JP3676197B2 - Semiconductor device and hybrid integrated circuit device - Google Patents

Semiconductor device and hybrid integrated circuit device Download PDF

Info

Publication number
JP3676197B2
JP3676197B2 JP2000172532A JP2000172532A JP3676197B2 JP 3676197 B2 JP3676197 B2 JP 3676197B2 JP 2000172532 A JP2000172532 A JP 2000172532A JP 2000172532 A JP2000172532 A JP 2000172532A JP 3676197 B2 JP3676197 B2 JP 3676197B2
Authority
JP
Japan
Prior art keywords
conductive
semiconductor device
conductive path
back surface
integrated circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000172532A
Other languages
Japanese (ja)
Other versions
JP2001352010A (en
Inventor
則明 坂本
義幸 小林
栄寿 前原
紀泰 酒井
均 高岸
幸嗣 高橋
和久 草野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2000172532A priority Critical patent/JP3676197B2/en
Publication of JP2001352010A publication Critical patent/JP2001352010A/en
Application granted granted Critical
Publication of JP3676197B2 publication Critical patent/JP3676197B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate

Landscapes

  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Lead Frames For Integrated Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve similar effect as in the adoption of a multilayer substrate, since packaging substrates adopt the multilayer substrate to compose a circuit although there is a hybrid integrated circuit device, where a circuit device is packaged on a printed circuit board, a ceramic substrate, a flexible sheet, or the like. SOLUTION: Insulation covering RF is adopted on the back surface of a semiconductor device 53, and a conductive path 51 is allowed to dent or project, thus extending a wiring 21B on a packaging substrate 10 on the back surface of the semiconductor device, and hence achieving the similar effect as the case, where the packaging substrate is made multilayered equivalently by the conductive path of the semiconductor 53 and metal small-gauge wire.

Description

【0001】
【発明の属する技術分野】
本発明は、半導体装置および混成集積回路装置に関し、特に薄く軽量な半導体装置を実装基板に実装することにより、実装基板を小さくした混成集積回路装置に関するものである。
【0002】
【従来の技術】
従来、電子機器にセットされる混成集積回路装置は、例えばプリント基板、セラミック基板または金属基板の上に導電パターンが形成され、この上には、LSIまたはディスクリートTR等の能動素子、チップコンデンサ、チップ抵抗またはコイル等の受動素子が実装されて構成される。そして、前記導電パターンと前記素子が電気的に接続されて所定の機能の回路が実現されている。
【0003】
回路の一例として、図19を示した。この回路は、オーディオ回路であり、これらに示す素子は、図20の様に実装されている。
【0004】
図20に於いて、一番外側の矩形ラインは、少なくとも表面が絶縁処理された実装基板1である。そしてこの上には、Cuから成る導電パターン2が貼着されている。この導電パターン2は、外部取り出し用電極2A、配線2B、ダイパッド2C、ボンディングパッド2D、受動素子3を固着する電極4等で構成されている。
【0005】
ダイパッド2Cには、TR、ダイオード、複合素子またはLSI等がベアチップ状で、半田を介して固着されている。そしてこの固着されたチップ上の電極と前記ボンディングパッド2Dが金属細線5A、5B、5Cを介して電気的に接続されている。この金属細線は、一般に、小信号と大信号用に分類され、小信号部は約40μmφから成るAu線5Aが採用され、大信号部は約100〜300μmφのAu線またはAl線が採用されている。特に大信号は、線径が大きいため、コストの点が考慮され、150μmφのAl線5B、300μmφのAl線5Cが選択されている。
【0006】
また大電流を流すパワーTR6は、チップの温度上昇を防止するために、ダイパッド2C上のヒートシンク7に固着されている。
【0007】
そして前記外部取り出し用電極2A、ダイパッド2C、ボンディングパッド2D、電極4を回路とするため配線2Bが色々な所に延在される。また、チップの位置、配線の延在の仕方の都合で、配線同士が交差をする場合は、ジャンピング線8A、8Bが採用されている。
【0008】
【発明が解決しようとする課題】
最近では、チップのサイズが0.45×0.5mm厚さが0.25mmと非常に小さく、単価の安いものが販売されるようになってきた。しかしこのチップを半田で固着しようとすると、チップの側面に半田がすい上がり、ショートするため、混成集積回路基板に採用することができない問題があった。
【0009】
またリードフレームに半導体素子を固着したパッケージを混成集積回路基板に実装すると、このパッケージのサイズが非常に大きいため、混成集積回路基板のサイズが大きくなってしまう問題があった。
【0010】
更に、混成集積回路基板に複雑な回路を形成する場合、多層の混成集積回路基板が必要となるが、コストの面から採用が難しい問題もあった。
【0011】
以上述べたように、混成集積回路基板を採用しコストを下げようとしても、非常に小さいチップを実装できない点、組立工程が長くなる点、多層基板を採用する点等からコストの上昇を招いてしまう問題があった。
【0012】
【課題を解決するための手段】
本発明は、前述した課題に鑑みて成され、第1に、分離溝で電気的に分離された複数の導電路と、前記導電路上に固着された半導体チップと、該半導体チップを被覆し且つ前記導電路間の前記分離溝に充填され前記導電路の裏面を露出して一体に支持する絶縁性樹脂とを備え、
前記導電路の裏面の一部が露出するように前記導電路の裏面に絶縁被膜が設けられることで解決するものである。
【0013】
第2に、分離溝で電気的に分離された複数の導電路と、前記導電路上に固着された半導体チップと、該半導体チップを被覆し且つ前記導電路間の前記分離溝に充填され前記導電路の裏面を露出して一体に支持する絶縁性樹脂とを備え、
前記絶縁性樹脂の裏面よりも前記導電路の裏面の方が凹んで設けられていることを特徴とした半導体装置。
【0014】
第3に、分離溝で電気的に分離された複数の導電路と、前記導電路上に固着された半導体チップと、該半導体チップを被覆し且つ前記導電路間の前記分離溝に充填され前記導電路の裏面を露出して一体に支持する絶縁性樹脂とを備え、
前記絶縁性樹脂の裏面よりも前記導電路の裏面の方が突出して設けられることで解決するものである。
【0015】
第4に、前記導電路の裏面の一部が露出するように前記導電路の裏面に絶縁被膜が設けられることで解決するものである。
【0016】
第5に、前記導電路の側面は、湾曲構造で成ることで解決するものである。
【0017】
第6に、前記導電路上には導電被膜が設けられることで解決するものである。
【0018】
第7に、前記半導体チップは、少なくとも一つ実装されることで解決するものである。
【0019】
第8に、前記半導体チップの他に能動素子および/または受動素子が、前記導電路と電気的に接続されて内蔵され、前記能動素子および/または前記受動素子も含めて回路が形成されることで解決するものである。
【0020】
第9に、前記導電路はCu、Al、Fe−Ni合金、Cu−Alの積層体、Al−Cu−Alの積層体から成ることで解決するものである。
【0021】
第10に、前記導電被膜は、Ni、Au、AgまたはPdで成り、ひさしが形成されることで解決するものである。
【0022】
第11に、前記導電路の導電被膜と前記半導体チップ上の電極はボンディング細線または半田で接続されることで解決するものである。
【0023】
第12に、少なくとも表面が絶縁処理され、複数の電極および配線を有する実装基板と、
分離溝で電気的に分離された複数の導電路と、前記導電路上に固着された半導体チップと、該半導体チップを被覆し且つ前記導電路間の前記分離溝に充填され前記導電路の裏面を露出して一体に支持する絶縁性樹脂と、前記導電路の裏面の一部が露出するように前記導電路の裏面に絶縁被膜が設けられた半導体装置とを有し、
前記導電路の裏面と前記電極とが接続手段を介して固着され、前記絶縁被膜の下層には、前記配線が延在されることで解決するものである。
【0024】
第13に、少なくとも表面が絶縁処理され、複数の電極および配線を有する実装基板と、
分離溝で電気的に分離された複数の導電路と、前記導電路上に固着された半導体チップと、該半導体チップを被覆し且つ前記導電路間の前記分離溝に充填され前記導電路の裏面を露出して一体に支持する絶縁性樹脂と、前記絶縁性樹脂の裏面よりも前記導電路の裏面の方が凹んで設けられた半導体装置とを有し、
前記導電路の裏面と前記電極とが接続手段を介して固着され、前記半導体装置の裏面に前記配線が延在されることで解決するものである。
【0025】
第14に、少なくとも表面が絶縁処理され、複数の電極および配線を有する実装基板と、
分離溝で電気的に分離された複数の導電路と、前記導電路上に固着された半導体チップと、該半導体チップを被覆し且つ前記導電路間の前記分離溝に充填され前記導電路の裏面を露出して一体に支持する絶縁性樹脂と、前記絶縁性樹脂の裏面よりも前記導電路の裏面の方が突出して設けられた半導体装置とを有し、
前記導電路の裏面と前記電極とが接続手段を介して固着され、前記半導体装置の裏面に前記配線が延在されることで解決するものである。
【0026】
第15に、前記導電路の裏面の一部が露出するように前記導電路の裏面に絶縁被膜が設けられることで解決するものである。
【0027】
第16に、前記導電路の側面は、湾曲構造で成ることで解決するものである。
【0028】
第17に、前記導電路上には導電被膜が設けられることで解決するものである。
【0029】
第18に、前記半導体チップの他に能動素子および/または受動素子が、前記導電路と電気的に接続されて内蔵され、前記能動素子および/または前記受動素子も含めて回路が形成されることで解決するものである。
【0030】
第19に、前記導電路はCu、Al、Fe−Ni合金、Cu−Alの積層体、Al−Cu−Alの積層体から成ることで解決するものである。
【0031】
第20に、前記導電被膜は、Ni、Au、AgまたはPdで成り、ひさしが形成されることで解決するものである。
【0032】
第21に、前記導電路の導電被膜と前記半導体チップ上の電極はボンディング細線または半田で接続されることで解決するものである。
【0033】
第22に、前記接続手段は、ロウ材、導電ボール、導電ペーストまたは異方性導電性樹脂から成ることで解決するものである。
【0034】
【0035】
【発明の実施の形態】
本発明は、半導体素子、導電路、接続手段および封止用の絶縁性樹脂の必要最小限から構成された薄型の半導体装置に関するものであり、またこの薄型の半導体装置を実装基板に採用することにより、実装基板のサイズの縮小、混成集積回路装置の製造工程の短縮、多層基板の層数の減少が実現できる混成集積回路装置に関するものである。まず半導体装置について以下に述べる。
【0036】
図1は、実装基板10に固着された薄型の半導体装置53を示すものである。また図2は、この薄型半導体装置53の実装構造について、3タイプを説明するものである。また図3は、この薄型半導体装置53や回路素子を実装基板10に実装し、混成集積回路装置13としたものを説明するものである。更には、図4〜図9は、この半導体装置の製造方法を説明するものであり、図10〜図18は、右側の回路に基づき形成された半導体装置を説明するものであり、図19は、実装基板10に構成された回路を説明するものである。
半導体装置53Aを説明する第1の実施の形態
まず第1の半導体装置53Aの具体的な構造を図9Aを参照しながら説明する。この半導体装置53Aは、絶縁性樹脂50に埋め込まれた導電路51A〜51Cを有し、前記導電路51A上には半導体チップ52Aが固着され、また必要によっては導電路51B、51C上に受動素子52Bが固着される。そして、前記絶縁性樹脂50で導電路51A〜51Cを支持して構成されている。
【0037】
本構造は、半導体チップ52A、受動素子および/または能動素子から成る回路素子52B、複数の導電路51A、51B、51Cと、この導電路51A、51B、51Cを埋め込む絶縁性樹脂50の3つの材料で構成され、導電路51間には、この絶縁性樹脂50で充填された分離溝54が設けられる。そして絶縁性樹脂50により前記導電路51A〜51Cが支持されている。
【0038】
絶縁性樹脂としては、エポキシ樹脂等の熱硬化性樹脂、ポリイミド樹脂、ポリフェニレンサルファイド等の熱可塑性樹脂を用いることができる。また絶縁性樹脂は、金型を用いて固める樹脂、ディップ、塗布をして被覆できる樹脂であれば、全ての樹脂が採用できる。また導電路51としては、Cuを主材料とした導電箔、Alを主材料とした導電箔、またはFe−Ni等の合金から成る導電箔、Al−Cuの積層板、またはAl−Cu−Alの積層板等を用いることができる。特にAl−Cu−Alは、反りに対して強い構造である。もちろん、他の導電材料でも可能であり、特にエッチングできる導電材、レーザで蒸発する導電材、または分離溝54をプレスで形成できる比較的軟らかい物質が好ましい。
【0039】
また半導体素子52A、回路素子52Bの接続手段は、金属細線55A、ロウ材から成る導電ボール、扁平する導電ボール、半田等のロウ材55B、Agペースト等の導電ペースト55C、導電被膜または異方性導電性樹脂等である。これら接続手段は、半導体素子や回路素子52の種類、実装形態で選択される。例えば、ベアの半導体チップであれば、表面の電極と導電路51Bとの接続は、金属細線55Aが選択され、CSP、SMDであれば半田ボールや半田バンプが選択される。またチップ抵抗、チップコンデンサは、半田55Bが選択される。CSPの様にフェイスダウンで実装されると、金属細線の上方向、横方向の飛び出しが無くなり、実質チップサイズのパッケージが可能となる。
【0040】
また半導体素子52Aと導電路51Aとの固着は、導電被膜が採用される。ここでこの導電被膜は、少なくとも一層あればよい。
【0041】
この導電被膜として考えられる材料は、Ag、Au、Pt、Pdまたはロウ材等であり、蒸着、スパッタリング、CVD等の低真空、または高真空下の被着、メッキ、焼結または塗布等により被覆される。
【0042】
例えばAgは、Auと接着するし、ロウ材とも接着する。よってチップ裏面にAu被膜が被覆されていれば、そのままAg被膜、Au被膜、半田被膜を導電路51Aに被覆することによって半導体チップを熱圧着でき、また半田等のロウ材を介してチップを固着できる。ここで、前記導電被膜は複数層に積層された導電被膜の最上層に形成されても良い。例えば、Cuの導電路51Aの上には、Ni被膜、Au被膜の二層が順に被着されたもの、Ni被膜、Cu被膜、半田被膜の三層が順に被着されたもの、Ag被膜、Ni被膜の二層が順に被覆されたものが形成できる。尚、これら導電被膜の種類、積層構造は、これ以外にも多数あるが、ここでは省略をする。
【0043】
本半導体装置53Aは、導電路51を封止樹脂である絶縁性樹脂50で支持しているため、導電路を貼り合わせ支持する支持基板が不要となり、導電路51、素子52および絶縁性樹脂50で構成される。この構成は、本発明の特徴である。従来の回路装置の導電路は、支持基板(プリント基板、セラミック基板またはフレキシブルシート)で支持されて貼り合わされていたり、リードフレームで支持されているため、本来不要である構成が付加されている。しかし、本半導体装置は、必要最小限の要素で構成され、支持基板を不要とでき、その分、薄型で安価となる特徴を有する。
【0044】
また前記構成の他に、回路素子52を被覆し且つ前記導電路51間の前記分離溝54に充填されて一体に支持する絶縁性樹脂50を有している。
【0045】
この導電路51間は、分離溝54となり、ここに絶縁性樹脂50が充填されることで、お互いの絶縁がはかれるメリットを有する。
【0046】
また、素子52を被覆し且つ導電路51間の分離溝54に充填され導電路51の裏面を露出して一体に支持する絶縁性樹脂50を有している。
【0047】
この導電路の裏面を露出する点は、本発明の特徴の一つである。導電路の裏面が外部との接続に供することができ、支持基板を採用したプリント基板に於いて採用されているスルーホールを不要にできる特徴を有する。
【0048】
しかも半導体素子52Aがロウ材、Au、Ag等の導電被膜を介して直接固着されている場合、導電路51の裏面が露出されてため、半導体素子52Aから発生する熱を導電路51Aを介して実装基板に伝えることができる。特に放熱により、駆動電流の上昇等の特性改善が可能となる半導体チップに有効である。これは、本半導体装置53Aのポイントであり、これについては、後述する。
【0049】
また本半導体装置53Aは、分離溝54と導電路51の裏面は、実質一致している構造となっている。本構造は、本発明の特徴であり、導電路51の裏面には段差が設けられないため、半導体装置53をそのまま水平に移動できる特徴を有する。
【0050】
また本発明は、実装基板と多層構造を実現するために、半田レジスト等の絶縁被膜RFを塗布している。そして、導電路51の一部を露出させることにより、半導体装置53Aの裏面に実装基板10の配線を延在させている。本半導体装置が、実装基板10に固着されることで、導電路51、金属細線55Aが従来のジャンピングワイヤへとして働き、多層構造を実現している。これについては後述する。
半導体装置53Bを説明する第2の実施の形態
図9Bに示す半導体装置53Bは、導電路51の裏面構造が、図9Aに示す半導体装置51Aと異なり、それ以外は、実質同一である。ここでは、この異なる部分を説明する。
【0051】
図からも判るように、導電路51の裏面は、絶縁性樹脂50の裏面(分離溝54に充填された絶縁性樹脂50の裏面)よりも凹んでいる。この構造にすることにより、多層配線が可能となる。詳細は、後述する。
半導体装置53Cを説明する第3の実施の形態
図9Cに示す半導体装置53Cは、導電路51の裏面構造が、図9A、図9Bに示す半導体装置51A、51Bと異なり、それ以外は、実質同一である。ここでは、この異なる部分を説明する。
【0052】
図からも判るように、導電路51の裏面は、絶縁性樹脂50の裏面(分離溝54に充填された絶縁性樹脂50の裏面)よりも突出している。この構造にすることにより、多層配線が可能となる。詳細は、後述する。
半導体装置53A〜53Cの製造方法を説明する第4の実施の形態
次に図4〜図9を使って半導体装置53の製造方法について説明する。
【0053】
まず図4の如く、シート状の導電箔60を用意する。この導電箔60は、ロウ材の付着性、ボンディング性、メッキ性が考慮されてその材料が選択され、材料としては、Cuを主材料とした導電箔、Alを主材料とした導電箔またはFe−Niの合金から成る導電箔、Al−Cuの積層体、Al−Cu−Alの積層体等が採用される。
【0054】
導電箔の厚さは、後のエッチングを考慮すると35μm〜300μm程度が好ましく、ここでは70μm(2オンス)の銅箔を採用した。しかし300μm以上でも10μm以下でも基本的には良い。後述するように、導電箔60の厚みよりも浅い分離溝61が形成できればよい。
【0055】
尚、シート状の導電箔60は、所定の幅でロール状に巻かれて用意され、これが後述する各工程に搬送されても良いし、所定の大きさにカットされた導電箔が用意され、後述する各工程に搬送されても良い。(以上図4を参照)
続いて、少なくとも導電路51となる領域を除いた導電箔60を、導電箔60の厚みよりも薄く除去する工程がある。
【0056】
まず、Cu箔60の上に、ホトレジスト(耐エッチングマスク)PRを形成し、導電路51となる領域を除いた導電箔60が露出するようにホトレジストPRをパターニングする(以上図5を参照)。そして、前記ホトレジストPRを介してエッチングすればよい(以上図6を参照)。
【0057】
エッチングにより形成された分離溝61の深さは、例えば50μmであり、その側面は、粗面となるため絶縁性樹脂50との接着性が向上される。
【0058】
またこの分離溝61の側壁は、除去方法により異なる構造となる。この除去工程は、ウェットエッチング、ドライエッチング、レーザによる蒸発、ダイシングが採用できる。またプレスで形成しても良い。ウェットエッチングの場合エッチャントは、塩化第二鉄または塩化第二銅が主に採用され、前記導電箔は、このエッチャントの中にディッピングされるか、このエッチャントでシャワーリングされる。ここでウェットエッチングは、一般に非異方性にエッチングされるため、側面は、図6Bに示すように湾曲構造になる。
【0059】
またドライエッチングの場合は、異方性、非異方性でエッチングが可能である。現在では、Cuを反応性イオンエッチングで取り除くことは不可能といわれているが、スパッタリングで除去できる。またスパッタリングの条件によって異方性、非異方性でエッチングできる。
【0060】
またレーザでは、直接レーザ光を当てて分離溝を形成でき、この場合は、どちらかといえば分離溝61の側面はストレートに形成される。
【0061】
またダイシングでは、曲折した複雑なパターンを形成することは不可能であるが、格子状の分離溝を形成することは可能である。
【0062】
尚、図6に於いて、ホトレジストPRの代わりにエッチング液に対して耐食性のある導電被膜を選択的に被覆しても良い。導電路と成る部分に選択的に被着すれば、この導電被膜がエッチング保護膜となり、レジストを採用することなく分離溝をエッチングできる。この導電被膜として考えられる材料は、Ni、Ag、Au、PtまたはPd等である。しかもこれら耐食性の導電被膜は、ダイパッド、ボンディングパッドとしてそのまま活用できる特徴を有する。
【0063】
例えばAg被膜は、Auと接着するし、ロウ材とも接着する。よってチップ裏面にAu被膜が被覆されていれば、そのまま導電路51上のAg被膜にチップを熱圧着でき、また半田等のロウ材を介してチップを固着できる。またAgの導電被膜にはAu細線が接着できるため、ワイヤーボンディングも可能となる。従ってこれらの導電被膜をそのままダイパッド、ボンディングパッドとして活用できるメリットを有する。(以上図6を参照)
続いて、図7の如く、分離溝61が形成された導電箔60に回路素子52を電気的に接続して実装する工程がある。
【0064】
回路素子52としては、トランジスタ、ダイオード、ICチップ等の半導体素子52A、チップコンデンサ、チップ抵抗等の受動素子52Bである。また厚みが厚くはなるが、CSP、BGA、SMD等のフェイスダウン型の半導体素子も実装できる。
【0065】
ここでは、ベアの半導体チップとしてトランジスタチップ52Aが導電路51Aにダイボンディングされ、エミッタ電極と導電路51B、ベース電極と導電路51Bが、熱圧着によるボールボンディングあるいは超音波によるウェッヂボンディング等で固着された金属細線55Aを介して接続される。また52Bは、チップコンデンサ等の受動素子および/または能動素子であり、ここではチップコンデンサを採用し、半田等のロウ材または導電ペースト55Bで固着される。(以上図7を参照)
更に、図8に示すように、前記導電箔60および分離溝61に絶縁性樹脂50を付着する工程がある。これは、トランスファーモールド、インジェクションモールド、またはディッピングにより実現できる。樹脂材料としては、エポキシ樹脂等の熱硬化性樹脂がトランスファーモールドで実現でき、ポリイミド樹脂、ポリフェニレンサルファイド等の熱可塑性樹脂はインジェクションモールドで実現できる。
【0066】
本実施の形態では、導電箔60表面に被覆された絶縁性樹脂の厚さは、回路素子の最頂部から約100μm程度が被覆されるように調整されている。この厚みは、強度を考慮して厚くすることも、薄くすることも可能である。
【0067】
本工程の特徴は、絶縁性樹脂50を被覆するまでは、導電路51となる導電箔60が支持基板となることである。例えばプリント基板やフレキシブルシートを採用したCSPでは、本来必要としない支持基板(プリント基板やフレキシブルシート)を採用して導電路を形成しているが、本発明では、支持基板となる導電箔60は、導電路として必要な材料である。そのため、構成材料を極力省いて作業できるメリットを有し、コストの低下も実現できる。
【0068】
また分離溝61は、導電箔の厚みよりも浅く形成されているため、導電箔60が導電路51として個々に分離されていない。従ってシート状の導電箔60として一体で、回路素子の実装からダイシングまで取り扱え、特に絶縁性樹脂をモールドする際、金型への搬送、金型への実装の作業が非常に楽になる特徴を有する。更には、シート状のCu箔にモールドされるため、樹脂バリが発生しないメリットも有する。(以上図8を参照)
続いて、導電箔60の裏面を化学的および/または物理的に除き、導電路51として分離する工程がある。ここでこの除く工程は、研磨、研削、エッチング、レーザの金属蒸発等により施される。
【0069】
実験では研磨装置または研削装置により全面を30μm程度削り、分離溝61から絶縁性樹脂50を露出させている。この露出される面を図8では点線で示す。また、実装基板上の配線を延在させるために、半導体素子53Aの裏面に、絶縁被膜RFを形成しているものが図9Aである。その結果、約40μmの厚さの導電路51として分離される。
【0070】
また図9Bの様に、絶縁性樹脂50が露出し、導電路51の裏面が絶縁性樹脂50の裏面よりも凹む構造を採用する場合、導電箔60を全面エッチングしても良い。
【0071】
更には、図9Cの場合、導電路の一部が露出するように、耐エッチングマスクを導電路の裏面に形成し、エッチングしても良い。この場合、導電路51は、絶縁性樹脂50の裏面よりも突出される。
【0072】
どちらの構造であっても、絶縁性樹脂50から導電路51の裏面が露出する構造となる。そして分離溝61が削られ、分離溝54となる。(以上図9参照)
最後に、必要によって露出した導電路51に半田等の導電材を被着し、更には実装基板の多層構造が考慮されて、必要により半導体装置53の裏面に絶縁性樹脂が被覆され、半導体装置として完成する。
【0073】
尚、導電路51の裏面に導電被膜を被着する場合、図4の導電箔の裏面に、前もって導電被膜を形成しても良い。この場合、導電路に対応する部分を選択的に被着すれば良い。被着方法は、例えばメッキである。またこの導電被膜は、エッチングに対して耐性がある材料がよい。またこの導電被膜またはホトレジストを採用した場合、研磨をせずにエッチングだけで導電路51として分離でき、図9Cの構造を実現できる。
【0074】
尚、本製造方法では、導電箔60に半導体チップとチップコンデンサが実装されているだけであるが、これを1単位としてマトリックス状に配置しても良い。
【0075】
また能動素子(半導体チップ)としてトランジスタ、ダイオード、ICまたはLSIを1つ実装しディスクリート型として形成しても良い。(図13〜図14を参照)
また前記能動素子を複数個実装し、複合型の半導体装置としても良い。(図11、図12、図14を参照)
更には、能動素子(半導体チップ)としてトランジスタ、ダイオード、ICまたはLSI、受動素子としてチップ抵抗、チップコンデンサを実装し、導電路として配線も形成することでハイブリッドIC型として構成しても良い。(図10、図12、図16、図17、図18を参照)
そしてマトリックス状に配置した場合、導電路が分離された後に、ダイシング装置で個々に分離される。
【0076】
以上の製造方法によって、絶縁性樹脂50に導電路51が埋め込まれ、絶縁性樹脂50の裏面と導電路51の裏面が実質一致する平坦な半導体装置53が実現できる。
【0077】
本製造方法は、絶縁性樹脂50を支持基板として活用し導電路51の分離作業ができる特徴を有する。絶縁性樹脂50は、導電路51を埋め込む材料として必要な材料であり、不要な支持基板を必要としない。従って、最小限の材料で製造でき、コストの低減が実現できる特徴を有する。またダイシングラインの所は、導電箔が無いため、ブレードの目詰まりを防止することができる。更には、セラミック基板を採用したパッケージをモールドしダイシングするとブレードの破壊、摩耗が激しいが、本発明では、樹脂のみをダイシングするため、ブレードの寿命を長くできるメリットを有する。
【0078】
尚、導電路51表面から上に形成される絶縁性樹脂の厚さは、絶縁性樹脂の付着の時に調整できる。従って実装される回路素子により違ってくるが、半導体素子53としての厚さは、厚くも薄くもできる特徴を有する。ここでは、400μm厚の絶縁性樹脂50に40μmの導電路51と半導体素子が埋め込まれた半導体装置になる。
混成集積回路装置の構造を説明する第5の実施の形態
続いて本発明の混成集積回路装置について図1および図2を参照しながら説明する。図1は混成集積回路装置の平面図であり、図1のA−A線における断面図が図2である。尚、図9Aの半導体装置53A、図9Bの半導体装置53Bおよび図9Cの半導体装置53Cを実装基板10に固着した構造を、図2A、図2Bおよび図2Cに示す。
【0079】
まず実装基板10について説明する。前述した半導体装置53を実装する実装基板10としては、プリント基板、セラミック基板、フレキシブルシート基板または金属基板が考えられる。この実装基板10は、表面に導電パターン21が形成されるため、電気的絶縁が考慮されて、少なくとも基板の表面が絶縁処理されている。プリント基板、セラミック基板、フレキシブルシート基板は、基板自身が絶縁材料で構成されているため、そのまま表面に導電パターン21を形成すれば良い。しかし金属基板の場合は、少なくとも表面に絶縁材料が被着され、この上に導電パターン21が被着されている。尚、本実施の形態では、実装基板10に形成された導電パターンを導電パターン21とし、半導体装置53の絶縁性樹脂50で支持された導電パターンを導電路51として区別して説明している。
【0080】
図3からも判るように、導電パターン21の中には、ダイパッド21A、配線21B、ボンディングパッド21C、チップ抵抗23、チップコンデンサ24を固着する電極21D、本半導体装置53を固着する電極21E(尚図3では判別しにくい為、図1、図2に示す。)、更には必要により設けられる外部接続電極21Fが設けられる。尚、本半導体装置53を固着する電極21E、これと一体の配線21Bは、図1に於いて、太い実線で示した。
【0081】
一方、半導体装置53に於いて、絶縁性樹脂50で支持される導電路51の中には、半導体チップ52Aを固着した導電路51A、ボンディングパッドと成る導電路51B、導電路51A、51Bと一体で設けられた配線となる導電路51Eがある。
【0082】
また図1の楕円形の部分は、半導体装置53の裏面に於いて、実装基板10上の電極21Eと電気的に接続されるコンタクト部24を示すものである。そしてこのコンタクト部24と図2A〜図2Cに示す裏面構造により、半導体装置53裏面に、実装基板10の配線21Bが延在できるように成っている。
【0083】
尚、半導体装置53の構造は、第1の実施の形態〜第4の実施の形態で説明しているので、詳しい説明は省略する。
図2Aに示す半導体装置53Aの裏面構造
本半導体装置53Aの裏面には、絶縁被膜RFが設けられ、この絶縁被膜RFを介して前記コンタクト部24が露出されているものである。本半導体装置53は、図8からも判るように、本来全ての導電路が裏面から露出する構造であるが、絶縁被膜RFを採用することにより、導電路51をカバーすることができる。
【0084】
よって、実装基板10に形成された配線21Bを半導体装置53の裏面に延在させることができる特徴を有する。
【0085】
本発明の第1の特徴は、半導体装置53として絶縁性樹脂50に封止され、半導体チップ52Aが固着された導電路51Aが、実装基板10上の導電路21と固着されることにある。
【0086】
図2の断面図からも明らかなように、半導体チップ52Aに発生した熱は、導電路51Aを介して実装基板10上の導電路21Eに放熱される。導電路21Eは、導電材で熱伝導に優れるために、半導体チップ52Aの熱を実装基板10側に伝えることができる。また金属細線55Aに伝わる熱も直方体の比較的サイズの大きい導電路51Bを介して導電路に伝えることができる。これら導電路21は、配線21Bと一体でなり、熱は配線21Bを介して外部雰囲気に放出される。従って、半導体チップ10の温度上昇を防止することができ、半導体チップの温度上昇を抑制できる分、駆動電流の増大を可能とする。
【0087】
特に実装基板10が金属基板で構成されると、導電路21を介して半導体チップ52Aの熱を金属基板に伝えることができる。この金属基板は、大きなヒートシンクとして、また放熱板として働き、前述した他の実装基板よりも更に半導体チップの温度上昇を防止することができる。
【0088】
金属基板の場合、導電路間の短絡が考慮されて表面に絶縁材料が施され、材料としては、無機物、有機物が考えられる。ここでは、エポキシ樹脂、ポリイミド樹脂等が採用される。この材料は、30〜300μmと薄く形成されるため、比較的熱抵抗を小さくできるが、更に、絶縁性樹脂の中にシリカ、アルミナ等のフィラーを混ぜ合わせることで更に熱抵抗を小さくすることができる。
【0089】
第2の特徴は、絶縁被膜RFにある。前述したコンタクト部24が露出するように絶縁被膜RFを被覆することにより、半導体装置53Aの下に配線21Bを延在させることができる。よって半導体装置53Aの導電路51、金属細線55Aも利用することにより、多層配線構造が実現でき、実装基板10上の配線を簡略化できる。図20に示す従来のハイブリッドICと図3に示すハイブリッドICは、その基板サイズが同じで設計されている。それぞれのパターンを比較すると、本発明のハイブリッドICの方が配線パターンの間隔が粗となり、細かなパターンが少なくなっている。これは、半導体装置53側の導電路51が、絶縁被膜RFの開口部を介して実装基板10上の導電パターン21と接続され、それ以外は絶縁被膜RFで覆われているからである。この導電路は、配線としても形成できるため、クロスオーバーが可能となり、金属細線と一緒に多層構造を実現している。よって実装基板に素子を実装する工程に於いて、前もって半導体装置を用意すれば、実装基板上で採用されるクロスオーバー用のボンディング回数も減少できる特徴を有する。更に実装基板上で、交差を回避するための複雑な配線パターンも減らせる特徴を有する。
【0090】
更に第3の特徴は、金属細線にあり、ボンデイング工程を減らせる特徴を有する。図20のハイブリッドICでは、小信号を扱う半導体素子、大信号を扱う半導体素子に分け、金属細線の線径を使い分けている。つまり小信号を扱う半導体素子用の金属細線は、細い実線で示され、40μmのAu線を採用している。そしてこのAu細線は、ボールボンデイングされている。また大信号を扱う半導体素子用の金属細線は、太線で示され、100μm〜300μmのAl線を採用している。ここでは、パワーMOSのゲート電極用、ジャンピング線として150μmのAl線を採用し、パワーMOSのソース電極、パワートランジスタのベース、エミッタ電極およびジャンピング線として300μmのAl線が採用されている。そしてこれらAl線は、スティッチボンドされている。尚、Al線の代わりAu線を採用しても良い。
【0091】
本発明は、Au線が接続された半導体素子、Au線が接続されるボンディングパッド、ボンディングパッドと一体で延在される配線51E、およびダイパッドを絶縁性樹脂50で一体で封止してなる半導体装置に特徴を有する。
【0092】
このAuの金属細線を採用した半導体素子は、全て半導体装置53として用意しておくことにより、実装基板10上でのAuのボンデイングは不要となり、ボンディング工程を削減することができるメリットを有する。更にはこの半導体素子を含めた回路素子の実装回数も大幅に減らすことができる。また従来では前記3種類の金属細線を採用することにより、3種類のボンダーを用意し、それぞれのボンダーでボンディングする必要があったが、本発明では、Au線のボンダーを省略できるメリットを有する。よって、設備の簡略化も図れ、しかも実装基板は、2種類のボンダーに載せるだけですみ、工程の簡略化が図れる。
【0093】
特に、半導体装置は、ディスクリート素子としても、複合素子としても、更にはハイブリッドICとしても形成可能であり、理論的には、全ての回路素子を半導体装置として組み込むことができ、実装基板上への素子固着数を大幅に減らすことができる。
【0094】
第5の特徴は、0.45×0.5厚み0.25mm等の小さな半導体素子を採用することができ、コストの低減が可能となる。
【0095】
従来例でも説明したように、値段の安い小さいチップを採用しようとしても、従来では、0.45×0.5mm、厚さ0.25mmの様な小さいチップでは、チップの側面に半田が吹上がりショートする問題があった。
【0096】
しかし本発明では、半導体チップ52A裏面にAu被膜(例えばバンプ)を被着し、このバンプを介して導電路51と半導体チップ52Aを固着し、半導体装置53として完成してから実装基板10に固着している。従って半田を使用して本半導体装置53を固着しても、半導体チップ52Aの側面は絶縁性樹脂50で被覆されているため、前述したショートの問題が無くなり、サイズの小さい半導体チップを採用できるようになった。
図2Bに示す半導体装置53Bの裏面構造
本半導体装置53Bは、図2Aの半導体素子53Aと実質同一であり、異なる点は、半導体装置53Bの裏面に露出する導電路51が絶縁性樹脂50よりも凹んでいることである。
【0097】
本発明の特徴は、前記導電路51の凹みにある。この凹みのために、半導体装置53Bの導電路51と前記実装基板10側の導電パターン21は、所望の間隔を持つことことができる。従って半導体装置53Aと同様に、半導体装置53Bの下に配線21Bを延在させることができる。よって半導体装置53Bの導電路51、金属細線55Aも利用することにより、多層配線構造が実現でき、実装基板10上の配線を簡略化できる。
【0098】
尚、半導体装置53Aと同様に裏面に絶縁被膜RFを被覆しても良い。
図2Cに示す半導体装置53Cの裏面構造
本半導体装置53Cは、図2A、図2Bの半導体素子53A、53Bと実質同一であり、異なる点は、半導体装置53Bの裏面に露出する導電路51が絶縁性樹脂50よりも突出している点である。
【0099】
本発明の特徴は、前記導電路51の突出にある。この突出構造は、半導体装置53Cの導電路51と前記実装基板10側の導電パターン21に、所望の間隔を設けることができる。従って半導体装置53A、53Bと同様に、半導体装置53Cの下に配線21Bを延在させることができる。よって半導体装置53Cの導電路51、金属細線55Aも利用することにより、多層配線構造が実現でき、実装基板10上の配線を簡略化できる。
【0100】
尚、半導体装置53Aと同様に裏面に絶縁被膜RFを被覆しても良い。
続いて、図19を採用しながら本混成集積回路装置に採用した回路、およびこの回路の中で半導体装置として構成された部分について図10〜図18を参照して説明する。
【0101】
図19は、オーディオ回路であり、左からAudio Amp 1ch回路部、Audio Amp 2ch回路部、切り替え電源回路を太い一点鎖線で囲んで示す。
【0102】
またそれぞれの回路部には、実線で囲まれた回路が半導体装置として形成されている。 まずAudio Amp 1ch回路部では、3種類の半導体装置と、2ch回路部と一体となった2つの半導体装置が用意されている。
【0103】
第1の半導体装置30Aは、図19に示すように、TR1、TR2で成るカレントミラー回路とTR3、TR4から成る差動回路が一体となって構成されている。この半導体装置30Aは、図10に示されている。ここでは、0.55×0.55×0.24mmのトランジスタチップを4つ採用し、Au細線でボンデイングしている。尚、半導体装置30Aのサイズは、2.9×2.9×0.5mmである。
【0104】
また点線で示す、コンタクト部は、0.3mmφである。尚図に示す数字は、端子番号であり、B、Eは、ベース、エミッタを示す。これらは、図11以降も同様である。
【0105】
第2の半導体装置31Aは、図19のTR6、D2でプリドライバー回路の一部を構成して成る。プリドライバー回路は、TR6、D2、R3、R8で構成され、出力段のTR9、TR10を駆動させるものである。この半導体装置31Aは、図11に示され、ダイオードD2は、2つのTRが1チップで構成された半導体チップを採用しベース・エミッタ間のPN接合を利用して形成している。ここでD2は、0.75×0.75×0.145mm、TR6は、0.55×0.55×0.24mmのチップサイズであり、半導体装置31Aの外形は、2.1×2.5×0.5mmである。
【0106】
第3の半導体装置32Aは、電源電圧の変動に対して、差動回路に安定した電流を流すための差動定電流回路を構成し、図19のTR5、TR15、D1で構成されている。尚、D1は、差動回路およびプリドライバー回路の定電流バイアスダイオードである。この半導体装置32Aは、図12に示され、TR5、TR15は、0.55×0.55×0.24mm、D1は、0.75×0.75×0.145mmのサイズであり、半導体装置32Aの外形は、2.1×3.9×0.5mmである。
【0107】
第4の半導体装置33Aは、図19に示す温度補償トランジスタTR8であり、実装基板の温度変動に対して、アイドリング電流を補償するものである。このTR8は、図13に示した1チップ半導体素子(0.75×0.75×0.145)で構成される。これを半導体装置33Aとして形成すると、外形は、2.3×1.6×0.5mmである。
【0108】
第5の半導体装置34Aは、図19のTR7、R6、R7で構成されるプリドライバー定電流回路のTR7と、Audio Amp 2ch回路部のプリドライバー定電流回路を構成するTR17の2チップが1パッケージになったものである。この半導体装置34Aは、図14に示すように、単品のトランジスタ(0.55×0.55×0.24mm)が2連となったもので、外形は、2.3×3.4×0.5mmである。
【0109】
尚、2連の半導体装置34Aは、個別に構成されても良い。この場合、図15に示す1チップだけが封止された半導体装置35を採用する。この半導体装置35の外形は2.3×1.6×0.5mmである。
【0110】
また図19に示す30B、31B、33Bは、30A、31A、33Aと同一回路であるため説明は省略する。
【0111】
尚TR9、TR10は、出力段パワートランジスタで、R1、C1およびC2は、異常発振防止用の素子である。
一方、図19の右側に示す切り替え電源回路部は、TR41、TR51、R41、R43、R51、R53で構成される電源電圧切り替え回路、TR43、TR53、R40、R42、R50、R52で構成される電源電圧切り替え用コンパレータ、ダイオードD45、D55、C43、C53で構成される高周波補正回路、ダイオードD42、D43、D52、D53で構成される整流用ダイオード等で構成される。
【0112】
第6の半導体装置36は、図19の電源回路に於いて、ダイオードD42、D43およびツェナーダイオードD45が1パッケージに成ったものである。半導体装置として実装される半導体チップは、TRチップで構成され、ベース−コレクタ間のPN接合でダイオードD42、D43を構成している。また図16に於いて、点線で囲まれたTRとツェナーダイオードが1チップで実装され、D45は、この素子のツェナーダイオードを利用している。また、ツェナーダイオードの温度上昇による電圧低下を補償するために、一緒に内蔵されたTRのベース−エミッタ間ダイオードを利用している。
尚、ツェナー付きのTRの外形は、0.6×0.6×0.24、他のTRの外形は、0.35×0.35×0.24である。そしてこれらが封止されたパッケージの外形は、1.9×4.4×0.5mmである。
【0113】
第7の半導体装置37は、図19の電源回路に於いて、ダイオードD52、D53およびツェナーダイオードD55が1パッケージに成ったものである。半導体装置として実装される半導体チップは、D53とD52に対応するトランジスタがPNP型であり、若干構造が異なるものの、実装形態は実質同じである。
図18の第8の半導体装置38は、図16、図17の回路と、TR43、TR53が1パッケージに成ったものである。尚、これらが封止されたパッケージの外形は、4×5.7×0.5mmである。そしてこの半導体装置38が、図1の半導体装置53として実装されている。
以上説明したように、本半導体装置は、TRを1つ実装したディスクリート型、またはTRを複数実装して所望の回路を構成したハイブリッドIC型で構成できる。ここでは、TRのみで構成したが、IC、LSI、システムLSI、受動素子も含めて複数の素子が実装されても良い。実験では、5×5.7×0.5mmが最大であるが、これよりも大きいサイズでも良い。またこの半導体装置は、あたかも半導体素子が埋め込まれた半導体装置として活用でき、裏面に素子を実装することも可能である。
これらの半導体装置を実装基板10に実装したものが、図3に示され、配線パターンがて簡略化されている。
【0114】
図21は、本発明の半導体装置を採用することにより、どのくらいサイズが小さくなるか説明するものである。図に示す写真は、同倍率であり、左からリードフレームを採用した単品SMD、リードフレームを採用した複合SMD更に本発明の半導体装置を示すものである。単品SMDは、1個のTRが、複合TRは、2つのTRがモールドされている。本発明の半導体装置は、図10に示す半導体装置30Aであり、4個のTRが封止されている。図からも明らかなように、複合SMDの二倍の素子が封止されているにもかかわらず、本半導体装置のサイズは、リードフレームも含めた複合SMDよりもやや大きいだけである。尚1個のTRが封止された図15の半導体装置35を一番右側に示した。これからも判るように、本発明によって小型・薄型の半導体装置が実現でき、携帯用の電子機器に最適である。
【0115】
【発明の効果】
以上の説明から明らかなように、本発明では、半導体装置の裏面に絶縁性樹脂を被覆したり、裏面の導電路を凹ましたり、更には突出させることで、半導体装置の裏面に実装基板に設けられた配線を延在させることができる。よって、半導体装置の導電路、金属細線および実装基板上の配線で多層構造を実現することができる。よって、実装基板として高価な多層基板を採用することなく、電子回路を構成することができる。また従来では、2、3、4層…の多層基板を採用することもあるが、この半導体装置を採用することにより、層数を減らすことができる。
【0116】
また半導体素子、導電路および絶縁性樹脂の必要最小限で構成された薄型・軽量の回路装置を採用し、しかも前記半導体素子裏面が固着された導電路が絶縁性樹脂から露出しているために、実装基板側の導電路と固着できる混成集積回路装置を提供できる。
【0117】
そのため、内蔵の回路素子の熱を実装基板側に放熱させることができ、しかも薄くてより軽量の混成集積回路装置を提供できる。、
また導電路の側面が湾曲構造であるため、回路装置全体が発熱しても導電路の抜け、反りを抑止することができる。しかも混成集積回路装置として優れた放熱構造を有しているため、回路装置自身の温度上昇を抑制でき、更に導電路の抜け、反りを防止することができる。従って薄型・軽量の回路装置が実装された混成集積回路装置全体の信頼性を向上させることができる。
【0118】
更には、実装基板として金属基板を採用すれば、実装される回路装置の発熱を抑止でき、より駆動電流を流せる混成集積回路装置を提供できる。
【図面の簡単な説明】
【図1】本発明の半導体装置を説明する図である。
【図2】本発明の半導体装置を説明する断面図である。
【図3】本半導体装置を実装した混成集積回路装置を説明する図である。
【図4】本発明の半導体装置の製造方法を説明する図である。
【図5】本発明の半導体装置の製造方法を説明する図である。
【図6】本発明の半導体装置の製造方法を説明する図である。
【図7】本発明の半導体装置の製造方法を説明する図である。
【図8】本発明の半導体装置の製造方法を説明する図である。
【図9】本発明の半導体装置の製造方法を説明する図である。
【図10】本発明の半導体装置を説明する図である。
【図11】本発明の半導体装置を説明する図である。
【図12】本発明の半導体装置を説明する図である。
【図13】本発明の半導体装置を説明する図である。
【図14】本発明の半導体装置を説明する図である。
【図15】本発明の半導体装置を説明する図である。
【図16】本発明の半導体装置を説明する図である。
【図17】本発明の半導体装置を説明する図である。
【図18】本発明の半導体装置を説明する図である。
【図19】本混成集積回路装置に実装される回路の一例を説明する図である。
【図20】従来の混成集積回路装置を説明する図である。
【図21】従来の半導体装置と本発明の半導体装置を比較した図である。
【符号の説明】
10 実装基板
21 導電パターン
21B 配線
53 半導体装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor device and a hybrid integrated circuit device, and more particularly to a hybrid integrated circuit device in which a mounting substrate is made smaller by mounting a thin and light semiconductor device on the mounting substrate.
[0002]
[Prior art]
Conventionally, in a hybrid integrated circuit device set in an electronic device, a conductive pattern is formed on, for example, a printed board, a ceramic board, or a metal board, and an active element such as an LSI or a discrete TR, a chip capacitor, a chip A passive element such as a resistor or a coil is mounted and configured. The conductive pattern and the element are electrically connected to realize a circuit having a predetermined function.
[0003]
FIG. 19 shows an example of the circuit. This circuit is an audio circuit, and the elements shown therein are mounted as shown in FIG.
[0004]
In FIG. 20, the outermost rectangular line is the mounting substrate 1 whose surface is insulated at least. And the conductive pattern 2 which consists of Cu is affixed on this. The conductive pattern 2 includes an external extraction electrode 2A, a wiring 2B, a die pad 2C, a bonding pad 2D, an electrode 4 to which the passive element 3 is fixed.
[0005]
On the die pad 2C, a TR, a diode, a composite element, an LSI, or the like is fixed in a bare chip shape via solder. The electrodes on the fixed chip and the bonding pads 2D are electrically connected through the fine metal wires 5A, 5B, and 5C. This metal thin wire is generally classified into small signal and large signal, Au wire 5A consisting of about 40 μmφ is adopted for the small signal portion, and Au wire or Al wire of about 100 to 300 μmφ is adopted for the large signal portion. Yes. In particular, since a large signal has a large wire diameter, 150 μmφ Al wire 5B and 300 μmφ Al wire 5C are selected in consideration of cost.
[0006]
Further, the power TR6 for flowing a large current is fixed to the heat sink 7 on the die pad 2C in order to prevent the temperature of the chip from rising.
[0007]
The wiring 2B is extended to various places in order to use the external extraction electrode 2A, the die pad 2C, the bonding pad 2D, and the electrode 4 as a circuit. In addition, jumping lines 8A and 8B are employed when the wirings intersect due to the position of the chip and the way the wirings extend.
[0008]
[Problems to be solved by the invention]
Recently, a chip having a very small chip size of 0.45 × 0.5 mm and a thickness of 0.25 mm and having a low unit price has been sold. However, when this chip is fixed with solder, the solder rises on the side surface of the chip and short-circuits, so that there is a problem that it cannot be used for a hybrid integrated circuit board.
[0009]
Further, when a package in which a semiconductor element is fixed to a lead frame is mounted on a hybrid integrated circuit board, there is a problem that the size of the hybrid integrated circuit board increases because the size of the package is very large.
[0010]
Further, when a complex circuit is formed on the hybrid integrated circuit board, a multilayer hybrid integrated circuit board is required, but there is a problem that it is difficult to adopt from the viewpoint of cost.
[0011]
As described above, even if trying to reduce the cost by adopting a hybrid integrated circuit board, the cost increases due to the fact that a very small chip cannot be mounted, the assembly process becomes long, and a multilayer board is adopted. There was a problem.
[0012]
[Means for Solving the Problems]
The present invention has been made in view of the problems described above. First, a plurality of conductive paths electrically separated by a separation groove, a semiconductor chip fixed on the conductive path, a semiconductor chip covering the semiconductor chip, and An insulating resin that fills the separation groove between the conductive paths and exposes and supports the back surface of the conductive paths integrally;
The problem is solved by providing an insulating film on the back surface of the conductive path so that a part of the back surface of the conductive path is exposed.
[0013]
Second, a plurality of conductive paths electrically separated by the separation grooves, a semiconductor chip fixed on the conductive paths, and covering the semiconductor chip and filling the separation grooves between the conductive paths, With an insulating resin that exposes the backside of the road and supports it integrally.
A semiconductor device characterized in that the back surface of the conductive path is recessed from the back surface of the insulating resin.
[0014]
Third, the plurality of conductive paths electrically separated by the separation grooves, the semiconductor chip fixed on the conductive paths, the semiconductor chips are covered, and the separation grooves between the conductive paths are filled with the conductive paths. With an insulating resin that exposes the backside of the road and supports it integrally.
The problem is solved by providing the back surface of the conductive path so as to protrude from the back surface of the insulating resin.
[0015]
Fourth, the problem is solved by providing an insulating film on the back surface of the conductive path so that a part of the back surface of the conductive path is exposed.
[0016]
Fifth, the side surface of the conductive path is solved by a curved structure.
[0017]
Sixth, the problem is solved by providing a conductive film on the conductive path.
[0018]
Seventh, the problem is solved by mounting at least one semiconductor chip.
[0019]
Eighth, in addition to the semiconductor chip, an active element and / or a passive element is built in electrically connected to the conductive path, and a circuit is formed including the active element and / or the passive element. It will be solved by.
[0020]
Ninth, the conductive path is made up of Cu, Al, Fe—Ni alloy, Cu—Al laminate, and Al—Cu—Al laminate.
[0021]
Tenth, the conductive film is made of Ni, Au, Ag, or Pd, and is solved by forming eaves.
[0022]
Eleventh, the problem is solved by connecting the conductive film of the conductive path and the electrode on the semiconductor chip with a bonding fine wire or solder.
[0023]
Twelfth, a mounting substrate having at least a surface insulated and having a plurality of electrodes and wirings;
A plurality of conductive paths electrically separated by the separation groove, a semiconductor chip fixed on the conductive path, and the back surface of the conductive path that covers the semiconductor chip and is filled in the separation groove between the conductive paths. Insulating resin that is exposed and supported integrally, and a semiconductor device in which an insulating film is provided on the back surface of the conductive path so that a part of the back surface of the conductive path is exposed,
The problem is solved by fixing the back surface of the conductive path and the electrode through connection means, and extending the wiring under the insulating film.
[0024]
Thirteenth, a mounting substrate having at least a surface insulated and having a plurality of electrodes and wirings;
A plurality of conductive paths electrically separated by the separation groove, a semiconductor chip fixed on the conductive path, and the back surface of the conductive path that covers the semiconductor chip and is filled in the separation groove between the conductive paths. Insulating resin that is exposed and supported integrally, and a semiconductor device provided with the back surface of the conductive path recessed relative to the back surface of the insulating resin,
The problem is solved by fixing the back surface of the conductive path and the electrode through connection means and extending the wiring to the back surface of the semiconductor device.
[0025]
Fourteenth, a mounting substrate having at least a surface insulated and having a plurality of electrodes and wirings;
A plurality of conductive paths electrically separated by the separation groove, a semiconductor chip fixed on the conductive path, and the back surface of the conductive path that covers the semiconductor chip and is filled in the separation groove between the conductive paths. Insulating resin that is exposed and supported integrally, and a semiconductor device provided with the back surface of the conductive path protruding beyond the back surface of the insulating resin,
The problem is solved by fixing the back surface of the conductive path and the electrode through connection means and extending the wiring to the back surface of the semiconductor device.
[0026]
Fifteenth, the problem is solved by providing an insulating film on the back surface of the conductive path so that a part of the back surface of the conductive path is exposed.
[0027]
16th is to solve the problem that the side surface of the conductive path has a curved structure.
[0028]
Seventeenth, the problem is solved by providing a conductive film on the conductive path.
[0029]
Eighteenth, an active element and / or a passive element in addition to the semiconductor chip are built in electrically connected to the conductive path, and a circuit is formed including the active element and / or the passive element. It will be solved by.
[0030]
Nineteenth, the conductive path is made up of a Cu, Al, Fe—Ni alloy, a Cu—Al laminate, and an Al—Cu—Al laminate.
[0031]
20th, The conductive film is made of Ni, Au, Ag, or Pd, and is solved by forming eaves.
[0032]
Twenty-first, the problem is solved by connecting the conductive film of the conductive path and the electrode on the semiconductor chip with a bonding wire or solder.
[0033]
Twenty-second, the connection means is made of a brazing material, a conductive ball, a conductive paste, or an anisotropic conductive resin.
[0034]
[0035]
DETAILED DESCRIPTION OF THE INVENTION
The present invention relates to a thin semiconductor device composed of a semiconductor element, a conductive path, a connecting means, and an insulating resin for sealing, and uses the thin semiconductor device as a mounting substrate. Thus, the present invention relates to a hybrid integrated circuit device capable of reducing the size of the mounting substrate, shortening the manufacturing process of the hybrid integrated circuit device, and reducing the number of layers of the multilayer substrate. First, a semiconductor device will be described below.
[0036]
FIG. 1 shows a thin semiconductor device 53 fixed to a mounting substrate 10. FIG. 2 illustrates three types of the mounting structure of the thin semiconductor device 53. FIG. 3 illustrates a hybrid integrated circuit device 13 in which the thin semiconductor device 53 and circuit elements are mounted on the mounting substrate 10. Further, FIGS. 4 to 9 illustrate a method for manufacturing the semiconductor device, FIGS. 10 to 18 illustrate a semiconductor device formed based on the circuit on the right side, and FIG. The circuit configured on the mounting substrate 10 will be described.
First Embodiment Explaining Semiconductor Device 53A
First, a specific structure of the first semiconductor device 53A will be described with reference to FIG. 9A. The semiconductor device 53A has conductive paths 51A to 51C embedded in an insulating resin 50. A semiconductor chip 52A is fixed on the conductive path 51A, and if necessary, passive elements are provided on the conductive paths 51B and 51C. 52B is fixed. The insulating resin 50 supports the conductive paths 51A to 51C.
[0037]
This structure has three materials: a semiconductor chip 52A, a circuit element 52B composed of passive elements and / or active elements, a plurality of conductive paths 51A, 51B, 51C, and an insulating resin 50 that embeds the conductive paths 51A, 51B, 51C. A separation groove 54 filled with the insulating resin 50 is provided between the conductive paths 51. The conductive paths 51 </ b> A to 51 </ b> C are supported by the insulating resin 50.
[0038]
As the insulating resin, a thermosetting resin such as an epoxy resin, a thermoplastic resin such as a polyimide resin or polyphenylene sulfide can be used. As the insulating resin, any resin can be adopted as long as it is a resin that can be hardened using a mold, a resin that can be coated by dipping or coating. Further, as the conductive path 51, a conductive foil mainly made of Cu, a conductive foil mainly made of Al, a conductive foil made of an alloy such as Fe-Ni, an Al-Cu laminated plate, or an Al-Cu-Al The laminated board etc. can be used. In particular, Al—Cu—Al has a strong structure against warping. Of course, other conductive materials are also possible, and in particular, a conductive material that can be etched, a conductive material that evaporates with a laser, or a relatively soft substance that can form the separation groove 54 with a press is preferable.
[0039]
The connection means of the semiconductor element 52A and the circuit element 52B includes a metal thin wire 55A, a conductive ball made of a brazing material, a flat conductive ball, a brazing material 55B such as solder, a conductive paste 55C such as an Ag paste, a conductive film or an anisotropic film. For example, a conductive resin. These connection means are selected depending on the type and mounting form of the semiconductor element and circuit element 52. For example, in the case of a bare semiconductor chip, a thin metal wire 55A is selected for connection between the surface electrode and the conductive path 51B, and in the case of CSP or SMD, a solder ball or solder bump is selected. For the chip resistor and the chip capacitor, the solder 55B is selected. When mounted face down like a CSP, the metal wires do not protrude upward and laterally, and a substantially chip size package is possible.
[0040]
In addition, a conductive coating is used to fix the semiconductor element 52A and the conductive path 51A. Here, at least one conductive film is sufficient.
[0041]
Possible materials for this conductive film are Ag, Au, Pt, Pd, brazing material, etc., which are covered by deposition, plating, sintering or coating under low vacuum or high vacuum such as vapor deposition, sputtering, and CVD. Is done.
[0042]
For example, Ag adheres to Au and also to a brazing material. Therefore, if the Au film is coated on the back surface of the chip, the semiconductor chip can be thermocompression bonded by directly coating the conductive film 51A with the Ag film, Au film, or solder film, and the chip is fixed through a brazing material such as solder. it can. Here, the conductive film may be formed on the uppermost layer of the conductive film laminated in a plurality of layers. For example, on a Cu conductive path 51A, two layers of Ni film and Au film are sequentially deposited, three layers of Ni film, Cu film and solder film are sequentially deposited, Ag film, A Ni film can be formed by sequentially coating two layers. In addition, there are many types of these conductive films and laminated structures, but they are omitted here.
[0043]
In this semiconductor device 53A, since the conductive path 51 is supported by the insulating resin 50 that is a sealing resin, a support substrate for bonding and supporting the conductive paths becomes unnecessary, and the conductive path 51, the element 52, and the insulating resin 50 are eliminated. Consists of. This configuration is a feature of the present invention. Since the conductive path of the conventional circuit device is supported and bonded by a support substrate (printed substrate, ceramic substrate or flexible sheet), or is supported by a lead frame, a configuration that is essentially unnecessary is added. However, this semiconductor device is composed of the minimum necessary elements, can eliminate the need for a support substrate, and has a feature of being thin and inexpensive.
[0044]
In addition to the above-described configuration, the insulating resin 50 that covers the circuit element 52 and is filled in the separation groove 54 between the conductive paths 51 and is integrally supported is provided.
[0045]
The space between the conductive paths 51 becomes a separation groove 54, and the insulating resin 50 is filled therewith, so that there is an advantage that mutual insulation can be achieved.
[0046]
Further, the insulating resin 50 is provided which covers the element 52 and is filled in the separation groove 54 between the conductive paths 51 so as to expose and support the back surface of the conductive path 51 integrally.
[0047]
The point that the back surface of the conductive path is exposed is one of the features of the present invention. The back surface of the conductive path can be used for connection with the outside, and the through hole employed in the printed circuit board employing the support substrate can be eliminated.
[0048]
In addition, when the semiconductor element 52A is directly fixed via a conductive film such as brazing material, Au, or Ag, the back surface of the conductive path 51 is exposed, so that heat generated from the semiconductor element 52A is transmitted via the conductive path 51A. Can be transmitted to the mounting board. In particular, it is effective for a semiconductor chip that can improve characteristics such as an increase in driving current by heat radiation. This is a point of the semiconductor device 53A, which will be described later.
[0049]
Further, the semiconductor device 53A has a structure in which the separation groove 54 and the back surface of the conductive path 51 substantially coincide. This structure is a feature of the present invention. Since no step is provided on the back surface of the conductive path 51, the semiconductor device 53 can be moved horizontally as it is.
[0050]
In the present invention, an insulating coating RF such as a solder resist is applied to realize a multilayer structure with the mounting substrate. Then, by exposing a part of the conductive path 51, the wiring of the mounting substrate 10 is extended to the back surface of the semiconductor device 53A. When the semiconductor device is fixed to the mounting substrate 10, the conductive path 51 and the fine metal wire 55A work as a conventional jumping wire, thereby realizing a multilayer structure. This will be described later.
Second Embodiment Explaining Semiconductor Device 53B
The semiconductor device 53B shown in FIG. 9B is substantially the same except that the back surface structure of the conductive path 51 is different from the semiconductor device 51A shown in FIG. 9A. Here, this different part will be described.
[0051]
As can be seen from the figure, the back surface of the conductive path 51 is recessed from the back surface of the insulating resin 50 (the back surface of the insulating resin 50 filled in the separation groove 54). With this structure, multilayer wiring is possible. Details will be described later.
Third Embodiment Explaining Semiconductor Device 53C
The semiconductor device 53C shown in FIG. 9C differs from the semiconductor devices 51A and 51B shown in FIGS. 9A and 9B in the back surface structure of the conductive path 51, and is otherwise substantially the same. Here, this different part will be described.
[0052]
As can be seen from the figure, the back surface of the conductive path 51 protrudes from the back surface of the insulating resin 50 (the back surface of the insulating resin 50 filled in the separation groove 54). With this structure, multilayer wiring is possible. Details will be described later.
Fourth embodiment for explaining a method of manufacturing semiconductor devices 53A to 53C
Next, a method for manufacturing the semiconductor device 53 will be described with reference to FIGS.
[0053]
First, as shown in FIG. 4, a sheet-like conductive foil 60 is prepared. The conductive foil 60 is selected in consideration of the adhesiveness, bonding property, and plating property of the brazing material. As the material, a conductive foil mainly composed of Cu, a conductive foil mainly composed of Al, or Fe is used. A conductive foil made of an alloy of -Ni, an Al-Cu laminate, an Al-Cu-Al laminate, or the like is employed.
[0054]
The thickness of the conductive foil is preferably about 35 μm to 300 μm in consideration of later etching, and here, a copper foil of 70 μm (2 ounces) is employed. However, it is basically good if it is 300 μm or more and 10 μm or less. As will be described later, it is only necessary that the separation groove 61 shallower than the thickness of the conductive foil 60 can be formed.
[0055]
In addition, the sheet-like conductive foil 60 is prepared by being wound in a roll shape with a predetermined width, and this may be conveyed to each step described later, or a conductive foil cut into a predetermined size is prepared, You may convey to each process mentioned later. (See Figure 4 above)
Subsequently, there is a step of removing the conductive foil 60 excluding at least the region to be the conductive path 51 thinner than the thickness of the conductive foil 60.
[0056]
First, a photoresist (etching resistant mask) PR is formed on the Cu foil 60, and the photoresist PR is patterned so that the conductive foil 60 excluding the region to be the conductive path 51 is exposed (see FIG. 5 above). Then, etching may be performed through the photoresist PR (see FIG. 6 above).
[0057]
The depth of the separation groove 61 formed by etching is, for example, 50 μm, and its side surface is a rough surface, so that the adhesiveness with the insulating resin 50 is improved.
[0058]
Further, the side wall of the separation groove 61 has a different structure depending on the removal method. This removal process can employ wet etching, dry etching, laser evaporation, and dicing. Moreover, you may form with a press. In the case of wet etching, ferric chloride or cupric chloride is mainly used as the etchant, and the conductive foil is dipped in the etchant or showered with the etchant. Here, since wet etching is generally non-anisotropic, the side surface has a curved structure as shown in FIG. 6B.
[0059]
In the case of dry etching, etching can be performed anisotropically or non-anisotropically. At present, it is said that Cu cannot be removed by reactive ion etching, but it can be removed by sputtering. Etching can be anisotropic or non-anisotropic depending on sputtering conditions.
[0060]
Further, in the laser, the separation groove can be formed by direct laser light irradiation. In this case, the side surface of the separation groove 61 is formed to be straight.
[0061]
In dicing, it is impossible to form a complicated bent pattern, but it is possible to form a lattice-like separation groove.
[0062]
In FIG. 6, instead of the photoresist PR, a conductive film resistant to the etching solution may be selectively coated. If the conductive film is selectively deposited on the conductive path, this conductive film becomes an etching protective film, and the separation groove can be etched without employing a resist. Possible materials for this conductive film are Ni, Ag, Au, Pt, Pd, and the like. In addition, these corrosion-resistant conductive films have the feature that they can be used as they are as die pads and bonding pads.
[0063]
For example, the Ag coating adheres to Au and also to the brazing material. Therefore, if the Au coating is coated on the back surface of the chip, the chip can be thermocompression bonded to the Ag coating on the conductive path 51 as it is, and the chip can be fixed via a brazing material such as solder. Further, since an Au fine wire can be adhered to the Ag conductive film, wire bonding is also possible. Accordingly, there is an advantage that these conductive films can be used as they are as die pads and bonding pads. (See Figure 6 above)
Subsequently, as shown in FIG. 7, there is a step of mounting the circuit element 52 by electrically connecting it to the conductive foil 60 in which the separation groove 61 is formed.
[0064]
The circuit element 52 includes a semiconductor element 52A such as a transistor, a diode, and an IC chip, and a passive element 52B such as a chip capacitor and a chip resistor. Although the thickness is increased, face-down type semiconductor elements such as CSP, BGA, and SMD can be mounted.
[0065]
Here, a transistor chip 52A as a bare semiconductor chip is die-bonded to the conductive path 51A, and the emitter electrode and the conductive path 51B and the base electrode and the conductive path 51B are fixed by ball bonding by thermocompression bonding or wedge bonding by ultrasonic waves. It is connected via a thin metal wire 55A. Reference numeral 52B denotes a passive element and / or an active element such as a chip capacitor. Here, a chip capacitor is adopted and is fixed by a brazing material such as solder or a conductive paste 55B. (See Figure 7 above)
Further, as shown in FIG. 8, there is a step of attaching an insulating resin 50 to the conductive foil 60 and the separation groove 61. This can be realized by transfer molding, injection molding, or dipping. As the resin material, a thermosetting resin such as an epoxy resin can be realized by transfer molding, and a thermoplastic resin such as polyimide resin or polyphenylene sulfide can be realized by injection molding.
[0066]
In the present embodiment, the thickness of the insulating resin coated on the surface of the conductive foil 60 is adjusted so as to cover about 100 μm from the top of the circuit element. This thickness can be increased or decreased in consideration of strength.
[0067]
The feature of this step is that the conductive foil 60 that becomes the conductive path 51 becomes the support substrate until the insulating resin 50 is coated. For example, in a CSP using a printed board or a flexible sheet, a conductive path is formed by using a support board (printed board or flexible sheet) that is not originally required. In the present invention, the conductive foil 60 serving as a support board is It is a material necessary as a conductive path. Therefore, there is a merit that the work can be performed with the constituent materials omitted as much as possible, and the cost can be reduced.
[0068]
Further, since the separation groove 61 is formed shallower than the thickness of the conductive foil, the conductive foil 60 is not individually separated as the conductive path 51. Accordingly, the sheet-like conductive foil 60 is integrated and can be handled from mounting of circuit elements to dicing, and particularly when molding an insulating resin, it is very easy to carry to the mold and mount to the mold. . Furthermore, since it is molded on a sheet-like Cu foil, there is a merit that no resin burr is generated. (See Figure 8 above)
Subsequently, there is a step of chemically and / or physically removing the back surface of the conductive foil 60 and separating it as the conductive path 51. Here, this removal step is performed by polishing, grinding, etching, laser metal evaporation, or the like.
[0069]
In the experiment, the entire surface is cut by about 30 μm by a polishing apparatus or a grinding apparatus, and the insulating resin 50 is exposed from the separation groove 61. This exposed surface is indicated by a dotted line in FIG. Also, FIG. 9A shows an insulating film RF formed on the back surface of the semiconductor element 53A in order to extend the wiring on the mounting substrate. As a result, the conductive paths 51 having a thickness of about 40 μm are separated.
[0070]
9B, when the insulating resin 50 is exposed and the back surface of the conductive path 51 is recessed from the back surface of the insulating resin 50, the entire surface of the conductive foil 60 may be etched.
[0071]
Furthermore, in the case of FIG. 9C, an etching-resistant mask may be formed on the back surface of the conductive path so that a part of the conductive path is exposed and etched. In this case, the conductive path 51 protrudes from the back surface of the insulating resin 50.
[0072]
In either structure, the back surface of the conductive path 51 is exposed from the insulating resin 50. Then, the separation groove 61 is scraped to become the separation groove 54. (See Figure 9 above)
Finally, a conductive material such as solder is applied to the exposed conductive path 51 if necessary, and the multilayer structure of the mounting substrate is taken into consideration, and if necessary, the back surface of the semiconductor device 53 is coated with an insulating resin. To be completed.
[0073]
When a conductive film is applied to the back surface of the conductive path 51, a conductive film may be formed in advance on the back surface of the conductive foil in FIG. In this case, a portion corresponding to the conductive path may be selectively attached. The deposition method is, for example, plating. The conductive film is preferably made of a material that is resistant to etching. When this conductive film or photoresist is employed, the conductive path 51 can be separated only by etching without polishing, and the structure shown in FIG. 9C can be realized.
[0074]
In this manufacturing method, only the semiconductor chip and the chip capacitor are mounted on the conductive foil 60, but these may be arranged in a matrix form as a unit.
[0075]
Alternatively, a single transistor, diode, IC, or LSI may be mounted as an active element (semiconductor chip) to form a discrete type. (See FIGS. 13-14)
A plurality of active elements may be mounted to form a composite semiconductor device. (See FIGS. 11, 12, and 14)
Furthermore, a hybrid IC type may be configured by mounting a transistor, a diode, an IC or LSI as an active element (semiconductor chip), a chip resistor or a chip capacitor as a passive element, and forming a wiring as a conductive path. (See FIGS. 10, 12, 16, 17, and 18)
And when arrange | positioning at matrix form, after isolate | separating a conductive path, it isolate | separates each with a dicing apparatus.
[0076]
By the above manufacturing method, the flat semiconductor device 53 in which the conductive path 51 is embedded in the insulating resin 50 and the back surface of the insulating resin 50 and the back surface of the conductive path 51 substantially coincide with each other can be realized.
[0077]
This manufacturing method is characterized in that the insulating path 50 can be used as a support substrate and the conductive path 51 can be separated. The insulating resin 50 is a necessary material for embedding the conductive path 51 and does not require an unnecessary support substrate. Therefore, it has the characteristics that it can be manufactured with a minimum amount of material and cost can be reduced. Further, since there is no conductive foil at the dicing line, the blade can be prevented from being clogged. Further, when a package using a ceramic substrate is molded and diced, the blade is severely damaged and worn. However, in the present invention, since only the resin is diced, there is an advantage that the life of the blade can be extended.
[0078]
Note that the thickness of the insulating resin formed above the surface of the conductive path 51 can be adjusted when the insulating resin is attached. Therefore, the thickness of the semiconductor element 53 has a feature that it can be made thicker or thinner, although it depends on the circuit element to be mounted. Here, a semiconductor device in which a 40 μm conductive path 51 and a semiconductor element are embedded in an insulating resin 50 having a thickness of 400 μm is obtained.
Fifth embodiment for explaining the structure of a hybrid integrated circuit device
Next, the hybrid integrated circuit device of the present invention will be described with reference to FIGS. FIG. 1 is a plan view of a hybrid integrated circuit device, and FIG. 2 is a cross-sectional view taken along line AA of FIG. A structure in which the semiconductor device 53A in FIG. 9A, the semiconductor device 53B in FIG. 9B, and the semiconductor device 53C in FIG. 9C are fixed to the mounting substrate 10 is shown in FIGS. 2A, 2B, and 2C.
[0079]
First, the mounting substrate 10 will be described. As the mounting board 10 on which the semiconductor device 53 is mounted, a printed board, a ceramic board, a flexible sheet board, or a metal board can be considered. Since the conductive pattern 21 is formed on the surface of the mounting substrate 10, at least the surface of the substrate is insulated in consideration of electrical insulation. Since the printed circuit board, the ceramic substrate, and the flexible sheet substrate are made of an insulating material, the conductive pattern 21 may be formed on the surface as it is. However, in the case of a metal substrate, an insulating material is deposited on at least the surface, and a conductive pattern 21 is deposited thereon. In the present embodiment, the conductive pattern formed on the mounting substrate 10 is referred to as a conductive pattern 21, and the conductive pattern supported by the insulating resin 50 of the semiconductor device 53 is described as a conductive path 51.
[0080]
As can be seen from FIG. 3, the conductive pattern 21 includes a die pad 21A, a wiring 21B, a bonding pad 21C, a chip resistor 23, an electrode 21D for fixing the chip capacitor 24, and an electrode 21E for fixing the semiconductor device 53 (note that Since it is difficult to discriminate in FIG. 3, it is shown in FIG. 1 and FIG. 2), and further, an external connection electrode 21F is provided if necessary. Incidentally, the electrode 21E for fixing the semiconductor device 53 and the wiring 21B integrated therewith are indicated by thick solid lines in FIG.
[0081]
On the other hand, in the semiconductor device 53, the conductive path 51 supported by the insulating resin 50 includes a conductive path 51A to which the semiconductor chip 52A is fixed, a conductive path 51B serving as a bonding pad, and a conductive path 51A and 51B. There is a conductive path 51E to be a wiring provided in.
[0082]
1 indicates a contact portion 24 electrically connected to the electrode 21E on the mounting substrate 10 on the back surface of the semiconductor device 53. The contact portion 24 and the back surface structure shown in FIGS. 2A to 2C allow the wiring 21B of the mounting substrate 10 to extend on the back surface of the semiconductor device 53.
[0083]
Since the structure of the semiconductor device 53 has been described in the first to fourth embodiments, a detailed description thereof will be omitted.
Back surface structure of the semiconductor device 53A shown in FIG. 2A
An insulating coating RF is provided on the back surface of the semiconductor device 53A, and the contact portion 24 is exposed through the insulating coating RF. As can be seen from FIG. 8, the semiconductor device 53 has a structure in which all the conductive paths are originally exposed from the back surface. However, the conductive path 51 can be covered by employing the insulating coating RF.
[0084]
Therefore, the wiring 21 </ b> B formed on the mounting substrate 10 can be extended to the back surface of the semiconductor device 53.
[0085]
The first feature of the present invention resides in that the conductive path 51A sealed with the insulating resin 50 as the semiconductor device 53 and fixed with the semiconductor chip 52A is fixed with the conductive path 21 on the mounting substrate 10.
[0086]
As is clear from the cross-sectional view of FIG. 2, the heat generated in the semiconductor chip 52A is radiated to the conductive path 21E on the mounting substrate 10 through the conductive path 51A. Since the conductive path 21E is a conductive material and excellent in heat conduction, the heat of the semiconductor chip 52A can be transmitted to the mounting substrate 10 side. Further, the heat transmitted to the thin metal wire 55A can also be transmitted to the conductive path through the conductive path 51B having a relatively large size in a rectangular parallelepiped. These conductive paths 21 are integrated with the wiring 21B, and heat is released to the external atmosphere via the wiring 21B. Therefore, the temperature rise of the semiconductor chip 10 can be prevented, and the drive current can be increased as much as the temperature rise of the semiconductor chip can be suppressed.
[0087]
In particular, when the mounting substrate 10 is made of a metal substrate, the heat of the semiconductor chip 52A can be transmitted to the metal substrate via the conductive path 21. This metal substrate functions as a large heat sink and as a heat sink, and can prevent the temperature of the semiconductor chip from rising further than the other mounting substrates described above.
[0088]
In the case of a metal substrate, an insulating material is applied to the surface in consideration of a short circuit between conductive paths, and the material may be inorganic or organic. Here, an epoxy resin, a polyimide resin, or the like is employed. Since this material is formed as thin as 30 to 300 μm, the thermal resistance can be made relatively small, but furthermore, the thermal resistance can be further reduced by mixing fillers such as silica and alumina in the insulating resin. it can.
[0089]
The second feature is the insulating coating RF. By covering the insulating film RF so that the contact portion 24 described above is exposed, the wiring 21B can be extended under the semiconductor device 53A. Therefore, by using the conductive path 51 and the thin metal wire 55A of the semiconductor device 53A, a multilayer wiring structure can be realized, and the wiring on the mounting substrate 10 can be simplified. The conventional hybrid IC shown in FIG. 20 and the hybrid IC shown in FIG. 3 are designed with the same substrate size. Comparing the patterns, the hybrid IC of the present invention has a coarser wiring pattern interval and fewer fine patterns. This is because the conductive path 51 on the semiconductor device 53 side is connected to the conductive pattern 21 on the mounting substrate 10 through the opening of the insulating coating RF, and the others are covered with the insulating coating RF. Since this conductive path can also be formed as a wiring, a crossover is possible, and a multilayer structure is realized together with the fine metal wires. Therefore, if the semiconductor device is prepared in advance in the process of mounting the element on the mounting substrate, the number of crossover bondings employed on the mounting substrate can be reduced. Furthermore, it has a feature that the number of complicated wiring patterns for avoiding crossing can be reduced on the mounting board.
[0090]
Furthermore, the third feature is in the metal fine wire, and has the feature that the bonding process can be reduced. In the hybrid IC of FIG. 20, the wire diameter of the metal thin wire is properly used by dividing into a semiconductor element handling a small signal and a semiconductor element handling a large signal. That is, a thin metal wire for a semiconductor element that handles a small signal is indicated by a thin solid line, and a 40 μm Au wire is adopted. And this Au thin wire is ball bonded. A thin metal wire for a semiconductor element that handles a large signal is indicated by a thick line, and an Al wire of 100 μm to 300 μm is adopted. Here, a 150 μm Al line is used as a jumping line for the gate electrode of the power MOS, and a 300 μm Al line is used as the source electrode of the power MOS, the base of the power transistor, the emitter electrode, and the jumping line. These Al wires are stitch bonded. In addition, you may employ | adopt Au wire instead of Al wire.
[0091]
The present invention is a semiconductor device in which an Au wire is connected to a semiconductor element, an Au wire is connected to a bonding pad, a wiring 51E extending integrally with the bonding pad, and a die pad are integrally sealed with an insulating resin 50. Features the device.
[0092]
By preparing all the semiconductor elements adopting the Au thin metal wires as the semiconductor device 53, there is an advantage that Au bonding on the mounting substrate 10 becomes unnecessary and the bonding process can be reduced. Furthermore, the number of circuit elements including this semiconductor element can be greatly reduced. Conventionally, it has been necessary to prepare three types of bonders by bonding the three types of fine metal wires, and to bond them with the respective bonders. However, the present invention has an advantage that the bonder of Au wires can be omitted. Therefore, the facilities can be simplified, and the mounting substrate can be simply mounted on two types of bonders, and the process can be simplified.
[0093]
In particular, a semiconductor device can be formed as a discrete element, a composite element, or even a hybrid IC. In theory, all circuit elements can be incorporated as a semiconductor device, and can be mounted on a mounting substrate. The number of element sticking can be greatly reduced.
[0094]
The fifth feature is that a small semiconductor element such as 0.45 × 0.5 thickness 0.25 mm can be adopted, and the cost can be reduced.
[0095]
As explained in the conventional example, even when trying to adopt a small chip with low price, in the conventional chip, solder is blown up to the side of the chip in a small chip of 0.45 × 0.5mm and thickness 0.25mm. There was a problem of short circuit.
[0096]
However, in the present invention, an Au coating (for example, a bump) is deposited on the back surface of the semiconductor chip 52A, and the conductive path 51 and the semiconductor chip 52A are fixed through the bump, and the semiconductor device 53 is completed and then fixed to the mounting substrate 10. doing. Therefore, even if the semiconductor device 53 is fixed using solder, the side surface of the semiconductor chip 52A is covered with the insulating resin 50, so that the above-described short circuit problem is eliminated and a small-sized semiconductor chip can be employed. Became.
The back surface structure of the semiconductor device 53B shown in FIG. 2B
The semiconductor device 53B is substantially the same as the semiconductor element 53A of FIG. 2A, and the difference is that the conductive path 51 exposed on the back surface of the semiconductor device 53B is recessed from the insulating resin 50.
[0097]
The feature of the present invention resides in the recess of the conductive path 51. Due to this recess, the conductive path 51 of the semiconductor device 53B and the conductive pattern 21 on the mounting substrate 10 side can have a desired interval. Therefore, like the semiconductor device 53A, the wiring 21B can be extended under the semiconductor device 53B. Therefore, by using the conductive path 51 and the thin metal wire 55A of the semiconductor device 53B, a multilayer wiring structure can be realized, and the wiring on the mounting substrate 10 can be simplified.
[0098]
Note that the insulating film RF may be coated on the back surface as in the semiconductor device 53A.
The back surface structure of the semiconductor device 53C shown in FIG. 2C
The semiconductor device 53C is substantially the same as the semiconductor elements 53A and 53B in FIGS. 2A and 2B, and is different in that the conductive path 51 exposed on the back surface of the semiconductor device 53B protrudes from the insulating resin 50. is there.
[0099]
A feature of the present invention resides in the protrusion of the conductive path 51. This protruding structure can provide a desired interval between the conductive path 51 of the semiconductor device 53C and the conductive pattern 21 on the mounting substrate 10 side. Therefore, like the semiconductor devices 53A and 53B, the wiring 21B can be extended under the semiconductor device 53C. Therefore, by using the conductive path 51 and the thin metal wire 55A of the semiconductor device 53C, a multilayer wiring structure can be realized, and the wiring on the mounting substrate 10 can be simplified.
[0100]
Note that the insulating film RF may be coated on the back surface as in the semiconductor device 53A.
Next, a circuit employed in the present hybrid integrated circuit device and a portion of the circuit configured as a semiconductor device will be described with reference to FIGS.
[0101]
FIG. 19 shows an audio circuit. From the left, an Audio Amp 1ch circuit unit, an Audio Amp 2ch circuit unit, and a switching power supply circuit are surrounded by a thick dashed line.
[0102]
In each circuit portion, a circuit surrounded by a solid line is formed as a semiconductor device. First, in the Audio Amp 1ch circuit portion, three types of semiconductor devices and two semiconductor devices integrated with the 2ch circuit portion are prepared.
[0103]
As shown in FIG. 19, in the first semiconductor device 30A, a current mirror circuit composed of TR1 and TR2 and a differential circuit composed of TR3 and TR4 are integrally formed. This semiconductor device 30A is shown in FIG. Here, four transistor chips of 0.55 × 0.55 × 0.24 mm are adopted and bonded with Au fine wires. The size of the semiconductor device 30A is 2.9 × 2.9 × 0.5 mm.
[0104]
A contact portion indicated by a dotted line is 0.3 mmφ. The numbers shown in the figure are terminal numbers, and B and E indicate a base and an emitter. The same applies to FIG. 11 and subsequent figures.
[0105]
The second semiconductor device 31A is configured by forming a part of the pre-driver circuit with TR6 and D2 in FIG. The pre-driver circuit is composed of TR6, D2, R3, and R8, and drives the output stages TR9 and TR10. This semiconductor device 31A is shown in FIG. 11, and the diode D2 is formed by using a semiconductor chip in which two TRs are constituted by one chip and using a PN junction between the base and the emitter. Here, D2 is a chip size of 0.75 × 0.75 × 0.145 mm, TR6 is a chip size of 0.55 × 0.55 × 0.24 mm, and the outer shape of the semiconductor device 31A is 2.1 × 2. 5 × 0.5 mm.
[0106]
The third semiconductor device 32A constitutes a differential constant current circuit for allowing a stable current to flow through the differential circuit against fluctuations in the power supply voltage, and is constituted by TR5, TR15, and D1 in FIG. D1 is a constant current bias diode of the differential circuit and the pre-driver circuit. This semiconductor device 32A is shown in FIG. 12, TR5 and TR15 have a size of 0.55 × 0.55 × 0.24 mm, and D1 has a size of 0.75 × 0.75 × 0.145 mm. The external shape of 32A is 2.1 × 3.9 × 0.5 mm.
[0107]
The fourth semiconductor device 33A is the temperature compensation transistor TR8 shown in FIG. 19, and compensates the idling current against the temperature fluctuation of the mounting board. This TR8 is composed of the one-chip semiconductor element (0.75 × 0.75 × 0.145) shown in FIG. When this is formed as the semiconductor device 33A, the outer shape is 2.3 × 1.6 × 0.5 mm.
[0108]
In the fifth semiconductor device 34A, two chips of TR7 of a pre-driver constant current circuit constituted by TR7, R6, and R7 of FIG. 19 and TR17 constituting a pre-driver constant current circuit of an Audio Amp 2ch circuit unit are one package. It has become. As shown in FIG. 14, the semiconductor device 34A is composed of two single transistors (0.55 × 0.55 × 0.24 mm), and the outer shape is 2.3 × 3.4 × 0. .5 mm.
[0109]
Note that the two series of semiconductor devices 34A may be individually configured. In this case, the semiconductor device 35 in which only one chip shown in FIG. 15 is sealed is employed. The external shape of the semiconductor device 35 is 2.3 × 1.6 × 0.5 mm.
[0110]
Further, 30B, 31B, and 33B shown in FIG. 19 are the same circuits as 30A, 31A, and 33A, and thus description thereof is omitted.
[0111]
TR9 and TR10 are output stage power transistors, and R1, C1 and C2 are elements for preventing abnormal oscillation.
On the other hand, the switching power supply circuit section shown on the right side of FIG. 19 is a power supply voltage switching circuit composed of TR41, TR51, R41, R43, R51, R53, and a power supply composed of TR43, TR53, R40, R42, R50, R52. A voltage switching comparator, a high-frequency correction circuit composed of diodes D45, D55, C43, and C53, a rectifying diode composed of diodes D42, D43, D52, and D53, and the like.
[0112]
The sixth semiconductor device 36 is a power supply circuit of FIG. 19 in which diodes D42 and D43 and a Zener diode D45 are formed in one package. A semiconductor chip mounted as a semiconductor device is constituted by a TR chip, and diodes D42 and D43 are constituted by a base-collector PN junction. In FIG. 16, TR and Zener diode surrounded by a dotted line are mounted on one chip, and D45 uses the Zener diode of this element. In addition, in order to compensate for the voltage drop due to the temperature rise of the Zener diode, a TR base-emitter diode incorporated together is used.
The outer shape of the TR with a Zener is 0.6 × 0.6 × 0.24, and the outer shapes of the other TRs are 0.35 × 0.35 × 0.24. And the external shape of the package in which these are sealed is 1.9 × 4.4 × 0.5 mm.
[0113]
The seventh semiconductor device 37 is a power supply circuit of FIG. 19 in which diodes D52 and D53 and a Zener diode D55 are formed in one package. In a semiconductor chip mounted as a semiconductor device, transistors corresponding to D53 and D52 are PNP type, and the mounting form is substantially the same although the structure is slightly different.
The eighth semiconductor device 38 of FIG. 18 is obtained by integrating the circuits of FIGS. 16 and 17 and TR43 and TR53 into one package. Note that the outer shape of the package in which these are sealed is 4 × 5.7 × 0.5 mm. The semiconductor device 38 is mounted as the semiconductor device 53 of FIG.
As described above, this semiconductor device can be configured as a discrete type in which one TR is mounted, or a hybrid IC type in which a plurality of TRs are mounted to form a desired circuit. Here, although only TR is configured, a plurality of elements including IC, LSI, system LSI, and passive elements may be mounted. In the experiment, 5 × 5.7 × 0.5 mm is the maximum, but a larger size may be used. Further, this semiconductor device can be used as a semiconductor device in which a semiconductor element is embedded, and an element can be mounted on the back surface.
The semiconductor device mounted on the mounting substrate 10 is shown in FIG. 3, and the wiring pattern is simplified.
[0114]
FIG. 21 illustrates how much the size is reduced by employing the semiconductor device of the present invention. The photograph shown in the figure is the same magnification, and shows a single SMD employing a lead frame from the left, a composite SMD employing a lead frame, and a semiconductor device of the present invention. A single product SMD is molded with one TR, and a composite TR is molded with two TRs. The semiconductor device of the present invention is the semiconductor device 30A shown in FIG. 10, and four TRs are sealed. As is apparent from the figure, the size of the semiconductor device is only slightly larger than that of the composite SMD including the lead frame, even though the element twice that of the composite SMD is sealed. The semiconductor device 35 of FIG. 15 in which one TR is sealed is shown on the rightmost side. As will be understood, a small and thin semiconductor device can be realized by the present invention, which is most suitable for a portable electronic device.
[0115]
【The invention's effect】
As is apparent from the above description, in the present invention, the back surface of the semiconductor device is covered with an insulating resin, the conductive path on the back surface is recessed, or further protruded, so that the mounting substrate is formed on the back surface of the semiconductor device. The provided wiring can be extended. Therefore, a multi-layer structure can be realized by the conductive path, the fine metal wire, and the wiring on the mounting substrate of the semiconductor device. Therefore, an electronic circuit can be configured without using an expensive multilayer substrate as a mounting substrate. Conventionally, a multilayer substrate of 2, 3, 4... Is sometimes used, but the number of layers can be reduced by employing this semiconductor device.
[0116]
In addition, a thin and lightweight circuit device composed of a semiconductor element, a conductive path, and an insulating resin is used, and the conductive path to which the back surface of the semiconductor element is fixed is exposed from the insulating resin. A hybrid integrated circuit device that can be fixed to the conductive path on the mounting substrate side can be provided.
[0117]
Therefore, the heat of the built-in circuit element can be dissipated to the mounting substrate side, and a thin and lighter hybrid integrated circuit device can be provided. ,
Further, since the side surface of the conductive path has a curved structure, even if the entire circuit device generates heat, the conductive path can be prevented from coming off and warping. In addition, since it has an excellent heat dissipation structure as a hybrid integrated circuit device, it is possible to suppress the temperature rise of the circuit device itself, and to prevent the conduction path from coming off and warping. Therefore, it is possible to improve the reliability of the entire hybrid integrated circuit device on which a thin and light circuit device is mounted.
[0118]
Furthermore, if a metal substrate is employed as the mounting substrate, it is possible to provide a hybrid integrated circuit device that can suppress heat generation of the mounted circuit device and allow a drive current to flow.
[Brief description of the drawings]
FIG. 1 illustrates a semiconductor device of the present invention.
FIG. 2 is a cross-sectional view illustrating a semiconductor device of the present invention.
FIG. 3 is a diagram illustrating a hybrid integrated circuit device on which the semiconductor device is mounted.
FIG. 4 is a diagram illustrating a method for manufacturing a semiconductor device of the present invention.
FIG. 5 is a diagram illustrating a method for manufacturing a semiconductor device of the present invention.
FIG. 6 is a diagram illustrating a method for manufacturing a semiconductor device of the present invention.
FIG. 7 is a diagram illustrating a method for manufacturing a semiconductor device of the present invention.
FIG. 8 is a diagram illustrating a method for manufacturing a semiconductor device of the present invention.
FIG. 9 is a diagram illustrating a method for manufacturing a semiconductor device of the present invention.
FIG. 10 is a diagram illustrating a semiconductor device of the present invention.
FIG. 11 illustrates a semiconductor device of the present invention.
FIG. 12 is a diagram illustrating a semiconductor device of the present invention.
FIG. 13 illustrates a semiconductor device of the present invention.
14 is a diagram illustrating a semiconductor device of the present invention. FIG.
FIG. 15 is a diagram illustrating a semiconductor device of the present invention.
FIG 16 illustrates a semiconductor device of the present invention.
FIG 17 illustrates a semiconductor device of the invention.
18 is a diagram illustrating a semiconductor device of the present invention. FIG.
FIG. 19 is a diagram illustrating an example of a circuit mounted on the hybrid integrated circuit device.
FIG. 20 is a diagram illustrating a conventional hybrid integrated circuit device.
FIG. 21 is a diagram comparing a conventional semiconductor device and a semiconductor device of the present invention.
[Explanation of symbols]
10 Mounting board
21 Conductive pattern
21B wiring
53 Semiconductor device

Claims (9)

表面に複数の電極および配線を有する実装基板上に半導体装置が載置され、前記実装基板の前記電極と前記半導体装置の裏面から露出する導電路とが接続手段を介して電気的に接続された混成集積回路装置において、
前記半導体装置は、複数の導電路と、前記導電路と電気的に接続された半導体チップと、前記半導体チップおよび前記導電路を被覆し、前記導電路の裏面を露出して一体に支持する絶縁性樹脂と、前記導電路の裏面および前記絶縁性樹脂の裏面を選択的に被覆する絶縁被膜とを具備し、
前記導電路の裏面は前記絶縁性樹脂の裏面よりも内側に形成され、前記配線が前記絶縁被膜に被覆された前記導電路と前記実装基板との間に形成された空間を延在し、前記配線と前記導電路とが交差することを特徴とする混成集積回路装置。
A semiconductor device is mounted on a mounting substrate having a plurality of electrodes and wirings on the surface, and the electrodes of the mounting substrate and the conductive paths exposed from the back surface of the semiconductor device are electrically connected via connection means. In a hybrid integrated circuit device ,
The semiconductor device includes a plurality of conductive paths, a semiconductor chip electrically connected to the conductive paths, an insulating covering the semiconductor chip and the conductive paths, and exposing and supporting the back surfaces of the conductive paths integrally. A conductive resin, and an insulating film that selectively covers the back surface of the conductive path and the back surface of the insulating resin,
The back surface of the conductive path is formed inside the back surface of the insulating resin, the wiring extends a space formed between the conductive path covered with the insulating film and the mounting substrate, A hybrid integrated circuit device , wherein wiring and the conductive path intersect .
前記導電路の側面は、湾曲構造で成ることを特徴する請求項1記載の混成集積回路装置。The hybrid integrated circuit device according to claim 1 , wherein a side surface of the conductive path has a curved structure. 前記導電路上には導電被膜が設けられることを特徴とする請求項1記載の混成集積回路装置。The hybrid integrated circuit device according to claim 1, wherein a conductive film is provided on the conductive path. 前記半導体チップの他に能動素子および/または受動素子が、前記導電路と電気的に接続されて内蔵され、前記能動素子および/または前記受動素子も含めて回路が形成されることを特徴する請求項1記載の混成集積回路装置。 Wherein the addition to the active element and / or passive elements of the semiconductor chip, the conductive path electrically incorporated the connected and characterized in that the active element and / or the passive elements also include circuit is formed Item 4. A hybrid integrated circuit device according to Item 1 . 前記導電路はCu、Al、Fe−Ni合金、Cu−Alの積層体、Al−Cu−Alの積層体から成ることを特徴とする請求項1記載の混成集積回路装置。2. The hybrid integrated circuit device according to claim 1 , wherein the conductive path is made of a Cu, Al, Fe—Ni alloy, a Cu—Al laminate, or an Al—Cu—Al laminate. 前記導電被膜は、Ni、Au、AgまたはPdで成り、ひさしが形成されることを特徴とする請求項3記載の混成集積回路装置。4. The hybrid integrated circuit device according to claim 3 , wherein the conductive film is made of Ni, Au, Ag, or Pd, and has an eaves. 前記導電路の導電被膜と前記半導体チップはボンディング細線で接続されることを特徴とする請求項3記載の混成集積回路装置。4. The hybrid integrated circuit device according to claim 3 , wherein the conductive film of the conductive path and the semiconductor chip are connected by a thin bonding wire. 前記接続手段は、ロウ材、導電ボール、導電ペーストまたは異方性導電性樹脂から成ることを特徴とする請求項1記載の混成集積回路装置。2. The hybrid integrated circuit device according to claim 1 , wherein the connecting means is made of a brazing material, a conductive ball, a conductive paste, or an anisotropic conductive resin. 前記導電路は、前記半導体装置側に形成される配線として形成され、前記混成集積回路装置側に設けられた配線とクロスオーバーされることを特徴とする請求項1記載の混成集積回路装置。The hybrid integrated circuit device according to claim 1 , wherein the conductive path is formed as a wiring formed on the semiconductor device side, and crosses over a wiring provided on the hybrid integrated circuit device side.
JP2000172532A 2000-06-08 2000-06-08 Semiconductor device and hybrid integrated circuit device Expired - Fee Related JP3676197B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000172532A JP3676197B2 (en) 2000-06-08 2000-06-08 Semiconductor device and hybrid integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000172532A JP3676197B2 (en) 2000-06-08 2000-06-08 Semiconductor device and hybrid integrated circuit device

Publications (2)

Publication Number Publication Date
JP2001352010A JP2001352010A (en) 2001-12-21
JP3676197B2 true JP3676197B2 (en) 2005-07-27

Family

ID=18674916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000172532A Expired - Fee Related JP3676197B2 (en) 2000-06-08 2000-06-08 Semiconductor device and hybrid integrated circuit device

Country Status (1)

Country Link
JP (1) JP3676197B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5485110B2 (en) * 2010-10-29 2014-05-07 新光電気工業株式会社 WIRING BOARD, MANUFACTURING METHOD THEREOF, AND ELECTRONIC DEVICE
JP2013058739A (en) * 2011-08-17 2013-03-28 Dainippon Printing Co Ltd Optical semiconductor device lead frame, optical semiconductor device lead frame with resin, optical semiconductor device, and optical semiconductor device lead frame manufacturing method

Also Published As

Publication number Publication date
JP2001352010A (en) 2001-12-21

Similar Documents

Publication Publication Date Title
JP3679687B2 (en) Hybrid integrated circuit device
JP3650001B2 (en) Semiconductor device and manufacturing method thereof
KR100347706B1 (en) New molded package having a implantable circuits and manufacturing method thereof
US7405486B2 (en) Circuit device
JP2001257291A (en) Circuit device
JP2001217372A (en) Circuit device and method of manufacturing the same
JP3759572B2 (en) Semiconductor device
JP2001217353A (en) Circuit device and manufacturing method thereof
JP2001274312A (en) Semiconductor device and its manufacturing method
JP2002026186A (en) Semiconductor device
JP3676197B2 (en) Semiconductor device and hybrid integrated circuit device
JP3574025B2 (en) Circuit device and method of manufacturing the same
JP2003046054A (en) Planar member, lead frame, and method for manufacturing semiconductor device
JP3634709B2 (en) Semiconductor module
JP4187725B2 (en) Hybrid integrated circuit device
JP3778783B2 (en) Circuit device and manufacturing method thereof
JP3869633B2 (en) Manufacturing method of semiconductor device
JP3691328B2 (en) Circuit device and circuit module
JP2001274290A (en) Circuit device
JP2005175509A (en) Circuit arrangement
JP4036603B2 (en) Semiconductor device and manufacturing method thereof
JP2002057173A (en) Manufacturing method of circuit device
JP2003100984A (en) Circuit module
JP4393503B2 (en) Semiconductor device
JP2002026180A (en) Method for manufacturing circuit device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050427

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080513

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100513

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120513

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130513

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130513

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees