JP3700018B2 - 直流送電設備の制御装置及びその方法 - Google Patents

直流送電設備の制御装置及びその方法 Download PDF

Info

Publication number
JP3700018B2
JP3700018B2 JP05024199A JP5024199A JP3700018B2 JP 3700018 B2 JP3700018 B2 JP 3700018B2 JP 05024199 A JP05024199 A JP 05024199A JP 5024199 A JP5024199 A JP 5024199A JP 3700018 B2 JP3700018 B2 JP 3700018B2
Authority
JP
Japan
Prior art keywords
converter
power
voltage
reverse
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05024199A
Other languages
English (en)
Other versions
JP2000253582A (ja
Inventor
裕成 川添
博雄 小西
常良 大橋
朗 高浜
孝義 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Development Co Ltd
Hitachi Ltd
Original Assignee
Electric Power Development Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Development Co Ltd, Hitachi Ltd filed Critical Electric Power Development Co Ltd
Priority to JP05024199A priority Critical patent/JP3700018B2/ja
Publication of JP2000253582A publication Critical patent/JP2000253582A/ja
Application granted granted Critical
Publication of JP3700018B2 publication Critical patent/JP3700018B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Landscapes

  • Inverter Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Rectifiers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、直流送電設備に係り、特に、変換器としてコンデンサ転流形変換器を用いた直流送電設備の制御装置及びその方法に関する。
【0002】
【従来の技術】
直流送電設備は、順変換器により交流電力を直流電力に変換して送電し、送電された直流電力を逆変換器により再び交流電力に変換して系統に供給するシステムである。現在、順変換器及び逆変換器を他励式変換器によって構成した設備が実用化されている。他励式変換器は、サイリスタ等の自己消弧機能を持たない素子によって構成されたものであり、低コストで順変換器及び逆変換器を構成できるという利点がある。しかしながら、他励式変換器を離島送電などのように短絡容量の小さい交流系統や電源のない交流系統に適用した場合、特に直流電力を交流電力に変換する逆変換器の運転時において、変換器が交流系統の電源の力を借りて転流できなくなり(以下、「転流失敗」という。)、結果として直流送電設備全体が運転できなくなる、という問題がある。
このため、近年、他励式変換器と変換用変圧器の間に電力用コンデンサを直列に接続して構成したコンデンサ転流形変換器が見直され、直流送電設備用の変換器として適用検討が進められている。この変換器は、転流動作において無効電力を消費しないため、従来の他励式変換器に比べて転流失敗しにくく、離島送電などにおいても負荷へ安定した電力を供給できる、と言われている。
上記のような交流系統条件において、コンデンサ転流形変換器を用いた直流送電設備の制御方法としては、論文「A Forced Commutated Inverter as a Small Series Tap on a DC Line」(IEEE TRANSACTIONS ON POWER ELECTRONICS,VOL.4,NO.2,APRIL 1989)に記載されているように、順変換器側において直流電流を制御し、一方の逆変換器側において第1の逆変換器と第2の逆変換器との制御角偏差を調整することによって、逆変換器側交流電圧を一定に制御して電力供給を行う方法が知られている。
【0003】
【発明が解決しようとする課題】
従来の順変換器側において直流電流制御、逆変換器側において交流電圧制御を行う方法では、直流電流が逆変換器側負荷の必要とする電流より大きい場合には、余った電流が直流送電設備内を循環するために設備の電力変換効率が低下してしまい、逆に、直流電流が逆変換器側負荷の必要とする電流より小さい場合には、負荷に流れる電流が不足し、逆変換器側交流電圧が低下してしまうため、順変換器の直流電流制御の設定値を逆変換器側負荷量に応じて適切に設定する必要がある。しかしながら、実際には、適切に直流電流の設定を行うことは難しく、電流設定値を高めに設定して、設備の電力変換効率をある程度犠牲にした運転を行わなければならない。
【0004】
本発明の課題は、コンデンサ転流形変換器を用いた直流送電設備の電力変換効率を低下することなく、逆変換器側交流電圧を負荷量に応じて一定に保つことによって、負荷へ安定した電力を供給し、かつ、過電流や過電圧の発生及び伝送異常など緊急時においてもこれらを回避して直流送電設備を安定に運転することにある。
【0005】
【課題を解決するための手段】
上記課題を解決するために、コンデンサ転流形変換器を用いた直流送電設備の制御装置において、順変換器側には逆変換器側交流電圧を制御する手段と、逆変換器側には第1の逆変換器と第2の逆変換器の制御角を各々に調整する手段と、前記逆変換器の交流電圧を検出する手段と、検出した電圧値を順変換器側に送る手段を備え、順変換器側で逆変換器側交流電圧を一定に制御し、逆変換器側で第1の逆変換器と第2の逆変換器を逆変換運転の制御角に調整し、
逆変換器側には逆変換器の交流電圧を取り込んで過電圧を抑制する手段を備え、過電圧を抑制する手段の出力に基づいて第1の逆変換器と第2の逆変換器間の制御角差を持たせ、逆変換器側で電圧が制限値を越えないように抑制する。
または、逆変換器側交流電圧の前値保持手段を有する逆変換器側交流電圧の伝送異常を検出する手段を備え、伝送の異常検出時には、伝送異常前の保持された逆変換器側交流電圧値を使って順変換器側で交流電圧制御を行う。
ここで、順変換器側には電流を検出する手段と過電流を抑制する手段を備え、順変換器の制御角を制御して順変換器側で電流が制限値を越えないように抑制する。
また、順変換器、第1及び第2の逆変換器を各々異なる固定の制御角によって起動し、その後、第1及び第2の逆変換器の制御角を一致させることによって逆変換器側交流電圧を立ち上げ、順変換器の交流電圧を一定に制御する。
また、順変換器を交流電圧一定制御の制御角、第1及び第2の逆変換器を一致した固定の制御角で起動し、順変換器の交流電圧を一定に制御する。
【0006】
【発明の実施の形態】
以下、本発明の実施形態を図面を用いて説明する。
図1は、本発明の一実施形態によるコンデンサ転流形変換器を逆変換器側に適用した直流送電設備の制御装置を示す。本実施形態の直流送電設備は、交流系統11の交流電力を交流母線12、遮断器14、変換用変圧器15a、15bを介して順変換器17a、17bでスイッチングすることにより、直流電力に変換し、変換した直流電力を直流送電線30a、30bを使って逆変換器側へ送電し、逆変換器27a、27bでスイッチングすることによって再び交流電力に変換し、電力用コンデンサ26a、26b、変換用変圧器25a、25b、遮断器24、交流母線22を介して交流系統21へ変換した交流電力を供給する。交流系統11は、発電機などの交流電力を供給される側の系統であり、交流系統21は、離島などの負荷地で交流電力を供給する側の系統である。18、28は、電流を平滑するための直流リアクトルである。順変換器17a、17b及び逆変換器27a、27bの各々には、他励式変換器を構成するサイリスタひとつのみを示しているが、実際には、3相分ブリッジ回路としてサイリスタ6個を配置する。それぞれのサイリスタには、制御パネルを入力するための制御装置100と200が接続される。また、制御に用いる信号検出器として、逆変換器側の交流電圧Vacを検出するための交流電圧検出器23、直流電流Idcを検出するための直流電流検出器19が取り付けられている。
【0007】
