JP3695643B2 - 鉄系部品 - Google Patents

鉄系部品 Download PDF

Info

Publication number
JP3695643B2
JP3695643B2 JP2001209931A JP2001209931A JP3695643B2 JP 3695643 B2 JP3695643 B2 JP 3695643B2 JP 2001209931 A JP2001209931 A JP 2001209931A JP 2001209931 A JP2001209931 A JP 2001209931A JP 3695643 B2 JP3695643 B2 JP 3695643B2
Authority
JP
Japan
Prior art keywords
layer
iron
test piece
treatment
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001209931A
Other languages
English (en)
Other versions
JP2003027211A (ja
Inventor
徳雄 佐藤
豊 澤野
鉄也 山村
一吉 黒澤
文英 中村
元博 天満屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Parkerizing Co Ltd
Original Assignee
Nihon Parkerizing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Parkerizing Co Ltd filed Critical Nihon Parkerizing Co Ltd
Priority to JP2001209931A priority Critical patent/JP3695643B2/ja
Publication of JP2003027211A publication Critical patent/JP2003027211A/ja
Application granted granted Critical
Publication of JP3695643B2 publication Critical patent/JP3695643B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明が属する技術分野】
本発明は、鉄系部品(鋼板、丸棒などの部品の材料となるものも含む。)に係り、特に耐摩耗性等の機械的特性と高耐食性とを併せて付与するための技術に関する。
【0002】
【従来の技術】
従来より、鉄系材料等に施す窒化処理として、鉄系材料の表面に窒素を反応させるアンモニアガス雰囲気中で行う純窒化処理と、低圧窒素含有ガス雰囲気中で行うプラズマ窒化処理が知られている。さらに窒化処理を施した鉄系材料に空気等の酸化性ガスを添加し酸素も反応させると、窒化層が酸化され酸素を含んだ酸窒化層が生成する。またアンモニアガスと炭素含有ガス(例えば、一酸化炭素ガス、二酸化炭素ガス、炭化水素ガス等)の混合ガス雰囲気中で鉄系材料を熱化学処理するガス窒化浸炭処理や、シアン酸塩を主たる作用成分とする溶融塩浴中で鉄系材料を熱化学処理する塩浴浸炭窒化処理を施すと、窒素および炭素が反応し、炭素を含んだ窒化層すなわち窒化浸炭層が生成する。さらに熱化学反応工程で同時に酸素を反応させ、あるいは、別の第2工程で酸素を反応させると酸素を含む酸窒化浸炭層となる。
【0003】
この様な表面改質層を生成させる方法として工業的に実施されている低温熱化学処理としての窒化及び低温浸炭窒化方法として、上述した純窒化処理、プラズマ窒化処理、ガス窒化処理および塩浴浸炭窒化処理の他、ガス浸炭窒化処理、プラズマ浸炭窒化処理、低圧窒化処理、粉末窒化処理及び流動床窒化処理等が挙げられる。前述したこれらの処理は、鉄系材料をA1変態点以下の温度である450〜650℃の温度範囲に加熱して表面の改質を行う低温表面熱化学処理であり、変態歪が発生せず低歪でその最表面に硬化層を生成させることができる。従って、低温表面熱化学処理によれば、耐焼付性、耐摩耗性、疲労強度、耐熱性、強靱性、耐食性等の材料特性を向上させることができる。
【0004】
この低温表面熱化学処理により、機械加工後の部品が処理されることとなるが、工業的応用例では、そのまま後加工なしで使用できるため生産効率向上の面から広く行われていた。ところで、上記各処理方法により同一の被処理材料に対して処理を行ったとしても、窒化及び浸炭窒化生成層の均一性並びに被処理材料中に拡散浸透する作用成分の生成層中の濃度分布に差が生じる。この結果、処理方法によって、窒化層の生成に伴って得られる材料特性の向上度合いは大きく異なることとなっていた。しかしながら、いずれの処理方法でも材料の特性は無処理材料に比べ向上する。処理材料への処理効果をその部品の応用面での要求度によりさらに改善するため、窒化層中の窒素濃度又は窒素及び炭素濃度等組成を調整したり、窒化あるいは低温浸炭窒化処理と他の処理との組み合わせ処理技術が開発され工業的に応用されている。
【0005】
また、精密機械分野においては、低面粗度であり機械特性や耐食性がさらに向上するという観点から、窒化あるいは低温浸炭窒化処理と熱化学処理である酸化処理を組み合わせた複合熱化学処理が広く応用されている。また、複合熱化学処理にさらにラッピング・研磨等の機械加工処理を組み合わせた複・複合処理も広く精密機械分野においては応用されている。さらに場合によっては、機械加工処理に、ワックス塗布及び防錆剤含浸処理等の防錆強化処理を組み合わせた複・複合処理も精密機械分野では広く応用されている。一方、複合熱化学処理および複・複合処理が提案される以前においては、窒化あるいは低温浸炭窒化処理は、主に耐焼付性、耐摩耗性、疲労強度等の機械特性向上を目的として行われており、耐食性においては、なかなかメッキ処理を施した場合の耐食性を得ることが困難であった。
【0006】
しかしながら、複合熱化学処理及び複・複合処理により機械的特性向上の他に硬質クロムメッキ以上の耐食性が提供されるに至っており、現在では、各種機械部品・部材に広く応用されている。他方、複合熱化学処理及び複・複合処理は、低温浸炭窒化後に別工程として機械加工処理や防錆強化処理等を行うため、工程数が多く生産性が低いため製造コストが高い点で応用範囲が狭いという問題点があった。また、要求機能に対し耐食性レベルが不足する場合もあり、この点からも応用範囲が限られるという問題点があった。
【0007】
[1]塩水噴霧耐食性試験
ここで、複合熱化学処理と複・複合処理を含め前述した各種工程で得られる耐食性について、塩水噴霧耐食性試験(JIS Z2371に規定)により比較しつつ説明する。
【0008】
[2]無処理
塩水噴霧耐食性試験によれば、炭素鋼の無処理材の場合0.5時間未満で発錆する。
【0009】
[3]塩浴熱化学処理あるいはガス熱化学処理
これに対し、アルカリ金属シアン酸塩を作用成分として含有したアルカリ金属炭酸塩混合溶融塩中で580℃−90分、塩浴低温浸炭窒化処理後水冷する場合(塩浴熱化学処理の例)または50%アンモニアガスと5%二酸化炭素ガス残窒素ガス中で580℃−120分、ガス低温浸炭窒化処理(ガス熱化学処理の例)した場合、窒素を5〜11%含む窒化層生成により、試験開始から発錆までの時間が約2〜20時間と耐食性が向上する。
【0010】
[4]塩浴複・複合処理
さらにガス低温浸炭窒化処理と酸化処理、例えば、530℃の水蒸気中で60分ホモジナイズ処理又はアルカリ金属水酸化塩、硝酸塩と亜硝酸塩及び炭酸塩の混合塩を380〜400℃に溶解した酸化塩浴中に20分浸漬するガス複合熱化学処理あるいはこれらと研磨などの機械加工を組み合わせる。そして、必要に応じて最終工程としてさらに同様の酸化処理を行うガス複・複合処理及び塩浴低温浸炭窒化処理を行う。
そして、ガス複・複合処理及び塩浴低温浸炭窒化処理後、直ちにそのまま前述の酸化塩浴処理を行う塩浴複合熱化学処理を施す。この場合に、さらに必要に応じて研磨などの機械加工を施してもよい。さらに必要に応じてガス法の場合と同様に酸化塩浴処理を行ってもよい。
これらの塩浴複・複合処理では、試験開始から発錆までの時間が80〜300時間に向上する。
【0011】
[5]化合物層
上記各処理を施すことにより鉄系部品の表面に形成される化合物層は、窒素と鉄の結晶構造化合物であり非金属的特性を有している。機械的特性の観点より窒素の含有量の多い脆いη−Fe2Nは使用されることは無く、結晶構造の異なるγ’−Fe4Nとε−Fe3Nの混合化合物層は構造欠陥が生じる。γ’−Fe4Nはε−Fe3Nより窒素含有量が少ない。
これらの観点よりε−Fe3N単層の強靱な化合物層が耐食性や機械特性全般の特性向上度が大きい。
これは、酸化処理を行うとこの化合物層表面に酸化鉄層が数ミクロン生じさらに化合物層中に酸素が浸透固溶拡散し、この表面酸化物層と化合物層中の固溶酸素が化合物層の不動態化を強化し耐食性を向上するためと考えられている。
低温浸炭窒化処理や複合熱化学処理では、生成した熱化学処理層が硬く表面粗さが大きいため、ベアリングメタル等軟質摺動相手材の損傷が大きくなる。
【0012】
この損傷を低減すべく、熱化学処理後の部品を機械的に仕上げ、さらにこの仕上げ工程により除去された最表面酸化層の復元処理としてさらに酸化処理を行う場合もある。
この最終酸化処理では最表面に酸化物層が生成するが表面粗さは大きくならず耐食性は高レベルとなる。よって低面粗度で軟質材を摺動相手材として使用できる耐食性の高い部品(材料)を得ることができる。
ところで、耐食性に関しては、窒化処理、低温浸炭窒化処理だけの場合も、窒化処理、低温浸炭窒化処理に加えて酸化処理を組み合わせた場合も、最表面生成層の化合物層がγ`−Fe4Nやγ`−Fe4Nとε−Fe3Nの混合層よりもε−Fe3N単層であることが、良好な耐食性にとり必要であることは上述した通りである。
【0013】
このことは、化合物層に起因するこの他の耐焼付性、耐摩耗性、耐熱性等の特性についても同様である。従って、これらの最良の特性を要求する場合は、前述した方法の中で生産技術上安定した生成層の得られるガス低温浸炭窒化・塩浴低温浸炭窒化が広く行われている。
【0014】
【発明が解決しようとする課題】
ところで、双方の処理共耐食性向上のために行う酸化処理との複合熱化学処理では、さらに化合物層の上に生成する黒色の四三酸化鉄皮膜の性状と化合物層中の固溶酸素量が重要な要素である。すなわち最表面の四三酸化鉄皮膜は、適正に厚く緻密な酸化物でありその下の酸素を含有する化合物層中には不動態化作用に効果のある量の数パーセントの酸素が含まれている事が必要である。優れた耐食性に対応する場合この様に酸化処理の効果が重大であるにもかかわらず過剰な酸化は、処理中のスケールの発生による表面損傷、使用時の酸化被膜脱落又粗大な荒れた表面酸化物結晶構造被膜による摺動相手材の摩耗や粗い酸化物結晶の集合体で有る為腐食元素の侵入遮断能が低く耐食性自体が低いなどで問題がある。このため酸化は、適度に行う必要がありこの調整が難しい。
【0015】
さらにこれらを研磨仕上げ、バフ仕上げ、振動バレル仕上げ、ショットブラストまたはラッピング等の仕上げ加工により仕上げようとする場合も過度の酸化は仕上げ寸法精度、仕上げ後の面粗さが十分に小さくならない等の点で問題がある。
複合熱化学処理層中の窒素を主たる元素として炭素、酸素のそれぞれの最適濃度は、現在では直接調整することができない。
従って、ガス複合熱化学処理の場合あるいは塩浴複合熱化学処理の場合において、工程の作用成分の流量、処理媒体中濃度、処理温度及び処理時間等を測定制御して繰り返し同条件で同質の改質層を生成させている。
このため、適度な厚さの酸化物層や高耐食性に重要な緻密な酸化物層を安定して生成させる事が難しく、前述した量産工程のなかで最も安定した性能を提供できる塩浴複合処理の場合も、なかなか300時間以上の塩水噴霧耐食性を有する部品を提供できていない。
【0016】
ところで、ガス複合熱化学処理の場合、これら層生成反応の制御を雰囲気ガス組成の測定により制御する方法が試みられている。すなわち処理材料と雰囲気ガスが反応し材料中に窒素、炭素、酸素等が結合、拡散する過程に直接関わりの有る反応活性度として計器制御する方法等も提案されている。
しかしながら、この場合においても、簡単な窒化反応以外未だ実用化されていない。このようにガス複合熱化学処理の反応制御面からの品質特性の更なる向上は、出来ていないのが現状である。
塩浴複合熱化学処理の場合では、生成反応層の制御として、主たる作用成分であるシアン酸の塩浴中濃度と浴中に浸炭窒化反応の結果生成する窒化鉄、酸化鉄のスラッジ除去管理を行っており得られる品質は安定している。しかしながらガス複合熱化学処理と同様、更なる品質特性向上は出来ていないのが現状である。
上述したように、耐食性及び機械的特性の優れた機械部品・部材の製造には、前述したいずれかの窒化工程で窒化を行い、さらに引き続き別の設備を用いて酸化処理を行う複合熱化学処理一般材料に対し行われている。
【0017】
しかしながら、窒化層・酸化層の品質により耐食寿命が短かったり、より長時間の耐食寿命を要求される場合は、複合処理層の上にさらにワックスや油を塗布し防錆処理を行う場合も見られる。しかし、これら防錆処理は、さらに追加の工程となりコストが掛かる上機械的に摺動する部分では、ワックスや防錆油がすぐに除去され耐食性向上にならないという問題点があった。
そこで、本発明は、摺動部品として用いられる場合でも、耐食性が高く、機械的特性も優れた鉄系部品を提供することにある。
【0018】
【課題を解決するための手段】
上記課題を解決するため、鉄系部品は、鉄系の基材と、少なくとも窒素元素が表面改質拡散元素として拡散されるとともに、前記基材の上層に形成された表面改質層と、前記表面改質層の上層に形成されたリチウム・鉄複合酸化物よりなる酸化物層(但し鉄酸化物及び鉄/リチウム酸化物からなる酸化物層を除く)と、を備えたことを特徴としている。
【0019】
この場合において、前記リチウム・鉄複合酸化物は、結晶構造を有しているようにしてもよい。また、前記酸化物層は、
Li5Fe58
Li2Fe34
Li2Fe35
LiFe58
LiFeO2
の結晶構造を持つ複合酸化物のいずれかまたはその混合物として形成されているようにしてもよい。
【0020】
さらに、前記表面改質層は、炭素あるいは酸素のうち少なくともいずれか一方を表面改質拡散元素として含むようにしてもよい。
さらにまた、前記酸化物層の厚さは、8μm以下であるようにしてもよい。
また、前記表面改質層の厚さは、2〜25μmであるようにしてもよい。
さらに前記酸化物層の表面を研磨仕上げ、バフ仕上げ、振動バレル仕上げ、ショットブラス仕上げあるいはラッピング仕上げなどの仕上げ加工により仕上げるようにしてもよい。
【0021】
【発明の実施の形態】
次に本発明の好適な実施形態について説明する。
図1に実施形態の鉄系部品の断面模式図を示す。
鉄系部品10は、大別すると、酸化物層11Xと、表面改質層12Xと、鉄系基材13Xと、を備えて構成されている。
酸化物層11Xは、主として耐食性を向上させるための層であり、リチウム・鉄複合酸化物よりなっており、表面改質層12Xの上層に形成されている。この場合において、リチウム・鉄複合酸化物は、
Li5Fe58
Li2Fe34
Li2Fe35
LiFe58
LiFeO2
の結晶構造を持つ複合酸化物のいずれかまたはその混合物として存在している。
【0022】
この場合において、この酸化物層11Xの厚さは、剥離などを起こさないための機械的強度を確保するため、その厚さは8μm以下とするのが好ましい。
表面改質層12Xは、主として機械的特性を向上させるための層であり、少なくとも窒素元素が表面改質拡散元素として拡散されるとともに、鉄系基材13Xの上層に形成されている。さらに表面改質層12Xは、炭素あるいは酸素のうち少なくともいずれか一方を窒素元素に加えて表面改質拡散元素として含むようにしてもよい。
この場合において、表面改質層の厚さは、2μm以下では被処理材の表面粗さが数μmある場合の機械部品摺動部の機能向上や耐食性の安定性等で下地としては不十分である。また、25μm以上では窒化物生成が過剰になる結果最表面部の強靱性が劣り、下地機能層として不必要な過度の厚さとなる。
【0023】
従って、2〜25μmの厚さが適当であると考えられる。
鉄系基材13Xは、非合金鋼あるいは高合金鋼である。
さらに鉄系部品10を精密機器などに適用する場合には、仕上げ寸法精度、仕上げ後の面粗さを十分に小さくすべく、研磨仕上げ、バフ仕上げ、振動バレル仕上げ、ショットブラストまたはラッピング等の仕上げ加工を施すように構成することも可能である。
上記実施形態によれば、酸化物層11Xにより高耐食性を確保しつつ、表面改質層12Xにより耐摩耗性、高疲労強度、耐焼着性等の機械的特性を確保できる。
【0024】
【実施例】
以下に本発明のより具体的な実施例について説明する。
[1]第1実施例
Na炭酸塩、K炭酸塩およびLi炭酸塩をほぼ同モル比で混合し、混合炭酸塩の一部をCNO-として約15%置換えた組成を持つ溶融塩中で冷間圧延鋼板(SPC−SB材:0.8t×50×100mm)及び低炭素鋼丸棒切り出し材(S15C:20φ×5mm)を580℃で90分処理し、引続き水冷した。
そして、得られたSPC−SB材で作成した試験片S1Aは、耐食性試験用として使用した。
また、S15Cで作成した試験片S1Bは、断面金属組織観察用及びX線回析分析用として使用した。
そして、試験片S1Bの断面金属組織を観察したところ、最表面は、均一な黒色皮膜で覆われており、その厚さは、約3μmであった。また、この黒色皮膜の直下には、化合物層が、約15μm生成していた。
SPC−SB材で作成した試験片S1Aを、JIS Z2371で規定される試験法に従い、塩水噴霧試験を行った所、1000時間経過しても発錆が見られなかった。
【0025】
以下の説明においては、説明の簡略化のため、試験片S1Aおよび試験片S1Bを特に区別して述べる必要がない場合は、試験片S1として表記するものとする。また、他の試験片あるいは比較試験片についても同様である。ここで、上記試験片S1と比較するために用いた試験片C1〜C5について説明する。
試験片C1:SPC−SB材及び低炭素鋼丸棒切り出し材試験片を同じ溶熱塩中で500℃×300分処理し、引き続き水冷し、灰色表面の化合物層を約5μm生成させた。
試験片C2:SPC−SB材及び低炭素鋼丸棒切り出し材試験片をカリウム/ナトリウム2元系アルカリ金属塩混合塩浴でシアン酸塩を低温浸炭窒化作用成分としCNO-として約35%含有しその他の主成分として炭酸塩を含有する別の塩浴中で600℃−90分窒化処理後、水冷し、灰色表面の傾斜組成の浸炭窒化層を約20μm生成させた。
【0026】
試験片C3:SPC−SB材及び低炭素鋼丸棒切り出し材に対し、上記試験片C2と同一の処理をし、さらにその後直ちに380℃に溶融したカリウム/ナトリウムアルカリ金属水酸化塩、硝酸塩と亜硝酸塩及び炭酸塩の混合塩によりなる酸化性冷却浴(AB1浴:パーカー熱処理工業製)に浸漬し20分保持した(塩浴による低温酸浸炭窒化処理試験片)。
試験片C4:SPC−SB材及び低炭素鋼丸棒切り出し材に対し、アンモニアガス50%+5%二酸化炭素ガス+残窒素ガスの雰囲気中で580℃−120分ガス低温浸炭窒化処理後無酸化で油冷した。
試験片C5:SPC−SB材及び低炭素鋼丸棒切り出し材に対し、上記試験片C4と同一の処理をし、さらにその後引き続き550℃の水蒸気中で60分四三酸化鉄生成処理(ホモジナイズ処理)を行った(ガス低温酸浸炭窒化処理試験片)。
【0027】
[1.1]塩素噴霧耐食性試験
表1に試験片S1および比較試験片C1〜C5についてのS15C材断面金属組織形態及び上記JIS−Z2371試験法によるSC−SB材塩水噴霧耐食性試験の結果を示す。
【0028】
【表1】
Figure 0003695643
【0029】
表1をみれば分かるとおり、本発明の試験片S1は、耐食性が他の比較試験片C1〜C5に比べ著しく高い。
比較試験片C1は、本発明の試験片S1と同じ塩浴を使用して低温浸炭窒化を行った比較例である。
しかしながら、比較試験片C1は耐食性が低く本発明の試験片S1の耐食性は使用した塩浴の化学作用により生じる表面改質層により向上するが黒色表面とならない比較試験片C1の場合は、耐食性が向上しないことがわかる。
【0030】
[1.2]断面構造及び表面層の結晶構造
次に断面金属形態を検査した15C材試験片S1Bの表面層の結晶構造を銅管球及びクロム管球を用いたX線回析分析により同定した。
管球の違いにより分析に用いるX線の波長が変わり、銅管球では表面より約8μm深さまでの組織情報が得られる。また、クロム管球では表面より約20μm深さまでの組織情報が得られる。試験片に生成している改質層の厚さは約20μmでありこのX線分析により層全体の構造情報が得られる。
この分析結果を表2に示した。
【0031】
【表2】
Figure 0003695643
【0032】
本発明の試験片S1における金属断面組織の最表面黒色層は、リチウム・鉄複合酸化物層である。このリチウム・鉄複合酸化物層は、上述の従来工程による比較試験片C3、C5の黒色層である四三酸化鉄とは結晶構造が異なっている。図2に試験片S1、図3に比較試験片C3のクロム管球を使用したX線チャートを示す。図2に示すように試験片S1における金属断面組織の最表面黒色層は、
Li5Fe58
Li2Fe34
Li2Fe35
を主とするリチウム・鉄複合酸化物層である。これに対し、比較試験片C3における金属断面組織の最表面黒色層は、
Fe3
Fe34
を主とする窒化物及び酸化物層であることが分かる。
【0033】
[1.3]グロー放電発光分光分析
次に本第1実施例の試験片S1の断面をJOBIN社製JY5000RF−PSS型グロー放電発光分光分析装置を用いて測定した。
定出力:40W、
アルゴン圧力:775Pa、
電流値40mA(700V)
発光時間:20秒、
予備熱焼時間:2秒、
サンプリング時間0.1秒
500秒継続分析
【0034】
図4にグロー放電発光分光分析の測定結果を示す。その結果、図4に示すように、黒色最表面酸化物層厚さに相当する表面から約3μmまでの部分に窒素・酸素・炭素に加え、多量のリチウムが分布していることがわかる。さらに内部に向かって約10ミクロンまで順次減る表面から約15μmの部分に窒素・炭素・鉄が傾斜組成(拡散層構造)をもって分布していた。
[2]第2実施例
本第2実施例においても、第1実施例と同じNa炭酸塩−K炭酸塩−Li炭酸塩の3元系炭酸塩を基材とし、CNO-として約15%含有する溶融塩を使用した。ただし、第1実施例と異なり、リチウム・鉄複合酸化物を厚く生成させるため、溶融温度を600℃に昇温し、処理時間を2時間としてSPC−SB材試験片(サイズ2t×50×50mm)を浸漬処理し引き続き水冷することにより、試験片S2を得た。ここで、試験片の板厚を2mmとしたのは、後述する試験片の研磨を行う際に、研磨精度の確保すべく試験片の変形量を少なくするためである。
【0035】
この試験片S2の最表面は、均一な約8μmの黒色被膜で覆われている。
その黒層の直下には、ε窒化鉄(ε−FeN)を主たる成分とする化合物層が約23μm生成していた。
次にこの試験片S2と同一の試験片を使用してリチウム・鉄酸化物層を表面より研磨して研磨深さの異なる試験片S3〜S6を得た。
具体的には、試験片S2と同一の試験片を表面からエミリー紙#1000および研磨ガイドを使用し、出来るだけ均一に約2μmずつ研磨し5種類の異なる厚さの最表面酸化物特性試験片S2〜S6とした。
次に試験片S2〜S6の断面組織を観察し、酸化物層及び低温浸炭窒化層(化合物層)の厚さを計測した。
また、試験片S2〜S6のそれぞれについて表面からの薄膜X線回析分析により酸化物結晶構造を調べた。
さらに試験片S2〜S6の耐食性をJIS−Z2371試験法に従って試験し比較した。
【0036】
まず、試験片S2〜S6の金属断面組織を観察し、最表層の酸化物層の厚さ、その下層の表面改質層(低温浸炭窒化層;化合物層)の厚さを求めた。
に試験片S2の断面組織の模式図を示す。図に示すように、試験片S2の最表面には、厚さ6〜8μmのリチウム・鉄酸化物層である酸化物層11が形成され、その下層には、厚さ20〜24μmの表面改質層12が形成されているのがわかる。
この場合において、表面改質層12の上層側は、ポーラス層12A(多孔質層)となっている。
【0037】
に試験片S5の断面組織の模式図を示す。図に示すように、試験片S5の最表面には、厚さ0〜2μmのリチウム・鉄酸化物層である酸化物層11が残っており、その下層には、厚さ18〜22μmの表面改質層12が形成されているのがわかる。
この場合において、表面改質層12の上層側は、ポーラス層12A(多孔質層)となっている。
に試験片S6の断面組織の模式図を示す。図に示すように、試験片S6の最表面には、厚さ16〜20μmの表面改質層12が残っているのがわかる。この場合において、表面改質層12の上層側は、ポーラス層12A(多孔質層)となっている。
【0038】
に試験片S7の断面組織の模式図を示す。図に示すように、試験片S6の最表面には、厚さ8〜12μmの表面改質層12が残っているのがわかる。この場合においては、表面改質層12の上層側のポーラス層12A(多孔質層)は既に除去されている。
に比較試験片C4の断面組織の模式図を示す。図に示すように、比較試験片C4の最表面には、厚さ16〜20μmの表面改質層12Cが形成されている。
【0039】
次に分析情報が1μm以下に限られる薄膜X線法を、用いて異なる厚さの最表面酸化物層を持つ試験片の最表面の結晶構造を回析同定した。薄膜X線分析装置は、マックサイエンス社製MXP3AHF型を使用し、銅管球入射角0.5度の条件で行った。この薄膜X線回折分析の比較例としては、第1実施例において耐食性試験を行った酸化影響の少ないアンモニアガス50%+二酸化炭素ガス5%+残窒素ガスの雰囲気中で580℃−120分ガス低温浸炭窒化処理後無酸化で油冷した試験片C4を用いた。
【0040】
図1に試験片S2の薄膜X線チャートを示す。
図1に示すように、試験片S2における金属断面組織の最表層は、
Li5Fe58
Li2Fe34
Li2Fe35
を主とするリチウム・鉄複合酸化物層であることが分かる。
図1に試験片S5の薄膜X線チャートを示す。
図1に示すように、試験片S5における金属断面組織の最表層は、
Li5Fe58
Li2Fe34
Li2Fe35
を主とするリチウム・鉄複合酸化物層に加えて、
ε−Fe3
が検出されていることが分かる。
【0041】
図1に試験片S6の薄膜X線チャートを示す。
図1に示すように、試験片S6における金属断面組織の最表層は、
Li5Fe58
Li2Fe34
Li2Fe35
を主とするリチウム・鉄複合酸化物層に加えて、
ε−Fe3
が試験片S5と比較してより多く検出されていることが分かる。これは、表面改質層12のポーラス層より下層の部分に含まれる
ε−Fe3
がチャート上に現れているものと考えられる。
図1に試験片S7の薄膜X線チャートを示す。
図1に示すように、試験片S7における金属断面組織の最表層は、
ε−Fe3
のみが検出されていることが分かる。これは、表面改質層12のポーラス層より下層の部分には
ε−Fe3
のみが含まれていることを裏付けるものである。
【0042】
図1に比較試験片C4の薄膜X線チャートを示す。
図1に示すように、比較試験片C4における金属断面組織の最表層は、最初から、本実施例と異なり、
Li5Fe58
Li2Fe34
Li2Fe35
を含んでおらず、
ε−Fe3
のみが検出されていることが分かる。
この薄膜X線回折分析と同時に塩水噴霧耐食性試験をJIS−Z2371に規定される試験法に従い実施した。
それらの結果を表3に示す。
【0043】
【表3】
Figure 0003695643
【0044】
表3に示すように、本実施例の試験片S2〜S6のうち、試験片S2〜S5は従来技術により得られる表面改質層に比べ耐食性が著しく高いことがわかる。
また、試験片S6は、比較例C4と同様の酸化皮膜のない灰色外観であるが耐食性が高い。
また、最表面酸化物層研磨後の耐食性については、例えば、研磨深さが0〜4μmの試験片S2〜S4をみると、いずれも1000時間以上と高い耐食性を示している。
また、研磨深さ6〜8μmの試験片S5も約600時間と従来の最高レベル耐食性を示す複合熱化学処理試験片の耐食性に比べ優れている。
さらに研磨深さ8〜12μmの試験片S6については、外観がもはや黒色ではなく灰色となっている。しかしながら、この試験片S6の場合も、従来の低温浸窒化層により得られる試験片C1、C2の耐食性(<12時間)に比べて約96時間と高い耐食性を示している。
この試験片S6の場合は、金属断面組織としては、表面層である黒色酸化物層は、完全に除去されているが、薄膜X線回析により結晶構造のリチウム鉄複合酸化物が同定されている。これは、微量のリチウム・鉄酸化物が窒化層中の存在するポーラス層12A中に生成し、不動態化を促進するためと推定される。
これらの結果より、本第2実施例によれば、摺動運動を行うような部品として用いた場合であっても、摺動運動によりワックスのような防錆皮膜が除去されてしまい防錆効果が直ちに低下してしまう従来技術と異なり、摺動運動により最表面黒色酸化物層の一部が摩耗しても耐食性が高く維持され安価な材料を用い高機能部品を制作できることがわかる。
【0045】
[3]第3実施例
本第3実施例は、非処理材としてステンレス鋼を用いた場合の実施例である。 第1実施例と同じくNa炭酸塩−K炭酸塩−Li炭酸塩の3元系炭酸塩を基材としたCNO-として約15%含有する580℃の溶融塩中でSUS304−2B材(サイズ0.8t×50×100mm)を90分浸漬処理し、引き続き水冷して試験片S8を得た。
この試験片S8について断面金属組織、銅管球を使用したX線回析分析による生成層解析、JIS−Z2371に規定される塩水噴霧耐食性試験を行った。
比較例として同材料をCNO-約38%含有するカリウム/ナトリウム2元系塩浴で実施例1で用いた塩浴を使用して580℃で2時間窒化処理後水冷した試験片C6を用いた。また、アンモニアガスと吸熱反応型プロパン変成ガスを1:1で混合したガス雰囲気中で570℃−2時間ガス低温浸炭窒化処理後油冷した試験片C7を用いた。さらに無処理の試験片C8を用いた。
これらの試験片S8、比較試験片C6〜C8について断面金属組織、銅管球を使用したX線回析分析による生成層解析、塩水噴霧耐食性試験の結果を図1に示す。
【0046】
図1において、酸化物層11は、リチウム・鉄複合酸化物層である。
また、表面改質層12、12Y、12Zは、窒化層であり、より表層側が窒素濃度の高い黒色層であり、より下層側が窒素濃度の低い白色層となっている。
本第3実施例の試験片S8では高硬度の表面改質層の最表面にリチウム・鉄複合酸化物皮膜が生成し、従来の窒化による場合の耐食性劣化が大幅に改善された。さらに機械的特性の大幅な向上が得られた。
また、窒化条件を調整し窒化反応活性度を低下させるため窒化性ガス分圧を数百トールまで下げた低圧ガス窒化や500℃以下の低温塩浴浸炭窒化により改質層中窒化物生成を制御し窒化物で固定されないクロムを残しクロム酸化物皮膜の極薄い不動態皮膜が生成できる耐食性の劣化程度が少ない方法も提案されているがこの様な低窒素濃度の表面改質層の最上部にリチウム・鉄複合酸化物皮膜を生成させればさらに耐食性と機械特性の高性能化が図れる。
【0047】
[4]第4実施例
S45C材で形成したディスク状の試験片S9及びSCM435材で形成したディスク状の試験片S10を第1実施例と同様の方法で580℃−90分の処理を行い10φの調質されたSUJ2鋼製ボールを相手材に一般ミッション油を潤滑油として2mm一定振幅繰り返し振動数50Hzでボールを摺動させるボールオンディスク摩擦摩耗試験を行った。50秒ごとに50Nの荷重を増加させた時の焼着荷重とその過程での摩擦係数変化を測定した。
なお性能比較は、従来のCNO - 約35%含有するカリウム・ナトリウム2元系塩浴を使用し580℃90分窒化されたS45C材で形成したディスク状の比較試験片C9及びSCM435材で形成したディスク状の比較試験片C10を比較対象として摩擦摩耗試験結果を表4に示した。
【0048】
【表4】
Figure 0003695643
【0049】
表4に示したように、振動摩耗試験結果を検討すると、本第4実施例の摺動部品は最表面に酸化皮膜が生成するがその摺動特性は、一般に行われている窒化処理により得られる特性と大差ないことが分かり、実用上問題が無いことが分かる。
【0050】
【発明の効果】
本発明によれば、酸化物層により高耐食性を確保しつつ、表面改質層により耐摩耗性、高疲労強度、耐焼着性等の機械的特性を確保できる。
【図面の簡単な説明】
【図1】 本発明の実施形態の鉄系部材の断面説明図である。
【図2】 第1実施例の試験片S1のクロム管球X線チャートである。
【図3】 第1実施例の比較試験片C3のクロム管球X線チャートである。
【図4】 第1実施例のグロー放電発光分光分析の測定結果のチャートである。
【図】 第1実施例の試験片S2の金属断面模式図である。
【図】 第1実施例の試験片S5の金属断面模式図である。
【図】 第1実施例の試験片S6の金属断面模式図である。
【図】 第1実施例の試験片S7の金属断面模式図である。
【図】 第1実施例の比較試験片C4の金属断面模式図である。
【図10】 第1実施例の試験片S2の薄膜X線チャートである。
【図11】 第1実施例の試験片S5の薄膜X線チャートである。
【図12】 第1実施例の試験片S6の薄膜X線チャートである。
【図13】 第1実施例の試験片S7の薄膜X線チャートである。
【図14】 第1実施例の比較試験片C4の薄膜X線チャートである。
【図15】 第2実施例の測定結果の説明図である。
【符号の説明】
10……鉄系部材
11X……酸化物層
12X……表面改質層
13X……基材

Claims (7)

  1. 鉄系の基材と、
    少なくとも窒素元素が表面改質拡散元素として拡散されるとともに、前記基材の上層に形成された表面改質層と、
    前記表面改質層の上層に形成されたリチウム・鉄複合酸化物よりなる酸化物層(但し鉄酸化物及び鉄/リチウム酸化物からなる酸化物層を除く)と、
    を備えたことを特徴とする鉄系部品。
  2. 請求項1記載の鉄系部品において、
    前記リチウム・複合酸化物は、結晶構造を有していることを特徴とする鉄系部品。
  3. 請求項1記載の鉄系部品において、
    前記酸化物層は、
    Li5Fe58
    Li2Fe34
    Li2Fe35
    LiFe58
    LiFeO2
    の結晶構造を持つ複合酸化物のいずれかまたはその混合物として形成されていることを特徴とする鉄系部品。
  4. 請求項1ないし請求項3のいずれか1項に記載の鉄系部品において、
    前記表面改質層は、炭素あるいは酸素のうち少なくともいずれか一方を表面改質拡散元素として含むことを特徴とする鉄系部品。
  5. 請求項1ないし請求項4のいずれか1項に記載の鉄系部品において、
    前記酸化物層の厚さは、8μm以下であることを特徴とする鉄系部品。
  6. 請求項1ないし請求項4のいずれか1項に記載の鉄系部品において、
    前記表面改質層の厚さは、2〜25μmであることを特徴とする鉄系部品。
  7. 請求項1ないし請求項6のいずれか1項に記載の鉄系部品において、
    前記酸化物層の表面を研磨仕上げ、バフ仕上げ、振動バレル仕上げ、ショットブラス仕上げあるいはラッピング仕上げなどの仕上げ加工により仕上げたことを特徴とする鉄系部品。
JP2001209931A 2001-07-10 2001-07-10 鉄系部品 Expired - Fee Related JP3695643B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001209931A JP3695643B2 (ja) 2001-07-10 2001-07-10 鉄系部品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001209931A JP3695643B2 (ja) 2001-07-10 2001-07-10 鉄系部品

Publications (2)

Publication Number Publication Date
JP2003027211A JP2003027211A (ja) 2003-01-29
JP3695643B2 true JP3695643B2 (ja) 2005-09-14

Family

ID=19045501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001209931A Expired - Fee Related JP3695643B2 (ja) 2001-07-10 2001-07-10 鉄系部品

Country Status (1)

Country Link
JP (1) JP3695643B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005099622A (ja) * 2003-09-26 2005-04-14 Nikon Corp フォーカルプレーンシャッタおよび基板
JP2013029401A (ja) * 2011-07-28 2013-02-07 Hitachi-Ge Nuclear Energy Ltd プラント構成部材への放射性核種付着抑制方法
JP6236031B2 (ja) * 2015-05-29 2017-11-22 パーカー熱処理工業株式会社 ダイカスト用金型
CN107740143B (zh) * 2017-09-29 2019-12-24 武汉大学 一种具有铁酸锂保护膜的铁基惰性阳极及其制备方法、应用
WO2019077714A1 (ja) * 2017-10-19 2019-04-25 日立ジョンソンコントロールズ空調株式会社 スクロール圧縮機
CN113305652A (zh) * 2021-07-02 2021-08-27 无锡航亚科技股份有限公司 一种降低航空精锻叶片喷丸后表面粗糙度的方法

Also Published As

Publication number Publication date
JP2003027211A (ja) 2003-01-29

Similar Documents

Publication Publication Date Title
EP0122762B1 (en) Corrosion resistant steel components and method of manufacture thereof
US3885995A (en) Process for carburizing high alloy steels
EP1000181B1 (en) Process for the treatment of austenitic stainless steel articles
WO2011013362A1 (ja) 窒素化合物層を有する鉄鋼部材、及びその製造方法
JPH0699796B2 (ja) 耐食性鋼部品の製造方法
KR20110104631A (ko) 고내식성 및 고경도 컬러 오스테나이트계 스테인리스강재 및 그 제조방법
CN100455698C (zh) 耐磨性优良的表面碳氮化不锈钢部件和其制造方法
JP2009052745A (ja) 転がり軸受用プレス保持器の製造方法
JP3695643B2 (ja) 鉄系部品
JP3388510B2 (ja) 耐食、耐摩耗鋼及びその製造方法
US5228929A (en) Thermochemical treatment of machinery components for improved corrosion resistance
JP2010222648A (ja) 炭素鋼材料の製造方法および炭素鋼材料
US5320689A (en) Surface modified copper alloys
Triwiyanto et al. Low temperature thermochemical treatments of austenitic stainless steel without impairing its corrosion resistance
JP2010222649A (ja) 炭素鋼材料の製造方法および炭素鋼材料
JP4806722B2 (ja) 金属の塩浴窒化方法及びその方法で製造された金属
JP4361814B2 (ja) 耐摩耗性に優れたチタン材
Zenker Combined surface heat treatment: state–of–the–art
JP7178832B2 (ja) 表面硬化材料の製造方法
WO2021070344A1 (ja) 金型及び金型の製造方法
Whittle et al. Sliding-wear evaluation of boronized austenitic alloys
JP2001340550A (ja) 遊技装置、および、その遊技部材の作成方法
JP2020001056A (ja) 金型及び金型の製造方法
Salunkhe et al. Sliding Wear Behaviour of Salt Bath Nitrided 316ln Austenitic Stainless Steel
Whittle et al. Improving the wear resistance of austenitic alloys by surface treatment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050623

R150 Certificate of patent or registration of utility model

Ref document number: 3695643

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080708

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100708

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110708

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120708

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120708

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130708

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees