JP3688723B2 - 各種の生体液体のための分配方法 - Google Patents

各種の生体液体のための分配方法 Download PDF

Info

Publication number
JP3688723B2
JP3688723B2 JP06333492A JP6333492A JP3688723B2 JP 3688723 B2 JP3688723 B2 JP 3688723B2 JP 06333492 A JP06333492 A JP 06333492A JP 6333492 A JP6333492 A JP 6333492A JP 3688723 B2 JP3688723 B2 JP 3688723B2
Authority
JP
Japan
Prior art keywords
liquid
pressure
tip
dispensing
chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP06333492A
Other languages
English (en)
Other versions
JPH0599804A (ja
Inventor
ブイ.バリー ジェームス
エフ.ジャクボウィッツ レイモンド
ハマン ジェイ.エリック
Original Assignee
イーストマン コダック カンパニー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イーストマン コダック カンパニー filed Critical イーストマン コダック カンパニー
Publication of JPH0599804A publication Critical patent/JPH0599804A/ja
Application granted granted Critical
Publication of JP3688723B2 publication Critical patent/JP3688723B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1009Characterised by arrangements for controlling the aspiration or dispense of liquids
    • G01N35/1011Control of the position or alignment of the transfer device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00722Communications; Identification
    • G01N35/00732Identification of carriers, materials or components in automatic analysers
    • G01N2035/00742Type of codes
    • G01N2035/00752Type of codes bar codes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1009Characterised by arrangements for controlling the aspiration or dispense of liquids
    • G01N35/1016Control of the volume dispensed or introduced
    • G01N2035/102Preventing or detecting loss of fluid by dripping
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1009Characterised by arrangements for controlling the aspiration or dispense of liquids
    • G01N2035/1025Fluid level sensing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N2035/1027General features of the devices
    • G01N2035/1034Transferring microquantities of liquid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/11Automated chemical analysis
    • Y10T436/115831Condition or time responsive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/11Automated chemical analysis
    • Y10T436/119163Automated chemical analysis with aspirator of claimed structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/25Chemistry: analytical and immunological testing including sample preparation
    • Y10T436/2575Volumetric liquid transfer

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Sampling And Sample Adjustment (AREA)

Description

【0001】
【産業上の利用分野】
この発明は液体を中実表面もしくは液体表面に分配する方法に関するものである。より詳しくは本発明は圧力フィードバックを使用することによりかかる分配おいて最適間隔を自動的に達成することができる方法に関するものである。
【0002】
【従来の技術】
ここ10年ぐらいの医療上のアナライザの分野では液体の試薬を使用した湿式の被分析物からスライド試験エレメントを使用した乾燥型の被分析物に変ってきている。その目的は、ごく自然なことであるが、取り扱いのし難い液体を排除することにある。液体を避けたいという要請は地球外部の環境が試験箇所となるような場合は一層大きくなる。宇宙空間の無重力の環境では大量の液体はその取り扱いに重大な問題点を惹起せしめるからである。
【0003】
"Ektachem"の商標名で入手可能なアナライザによって試験される"Ektachem"の商標名で入手可能なスライド型の試験エレメント−これらのアナライザ及び試験エレメントEastman Kodak 社製である−では上述した液体の取り扱い上の問題はかなり改善されている。しかしながら、このような試験エレメントにおいても小量の患者サンプル液体を試験エレメント上に滴下する必要はある。この小量の液体は大きな容積の患者サンプル容器から得る必要がある。この目的のために使い捨て型のチップを備えた吸引プローブが使用されてきた。このチップは外部で湿潤させてサンプルを内部に吸引させるものである。このような前駆的な湿潤付与によってチップの外部に除去の必要がある外部液体が形成されることになる。除去しないでそのままにしておくとパーフュージョン(perfusion) を発生せしめるおそれがある。ここにパーフュージョンとはプローブチップから分配された液体がそれを受け取るべきスライド試験エレメント上に分配される代りにチップの外側表面上に広がってしまう現象のことをいう。
【0004】
パーフュージョンを防止するため外部表面上の液体を制御するためさまざまな技術がこれまで試みられてきている。最も普通にはチップの形状を外部液体が分配作動に影響を及ぼす虞のある位置に留まらないようなものとしている。その例は米国特許第4,347,875号である。かかるチップにはワックスのコーティングが付加されているがこのコーティングは外部液体を放出させるためのものであり、この点については前記米国特許第4,347,875号にも記載がある。他の技術としては外部液体をエアーナイフの働き吹き飛ばす方式で“切除”するものであり、米国特許第4,615,360号に記載されている。更に、他の技術として液体の吸引及び分配の都度ぬぐいとる方式のものであるが、ぬぐいとり方式は自動化装置に支障をきたし、また生物災害のおそれがある。
【0005】
ぬぐいとり方式は別として上記の従来の手法はそれなりに成功している。しかしながら他のパーフュージョン源が残っている。即ち、吸引プローブは小量の患者サンプルを安定した流れとして乾燥試験エレメントのような物体もしくは表面に分配するために使用されるものである。この流れは早すぎてはならず、さもないと表面に水が溜まり(以下パドリング(puddling)) 、チップの外部を湿潤させることによってパーフュージョンを促進することになる。また、流れが遅すぎると流れが液滴状に切断され、衝撃によって飛散し、試験エレメント上に意図とは反した分布状態をとることになりリング状を呈する。悪いことには、試験エレメントへの流れの受容速度はこの現象を支配する制御因子であり、種々の変数に依存する。そのような変数としてはスライド試験エレメントの表面の湿潤性、患者サンプルの流れ特性、更には、チップ−試験エレメント間間隔がある。
【0006】
これらの変数のうち試験エレメントの湿潤性はその試験エレメントの化学的性質の関数として予測可能である。即ち、湿潤性は検査を行なうべき被検査物によって支配される、アナライザによって追跡可能な因子である。仮に、この因子のみが制御変数であれば、プローブへの化学的性質が変化する度に、アナライザを或るチップ−試験エレメント間隔にリセットすることができる。しかしながら、このためには製造公差が極めて小さく管理されており、いつも所期のリセット間隔が得られるとの前提が必要である。公差をこのように小さく維持することは製造コストが嵩む要因となり、間隔を固定値にリセットすることは解決手段としては充分ではない。加えて、製造コストが重要ではなかったとして、固定リセットを採用したとしても、患者サンプルの変動による問題は解決できない。サンプルの液体表面張力は前もって知ることはできず、患者の識別データとして入力可能な資料ではない。血液のサンプル等では、検出が希求されている病気の存在が主要な原因で表面張力値に大きな変動が起こる。
【0007】
公知のアナライザの別の問題はその上にサンプル液体が分配されるスライド試験エレメントがその基準の平面形状から反り返ることがある点である。これは、最適な流れ状態を得るため制御するのに必要なチップ−試験エレメント間の間隔に悪影響を及ぼすものである。このような反り返りの検出も前もって予測することは困難である。
【0008】
従って、この発明の目的は、上述の因子が予測不能に変化した場合においても、チップ−試験エレメント間の間隔を自動的に調整することができるアナライザのための分配ステーションを提供することを目的とする。
圧力トランスデューサは公知のアナライザでは分配プローブと共に使用されてきた。例えば、米国特許第4,340,390 号が開示する圧力トランスデューサは、とりわけ、閉塞したプローブ及びプローブ内にある流体もしくは液体の、試験エレメントからの完全な分離を検出するような記載がある(7欄18〜20行参照)。完全に破断されたことに起因して圧力が“零”を記録するこの検出技術は完全な分配ステップの完了を指示せしめるため前記米国特許第4,340,390 号においても使用されている。
【0009】
この種のトランスデューサについては他の使用例として米国特許第4,675,301 号等に記載のものがある。即ち、プローブ内での不注意による圧力変化が監視され、その結果液体メニスカスは分配ステップのためいつも大体同一の位置から開始される。この行程は上に議論したプローブと試験エレメントとの間の間隔の問題の解決を指向したものではない。この代りに予め設定の間隔が維持されることを仮定している。上述した通りこの仮定はいつも正しいわけではない。
【0010】
最近の圧力トランスデューサの使用については米国特許第4,794,085 号に記載がある。このシステムは分配器をしてチップ内のエアーを或る高さまで加圧(もしくは真空に吸引)せしめ、空のチップが吸引するべき液体に未だ接触していないか否か検出せしめる。一旦接触が達成されると、圧力の読取は変化される。このシステムはチップ内を充満された液体の液体もしくは固体によるインターセプトの処理には不充分である。なぜなら、完全充満チップは外部条件を検出するため内部圧力を容易に変更することはできないからである。
【0011】
従って、通常型の圧力トランスデューサの使用は上述したチップ−試験エレメント間の間隔の自動調整のための要請を解決するものではなかったのである。
この発明の目的は、上述の問題の解決として、液体を分配するべき表面上の位置を自動的に確保し、かつ分配の間にその表面からの適当な距離を維持するための方法によって達成される。
【0012】
【課題を解決するための手段】
本発明によれば、本発明の目的は生体液体の分配手段を用いて各種の生体液体を制御された流れで複数の異なった試験エレメントの上に分配する方法であって、前記分配手段が分配チップと、分配手段における生体液体に加わる圧力を検出するトランスデューサ手段と、前記圧力を変更する手段と、分配手段を試験エレメントに対して移動させる手段とを具備している、生体液体の分配方法によって、達成され、該方法は
(a)表面張力が未知の生体液体を前記分配チップに吸引する段階と、
(b)前記チップを該チップの中の液体と共に供給された試験エレメントに向って前進させる段階と、
(c)前記段階(b)の間、前記圧力変更手段で前記チップから所定容量の液体の外部メニスカスを生成し、かつ前記トランスジューサ手段で前記チップ内の圧力変化を全て検出する段階と、
(d)前記トランスジューサ手段で所定量の圧力減少を検出することによって前記メニスカスが供給された試験エレメントにより阻止されたことを自動的に検出する段階と、
(e)前記段階(b)の前進を段階(d)における前記減少した圧力を検出することで終了させチップと試験エレメントとの間に間隔を生成する段階と、
(f)前記圧力変更手段により前記チップから液体を分配する段階、
とからなり、それにより機械的公差が大きくても段階(f)の間にチップと試験要素との間に正確な間隔が得られるようにする
ことを特徴としている。
【0013】
本発明の他の形態によれば本発明の目的は、生体液体の分配手段を用いて各種の生体液体を制御された流れで1つの液体表面の上に分配する方法であって、前記分配手段が分配チップと、分配手段における生体液体に加わる圧力を検出するトランスジューサ手段と、前記圧力を変更する手段と、前記分配手段を前記液体表面のコンテナーに対して移動させる手段とを具備している、生体液体の分配方法によって達成され、該方法は、
(a)表面張力が未知の生体液体を前記分配チップに吸引する段階と、
(b)前記チップを内部の液体と共に供給された液体表面のコンテナーに向って前進させる段階と、
(c)段階(b)の間前記圧力変更手段で前記チップから所定容量の液体の外部メニスカスを生成しかつ前記トランスジューサ手段で前記チップ内の圧力を全て検出する段階と、
(d)前記トランスジューサ手段で所定量の圧力の減少を検出することにより前記メニスカスが液体表面により阻止されたことを自動的に検出する段階と、
(e)前記段階(b)の前進を段階(d)における前記減少した圧力を検出することで終了させチップと液体との間に間隔を生成する段階と、
(f)前記圧力変更手段により前記チップから液体を分配する段階、
とからなり、それにより液面の高さが可変であるにもかかわらず段階(f)の間に正確なチップと液体との間に正確な間隔が得られるようにする
ことを特徴としている。
【0014】
【実施例】
以下この発明の好ましい実施例について説明する。この好ましい実施例では、最も好ましい液体として血清を乾燥したスライドエレメント、Eastman Kodak 社によって“Ektchem" の商品名で製造されるスライドエレメント、富士写真工業株式会社によって“Drychem" の商品名で製造されるスライドエレメントの好適表面に分配する好ましいアナライザにおいて好ましい分配チップが使用される。加えて、この発明の方法は液体表面の上方での分配高さを検出するのにも使用することができるから、この発明は分配される液体の種類、使用される分配チップもしくはアナライザの型、表面が乾燥したスライド試験エレメントか他の種類の試験エレメントか、に関わらず使用することができる。
【0015】
この発明の方法は図2に示されるごとき装置を使用し、図1A〜Fによりその本質が最もよく理解されると考えられる。即ち、分配器(図1A〜Fには図示しない)は使い捨て型のチップ30を具備し、チップ30は分配開口34を形成しており、かつチップは通常型のどのようなものであってもよい。Eastman Kodak 社から"DT-60" の商品名で入手可能なチップが図示されている。適当な吸引ステーションにおいてチップは適当な容積のサンプル、例えば、10μリットル(L) の血清が充填されており、吸引の後ではチップ30の内部圧力は本質的には零(図1A)に等しい。次に、スライド試験エレメントEが分配ステーション(図1B)においてステーションAに位置される。このステーションにおいてかつこの時点において二つの事象が起き、即ち、一つはチップ30内の圧力が開口34で所定容積の微小なメニスカス“m”を形成するのに充分な圧力+pまで一時的に上昇され、第2にチップは試験エレメントEに向って矢印35のようにゆっくり前進される。完全の液滴の形成は未だされていないことから、メニスカス“m”が形成された後にチップ30内の圧力は幾分の正の圧力に復帰される。この圧力はメニスカスが試験エレメントEの表面37に阻止されるまで一定に維持される(図1C)。この時点でメニスカスの液体は試験エレメントに吸引され、かつもしメニスカスの容積が適当な量であれば、チップ30内の圧力は図示のように或負の値“−p”となる。この圧力変化が検出されると、チップ30の下方への移動が終了され、間隔はこの所定の容積についての基準の値となる。
【0016】
容易に理解されようが表面37の位置を検出するこの方法は表面37が実際にどこに位置しているかということには全体としては独立である。即ち、表面37は所期の位置を超えて相当な距離垂直に変位可能であり、依然として、チップは最適間隔に維持されるようにするが、これは勿論予期しない変位により表面37が依然としてメニスカス形成(図1B)の前に開口34の位置の下方に位置している場合である。
【0017】
次にチップ30の内部の圧力は図2の装置によって適量(+p)増加され、適当な分配速度で液体の分配を開始せしめる(図1D)。この時点で表面37とチップ開口34との間隔は基準値Δhであり、その詳細について以下説明する。
ある場合は分配の間の間隔ΔhをΔh′(図1E)まで徐々に増大させる必要がある。その理由はある種の試験エレメントE′を含んだある種の表面は疎水性が高くて分配時に吸収されない。むしろ、表面37上に盛り上がる傾向があり、液体はチップ30にパーフュージョンする機会が大きくなる。これを回避するためチップ30は表面37上の液体の形成と一致した速度で矢印39ようにΔh′の高さまで引き出される。この形成速度及び引き出し速度は試験エレメントE′内の特定化学物質の疎水性がどの程度かに依存して変化する。この大きい距離Δh′は予め形成されるメニスカス“m”の値としては使用されない。それは、ある場合(例えば、2μLの場合)に過大であって下方に移動するチップから液滴が垂れ下がり、パーフュージョンの虞があるからである。
【0018】
図1Fにおいて分配が完了し、かつこの時点においてのみ流れが開口34のところで切れる。このときチップの内部の圧力は基準である零の圧力に復帰する。図1に示すようにチップ30は、そのチップの容積に基づいてその全内容物を単一の試験エレメントに分配する。しかしながら、チップの容積が大きいときには図1のFの段階に来たところでは始めに含まれている全液体の一部のみが分配されることになる。
【0019】
図1A−図1Fまでの行程を実施するのに適切なアナライザ装置が図2に示されている。このようなアナライザは通常の構成部品からなるものであり、米国特許第4,794,085 号等に記載されている。即ち、チップ30はその大きい方の開口32で吸引/分配プローブ40に取り外し自在に取り付けられている。プローブ40は12の箇所で適切に支持された試験エレメントEに対して移動可能である。即ち、プローブ40は通常の駆動装置44によって昇降駆動される。プローブ40の内部通路46はホース52を介して圧力トランスデューサ70に接続されると共にチップ30内の圧力を変更するための手段58にも接続されている。この手段58はピストン60を有し、このピストン60は駆動手段64によってシリンダ62内を種々の位置の間を移動される。制御手段80はトランスデューサ70によって発生される圧力信号を検出するためのものであり、適当なプログラムに応じて双方の駆動手段44及び46への駆動信号を印加し、チップ30の移動及び圧力の制御が行われる。制御手段80は好ましくはアナライザ10内のマイクロプロセッサーであり、トランスデューサ70は高感度で、低内部空気容積で、かつ高安定性のものであり、一例として、Motorola MPX シリーズの圧電抵抗型の圧力センサもしくは歪みゲージ型のトランスデューサとすることができる。
【0020】
矢印35のようなチップ30の移動が増加されると開口34は第1の距離Y′移動して破線30′のところに来る。それから、30″の位置に来る。移動に伴って惹起されたメニスカスmは面37と衝突するに至る。
図示しないが、チップロケータが設けられ、この装置は試験エレメントEに対してチップ30を安定とし、かつその向きを適正に決めることができるものであれば、いかなるものであってもよい。例えば、アナライザの種類に依存しないものとして米国特許第4,797,257 号に示したようなツインチップ型のロケータが有益である。しかしながら、チップロケータは垂直軸線に沿ったチップ30の自由な移動を許容するように幾分設計変更を加えるのが好ましく、試験エレメントEの化学的性質によってΔhの間隔に変化が出てきてもこれに適合することができる。
【0021】
吸引表面に接触時(乾燥試験エレメントと接触時、もしくは選定された液体表面との接触時)メニスカス“m”が或る寸法であるときのみ圧力減少−pを惹起せしめるというのは驚異的な発見であった。或る値以上ではチップの内部圧力は表面37との接触の時点において変化しないか、又は実際に増加する。これは、接触により移動を終了せしめた大きなメニスカス容積の慣性に起因するものである。この現象を惹起せしめる現実のメニスカス容積はチップの構造及び速度並びに接触表面と流体との間の疎水性に依存する。図3は前記"DT-60" チップ及び前記"Ektachem"グルコース試験を使用した代表的な例である。分配された液体は水であるが、水はこのチップ及び試験エレメントの場合は最も代表的な水性液体である。従って、図1Bもしくは図2のメニスカス“m”の容積が5μLに到達したとき試験エレメントEとの接触時にチップ30内で検出される圧力変化は零であり、圧力変化は5μLより大きな容積のときは正の値となる。従って、圧力変化の読取値におけるあいまいさを回避するために有益な“m”の最大容積は4μLである。好ましくは、3μLのみもしくはこれより小量のメニスカスが使用され、試験エレメントの湿潤性の変化に起因する僅かの変化等を補償するようにしている。加えて、容積を2μLと4μL間に選定すると閾値がより敏感となり、即ち、25N/m2より小さな閾値検知が必要となる。
【0022】
安全性のマージンが必要であり、即ち、ノイズの影響なしに液体に接触開始(以下タッチオフ(touch-off))されたことを的確に示す圧力の落込みを起こさせるため、チップに予め形成するべき容積は最も好ましくは2μLもしくはそれ以下である。これにより、閾値圧力は水頭で−0.1 インチ(25 N/m2) にセットすることを可能とし、図3の安全マージンを得ることができる。一例として、僅か0.5 μLの容積で殆ど−125N/m2 のΔp信号が発生され、−25 N/m2 の過剰であることは明かであり、タッチオフの点が明確となる。
【0023】
従って、この発明の好ましい方法は2μLもしくは以下の容積を有した垂下メニスカスを使用して、かつインターセプト事象として超過されるべき閾値として25N/m2を使用して、少なくとも25.0 N/m2 (水頭で0.1 インチ)の圧力減少を検出することができる。
図4及び図5は図3の関係をこの図と同一の試験条件においてメニスカス深さHと接触時での圧力変化との間の関係、及びメニスカス深さとその容積との関係に変換したグラフである。前に述べたように好ましいもしくは所定のメニスカス深さは0.3 ミリメートルである。
【0024】
液体の分配速度は液体を吸収するため接触する表面の能力にも依存性がある。前に説明した試験エレメント上に分配される生体液体では接触が一旦検出された後の有益な分配速度は約100 μL/秒であった。
通常の方式に従って適当なプログラムがプログラム制御手段80に格納されている。図6,7,8のフローチャートは実施例に関連する演算処理を示している。まず、ステップ100ではサンプルがチップ30に吸引される。次にステップ102では、制御手段80はどんなシーケンスで被検査物が動作しているかバーコードのスキャンやオペレータのキー入力によって既にしらしめられていることから、参照テーブルのチェックを行ない、その被検査物に適当なチップ間隔Δh′(図1D)が決定される。この値は使用される基準チップ高さΔhとなることがあり得るし、そうでないこともある。
【0025】
次にステップ104ではΔh′が基準高さΔh(図1Dの高さ)より大きいか否か判別される。肯定的な判断結果のときは大きい方の値が格納される。否定判断の場合はプログラムは直にステップ108に進み、図5の関係等をベースにした参照テーブルを使用してΔh及びΔh′の二つのうち小さい方のメニスカス容積が決定される。即ち、Δh及びΔh′の小さいものが接触下にあるから、Δh及びΔh′のうち小さい方がメニスカス深さに相当するのである。Δhのための基準値は0.3 mm±0.1 mmであるが、Δh′がこれよりも小さい化学的性質を持ったものがある得ることに注意する必要がある。このような場合にはメニスカス容積Vは基準値0.7 μLではなくこの小さい方の値に選定される。
【0026】
次にステップ110でチップ30は図1Aのホームポジションに位置され、ステップ108で選定されたメニスカス容積Vがステップ112で分配される。次にステップ114で圧力基準値の読取がされ、基準の“零”値として記憶され、この記憶値に対して後の圧力計測値の変化が計測される。
ステップ116ではチップ30が垂直軸〔Z軸)に沿って試験エレメント(図1B)に向って漸進的に駆動される。この間チップ30内の圧力はステップ118に示すように連続的に計測され、ステップ114にて計測された“零”基準値に対して比較される。ステップ120で零基準値に対して25 N/m2 より小さい計測圧力の相違が判定される限りはステップ116及び118が繰り返される。圧力が基準値に対して25 N/m2 より大きいことが検出されると即座にプログラムはステップ122に進み、チップの前進が停止され、ステップ124に進み、Δhより大きいとき格納された最終的なチップ間隔Δh′の有無が判断される。このような格納値がないと判断されたときはチップをこれ以上前進させる必要がないため、ステップ126において分配がその完了まで進められる。
【0027】
しかしながら、化学的性質によってはΔhより大きい値が格納されていることがあり、この場合はステップ128に進む。例えばΔh′は0.7 mmである。即ち、残りの液体の分配が継続され、かつ同時にチップ30はその値Δh′が得られるまで引き出される(図1E)。この作動によって液体が疎水性の表面37′上に溜まるのが防止され、又は液体の分配中に層が拡開するのが防止される。次にステップ130でそのエレメントに全液体の分配が行なわれ、ステップ132でチップ30は図1Aの位置に相当するホームポジションに復帰される。
【0028】
次にプログラムはステップ134に進み、分配すべき容積はもはやないか否か判別され、これ以上分配する必要がないときはステップ136でチップは退去される。しかしながら、もし分配が必要なとき、特に、サンプル液体の初期容積が10μLより大きいチップとき、以上のステップ全体が繰り返しされる。 図9A,Bはタッチオフ時点で計測圧力がどのように変化するかその代表例を示しており、図9Aは比較的疎水性が小さい表面37の場合、図9Bは比較的疎水性が大きい表面37′の場合である。各場合について分配される液体は1μLのメニスカス容積を使用した水であり、試験エレメントは"Ektachem"グルコーススライド及び"Ektachem"全蛋白質スライドであった。グルコースの場合は図9Aにて示すように圧力減少は40 mV より僅か低い電気信号によって表される。25 N/m2 に相当する値は30 mV であった。この場合Δh′は実際上0.3 mmであった。従って、図1Eの段階は使用されなかった。即ち、ステップ124の判断結果はNoとなる。全蛋白質の場合は、圧力減少は80 mV であった。この化学的特性の場合分配ステップ126−130のΔh′の値が格納され(ステップ106及び124)、Δh′は0.7 mmで、Δhより大きい。従って、全蛋白質の場合のチップ間隔は分配の間に0.7 mmに増大される。
【0029】
図10A及びBは類似の効果を示しており、この結果はEastman Kodak 社から“Koda-Control II" の商品名で入手可能な牛の血清からなる合成液体を図7A及びBにおいて使用された試験エレメントに印加したとき得られたものである。
図10Bと類似の圧力変化(図示しない)が、予め湿潤させた試験エレメント、例えば“Koda-Control II" 等の流体で予め湿潤させた試験エレメント、にタッチオフするチップに水が含まれているとき起こる。
【0030】
以上のプロセスは非吸収性の表面、例えば、ガラススライドとの分配チップの接触を検出するのにも有益である。この結果は図11に示される。この場合、水はガラススライドでも図7A及びBの試験と同様正確にタッチオフされる。しかしながら、完全な分配は、非吸収表面はパーフュージョンを起こさせ易いことから、これをスキップする。図11においてはt3以降に負の値か大きくなる傾向は平衡の影響を受けただけである。
【0031】
必ずしも固体だけがメニスカスを阻止し、圧力の低下を惹起させる平面ではない。液体表面もまた検出することができる。図10AからD参照。以前に説明したものと同様の部品ついては同一の参照番号を使用するものとする。 図12Aにおいて患者サンプルを含んだチップ30Aはそのホームポジションにあり、図10Bではその前進を矢印35A方向に開始しており、一方、前の実施例と同様圧力の増大(+p)によってメニスカス"M" が開口34Aに形成されている。しかしながら、チップ30Aが前進されるのは試験エレメントに向けてではなくて適当な液体Lを含んだ適当なコンテナである。例えば、液体は希釈液体であることがあり、そのため患者サンプルは希釈される。この希釈は、特定の検体にのため範囲外の条件を示すサンプルを再検査するため便利に行なうことができる。メニスカス“m”が液体Lの表面と接触したとき(図10C)、チップ30A内で閾値レベル以上の圧力減少(−p)が検出され、チップ30Aはその前進を終了する。一方、図10Dに示すようにチップ30A内の圧力上昇(+p)があったとき液体内容物がコンテナ200に注入される。表面202の表面領域に応じて、このステップにおいてチップ30Aは徐々に引き抜かれ、チップの外部に過度な湿潤が起こることを防止する。
【0032】
以上とは異なり、図示しないが、チップ30A内の液体は希釈液体(例えば水)としてもよく、この場合はコンテナ200内の液体が患者サンプルである。
図は液体−液体実施例のための圧力輪郭を示しており、ここで条件はチップ内の水がビーカー内の"Koda-Control II" と接触される以外は図7Aの試験と同様である。
【0033】
このような水−水の接触は、液体表面202(図12C)がどこにあるかは常に知られているとは限らないことから有益である。また、コンテナ200の液体に正確な容積が印加される必要性を回避することができ、さもなければ光学的センサ等を使用して表面202の検出をしなければならない。
【0034】
【発明の効果】
分配チップは、液体の分配を行なうべき表面からの適当な高さを自動的に見つけ出しそこに維持することができる。
この発明の分配方法では分配が過早に行なわれること及びこれに伴う溜まり及びパーフュージョンの発生を回避することができると共に、分配が遅すぎること及びこれに伴う液流の破断及び問題の発生を防止することができる。
【0035】
この発明の分配方法では溜まりを回避するため必要となる高さを許容するため接触検知のため使用される分配高さを変更することができる。
【図面の簡単な説明】
【図1】図1は患者のサンプルを乾燥スライド試験エレメントに滴下するときの本発明の方法の各段階を説明する図である。
【図2】図2はこの発明に使用する装置の一部を概略的、かつ破断して示す図ある。
【図3】図3はメニスカス容積が変化したときの図1Cにて起こる圧力変化の模様を示すグラフである。
【図4】図4は図3と類似しているが、圧力変化とメニスカスの高さとの関係を示すグラフである。
【図5】図5は図3から図4への変更を行う際のメニスカス容積とメニスカス高さとの関係を示すグラフである。
【図6】図6は本発明の方法を実施するためアナライザ内ので実行されるプログラムのフローチャートである。
【図7】図7は図6に後続するフローチャートの部分である。
【図8】図8は図7に後続するフローチャートの部分である。
【図9】図9は前進中における時間と検出圧力との関係を示すグラフである。
【図10】図10は図9と同様であるが別実施例の前進時間と検出圧力との関係を示すグラフである。
【図11】図11は更に別の実施例の前進時間と検出圧力との関係を示すグラフである。
【図12】図12は図1A−Gと類似するが、別実施例を示す。
【図13】図13は図8と類似するが図12例の実施例における圧力変化特性を示すグラフである。
【符号の説明】
30…分配チップ
m…メニスカス
−p…接触による圧力降下
Δh′…疎水性表面の場合の理想高さ

Claims (2)

  1. 生体液体の分配手段を用いて各種の生体液体を制御された流れで複数の異なった試験エレメントの上に分配する方法であって、前記分配手段が分配チップと、分配手段における生体液体に加わる圧力を検出するトランスジューサ手段と、前記圧力を変更する手段と、分配手段を試験エレメントに対して移動させる手段とを具備している、生体液体の分配方法において、
    (a)表面張力が未知の生体液体を前記分配チップに吸引する段階と、
    (b)前記チップを該チップの中の液体と共に供給された試験エレメントに向って前進させる段階と、
    (c)前記段階(b)の間、前記圧力変更手段で前記チップから所定容量の液体の外部メニスカスを生成し、かつ前記トランスジューサ手段で前記チップ内の圧力変化を全て検出する段階と、
    (d)前記トランスジューサ手段で所定量の圧力減少を検出することによって前記メニスカスが供給された試験エレメントにより阻止されたことを自動的に検出する段階と、
    (e)前記段階(b)の前進を段階(d)における前記減少した圧力を検出することで終了させチップと試験エレメントとの間に間隔を生成する段階と、
    (f)前記圧力変更手段により前記チップから液体を分配する段階、
    とからなり、それにより機械的公差が大きくても段階(f)の間にチップと試験要素との間に正確な間隔が得られるようにする
    生体液体の分配方法。
  2. 生体液体の分配手段を用いて各種の生体液体を制御された流れで1つの液体表面の上に分配する方法であって、前記分配手段が分配チップと、分配手段における生体液体に加わる圧力を検出するトランスジューサ手段と、前記圧力を変更する手段と、前記分配手段を前記液体表面のコンテナーに対して移動させる手段とを具備している、生体液体の分配方法において、
    (a)表面張力が未知の生体液体を前記分配チップに吸引する段階と、
    (b)前記チップを内部の液体と共に供給された液体表面のコンテナーに向って前進させる段階と、
    (c)段階(b)の間前記圧力変更手段で前記チップから所定容量の液体の外部メニスカスを生成しかつ前記トランスジューサ手段で前記チップ内の圧力を全て検出する段階と、
    (d)前記トランスジューサ手段で所定量の圧力の減少を検出することにより前記メニスカスが液体表面により阻止されたことを自動的に検出する段階と、
    (e)前記段階(b)の前進を段階(d)における前記減少した圧力を検出することで終了させチップと液体との間に間隔を生成する段階と、
    (f)前記圧力変更手段により前記チップから液体を分配する段階、
    とからなり、それにより液面の高さが可変であるにもかかわらず段階(f)の間に正確なチップと液体との間に正確な間隔が得られるようにする
    生体液体の分配方法。
JP06333492A 1991-03-21 1992-03-19 各種の生体液体のための分配方法 Expired - Lifetime JP3688723B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US672980 1991-03-21
US07/672,980 US5143849A (en) 1991-03-21 1991-03-21 Tip to surface spacing for optimum dispensing controlled by a detected pressure change in the tip

Publications (2)

Publication Number Publication Date
JPH0599804A JPH0599804A (ja) 1993-04-23
JP3688723B2 true JP3688723B2 (ja) 2005-08-31

Family

ID=24700820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06333492A Expired - Lifetime JP3688723B2 (ja) 1991-03-21 1992-03-19 各種の生体液体のための分配方法

Country Status (7)

Country Link
US (1) US5143849A (ja)
EP (1) EP0505004B1 (ja)
JP (1) JP3688723B2 (ja)
KR (1) KR960009754B1 (ja)
CA (1) CA2061044C (ja)
DE (1) DE69210662T2 (ja)
IE (1) IE920902A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020515842A (ja) * 2017-03-28 2020-05-28 エッペンドルフ アクチエンゲゼルシャフトEppendorf AG 接触式液体測定のための方法および計量装置

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5312757A (en) * 1991-05-02 1994-05-17 Olympus Optical Co., Ltd. Sample distributing method
ATE262374T1 (de) * 1991-11-22 2004-04-15 Affymetrix Inc Kombinatorische strategien für polymersynthese
US6943034B1 (en) 1991-11-22 2005-09-13 Affymetrix, Inc. Combinatorial strategies for polymer synthesis
US5456880A (en) * 1992-11-20 1995-10-10 Shimadzu Corporation Micropipet apparatus and micromanipulator
US5895761A (en) * 1993-07-21 1999-04-20 Clinical Diagnostic Systems, Inc. Surface area liquid transfer method and related apparatus
US5401467A (en) * 1993-07-21 1995-03-28 Eastman Kodak Company Whole blood metering cup
EP0635712B1 (en) * 1993-07-21 1998-01-14 Johnson & Johnson Clinical Diagnostics, Inc. Method of pretreating diagnostic test elements
DE4331997A1 (de) * 1993-09-21 1995-03-23 Boehringer Mannheim Gmbh Verfahren und System zur Mischung von Flüssigkeiten
DE4341229C2 (de) * 1993-12-03 1995-09-07 Eppendorf Geraetebau Netheler Pipettensystem
JP3351615B2 (ja) * 1994-03-17 2002-12-03 ソニー株式会社 液の境界検出方法と液分離方法
JP3420824B2 (ja) * 1994-04-15 2003-06-30 富士写真フイルム株式会社 乾式分析フイルム片への試料液点着方法およびその装置
JP3115501B2 (ja) * 1994-06-15 2000-12-11 プレシジョン・システム・サイエンス株式会社 分注機を利用した磁性体の脱着制御方法及びこの方法によって処理される各種装置
US7625697B2 (en) 1994-06-17 2009-12-01 The Board Of Trustees Of The Leland Stanford Junior University Methods for constructing subarrays and subarrays made thereby
US5601980A (en) * 1994-09-23 1997-02-11 Hewlett-Packard Company Manufacturing method and apparatus for biological probe arrays using vision-assisted micropipetting
JP3571092B2 (ja) * 1994-12-20 2004-09-29 富士写真フイルム株式会社 乾式分析フィルム片への試料液点着方法
CA2175001A1 (en) * 1995-05-01 1996-11-02 Andrew Shelley Foote Method of avoiding decreased-size first drops when aspirating from immersed rest conditions
US5611996A (en) * 1995-06-06 1997-03-18 Johnson & Johnson Clinical Diagnostics, Inc. Slide test element holder with minimized Z-axis variability
US5750881A (en) * 1995-07-13 1998-05-12 Chiron Diagnostics Corporation Method and apparatus for aspirating and dispensing sample fluids
US6158269A (en) * 1995-07-13 2000-12-12 Bayer Corporation Method and apparatus for aspirating and dispensing sample fluids
US5811306A (en) * 1995-09-04 1998-09-22 Fuji Photo Film Co., Ltd. Liquid spotting method
US5744099A (en) * 1995-09-15 1998-04-28 Cytek Development Inc. Apparatus for transfer of biological fluids
US5665601A (en) * 1996-01-22 1997-09-09 Johnson & Johnson Clinical Diagnostics, Inc. Avoiding bubble formation while sensing air-liquid interface using pressurized air flow
US6689323B2 (en) 1998-10-30 2004-02-10 Agilent Technologies Method and apparatus for liquid transfer
US6270726B1 (en) * 1999-09-30 2001-08-07 Dpc Cirrus, Inc. Tube bottom sensing for small fluid samples
DE10004941A1 (de) * 2000-02-06 2001-08-09 Reimer Offen Temperierter Probennehmer für Flüssigkeiten
DE10017790A1 (de) * 2000-04-10 2001-10-11 Basf Ag Verfahren zur Herstellung von Biopolymer-Feldern mit Echtzeitkontrolle
JP3926546B2 (ja) * 2000-09-22 2007-06-06 富士フイルム株式会社 点着検出方法および点着検出装置
EP1207396A1 (fr) * 2000-10-20 2002-05-22 Seyonic SA Dispositif dispensateur de fluide
US6484556B1 (en) * 2000-11-13 2002-11-26 Ortho Clinical Diagnostics, Inc. Thin film detection during fluid aspiration
KR100777362B1 (ko) * 2001-05-08 2007-11-19 (주)바이오니아 생물학적 시료의 미세 배열을 위한 스팟팅 핀
CA2490355A1 (en) * 2001-06-19 2002-12-27 B.C. Cancer Agency Microvolume liquid dispenser suitable for microarrays and methods related thereto
US6579724B2 (en) * 2001-09-13 2003-06-17 First Ten Angstroms Dispensing method and apparatus for dispensing very small quantities of fluid
US6937955B2 (en) 2002-03-29 2005-08-30 Ortho-Clinical Diagnostics, Inc. Method for automatic alignment of metering system for a clinical analyzer
CA2569314A1 (en) * 2004-06-09 2005-12-22 The University Of British Columbia Reagent delivery apparatus and methods
EP1785731A1 (en) * 2005-11-15 2007-05-16 Roche Diagnostics GmbH Electrical drop surveillance
JP4373427B2 (ja) 2005-11-15 2009-11-25 エフ.ホフマン−ラ ロシュ アーゲー 電気的滴下監視
US7457686B2 (en) 2007-03-14 2008-11-25 Ortho—Clinical Diagnostics, Inc. Robotic arm alignment
CN101680908B (zh) 2007-04-18 2016-08-03 贝克顿·迪金森公司 用于确定分配体积的方法和装置
US20130064737A1 (en) * 2010-01-13 2013-03-14 Hitachi High-Technologies Corporation Automatic analyzer
CA2766735C (en) 2011-02-07 2020-06-02 Ortho-Clinical Diagnostics, Inc. Determining conditions in centrifuged blood using measured pressure
JP2013076674A (ja) * 2011-09-30 2013-04-25 Fujifilm Corp 分注装置および吸引ノズル位置制御方法
WO2014009251A1 (en) 2012-07-13 2014-01-16 Evotec Ag Method for adjusting the dispensing height of pipettes
CN105374253B (zh) * 2015-12-08 2018-08-10 辽宁石化职业技术学院 一种用于教学的多功能仪表校验装置及变送器校验方法
JP6807778B2 (ja) 2017-03-06 2021-01-06 テラメックス株式会社 ピペットチップ先端検知装置、ピペットチップ先端検知プログラム
DE102020204670A1 (de) 2020-04-14 2021-10-14 Prime23 GmbH Vorrichtung und Verfahren zum Benetzen von biologischen Material mit wenigstens einer Flüssigkeit sowie eine Halteeinrichtung

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4041995A (en) * 1975-01-30 1977-08-16 Eastman Kodak Company Gas pressure-activated drop dispenser
US4340390A (en) * 1980-06-16 1982-07-20 Eastman Kodak Company Method and apparatus for metering biological fluids
US4347875A (en) * 1980-07-14 1982-09-07 Eastman Kodak Company Self-cleaning nozzle construction for aspirators
JPS60155942A (ja) * 1984-01-25 1985-08-16 Fuji Photo Film Co Ltd 液体試料点着装置
US4794085A (en) * 1984-07-19 1988-12-27 Eastman Kodak Company Apparatus and method for detecting liquid penetration by a container used for aspirating and dispensing the liquid
US4586546A (en) * 1984-10-23 1986-05-06 Cetus Corporation Liquid handling device and method
US4675301A (en) * 1985-04-01 1987-06-23 Eastman Kodak Company Method for correcting for changes in air pressure above a liquid to be dispensed from a container mounted on a probe
US4615360A (en) * 1985-09-05 1986-10-07 Eastman Kodak Company Means providing separation of exterior sheath of liquid on dispensing tip
JPH076998B2 (ja) * 1987-12-04 1995-01-30 富士写真フイルム株式会社 自動分注器および点着方法
US5059393A (en) * 1989-01-05 1991-10-22 Eastman Kodak Company Analysis slide positioning apparatus and method for a chemical analyzer
DE69126690T2 (de) * 1990-04-06 1998-01-02 Perkin Elmer Corp Automatisiertes labor für molekularbiologie

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020515842A (ja) * 2017-03-28 2020-05-28 エッペンドルフ アクチエンゲゼルシャフトEppendorf AG 接触式液体測定のための方法および計量装置
JP7009498B2 (ja) 2017-03-28 2022-01-25 エッペンドルフ アクチエンゲゼルシャフト 接触式液体測定のための方法および計量装置
JP7009498B6 (ja) 2017-03-28 2022-02-28 エッペンドルフ エスイー 接触式液体測定のための方法および計量装置

Also Published As

Publication number Publication date
EP0505004A2 (en) 1992-09-23
EP0505004A3 (en) 1992-12-30
CA2061044A1 (en) 1992-09-22
DE69210662T2 (de) 1996-09-26
KR960009754B1 (en) 1996-07-24
US5143849A (en) 1992-09-01
JPH0599804A (ja) 1993-04-23
EP0505004B1 (en) 1996-05-15
DE69210662D1 (de) 1996-06-20
CA2061044C (en) 1995-11-07
IE920902A1 (en) 1992-09-23

Similar Documents

Publication Publication Date Title
JP3688723B2 (ja) 各種の生体液体のための分配方法
US4452899A (en) Method for metering biological fluids
US4399711A (en) Method and apparatus ensuring full volume pickup in an automated pipette
US5463895A (en) Sample pipetting method
US4794085A (en) Apparatus and method for detecting liquid penetration by a container used for aspirating and dispensing the liquid
US5114350A (en) Controlled-volume assay apparatus
JP5686744B2 (ja) 自動分析装置
JP6830406B2 (ja) 分注装置
US4340390A (en) Method and apparatus for metering biological fluids
US4944922A (en) Quantitative dispenser for a liquid
EP1163529B1 (en) Apparatus for aspirating liquid from a vessel
JP5123390B2 (ja) 臨床サンプリング・ピペットにおける詰まりの検出
US5488874A (en) Liquid aspirating method
CA2095152C (en) Sample pipetting method
WO2007076293A2 (en) Method for ascertaining interferants in small liquid samples in an automated clinical analyzer
JP2593856B2 (ja) 所定量の試料を調製するための液体レベルセンサー
IE921150A1 (en) Liquid dispensing using container bottom sensing
EP1594795A2 (en) Method and apparatus for aspirating liquid from a container
JP6854292B2 (ja) 自動分析装置
US7517694B2 (en) Metering tip with internal features to control fluid meniscus and oscillation
JPS6138623A (ja) 液分配用容器の液への浸入を検知する方法
EP0042337B1 (en) Method and apparatus for metering biological fluids
JP3253147B2 (ja) 分注装置
JP2776893B2 (ja) 自動分析装置
JP2688163B2 (ja) 分注装置

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050609

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080617

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090617

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100617

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110617

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110617

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120617

Year of fee payment: 7

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120617

Year of fee payment: 7