al濃度が5.08~5.87mol/Lの濃度が異なるポリ塩化アルミニウムに対して、Fe濃度が2.93mol/L、比重が1.484のポリ硫酸第二鉄をそれぞれの成分のSO4/Al2O3モル比として0.07~0.17の範囲で250mLポリ瓶内で混合・添加し、混合液200gを得た。得られたサンプルを、1g採取し、100mLの純水で希釈して溶液のpHを測定した。残りのサンプルは、比重を測定した後、常温下で1か月間保管して、その保存安定性を評価した。
ポリ塩化アルミニウムとポリ硫酸第二鉄との混合条件をそれぞれの成分モル量(AlおよびFe)で表示し、混合後の本発明の金属塩凝集剤の安定性を表1に示す。 (Drug preparation and stability evaluation)
For polyaluminum chloride with different Al concentrations from 5.08 to 5.87 mol/L, polyferric sulfate with an Fe concentration of 2.93 mol/L and a specific gravity of 1.484 was added to SO 4 of each component. /Al 2 O 3 molar ratio in the range of 0.07 to 0.17 was mixed and added in a 250 mL plastic bottle to obtain 200 g of a mixed solution. 1 g of the obtained sample was collected, diluted with 100 mL of pure water, and the pH of the solution was measured. After measuring the specific gravity of the remaining samples, they were stored at room temperature for one month to evaluate their storage stability.
Table 1 shows the mixing conditions of polyaluminum chloride and polyferric sulfate in molar amounts of each component (Al and Fe), and the stability of the metal salt flocculant of the present invention after mixing.
表1にまとめた実験結果より、1L中にアルミニウムイオンと鉄イオンの合計で5.7モル以下であり、モル比で塩素イオンと鉄イオンの比(Cl/Fe)が28以上、硫酸イオンと酸化アルミニウム換算でアルミニウムイオンのモル比(SO4/Al2O3)が0.15以下の場合に、本発明の金属塩凝集剤は安定的に存在することがわかる。
[実施例2] From the experimental results summarized in Table 1, the total amount of aluminum ions and iron ions in 1L is 5.7 moles or less, the molar ratio of chloride ions to iron ions (Cl/Fe) is 28 or more, and the sulfate ions and It can be seen that the metal salt flocculant of the present invention exists stably when the molar ratio of aluminum ions (SO 4 /Al 2 O 3 ) in terms of aluminum oxide is 0.15 or less.
[Example 2]
[実施例2] From the experimental results summarized in Table 1, the total amount of aluminum ions and iron ions in 1L is 5.7 moles or less, the molar ratio of chloride ions to iron ions (Cl/Fe) is 28 or more, and the sulfate ions and It can be seen that the metal salt flocculant of the present invention exists stably when the molar ratio of aluminum ions (SO 4 /Al 2 O 3 ) in terms of aluminum oxide is 0.15 or less.
[Example 2]
(汚泥沈降性と各成分の除去特性)
下水処理場よりサンプリングした活性汚泥(TS:0.2%)を1Lメスシリンダーに1,000mL採取し、ポリ塩化アルミニウム(M3+2.5mol/L)、ポリ硫酸第二鉄(M3+2.9mol/L)、本発明の金属塩凝集剤(M3+5.3mol/L(Al3+5.1mol/L,Fe3+0.2mol/L)、Cl/Fe:65、SO4/Al2O3:0.04)の各薬剤を表2の条件で添加・混合した。10分静置後、30分静置後における汚泥の沈降性(SV10、SV30)を測定した。ここで、M3+とは薬剤中に含まれる3価の金属イオン(即ちAl3+とFe3+)濃度の合計を表す。
さらに、1時間静置後の上澄み水について、残留するT-P、T-N、COD、SSの各成分の量を分析した。各薬剤の添加量は、表2で示す通り、M3+がいずれも等しくなるよう設定した。
試験結果は表2の通り。ここで、TSとは全蒸発残留物(Total solids)の略で、ここでは、固形物としての汚泥量を示す。 (Sludge settling properties and removal characteristics of each component)
1,000 mL of activated sludge (TS: 0.2%) sampled from a sewage treatment plant was collected in a 1 L graduated cylinder, and polyaluminum chloride (M 3+ 2.5 mol/L), polyferric sulfate (M 3+ 2. 9 mol/L), metal salt flocculant of the present invention (M 3+ 5.3 mol/L (Al 3+ 5.1 mol/L, Fe 3+ 0.2 mol/L), Cl/Fe: 65, SO 4 /Al 2 O 3 :0.04) were added and mixed under the conditions shown in Table 2. The sedimentation properties (SV 10 , SV 30 ) of the sludge were measured after standing for 10 minutes and after standing for 30 minutes. Here, M 3+ represents the total concentration of trivalent metal ions (ie, Al 3+ and Fe 3+ ) contained in the drug.
Further, the supernatant water after being left standing for 1 hour was analyzed for the amount of remaining components of TP, TN, COD, and SS. As shown in Table 2, the amount of each drug added was set so that M 3+ was the same for each drug.
The test results are shown in Table 2. Here, TS is an abbreviation for total evaporation residue (total solids), and here indicates the amount of sludge as solids.
下水処理場よりサンプリングした活性汚泥(TS:0.2%)を1Lメスシリンダーに1,000mL採取し、ポリ塩化アルミニウム(M3+2.5mol/L)、ポリ硫酸第二鉄(M3+2.9mol/L)、本発明の金属塩凝集剤(M3+5.3mol/L(Al3+5.1mol/L,Fe3+0.2mol/L)、Cl/Fe:65、SO4/Al2O3:0.04)の各薬剤を表2の条件で添加・混合した。10分静置後、30分静置後における汚泥の沈降性(SV10、SV30)を測定した。ここで、M3+とは薬剤中に含まれる3価の金属イオン(即ちAl3+とFe3+)濃度の合計を表す。
さらに、1時間静置後の上澄み水について、残留するT-P、T-N、COD、SSの各成分の量を分析した。各薬剤の添加量は、表2で示す通り、M3+がいずれも等しくなるよう設定した。
試験結果は表2の通り。ここで、TSとは全蒸発残留物(Total solids)の略で、ここでは、固形物としての汚泥量を示す。 (Sludge settling properties and removal characteristics of each component)
1,000 mL of activated sludge (TS: 0.2%) sampled from a sewage treatment plant was collected in a 1 L graduated cylinder, and polyaluminum chloride (M 3+ 2.5 mol/L), polyferric sulfate (M 3+ 2. 9 mol/L), metal salt flocculant of the present invention (M 3+ 5.3 mol/L (Al 3+ 5.1 mol/L, Fe 3+ 0.2 mol/L), Cl/Fe: 65, SO 4 /Al 2 O 3 :0.04) were added and mixed under the conditions shown in Table 2. The sedimentation properties (SV 10 , SV 30 ) of the sludge were measured after standing for 10 minutes and after standing for 30 minutes. Here, M 3+ represents the total concentration of trivalent metal ions (ie, Al 3+ and Fe 3+ ) contained in the drug.
Further, the supernatant water after being left standing for 1 hour was analyzed for the amount of remaining components of TP, TN, COD, and SS. As shown in Table 2, the amount of each drug added was set so that M 3+ was the same for each drug.
The test results are shown in Table 2. Here, TS is an abbreviation for total evaporation residue (total solids), and here indicates the amount of sludge as solids.
(汚泥沈降性の評価)
活性汚泥に対して各薬剤を添加した結果、本発明の金属塩凝集剤は、ポリ塩化アルミニウムやポリ硫酸第二鉄よりも少ない添加量で、汚泥沈降性(SV値)が最も良好であった。特にSV10の値に注目すると、初期の沈降速度に関してその差が顕著に見られたため、薬剤の即効性に優れていることが理解できる。
本発明の金属塩凝集剤の使用により、処理水の固液分離性が大きく向上することから、凝集を目的としたあらゆる水処理設備(例:凝集槽、生物反応槽、重力濃縮槽など)における利用が可能である。 (Evaluation of sludge settling properties)
As a result of adding each agent to activated sludge, the metal salt flocculant of the present invention had the best sludge settling property (SV value) at a smaller amount than polyaluminum chloride or polyferric sulfate. . Particularly when paying attention to the SV 10 value, there was a significant difference in the initial sedimentation rate, which indicates that the drug has excellent immediate efficacy.
Since the use of the metal salt flocculant of the present invention greatly improves the solid-liquid separability of treated water, it can be used in all types of water treatment equipment for the purpose of flocculation (e.g. flocculation tanks, biological reaction tanks, gravity concentration tanks, etc.). Available.
活性汚泥に対して各薬剤を添加した結果、本発明の金属塩凝集剤は、ポリ塩化アルミニウムやポリ硫酸第二鉄よりも少ない添加量で、汚泥沈降性(SV値)が最も良好であった。特にSV10の値に注目すると、初期の沈降速度に関してその差が顕著に見られたため、薬剤の即効性に優れていることが理解できる。
本発明の金属塩凝集剤の使用により、処理水の固液分離性が大きく向上することから、凝集を目的としたあらゆる水処理設備(例:凝集槽、生物反応槽、重力濃縮槽など)における利用が可能である。 (Evaluation of sludge settling properties)
As a result of adding each agent to activated sludge, the metal salt flocculant of the present invention had the best sludge settling property (SV value) at a smaller amount than polyaluminum chloride or polyferric sulfate. . Particularly when paying attention to the SV 10 value, there was a significant difference in the initial sedimentation rate, which indicates that the drug has excellent immediate efficacy.
Since the use of the metal salt flocculant of the present invention greatly improves the solid-liquid separability of treated water, it can be used in all types of water treatment equipment for the purpose of flocculation (e.g. flocculation tanks, biological reaction tanks, gravity concentration tanks, etc.). Available.
(T-P、T-N、COD、SS成分の除去特性の評価)
本発明の金属塩凝集剤では、ポリ塩化アルミニウムやポリ硫酸第二鉄よりも少ない添加量で、上澄み水からより多くのT-P、T-N、COD、SSの除去を行うことができた。
よって、本発明の金属塩凝集剤の使用により、上記成分の効率的な除去・回収が可能であるため、富栄養化対策や水質改善化に向けた効果が見込まれる。
[実施例3] (Evaluation of removal characteristics of TP, TN, COD, and SS components)
The metal salt flocculant of the present invention was able to remove more TP, TN, COD, and SS from supernatant water with a smaller amount added than polyaluminum chloride or polyferric sulfate. .
Therefore, by using the metal salt flocculant of the present invention, it is possible to efficiently remove and recover the above-mentioned components, and therefore, it is expected to be effective in countering eutrophication and improving water quality.
[Example 3]
本発明の金属塩凝集剤では、ポリ塩化アルミニウムやポリ硫酸第二鉄よりも少ない添加量で、上澄み水からより多くのT-P、T-N、COD、SSの除去を行うことができた。
よって、本発明の金属塩凝集剤の使用により、上記成分の効率的な除去・回収が可能であるため、富栄養化対策や水質改善化に向けた効果が見込まれる。
[実施例3] (Evaluation of removal characteristics of TP, TN, COD, and SS components)
The metal salt flocculant of the present invention was able to remove more TP, TN, COD, and SS from supernatant water with a smaller amount added than polyaluminum chloride or polyferric sulfate. .
Therefore, by using the metal salt flocculant of the present invention, it is possible to efficiently remove and recover the above-mentioned components, and therefore, it is expected to be effective in countering eutrophication and improving water quality.
[Example 3]
(消臭・硫化水素抑制)
下水処理場よりサンプリングした生汚泥(TS1.1%)を1Lメスシリンダーに1,000mL採取し、実施例2で使用したポリ塩化アルミニウム、ポリ硫酸第二鉄、本発明の金属塩凝集剤の各薬剤を表3の条件で添加・混合した。4時間静置後、上澄み水を300mL三角フラスコに100mL採取・密栓・振とうした後、気相部の硫化水素濃度をガス検知管で測定した。薬剤の添加量は、上記と同様に3価の金属イオン濃度が等しくなるように設定した。試験結果は、表3の通り。 (Deodorization/Hydrogen sulfide suppression)
1,000 mL of raw sludge (TS 1.1%) sampled from a sewage treatment plant was collected in a 1 L measuring cylinder, and each of the polyaluminum chloride, polyferric sulfate, and metal salt flocculant of the present invention used in Example 2 was collected. The drugs were added and mixed under the conditions shown in Table 3. After standing still for 4 hours, 100 mL of the supernatant water was collected in a 300 mL Erlenmeyer flask, sealed, and shaken, and the hydrogen sulfide concentration in the gas phase was measured using a gas detection tube. The amount of the drug added was set so that the trivalent metal ion concentrations were equal, as described above. The test results are shown in Table 3.
下水処理場よりサンプリングした生汚泥(TS1.1%)を1Lメスシリンダーに1,000mL採取し、実施例2で使用したポリ塩化アルミニウム、ポリ硫酸第二鉄、本発明の金属塩凝集剤の各薬剤を表3の条件で添加・混合した。4時間静置後、上澄み水を300mL三角フラスコに100mL採取・密栓・振とうした後、気相部の硫化水素濃度をガス検知管で測定した。薬剤の添加量は、上記と同様に3価の金属イオン濃度が等しくなるように設定した。試験結果は、表3の通り。 (Deodorization/Hydrogen sulfide suppression)
1,000 mL of raw sludge (TS 1.1%) sampled from a sewage treatment plant was collected in a 1 L measuring cylinder, and each of the polyaluminum chloride, polyferric sulfate, and metal salt flocculant of the present invention used in Example 2 was collected. The drugs were added and mixed under the conditions shown in Table 3. After standing still for 4 hours, 100 mL of the supernatant water was collected in a 300 mL Erlenmeyer flask, sealed, and shaken, and the hydrogen sulfide concentration in the gas phase was measured using a gas detection tube. The amount of the drug added was set so that the trivalent metal ion concentrations were equal, as described above. The test results are shown in Table 3.
(消臭特性の評価)
硫化水素の除去率は、ポリ塩化アルミニウム<本発明の金属塩凝集剤<ポリ硫酸第二鉄の順となった。一般的に、硫化水素の抑制には鉄イオンによる硫黄の固定化が大きく寄与するため、本発明の金属塩凝集剤は、通常のポリ塩化アルミニウムに比べて高い硫化水素抑制効果を示した。
したがって、本発明の金属塩凝集剤は水処理における消臭用途としての使用も可能である。使用例としては、下水処理場、排水処理施設、ポンプ場、送泥施設などが考えられる。
[実施例4] (Evaluation of deodorizing properties)
The removal rate of hydrogen sulfide was in the order of polyaluminum chloride<metal salt flocculant of the present invention<polyferric sulfate. Generally, the immobilization of sulfur by iron ions greatly contributes to suppressing hydrogen sulfide, so the metal salt flocculant of the present invention exhibited a higher hydrogen sulfide suppressing effect than ordinary polyaluminum chloride.
Therefore, the metal salt flocculant of the present invention can also be used as a deodorizer in water treatment. Possible usage examples include sewage treatment plants, wastewater treatment facilities, pumping stations, and mud pumping facilities.
[Example 4]
硫化水素の除去率は、ポリ塩化アルミニウム<本発明の金属塩凝集剤<ポリ硫酸第二鉄の順となった。一般的に、硫化水素の抑制には鉄イオンによる硫黄の固定化が大きく寄与するため、本発明の金属塩凝集剤は、通常のポリ塩化アルミニウムに比べて高い硫化水素抑制効果を示した。
したがって、本発明の金属塩凝集剤は水処理における消臭用途としての使用も可能である。使用例としては、下水処理場、排水処理施設、ポンプ場、送泥施設などが考えられる。
[実施例4] (Evaluation of deodorizing properties)
The removal rate of hydrogen sulfide was in the order of polyaluminum chloride<metal salt flocculant of the present invention<polyferric sulfate. Generally, the immobilization of sulfur by iron ions greatly contributes to suppressing hydrogen sulfide, so the metal salt flocculant of the present invention exhibited a higher hydrogen sulfide suppressing effect than ordinary polyaluminum chloride.
Therefore, the metal salt flocculant of the present invention can also be used as a deodorizer in water treatment. Possible usage examples include sewage treatment plants, wastewater treatment facilities, pumping stations, and mud pumping facilities.
[Example 4]
(脱水特性)
下水処理場よりサンプリングした消化汚泥(TS1.3%)を500mLビーカーに300mL採取し、実施例2で使用した各無機凝集剤(ポリ塩化アルミニウム、ポリ硫酸第二鉄、本発明の金属塩凝集剤)と高分子凝集剤(0.3wt%、170ppm)を表4の条件で添加・混合した。60秒間ろ過後、加圧・脱水し、ケーキ含水率を測定した。薬剤の添加量は、上記と同様に3価の金属イオン濃度が等しくなるように設定した。
試験結果は、表4の通り。 (Dehydration properties)
300 mL of digested sludge (TS 1.3%) sampled from a sewage treatment plant was collected in a 500 mL beaker, and each inorganic flocculant used in Example 2 (polyaluminum chloride, polyferric sulfate, metal salt flocculant of the present invention) ) and a polymer flocculant (0.3 wt%, 170 ppm) were added and mixed under the conditions shown in Table 4. After filtration for 60 seconds, the cake was dehydrated under pressure and the moisture content of the cake was measured. The amount of the drug added was set so that the trivalent metal ion concentrations were equal, as described above.
The test results are shown in Table 4.
下水処理場よりサンプリングした消化汚泥(TS1.3%)を500mLビーカーに300mL採取し、実施例2で使用した各無機凝集剤(ポリ塩化アルミニウム、ポリ硫酸第二鉄、本発明の金属塩凝集剤)と高分子凝集剤(0.3wt%、170ppm)を表4の条件で添加・混合した。60秒間ろ過後、加圧・脱水し、ケーキ含水率を測定した。薬剤の添加量は、上記と同様に3価の金属イオン濃度が等しくなるように設定した。
試験結果は、表4の通り。 (Dehydration properties)
300 mL of digested sludge (TS 1.3%) sampled from a sewage treatment plant was collected in a 500 mL beaker, and each inorganic flocculant used in Example 2 (polyaluminum chloride, polyferric sulfate, metal salt flocculant of the present invention) ) and a polymer flocculant (0.3 wt%, 170 ppm) were added and mixed under the conditions shown in Table 4. After filtration for 60 seconds, the cake was dehydrated under pressure and the moisture content of the cake was measured. The amount of the drug added was set so that the trivalent metal ion concentrations were equal, as described above.
The test results are shown in Table 4.
(脱水特性の評価)
脱水性はポリ塩化アルミニウム<ポリ硫酸第二鉄<本発明の金属塩凝集剤の順に良好であった。本発明の金属塩凝集剤では、薬剤無添加時に比べてケーキの含水率が1.5ポイント低下した。
以上より、本発明の金属塩凝集剤は汚泥含水率の低下を目的とした脱水機への利用も可能であり、最終的に汚泥の運搬や処理費用の削減につながる。
[実施例5] (Evaluation of dehydration characteristics)
The dehydration properties were good in the order of polyaluminum chloride < polyferric sulfate < the metal salt flocculant of the present invention. With the metal salt flocculant of the present invention, the moisture content of the cake was reduced by 1.5 points compared to when no chemical was added.
As described above, the metal salt flocculant of the present invention can also be used in a dehydrator for the purpose of reducing the water content of sludge, which ultimately leads to a reduction in sludge transportation and treatment costs.
[Example 5]
脱水性はポリ塩化アルミニウム<ポリ硫酸第二鉄<本発明の金属塩凝集剤の順に良好であった。本発明の金属塩凝集剤では、薬剤無添加時に比べてケーキの含水率が1.5ポイント低下した。
以上より、本発明の金属塩凝集剤は汚泥含水率の低下を目的とした脱水機への利用も可能であり、最終的に汚泥の運搬や処理費用の削減につながる。
[実施例5] (Evaluation of dehydration characteristics)
The dehydration properties were good in the order of polyaluminum chloride < polyferric sulfate < the metal salt flocculant of the present invention. With the metal salt flocculant of the present invention, the moisture content of the cake was reduced by 1.5 points compared to when no chemical was added.
As described above, the metal salt flocculant of the present invention can also be used in a dehydrator for the purpose of reducing the water content of sludge, which ultimately leads to a reduction in sludge transportation and treatment costs.
[Example 5]
(色度低下特性)
図1に示すフローの下水処理場(日平均流入水量:約33,000m3/日、標準活性汚泥法)の生物反応槽末端部に、実施例2で使用したポリ塩化アルミニウム(25mg/L)または本発明の金属塩凝集剤(14mg/L)を1週間連続注入した。薬剤は、ダイヤフラム式定量ポンプを用い、生物反応槽で液中添加した。薬剤の添加量は、上記と同様、3価の金属イオン濃度が等しくなるように設定した。生物反応槽の後段の最終沈殿池より、越流水を定期的にサンプリングし、色度を測定した。
試験結果は、表5の通り。ここで、色度の平均値および最小値は、週平均の値である。 (Chromaticity reduction characteristic)
The polyaluminum chloride (25 mg/L) used in Example 2 was placed at the end of the biological reaction tank of the sewage treatment plant with the flow shown in Figure 1 (daily average inflow water amount: approximately 33,000 m 3 /day, standard activated sludge method). Alternatively, the metal salt flocculant (14 mg/L) of the present invention was continuously injected for one week. The drug was added into the liquid in a biological reaction tank using a diaphragm metering pump. The amount of the drug added was set so that the trivalent metal ion concentrations were equal, as described above. Overflow water was periodically sampled from the final settling tank located after the biological reaction tank, and its chromaticity was measured.
The test results are shown in Table 5. Here, the average value and minimum value of chromaticity are weekly average values.
図1に示すフローの下水処理場(日平均流入水量:約33,000m3/日、標準活性汚泥法)の生物反応槽末端部に、実施例2で使用したポリ塩化アルミニウム(25mg/L)または本発明の金属塩凝集剤(14mg/L)を1週間連続注入した。薬剤は、ダイヤフラム式定量ポンプを用い、生物反応槽で液中添加した。薬剤の添加量は、上記と同様、3価の金属イオン濃度が等しくなるように設定した。生物反応槽の後段の最終沈殿池より、越流水を定期的にサンプリングし、色度を測定した。
試験結果は、表5の通り。ここで、色度の平均値および最小値は、週平均の値である。 (Chromaticity reduction characteristic)
The polyaluminum chloride (25 mg/L) used in Example 2 was placed at the end of the biological reaction tank of the sewage treatment plant with the flow shown in Figure 1 (daily average inflow water amount: approximately 33,000 m 3 /day, standard activated sludge method). Alternatively, the metal salt flocculant (14 mg/L) of the present invention was continuously injected for one week. The drug was added into the liquid in a biological reaction tank using a diaphragm metering pump. The amount of the drug added was set so that the trivalent metal ion concentrations were equal, as described above. Overflow water was periodically sampled from the final settling tank located after the biological reaction tank, and its chromaticity was measured.
The test results are shown in Table 5. Here, the average value and minimum value of chromaticity are weekly average values.
(色度低下特性の評価)
本発明の金属塩凝集剤では、ポリ塩化アルミニウムよりも少ない添加量で色度低下が顕著に見られた。
したがって、本発明の薬剤は下水の他、上水や中水等の排水への利用も見込まれる。 (Evaluation of chromaticity reduction characteristics)
With the metal salt flocculant of the present invention, a significant decrease in chromaticity was observed when the amount added was smaller than that of polyaluminum chloride.
Therefore, the agent of the present invention is expected to be used not only for sewage but also for wastewater such as clean water and gray water.
本発明の金属塩凝集剤では、ポリ塩化アルミニウムよりも少ない添加量で色度低下が顕著に見られた。
したがって、本発明の薬剤は下水の他、上水や中水等の排水への利用も見込まれる。 (Evaluation of chromaticity reduction characteristics)
With the metal salt flocculant of the present invention, a significant decrease in chromaticity was observed when the amount added was smaller than that of polyaluminum chloride.
Therefore, the agent of the present invention is expected to be used not only for sewage but also for wastewater such as clean water and gray water.
(その他の利点)
色度低下試験における実機試験より、本発明の金属塩凝集剤は、通常のポリ塩化アルミニウムと同設備で薬剤注入が可能であった。また、薬剤の使用量を抑えられるため、ローリーの運搬・受入頻度が減少し、これは必要労務や人件費の削減につながる。 (Other benefits)
According to the actual machine test in the color reduction test, the metal salt flocculant of the present invention could be injected using the same equipment as ordinary polyaluminum chloride. Additionally, since the amount of medicine used can be reduced, the frequency of transportation and reception by lorries will be reduced, which will lead to a reduction in required labor and personnel costs.
色度低下試験における実機試験より、本発明の金属塩凝集剤は、通常のポリ塩化アルミニウムと同設備で薬剤注入が可能であった。また、薬剤の使用量を抑えられるため、ローリーの運搬・受入頻度が減少し、これは必要労務や人件費の削減につながる。 (Other benefits)
According to the actual machine test in the color reduction test, the metal salt flocculant of the present invention could be injected using the same equipment as ordinary polyaluminum chloride. Additionally, since the amount of medicine used can be reduced, the frequency of transportation and reception by lorries will be reduced, which will lead to a reduction in required labor and personnel costs.
〔金属塩凝集剤2〕
[実施例6]、[比較例1]
第二の実施形態に係る金属塩凝集剤について以下の実験を行った。
(実機試験)
(施設概要)
図2のフロー図に示されるような処理施設(A系)と処理施設(B系)を備える処理場を用いて実機試験を実施した。処理場の日平均流入水量は34,000m3/日であり、処理方式は標準活性汚泥法で、窒素除去を目的に疑似ステップ流入式2段硝化脱窒法による運転を行っている(6系列)。また、りんの高度処理を行うため、別の1系列では反応タンクの最終槽前段に凝集剤としてポリ塩化アルミニウム(PAC)が添加されている(凝集剤併用型ステップ流入式2段硝化脱窒法)。処理水の一部は砂ろ過、オゾン処理、塩素消毒を経たのち、近隣の公園で親水用水として再利用されている。 [Metal salt flocculant 2]
[Example 6], [Comparative example 1]
The following experiment was conducted on the metal salt flocculant according to the second embodiment.
(actual machine test)
(Equipment outline)
An actual machine test was conducted using a treatment plant equipped with a treatment facility (system A) and a treatment facility (system B) as shown in the flow diagram of FIG. 2. The average daily inflow volume of the treatment plant is 34,000 m 3 /day, and the treatment method is the standard activated sludge method, and for the purpose of nitrogen removal, operation is performed using a pseudo-step inflow type two-stage nitrification-denitrification method (6 trains). . In addition, in order to perform advanced treatment of phosphorus, polyaluminum chloride (PAC) is added as a flocculant before the final reaction tank in another series (step flow type two-stage nitrification-denitrification method with coagulant). . A portion of the treated water undergoes sand filtration, ozone treatment, and chlorine disinfection, and is then reused as water for nearby parks.
[実施例6]、[比較例1]
第二の実施形態に係る金属塩凝集剤について以下の実験を行った。
(実機試験)
(施設概要)
図2のフロー図に示されるような処理施設(A系)と処理施設(B系)を備える処理場を用いて実機試験を実施した。処理場の日平均流入水量は34,000m3/日であり、処理方式は標準活性汚泥法で、窒素除去を目的に疑似ステップ流入式2段硝化脱窒法による運転を行っている(6系列)。また、りんの高度処理を行うため、別の1系列では反応タンクの最終槽前段に凝集剤としてポリ塩化アルミニウム(PAC)が添加されている(凝集剤併用型ステップ流入式2段硝化脱窒法)。処理水の一部は砂ろ過、オゾン処理、塩素消毒を経たのち、近隣の公園で親水用水として再利用されている。 [Metal salt flocculant 2]
[Example 6], [Comparative example 1]
The following experiment was conducted on the metal salt flocculant according to the second embodiment.
(actual machine test)
(Equipment outline)
An actual machine test was conducted using a treatment plant equipped with a treatment facility (system A) and a treatment facility (system B) as shown in the flow diagram of FIG. 2. The average daily inflow volume of the treatment plant is 34,000 m 3 /day, and the treatment method is the standard activated sludge method, and for the purpose of nitrogen removal, operation is performed using a pseudo-step inflow type two-stage nitrification-denitrification method (6 trains). . In addition, in order to perform advanced treatment of phosphorus, polyaluminum chloride (PAC) is added as a flocculant before the final reaction tank in another series (step flow type two-stage nitrification-denitrification method with coagulant). . A portion of the treated water undergoes sand filtration, ozone treatment, and chlorine disinfection, and is then reused as water for nearby parks.
(試験方法)
注入する凝集剤として、比較例1では市販のポリ塩化アルミニウム(PAC)(比重:1.214、Cl/Al2O3:2.7)、実施例6では高濃度鉄アルミ(比重:1.445、Cl/Fe:63、SO4/Al2O3:0.08、Cl/Al2O3:3.3、SO4/Fe:1.4)を用いた。薬剤中に含まれる3価の金属イオン濃度(Al3+、Fe3+)は、比較例1(PAC):2.38mol/L、実施例6(高濃度鉄アルミ):5.35mol/Lであった。
凝集剤併用型ステップ流入式2段硝化脱窒法による処理施設(A系)に、PAC、高濃度鉄アルミを添加した。薬剤の注入箇所は反応タンクの最終槽前段とし、PAC、高濃度鉄アルミを定量ポンプで各2週間注入した(添加率 比較例1(PAC):34mg/L、実施例6(高濃度鉄アルミ):17mg/L)。また、ブランクとして標準活性汚泥法(疑似ステップ流入式2段硝化脱窒法)による処理施設(B系)を選定した。A系、B系の反応タンク最終槽の活性汚泥と最終沈殿池の越流水を定期的にサンプリングし、汚泥沈降性評価と水質評価を行った。試験は、2020年11月26日から同年12月17日に至るまで行った。 (Test method)
As the flocculant to be injected, commercially available polyaluminum chloride (PAC) (specific gravity: 1.214, Cl/Al 2 O 3 : 2.7) was used in Comparative Example 1, and highly concentrated iron aluminum (specific gravity: 1.214) was used in Example 6. 445, Cl/Fe: 63, SO 4 /Al 2 O 3 : 0.08, Cl/Al 2 O 3 : 3.3, SO 4 /Fe: 1.4). The concentration of trivalent metal ions (Al 3+ , Fe 3+ ) contained in the drug was 2.38 mol/L in Comparative Example 1 (PAC) and 5.35 mol/L in Example 6 (high concentration iron aluminum). Ta.
PAC and high-concentration iron-aluminum were added to a treatment facility (A system) using a step flow type two-stage nitrification-denitrification method using a flocculant. The drug was injected at the front stage of the final tank of the reaction tank, and PAC and high-concentration iron-aluminum were injected for two weeks each using a metering pump (addition rate Comparative Example 1 (PAC): 34 mg/L, Example 6 (high-concentration iron-aluminum) ): 17 mg/L). In addition, a treatment facility (B system) using a standard activated sludge method (simulated step inflow type two-stage nitrification and denitrification method) was selected as a blank. Activated sludge from the final reaction tanks of systems A and B and overflow water from the final settling tank were periodically sampled to evaluate sludge settling properties and water quality. The test was conducted from November 26, 2020 to December 17, 2020.
注入する凝集剤として、比較例1では市販のポリ塩化アルミニウム(PAC)(比重:1.214、Cl/Al2O3:2.7)、実施例6では高濃度鉄アルミ(比重:1.445、Cl/Fe:63、SO4/Al2O3:0.08、Cl/Al2O3:3.3、SO4/Fe:1.4)を用いた。薬剤中に含まれる3価の金属イオン濃度(Al3+、Fe3+)は、比較例1(PAC):2.38mol/L、実施例6(高濃度鉄アルミ):5.35mol/Lであった。
凝集剤併用型ステップ流入式2段硝化脱窒法による処理施設(A系)に、PAC、高濃度鉄アルミを添加した。薬剤の注入箇所は反応タンクの最終槽前段とし、PAC、高濃度鉄アルミを定量ポンプで各2週間注入した(添加率 比較例1(PAC):34mg/L、実施例6(高濃度鉄アルミ):17mg/L)。また、ブランクとして標準活性汚泥法(疑似ステップ流入式2段硝化脱窒法)による処理施設(B系)を選定した。A系、B系の反応タンク最終槽の活性汚泥と最終沈殿池の越流水を定期的にサンプリングし、汚泥沈降性評価と水質評価を行った。試験は、2020年11月26日から同年12月17日に至るまで行った。 (Test method)
As the flocculant to be injected, commercially available polyaluminum chloride (PAC) (specific gravity: 1.214, Cl/Al 2 O 3 : 2.7) was used in Comparative Example 1, and highly concentrated iron aluminum (specific gravity: 1.214) was used in Example 6. 445, Cl/Fe: 63, SO 4 /Al 2 O 3 : 0.08, Cl/Al 2 O 3 : 3.3, SO 4 /Fe: 1.4). The concentration of trivalent metal ions (Al 3+ , Fe 3+ ) contained in the drug was 2.38 mol/L in Comparative Example 1 (PAC) and 5.35 mol/L in Example 6 (high concentration iron aluminum). Ta.
PAC and high-concentration iron-aluminum were added to a treatment facility (A system) using a step flow type two-stage nitrification-denitrification method using a flocculant. The drug was injected at the front stage of the final tank of the reaction tank, and PAC and high-concentration iron-aluminum were injected for two weeks each using a metering pump (addition rate Comparative Example 1 (PAC): 34 mg/L, Example 6 (high-concentration iron-aluminum) ): 17 mg/L). In addition, a treatment facility (B system) using a standard activated sludge method (simulated step inflow type two-stage nitrification and denitrification method) was selected as a blank. Activated sludge from the final reaction tanks of systems A and B and overflow water from the final settling tank were periodically sampled to evaluate sludge settling properties and water quality. The test was conducted from November 26, 2020 to December 17, 2020.
(試験結果)
(汚泥沈降性の評価)
反応タンクの汚泥容量指標(SVI)を図3に示す。ブランクであるB系のSVI300~400mL/gに対し、A系のSVIはPAC注入中に150~300mL/g、高濃度鉄アルミ注入中に100~200mL/gであった。凝集剤の注入によって汚泥の沈降性が改善され、特に高濃度鉄アルミはより高い凝集効果を持つと考えられた。 (Test results)
(Evaluation of sludge settling properties)
The sludge capacity index (SVI) of the reaction tank is shown in Figure 3. In contrast to the SVI of the blank B system of 300 to 400 mL/g, the SVI of the A system was 150 to 300 mL/g during PAC injection and 100 to 200 mL/g during high concentration iron-aluminum injection. The settling properties of sludge were improved by the injection of flocculant, and it was thought that especially high-concentration iron-aluminum had a higher flocculation effect.
(汚泥沈降性の評価)
反応タンクの汚泥容量指標(SVI)を図3に示す。ブランクであるB系のSVI300~400mL/gに対し、A系のSVIはPAC注入中に150~300mL/g、高濃度鉄アルミ注入中に100~200mL/gであった。凝集剤の注入によって汚泥の沈降性が改善され、特に高濃度鉄アルミはより高い凝集効果を持つと考えられた。 (Test results)
(Evaluation of sludge settling properties)
The sludge capacity index (SVI) of the reaction tank is shown in Figure 3. In contrast to the SVI of the blank B system of 300 to 400 mL/g, the SVI of the A system was 150 to 300 mL/g during PAC injection and 100 to 200 mL/g during high concentration iron-aluminum injection. The settling properties of sludge were improved by the injection of flocculant, and it was thought that especially high-concentration iron-aluminum had a higher flocculation effect.
(りん・窒素除去性能の評価)
最終沈殿池越流水のT-P濃度の推移を図4に示す。A系のT-P濃度はPAC、高濃度鉄アルミの注入期間中は0.05~0.50mg/Lの間で一定であった。高濃度鉄アルミの添加率はPACの約50%であるが、PACと金属イオン濃度が等しいため同等のりん除去が実施できることが示された。なお、PAC・高濃度鉄アルミ注入時のT-N濃度に大きな差はなく、生物反応による窒素除去性能は一定であったと考えられる。 (Evaluation of phosphorus/nitrogen removal performance)
Figure 4 shows the change in TP concentration in the final sedimentation tank overflow water. The TP concentration of system A was constant between 0.05 and 0.50 mg/L during the injection period of PAC and high concentration iron-aluminum. Although the addition rate of high-concentration iron-aluminum was approximately 50% of PAC, it was shown that the same phosphorus removal could be performed because the metal ion concentration was the same as that of PAC. There was no significant difference in the TN concentration when PAC and high-concentration iron-aluminum were injected, and it is thought that the nitrogen removal performance due to biological reaction was constant.
最終沈殿池越流水のT-P濃度の推移を図4に示す。A系のT-P濃度はPAC、高濃度鉄アルミの注入期間中は0.05~0.50mg/Lの間で一定であった。高濃度鉄アルミの添加率はPACの約50%であるが、PACと金属イオン濃度が等しいため同等のりん除去が実施できることが示された。なお、PAC・高濃度鉄アルミ注入時のT-N濃度に大きな差はなく、生物反応による窒素除去性能は一定であったと考えられる。 (Evaluation of phosphorus/nitrogen removal performance)
Figure 4 shows the change in TP concentration in the final sedimentation tank overflow water. The TP concentration of system A was constant between 0.05 and 0.50 mg/L during the injection period of PAC and high concentration iron-aluminum. Although the addition rate of high-concentration iron-aluminum was approximately 50% of PAC, it was shown that the same phosphorus removal could be performed because the metal ion concentration was the same as that of PAC. There was no significant difference in the TN concentration when PAC and high-concentration iron-aluminum were injected, and it is thought that the nitrogen removal performance due to biological reaction was constant.
(大腸菌、臭気物質除去評価)
最終沈殿池越流水の大腸菌数、残留塩素濃度、臭気物質濃度(ジェオスミン、2―メチルイソボルネオール)、の分析結果を表6に示す。
A系の大腸菌数はブランクであるB系よりも低い結果を示し、除去率はPAC注入中に75~83%程度、高濃度鉄アルミ注入中に約90%であった。残留塩素(遊離残留塩素・結合残留塩素)濃度はA系、B系ともに同等でありその値は低く、消毒力を有する濃度ではないと考えられる。
一般的に下水中の病原微生物の一部(大腸菌、ノロウイルス、クリプトスポリジウムなど)は汚泥に吸着したものがフロックに巻き込まれ、凝集沈殿に伴って処理水中から除去されると考えられている。大腸菌数はA系、B系のSVI値とも相関があり、処理水中に消毒力を有する塩素成分がないことから、本試験では凝集沈殿に伴って大腸菌が処理水から除去されたと考えられる。なお、砂ろ過、オゾン処理、塩素消毒を経た再生水から大腸菌は検出されなかった。
臭気物質濃度はA系、B系ともに低く、分析値に大きな差がないため、今回の試験では凝集剤の注入による優位な消臭効果は確認されなかった。 (Ecoli bacteria, odor substance removal evaluation)
Table 6 shows the analysis results of the number of E. coli bacteria, residual chlorine concentration, and odor substance concentration (geosmin, 2-methylisoborneol) in the final sedimentation tank overflow water.
The number of E. coli in system A was lower than that of the blank system B, and the removal rate was about 75 to 83% during PAC injection and about 90% during high concentration iron aluminum injection. The residual chlorine (free residual chlorine/combined residual chlorine) concentration is the same for both A and B systems, and the values are low, and it is considered that the concentration does not have disinfecting power.
It is generally thought that some of the pathogenic microorganisms in sewage (E. coli, norovirus, cryptosporidium, etc.) are adsorbed to sludge, become entangled in flocs, and are removed from the treated water as they coagulate and settle. The number of E. coli is also correlated with the SVI values of A and B systems, and since there is no chlorine component with disinfecting power in the treated water, it is thought that E. coli was removed from the treated water through coagulation and precipitation in this test. Furthermore, no E. coli was detected in the recycled water that had undergone sand filtration, ozone treatment, and chlorine disinfection.
Since the concentration of odorants was low in both Type A and Type B, and there was no significant difference in the analytical values, no superior deodorizing effect was confirmed by the injection of the flocculant in this test.
最終沈殿池越流水の大腸菌数、残留塩素濃度、臭気物質濃度(ジェオスミン、2―メチルイソボルネオール)、の分析結果を表6に示す。
一般的に下水中の病原微生物の一部(大腸菌、ノロウイルス、クリプトスポリジウムなど)は汚泥に吸着したものがフロックに巻き込まれ、凝集沈殿に伴って処理水中から除去されると考えられている。大腸菌数はA系、B系のSVI値とも相関があり、処理水中に消毒力を有する塩素成分がないことから、本試験では凝集沈殿に伴って大腸菌が処理水から除去されたと考えられる。なお、砂ろ過、オゾン処理、塩素消毒を経た再生水から大腸菌は検出されなかった。
臭気物質濃度はA系、B系ともに低く、分析値に大きな差がないため、今回の試験では凝集剤の注入による優位な消臭効果は確認されなかった。 (Ecoli bacteria, odor substance removal evaluation)
Table 6 shows the analysis results of the number of E. coli bacteria, residual chlorine concentration, and odor substance concentration (geosmin, 2-methylisoborneol) in the final sedimentation tank overflow water.
It is generally thought that some of the pathogenic microorganisms in sewage (E. coli, norovirus, cryptosporidium, etc.) are adsorbed to sludge, become entangled in flocs, and are removed from the treated water as they coagulate and settle. The number of E. coli is also correlated with the SVI values of A and B systems, and since there is no chlorine component with disinfecting power in the treated water, it is thought that E. coli was removed from the treated water through coagulation and precipitation in this test. Furthermore, no E. coli was detected in the recycled water that had undergone sand filtration, ozone treatment, and chlorine disinfection.
Since the concentration of odorants was low in both Type A and Type B, and there was no significant difference in the analytical values, no superior deodorizing effect was confirmed by the injection of the flocculant in this test.
(色度、濁度)
最終沈殿池越流水の色度、濁度の測定結果を表7に示す。
A系の色度はB系よりも低く、凝集剤の注入によって処理水の清澄性が改善したといえた。高濃度鉄アルミ注入時の色度は10度であり、親水用水の基準値レベル(10度以下)まで色度が低下した。濁度は凝集剤の種類によらず、2.0程度であり、A系、B系の分析値に大きな差は見られなかった。
(chromaticity, turbidity)
Table 7 shows the measurement results of the color and turbidity of the final settling tank overflow water.
The chromaticity of system A was lower than that of system B, and it could be said that the clarity of the treated water was improved by the injection of the flocculant. The chromaticity at the time of high-concentration iron-aluminum injection was 10 degrees, and the chromaticity decreased to the standard value level (10 degrees or less) for hydrophilic water. The turbidity was approximately 2.0 regardless of the type of flocculant, and no major difference was observed in the analytical values of the A and B systems.
最終沈殿池越流水の色度、濁度の測定結果を表7に示す。
Table 7 shows the measurement results of the color and turbidity of the final settling tank overflow water.
(凝集剤による処理水の下水再生水としての利用可能性)
下水再生水の利活用には(1)水洗用水、(2)散水用水、(3)修景用水、(4)親水用水があり、水質基準値として大腸菌数、濁度、pH、外観、色度、臭気がある。これらの項目をもとに凝集剤の利用による水質改善の程度を評価した。今回の試験ではブランクの処理水の濁度、臭気濃度が低いため評価対象からは除外した。
前述のとおり、凝集剤の注入は色度の低減に効果があり、本試験では基準値レベルまで改善することが示された。大腸菌数について、凝集剤の注入によって処理水から75~90%の大腸菌を除去できた。しかし、(1)、(2)、(4)の基準である“不検出であること”、(3)の基準値10CFU/mLには及ばなかった。よって、現状では凝集剤の注入のみで大腸菌数の基準値を達成することは難しく、処理水を再生水として利用するためにはより高度な処理(塩素消毒・オゾン処理)と組み合わせる必要があると考えられる。
凝集剤を利用する場合、大腸菌の除去率は使用する凝集剤の凝集能力によるところが大きい。このため、注入する陽イオン数を増やすことでより高い除去効果が期待できるが、適切な注入率はpHなど他の要素を含めて検討する必要がある。
今回の凝集剤注入試験では、処理水の水質は大腸菌数の項目において下水再生水の基準値レベルまで改善されなかったが、凝集剤の利用によって病原微生物濃度を一定割合減少させることができることが分かった。下水処理において処理水の病原微生物濃度を減少させることは、作業従事者の病原体曝露リスクを低減させることと同義である。このため、凝集剤の利用は下水処理能力の向上だけではなく、処理場における作業者の感染リスク低減においても意義があると考えられた。 (Possibility of using water treated with coagulant as recycled sewage water)
Reclaimed sewage water can be used as (1) water for flushing, (2) water for sprinkling, (3) water for landscaping, and (4) water for hydrophilic purposes.The water quality standards include E. coli count, turbidity, pH, appearance, and chromaticity. , there is an odor. Based on these items, the degree of water quality improvement due to the use of flocculants was evaluated. In this test, the blank treated water was excluded from the evaluation because the turbidity and odor concentration were low.
As mentioned above, injection of a flocculant is effective in reducing chromaticity, and this test showed that it improved to the standard value level. Regarding the number of E. coli bacteria, 75 to 90% of E. coli bacteria could be removed from the treated water by injection of the flocculant. However, it fell short of the standards (1), (2), and (4) of "not being detected" and the standard value of (3) of 10 CFU/mL. Therefore, it is currently difficult to achieve the standard value for the number of coliform bacteria by simply injecting a coagulant, and we believe that it is necessary to combine it with more advanced treatment (chlorine disinfection and ozone treatment) in order to use treated water as recycled water. It will be done.
When using a flocculant, the removal rate of E. coli largely depends on the flocculating ability of the flocculant used. Therefore, a higher removal effect can be expected by increasing the number of cations to be implanted, but it is necessary to consider other factors such as pH to determine the appropriate implantation rate.
In this flocculant injection test, the quality of the treated water was not improved to the standard value for reclaimed sewage water in terms of the number of coliform bacteria, but it was found that the use of a flocculant can reduce the concentration of pathogenic microorganisms by a certain percentage. . In sewage treatment, reducing the concentration of pathogenic microorganisms in treated water is synonymous with reducing the risk of pathogen exposure for workers. Therefore, the use of coagulants was considered to be significant not only in improving sewage treatment capacity but also in reducing the risk of infection among workers at treatment plants.
下水再生水の利活用には(1)水洗用水、(2)散水用水、(3)修景用水、(4)親水用水があり、水質基準値として大腸菌数、濁度、pH、外観、色度、臭気がある。これらの項目をもとに凝集剤の利用による水質改善の程度を評価した。今回の試験ではブランクの処理水の濁度、臭気濃度が低いため評価対象からは除外した。
前述のとおり、凝集剤の注入は色度の低減に効果があり、本試験では基準値レベルまで改善することが示された。大腸菌数について、凝集剤の注入によって処理水から75~90%の大腸菌を除去できた。しかし、(1)、(2)、(4)の基準である“不検出であること”、(3)の基準値10CFU/mLには及ばなかった。よって、現状では凝集剤の注入のみで大腸菌数の基準値を達成することは難しく、処理水を再生水として利用するためにはより高度な処理(塩素消毒・オゾン処理)と組み合わせる必要があると考えられる。
凝集剤を利用する場合、大腸菌の除去率は使用する凝集剤の凝集能力によるところが大きい。このため、注入する陽イオン数を増やすことでより高い除去効果が期待できるが、適切な注入率はpHなど他の要素を含めて検討する必要がある。
今回の凝集剤注入試験では、処理水の水質は大腸菌数の項目において下水再生水の基準値レベルまで改善されなかったが、凝集剤の利用によって病原微生物濃度を一定割合減少させることができることが分かった。下水処理において処理水の病原微生物濃度を減少させることは、作業従事者の病原体曝露リスクを低減させることと同義である。このため、凝集剤の利用は下水処理能力の向上だけではなく、処理場における作業者の感染リスク低減においても意義があると考えられた。 (Possibility of using water treated with coagulant as recycled sewage water)
Reclaimed sewage water can be used as (1) water for flushing, (2) water for sprinkling, (3) water for landscaping, and (4) water for hydrophilic purposes.The water quality standards include E. coli count, turbidity, pH, appearance, and chromaticity. , there is an odor. Based on these items, the degree of water quality improvement due to the use of flocculants was evaluated. In this test, the blank treated water was excluded from the evaluation because the turbidity and odor concentration were low.
As mentioned above, injection of a flocculant is effective in reducing chromaticity, and this test showed that it improved to the standard value level. Regarding the number of E. coli bacteria, 75 to 90% of E. coli bacteria could be removed from the treated water by injection of the flocculant. However, it fell short of the standards (1), (2), and (4) of "not being detected" and the standard value of (3) of 10 CFU/mL. Therefore, it is currently difficult to achieve the standard value for the number of coliform bacteria by simply injecting a coagulant, and we believe that it is necessary to combine it with more advanced treatment (chlorine disinfection and ozone treatment) in order to use treated water as recycled water. It will be done.
When using a flocculant, the removal rate of E. coli largely depends on the flocculating ability of the flocculant used. Therefore, a higher removal effect can be expected by increasing the number of cations to be implanted, but it is necessary to consider other factors such as pH to determine the appropriate implantation rate.
In this flocculant injection test, the quality of the treated water was not improved to the standard value for reclaimed sewage water in terms of the number of coliform bacteria, but it was found that the use of a flocculant can reduce the concentration of pathogenic microorganisms by a certain percentage. . In sewage treatment, reducing the concentration of pathogenic microorganisms in treated water is synonymous with reducing the risk of pathogen exposure for workers. Therefore, the use of coagulants was considered to be significant not only in improving sewage treatment capacity but also in reducing the risk of infection among workers at treatment plants.
窒素・りん除去を目的とした生物処理系への薬剤注入試験にて、高濃度鉄アルミはPACの約50%の添加率で汚泥の沈降性が改善され、PACと同等のりん除去性能が示された。
凝集剤の注入によって大腸菌数は75~90%程度減少した。大腸菌は汚泥の凝集沈殿に伴って除去されると考えられ、凝集剤の利用には汚泥に吸着する病原微生物の除去率を向上する効果が期待された。
凝集剤注入による下水の大腸菌除去は、下水再生水の基準値を達成するには至らないが、添加量の調整によって改善する可能性が示された。処理水の病原微生物濃度の低下は処理場の作業従事者の病原体暴露リスク低減につながり、凝集剤の利用はこのようなリスク低減に寄与できると考えられる。 In a chemical injection test into a biological treatment system aimed at removing nitrogen and phosphorous, high-concentration iron-aluminum improved the settling properties of sludge at an addition rate of about 50% of PAC, and showed the same phosphorus removal performance as PAC. It was done.
By injecting the flocculant, the number of E. coli bacteria was reduced by about 75 to 90%. Escherichia coli is thought to be removed as the sludge coagulates and settles, and the use of flocculants was expected to have the effect of improving the removal rate of pathogenic microorganisms adsorbed to the sludge.
Although the removal of E. coli from sewage by coagulant injection did not reach the standard value for recycled sewage water, it was shown that it could be improved by adjusting the amount added. Reducing the concentration of pathogenic microorganisms in treated water leads to a reduction in the risk of pathogen exposure for treatment plant workers, and the use of flocculants is thought to contribute to reducing this risk.
凝集剤の注入によって大腸菌数は75~90%程度減少した。大腸菌は汚泥の凝集沈殿に伴って除去されると考えられ、凝集剤の利用には汚泥に吸着する病原微生物の除去率を向上する効果が期待された。
凝集剤注入による下水の大腸菌除去は、下水再生水の基準値を達成するには至らないが、添加量の調整によって改善する可能性が示された。処理水の病原微生物濃度の低下は処理場の作業従事者の病原体暴露リスク低減につながり、凝集剤の利用はこのようなリスク低減に寄与できると考えられる。 In a chemical injection test into a biological treatment system aimed at removing nitrogen and phosphorous, high-concentration iron-aluminum improved the settling properties of sludge at an addition rate of about 50% of PAC, and showed the same phosphorus removal performance as PAC. It was done.
By injecting the flocculant, the number of E. coli bacteria was reduced by about 75 to 90%. Escherichia coli is thought to be removed as the sludge coagulates and settles, and the use of flocculants was expected to have the effect of improving the removal rate of pathogenic microorganisms adsorbed to the sludge.
Although the removal of E. coli from sewage by coagulant injection did not reach the standard value for recycled sewage water, it was shown that it could be improved by adjusting the amount added. Reducing the concentration of pathogenic microorganisms in treated water leads to a reduction in the risk of pathogen exposure for treatment plant workers, and the use of flocculants is thought to contribute to reducing this risk.
Claims (13)
- 金属塩凝集剤であって、
金属塩凝集剤1リットル中に、アルミニウムイオンと鉄イオンの含有量の合計が5.7モル以下であり、
塩素イオンと鉄イオンのモル比(Cl/Fe)が28以上であり、
硫酸イオンと酸化アルミニウム換算でアルミニウムイオンのモル比(SO4/Al2O3)が0.15以下であり、
大腸菌の除去率が83%よりも高い、金属塩凝集剤。 A metal salt flocculant,
The total content of aluminum ions and iron ions in 1 liter of metal salt flocculant is 5.7 mol or less,
The molar ratio of chloride ions to iron ions (Cl/Fe) is 28 or more,
The molar ratio of aluminum ions (SO 4 /Al 2 O 3 ) in terms of sulfate ions and aluminum oxide is 0.15 or less,
A metal salt flocculant with a removal rate of more than 83% of E. coli. - 塩素イオンと鉄イオンのモル比(Cl/Fe)が、50以上104以下である請求項1に記載の金属塩凝集剤。 The metal salt flocculant according to claim 1, wherein the molar ratio of chloride ions to iron ions (Cl/Fe) is 50 or more and 104 or less.
- 大腸菌の除去率が90%よりも高い、請求項1または2に記載の金属塩凝集剤。 The metal salt flocculant according to claim 1 or 2, wherein the removal rate of E. coli is higher than 90%.
- pHが3.7~4.2(100倍希釈溶液)、比重が1.35~1.45である請求項1または2に記載の金属塩凝集剤。 The metal salt flocculant according to claim 1 or 2, which has a pH of 3.7 to 4.2 (100 times diluted solution) and a specific gravity of 1.35 to 1.45.
- 請求項1または2に記載の金属塩凝集剤を含有する凝集剤。 A flocculant containing the metal salt flocculant according to claim 1 or 2.
- 請求項1または2に記載の金属塩凝集剤を含有する水質改善剤。 A water quality improving agent containing the metal salt flocculant according to claim 1 or 2.
- 請求項1または2に記載の金属塩凝集剤を含有する消臭剤。 A deodorant containing the metal salt flocculant according to claim 1 or 2.
- 請求項1または2に記載の金属塩凝集剤を含有する脱水剤。 A dehydrating agent containing the metal salt flocculant according to claim 1 or 2.
- 請求項1または2に記載の金属塩凝集剤を含有する排水の色度低下剤。 A wastewater color reducing agent containing the metal salt flocculant according to claim 1 or 2.
- 汚泥排水の処理方法であって、汚泥排水に請求項1または2に記載の金属塩凝集剤を添加する工程を備える汚泥排水の処理方法。 A method for treating sludge wastewater, the method comprising the step of adding the metal salt flocculant according to claim 1 or 2 to the sludge wastewater.
- 水の浄化消臭方法であって、病原微生物が存在すると考えられる水に、請求項1または2に記載の金属塩凝集剤を添加する工程を備える水の浄化消臭方法。 A method for purifying and deodorizing water, the method comprising the step of adding the metal salt flocculant according to claim 1 or 2 to water in which pathogenic microorganisms are thought to exist.
- 請求項1または2に記載の金属塩凝集剤を排水中の病原微生物の除去に用いる金属塩凝集剤の新たな使用方法。 A new method for using the metal salt flocculant according to claim 1 or 2 for removing pathogenic microorganisms in wastewater.
- 請求項1または2に記載の金属塩凝集剤を排水中の大腸菌の除去に用いる金属塩凝集剤の新たな使用方法。
A new method for using a metal salt flocculant according to claim 1 or 2 for removing E. coli from wastewater.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020227033526A KR102592806B1 (en) | 2022-03-22 | 2022-06-13 | metal salt coagulant |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-045480 | 2022-03-22 | ||
JP2022045480A JP2023139777A (en) | 2022-03-22 | 2022-03-22 | metal salt flocculant |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023181430A1 true WO2023181430A1 (en) | 2023-09-28 |
Family
ID=88100334
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/023668 WO2023181430A1 (en) | 2022-03-22 | 2022-06-13 | Metal salt aggregating agent |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP2023139777A (en) |
KR (1) | KR102592806B1 (en) |
TW (1) | TW202337831A (en) |
WO (1) | WO2023181430A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10272304A (en) * | 1997-03-31 | 1998-10-13 | Takenobu Horiguchi | Inorganic electrolytic flocculating agent |
JP2013031838A (en) * | 2011-06-29 | 2013-02-14 | Sanyo Chem Ind Ltd | Organic/inorganic hybrid polymer flocculant |
CN112390321A (en) * | 2020-11-16 | 2021-02-23 | 神美科技有限公司 | Phosphorus removal agent for sewage treatment and preparation method thereof |
JP2022055836A (en) * | 2020-09-29 | 2022-04-08 | 日鉄鉱業株式会社 | Metal salt flocculant |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01180210A (en) | 1988-01-13 | 1989-07-18 | Nittetsu Mining Co Ltd | Production of flocculant by utilizing waste hydrochloric acid containing iron |
JP3524246B2 (en) | 1995-11-15 | 2004-05-10 | 多木化学株式会社 | Method for producing highly basic aluminum chloride solution |
JP2000070609A (en) | 1998-09-01 | 2000-03-07 | Asahi Kagaku Kogyo Co Ltd | High-concentration flocculant |
KR20190082682A (en) * | 2019-04-03 | 2019-07-10 | 삼구화학공업 주식회사 | Coagulant composition for sewage, waste water and sludge treatment |
-
2022
- 2022-03-22 JP JP2022045480A patent/JP2023139777A/en active Pending
- 2022-06-13 WO PCT/JP2022/023668 patent/WO2023181430A1/en active Application Filing
- 2022-06-13 KR KR1020227033526A patent/KR102592806B1/en active IP Right Grant
- 2022-06-23 TW TW111123468A patent/TW202337831A/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10272304A (en) * | 1997-03-31 | 1998-10-13 | Takenobu Horiguchi | Inorganic electrolytic flocculating agent |
JP2013031838A (en) * | 2011-06-29 | 2013-02-14 | Sanyo Chem Ind Ltd | Organic/inorganic hybrid polymer flocculant |
JP2022055836A (en) * | 2020-09-29 | 2022-04-08 | 日鉄鉱業株式会社 | Metal salt flocculant |
CN112390321A (en) * | 2020-11-16 | 2021-02-23 | 神美科技有限公司 | Phosphorus removal agent for sewage treatment and preparation method thereof |
Non-Patent Citations (2)
Title |
---|
KOMAI: "Study of Water Treatment and Wastewater Recycling Using High-Concentration Iron-Aluminum Flocculant", PROCEEDINGS OF 58TH MEETING OF JAPAN WATER WORKS ASSOCIATION, vol. 58, 30 June 2021 (2021-06-30), pages 25 - 27, XP009549326 * |
TOSHIMA: "Performance Evaluation of High-Concentration Iron-Aluminum Flocculant", PROCEEDINGS OF 57TH MEETING OF JAPAN WATER WORKS ASSOCIATION, vol. 57, 22 July 2020 (2020-07-22), pages 40 - 42, XP009552909 * |
Also Published As
Publication number | Publication date |
---|---|
KR20230138876A (en) | 2023-10-05 |
TW202337831A (en) | 2023-10-01 |
KR102592806B1 (en) | 2023-10-20 |
JP2023139777A (en) | 2023-10-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Matilainen et al. | Natural organic matter removal by coagulation during drinking water treatment: A review | |
Pernitsky et al. | Selection of alum and polyaluminum coagulants: principles and applications | |
Wang et al. | Enhanced coagulation for mitigation of disinfection by-product precursors: A review | |
KR101640368B1 (en) | Method of preparation for coagulant contains low basicity and treating method of water/wastewater using the same | |
US10131562B1 (en) | Treatment of potable water | |
JPH08229574A (en) | Improved method for removing phosphate from waste water | |
KR20210007063A (en) | Method of manufacturing coagulant composition for water treatment | |
CN109928475B (en) | Composite water purifying agent and preparation method and application thereof | |
JP2007209886A (en) | Fluorine removing agent, and method and apparatus for treating drain containing fluorine using the agent | |
KR101844024B1 (en) | Wastewater treatment method and composition for removing soluble COD | |
JP2002028696A (en) | Method for treating sludge | |
JP7558736B2 (en) | Metal salt flocculant | |
WO2023181430A1 (en) | Metal salt aggregating agent | |
Leentvaar et al. | Physico-chemical treatment of municipal wastewater. Coagulation-flocculation | |
KR20230031178A (en) | Water treatment method to reduce residual aluminum | |
KR100440250B1 (en) | Wastewater treatment system comprising Fenton-Zeolite processes | |
JP4145406B2 (en) | Method for preventing phosphorus from being eluted in sludge and phosphorus elution preventing agent for sludge | |
JP4630776B2 (en) | Water purification agent and water purification method | |
JP4259700B2 (en) | Sludge aggregation method and water treatment method | |
JP4141554B2 (en) | Method for preventing phosphorus from being eluted in sludge and phosphorus elution preventing agent for sludge | |
Roux | Renovation of Wastewater for Direct Re-use in an Abattoir | |
Aryal et al. | Effect of suspended solids in secondary wastewater effluent on DOC removal by enhanced coagulation | |
Nam et al. | Coagulation Treatment of Wastewater Using Torrefied Wood Powder | |
CA2867472C (en) | Use of magnesium compounds in the treatment of potable water | |
KR101842567B1 (en) | Method for Phosphorus Removal from Waste Water Using Poly Titanium Coagulant |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22933567 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2401005850 Country of ref document: TH |