制御装置100は、逆変換器側の交流電圧Vacの実効値変換回路105、伝送異常検出回路106、交流電圧を一定に保つ交流電圧制御回路101、変換器に流れる過電流を抑制する過電流抑制回路102、101と102の一方の出力を選択する選択回路103、制御角αrから制御パルスを作成する位相制御回路104を備える。通常運転時には、交流電圧制御回路101が選択回路103で選択され、順変換器で逆変換器側の交流電圧Vacを一定に制御する。位相制御回路104では、制御角αrに基づいて制御パルスが作られ、順変換器17a、17bのサイリスタへ導かれる。位相制御回路104は、交流系統11の電圧位相に同期するように動作する。なお、逆変換器側の交流電圧Vacは、交流電圧検出器23と制御装置100との間に地理的距離があるために伝送線31を介して制御装置100に取り込まれる。
一方、制御装置200は、第1の逆変換器27aと第2の逆変換器27bの制御角αia、αibを調整する制御角調整回路201、逆変換器側の交流電圧Vacの実効値変換回路205、過電圧を抑制する過電圧抑制回路202、制御角αiから制御パルスを作成する位相制御回路204を備える。通常運転時には、制御角調整回路201で一致した制御角αiaとαibが出力される。位相制御回路204では、一致した制御角αiaとαibに基づいて制御パルスが作られ、順変換器17a、17bのサイリスタへ導かれる。位相制御回路204は、前記の位相制御回路104のように交流系統に同期するための電源があれば、位相制御回路104と同じ動作を行うが、ここでは、交流系統21を離島などの負荷地と想定しているために位相制御回路204が同期するための電源がない。従って、ここでの位相制御回路204は、自ら発振する位相と周波数を基に制御パルスを作成する。
【0008】
次に、本実施形態の直流送電設備の起動時、及び通常運転時の制御方法について、図2を用いて説明する。波形は、上段より、逆変換器側交流電圧の実効値Vac rms、直流電流Idc、逆変換器の制御角αi(第1の逆変換器制御角αia、第2の逆変換器制御角αib)、順変換器の制御角αrである。
順変換器17a、17bは、時刻t1以前に遮断器14によって交流系統11に接続されているものとし、時刻t1において、順変換器17a、17bと逆変換器27aと27bを起動(ゲートデブロック:サイリスタに制御パルスを入力)している。この時、順変換器制御角αrは、逆変換器27aと27bが転流できるように、例えばαr=87°とする。一方の第1、2の逆変換器制御角αiaとαibは、第1の逆変換器27aが順変換器運転、第2の逆変換器27bが逆変換器運転となるように、例えばαia=10°、αib=180°とする。また、上記の逆変換器制御角αiaとαibは、逆に第1の逆変換器27aが逆変換器運転、第2の逆変換器27bが順変換器運転となるようにしても良い。これにより、負荷側の交流系統21には、直流電流Idcが逆変換器27aと27bの間を循環して流れるために電流が流れず、逆変換器側交流電圧Vacも発生しない(波形は、逆変換器側交流電圧Vacの実効値Vac rmsとして示している。)。なお、逆変換器27a、27bは、この時点で遮断器24によって交流系統21に接続しても良いし、順変換器17a、17bと同様に時刻t1以前に接続していても良い。
時刻t2において、第1の逆変換器制御角αiaを時定数を持たせて第2の逆変換器制御角αibに一致させる。これにより、逆変換器27aと27bの間を循環していた直流電流Idcが交流系統21に流れ出し、逆変換器側に交流電圧Vacが立ち上がる。このようして、直流送電設備を起動する。ここでは、第1の逆変換器制御角αiaを第2の逆変換器制御角αibに一致させているが、制御角αiaとαibを例えば0°〜180°の任意の角度で一致させても上記と同じ効果が得られる。
時刻t3において、順変換器側の交流電圧制御回路101を動作させ、逆変換器の交流電圧実効値Vac rmsと交流電圧設定値Vac1 refが一致するように制御角αrを調整して逆変換器側の交流電圧Vacを一定に制御し、直流送電設備が通常運転に入る。ここで、通常、交流電圧設定値Vac1 refは、交流母線22の定格電圧に設定するが、系統の条件によっては高め、もしくは低めに設定しても良い。
このように、本実施形態では、順変換器側で逆変換器側交流電圧を一定に制御し、逆変換器側で第1の逆変換器と第2の逆変換器の逆変換運転の制御角を調整することにより、直流送電設備の電力変換効率を低下することなく、逆変換器側交流電圧を負荷量に応じて一定に保つので、負荷へ安定した電力を供給することができる。
【0009】
また、本実施形態の直流送電設備の他の起動時の制御方法を図3に示す。順変換器17a、17b及び逆変換器27a、27bは、時刻t4以前に遮断器14、24によって交流系統11、21に接続されているものとし、時刻t4において、順変換器は、交流電圧制御回路101を動作させて、逆変換器は、制御角αiaとαibを任意の角度で一致させて起動する。起動後、逆変換器側の交流電圧Vacは、交流電圧制御回路101によって一定に保たれる。
【0010】
次に、図1に示す過電流抑制回路102と過電圧抑制回路202の動作について説明する。図4に、過電流抑制回路102と過電圧抑制回路202の動作特性を示す。横軸は、直流電流Idc、縦軸は、交流電圧Vacを表わす。
通常運転時、その動作点(図中の●)は、順変換器側の交流電圧制御回路101の特性を示す交流電圧設定値Vac1 refの直線上を負荷の大きさや力率に応じて0から直流電流定格値Idc1の間を移動する。
しかし、例えば、負荷量の変動が大きい場合には、変換器に過電流や過電圧が発生することもあり、この場合、設備は、交流系統21の停電を避けるためにできる限り運転を継続することが望ましい。そこで、過電流抑制回路102と過電圧抑制回路202によって過電流、過電圧を抑制して運転を継続する手段が有効となる。過電流抑制回路102は、直流電流Idcが設定値Idc2 refを越えると、交流電圧制御モードから選択回路103によって切り換えられ、直流電流を抑制する。一方、過電圧抑制回路202は、逆変換器側の交流電圧実効値Vac rmsが設定値Vac2 refを越えると、即座に逆変換器制御角αiaとαibの差を大きくして過電圧を抑制する。
なお、図1では、過電圧抑制回路202の出力で第2の逆変換器制御角αiaを操作する例を示しているが、第1の逆変換器制御角αib、またはαiaとαibの両方を操作しても良い。
この動作により、過電流や過電圧が発生しても、これらを回避して直流送電設備を継続して安定に運転することができる。
【0011】
図5は、図1の伝送異常検出回路106の動作を説明するブロック図である。逆変換器側の交流電圧Vacは、伝送線31、実効値変換回路106を介して伝送異常検出回路106に取り込まれる。伝送異常検出回路106では、メモリ等により構成される前値保持回路106aを備え、伝送異常時には、例えば、伝送異常のリレー信号により伝送異常検出回路106の出力を前値保持回路106aの出力信号に切り換える。交流電圧制御回路101は、伝送異常の間、前値保持信号によってロックされ、伝送異常が解除された後、正規の交流電圧制御一定を行う。
このように、伝送異常の発生など緊急時においても、これを回避して直流送電設備を継続して安定に運転することができる。
【0012】
本発明の実施形態として、コンデンサ転流形変換器からなる直流電力を交流電力に変換するための逆変換器が2台から構成される直流送電設備について説明したが、本発明は、この逆変換器が2台以上の複数台から構成される直流送電設備に適用できる。
【0013】
【発明の効果】
以上説明したように、本発明によれば、コンデンサ転流形変換器を用いた直流送電設備を離島送電など短絡容量の小さい交流系統や電源のない交流系統において、順変換器側で逆変換器側交流電圧を一定に制御し、逆変換器側で第1の逆変換器と第2の逆変換器の逆変換運転の制御角を調整することにより、直流送電設備の電力変換効率を低下することなく、逆変換器側交流電圧を負荷量に応じて一定に保つので、負荷へ安定した電力を供給することができる。
また、過電流や過電圧が発生し、あるいは伝送異常などの緊急事態が発生しても、これらを回避して直流送電設備を継続して安定に運転することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態によるコンデンサ転流形変換器を逆変換器側に適用した直流送電設備の制御装置を示すブロック図
【図2】本発明の起動時及び通常運転時の制御方法を説明する図
【図3】本発明の起動時の他の制御方法を説明する図
【図4】本発明の過電流抑制回路と過電圧抑制回路の動作特性を示す図
【図5】本発明の伝送異常検出回路の動作を説明するブロック図
【符号の説明】
11、21…交流系統、12、22…交流母線、14、24…遮断器、15a、15b、25a、25b…変換用変圧器、17a、17b…順変換器、27a…第1の逆変換器、27b…第2の逆変換器、18、28…直流リアクトル、19…直流電流検出器、23…交流電圧検出器、26a、26b…電力用コンデンサ、30a、30b…直流送電線、31…伝送線、100…順変換器の制御装置、101…交流電圧制御回路、102…過電流抑制回路、103…選択回路、104、204…位相制御回路、105、205…実効値変換回路、200…逆変換器の制御装置、201…制御角調整回路、202…過電圧抑制回路、106…伝送異常検出回路、106a…前値保持回路

Claims (6)

  1. 交流電力を直流電力に変換するための順変換器と、コンデンサ転流形変換器からなる直流電力を交流電力に変換するための逆変換器が少なくとも2台から構成される直流送電設備の制御装置において、
    順変換器側には逆変換器側交流電圧を制御する手段と、逆変換器側には2台のうちの第1の逆変換器と第2の逆変換器の制御角を各々に調整する手段と、前記逆変換器の交流電圧を検出する手段と、前記検出した電圧値を順変換器側に送る手段を備え、
    順変換器側で逆変換器側交流電圧を一定に制御し、逆変換器側で前記第1の逆変換器と第2の逆変換器を逆変換運転の制御角に調整し、
    逆変換器側には前記逆変換器の交流電圧を取り込んで過電圧を抑制する手段を備え、前記過電圧を抑制する手段の出力に基づいて前記第1の逆変換器と第2の逆変換器間の制御角差を持たせ、逆変換器側で電圧が制限値を越えないように抑制する
    ことを特徴とする直流送電設備の制御装置。
  2. 請求項1において、順変換器側には電流を検出する手段と過電流を抑制する手段を備え、前記順変換器の制御角を制御して順変換器側で電流が制限値を越えないように抑制することを特徴とする直流送電設備の制御装置。
  3. 交流電力を直流電力に変換するための順変換器と、コンデンサ転流形変換器からなる直流電力を交流電力に変換するための逆変換器が少なくとも2台から構成される直流送電設備の制御装置において、
    順変換器側には逆変換器側交流電圧を制御する手段と、逆変換器側には2台のうちの第1の逆変換器と第2の逆変換器の制御角を各々に調整する手段と、前記逆変換器の交流電圧を検出する手段と、前記検出した電圧値を順変換器側に送る手段を備え、
    順変換器側で逆変換器側交流電圧を一定に制御し、逆変換器側で前記第1の逆変換器と第2の逆変換器を逆変換運転の制御角に調整し、
    逆変換器側交流電圧の前値保持手段を有する逆変換器側交流電圧の伝送異常を検出する手段を備え、伝送の異常検出時には、伝送異常前の保持された逆変換器側交流電圧値を使って順変換器側で交流電圧制御を行うことを特徴とする直流送電設備の制御装置。
  4. 請求項3において、順変換器側には電流を検出する手段と過電流を抑制する手段を備え、前記順変換器の制御角を制御して順変換器側で電流が制限値を越えないように抑制することを特徴とする直流送電設備の制御装置。
  5. 交流電力を直流電力に変換するための順変換器と、コンデンサ転流形変換器からなる直流電力を交流電力に変換するための少なくとも2台から構成される第1及び第2の逆変換器を備える直流送電設備であって、前記順変換器、前記第1及び第2の逆変換器を各々異なる固定の制御角によって起動し、その後、前記第1及び第2の逆変換器の制御角を一致させることによって逆変換器側交流電圧を立ち上げ、前記順変換器の交流電圧を一定に制御することを特徴とする直流送電設備の制御方法。
  6. 交流電力を直流電力に変換するための順変換器と、コンデンサ転流形変換器からなる直流電力を交流電力に変換するための少なくとも2台から構成される第1及び第2の逆変換器を備える直流送電設備であって、前記順変換器を交流電圧一定制御の制御角、前記第1及び第2の逆変換器を一致した固定の制御角で起動し、前記順変換器の交流電圧を一定に制御することを特徴とする直流送電設備の制御方法。
JP05024199A 1999-02-26 1999-02-26 直流送電設備の制御装置及びその方法 Expired - Fee Related JP3700018B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05024199A JP3700018B2 (ja) 1999-02-26 1999-02-26 直流送電設備の制御装置及びその方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05024199A JP3700018B2 (ja) 1999-02-26 1999-02-26 直流送電設備の制御装置及びその方法

Publications (2)

Publication Number Publication Date
JP2000253582A JP2000253582A (ja) 2000-09-14
JP3700018B2 true JP3700018B2 (ja) 2005-09-28

Family

ID=12853509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05024199A Expired - Fee Related JP3700018B2 (ja) 1999-02-26 1999-02-26 直流送電設備の制御装置及びその方法

Country Status (1)

Country Link
JP (1) JP3700018B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106549408A (zh) * 2016-10-11 2017-03-29 许继集团有限公司 一种多端高压直流输电系统换流器在线投入方法
CN106953349B (zh) 2017-04-27 2019-06-21 南京南瑞继保电气有限公司 一种用于柔性直流输电系统孤岛启动的方法

Also Published As

Publication number Publication date
JP2000253582A (ja) 2000-09-14

Similar Documents

Publication Publication Date Title
US6847531B2 (en) System and method for regenerative PWM AC power conversion
EP0554804B1 (en) Control equipment for high voltage direct current transmission system
EP3116096B1 (en) Ups circuit
EP3231053A1 (en) Standby and charging of modular multilevel converters
JP2997782B1 (ja) 品質別電力供給装置
JP2006223060A (ja) 電力変換器の並列運転制御装置
Blaabjerg et al. An integrated high power factor three-phase AC-DC-AC converter for AC-machines implemented in one microcontroller
US6232751B1 (en) Excitation control system
CN114156931B (zh) 基于混合级联直流输电系统抑制换相失败的控制方法
JP3234932B2 (ja) 電力変換システム及び電力変換器の制御装置
JP3700018B2 (ja) 直流送電設備の制御装置及びその方法
JP3838092B2 (ja) 系統連系電力変換装置
JP2001047894A (ja) 交流き電装置及び交流き電装置の制御方法
JPH10295084A (ja) 電力変換装置及びその起動方法
WO2011013187A1 (ja) 自励式無効電力補償装置
US20210226449A1 (en) Compensator, Control Method and Device Therefor
JP3261947B2 (ja) 自励式直流送電制御装置
JP2000245066A (ja) 直流送電システムの制御装置
US20240006911A1 (en) Uninterruptible power supply apparatus
JP2019122144A (ja) 無効電力補償装置及びその制御回路
JPH08237952A (ja) 交直変換装置の制御装置
JP3517461B2 (ja) 電力用変換装置の起動方法および該方法を用いた電力用変換装置
JP3262480B2 (ja) 電力変換装置
JPH06121548A (ja) インバータ装置
JP3598031B2 (ja) 三相・単相兼用の制御電源装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040323

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040520

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050622

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080722

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090722

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees