JP3675550B2 - Full circle sintered oil impregnated bearing and compression molding jig for the bearing - Google Patents

Full circle sintered oil impregnated bearing and compression molding jig for the bearing Download PDF

Info

Publication number
JP3675550B2
JP3675550B2 JP01750896A JP1750896A JP3675550B2 JP 3675550 B2 JP3675550 B2 JP 3675550B2 JP 01750896 A JP01750896 A JP 01750896A JP 1750896 A JP1750896 A JP 1750896A JP 3675550 B2 JP3675550 B2 JP 3675550B2
Authority
JP
Japan
Prior art keywords
bearing
oil
sintered oil
shaft
impregnated bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01750896A
Other languages
Japanese (ja)
Other versions
JPH09210067A (en
Inventor
保夫 松川
晴夫 井口
多喜男 佃
Original Assignee
日本科学冶金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本科学冶金株式会社 filed Critical 日本科学冶金株式会社
Priority to JP01750896A priority Critical patent/JP3675550B2/en
Publication of JPH09210067A publication Critical patent/JPH09210067A/en
Application granted granted Critical
Publication of JP3675550B2 publication Critical patent/JP3675550B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2300/00Application independent of particular apparatuses
    • F16C2300/30Application independent of particular apparatuses related to direction with respect to gravity
    • F16C2300/34Vertical, e.g. bearings for supporting a vertical shaft

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、焼結含油軸受に関し、更に詳しくは、モーターの軸受として使用される真円焼結含油軸受および該軸受の圧縮成形用治具に関する。
【0002】
【従来の技術】
従来の真円焼結含油軸受においては、気孔を多くし油を体積率20%〜25%でしみ込ませるとともに、気孔内にしみ込ませた油が真円焼結含油軸受の自己給油作用により出やすいように気孔を大きくしており、その為に真円焼結含油軸受を低密度で成形している。
【0003】
【発明が解決しようとする課題】
従来の真円焼結含油軸受にあっては、低密度で成形し、しみ込ませる油の量を多くし、多くの気孔から出る油を自己給油作用で潤滑は出来ても低密度である為、軸受摩耗による寿命に問題があった。更に、真円焼結含油軸受とシャフトのクリアランスを4μm程度に小さくすると真円焼結含油軸受の自己給油作用だけでは円滑な潤滑が出来なかった。
【0004】
本発明は、従来技術の有するこのような問題点に鑑みてなされたものであり、潤滑を円滑に行うことができるとともに、寿命の長い真円焼結含油軸受と該軸受の圧縮成形に使用される治具を提供することを目的としている。
【0005】
【課題を解決するための手段】
上記目的を達成するために、本発明のうちで請求項1に記載の発明は、軸孔に遊挿されたシャフトを支持する真円焼結含油軸受において、軸受の軸方向中心及びその近傍に真円部を形成するとともに、該真円部に少なくとも二つの凹部を形成し、上記真円部の軸方向両側に上記真円部より高密度の全周真円部を形成することにより、軸受の自己給油作用によりしみ出た油を上記凹部に保持させるようにしたことを特徴とする。
【0006】
また、請求項2に記載の発明は、上記凹部の少なくとも一部を上記シャフトの回転方向に楔状に形成して動圧を発生させることにより潤滑効果を高めたことを特徴とする。
【0007】
さらに、請求項3に記載の発明は、上記凹部を軸心に対し所定角度傾斜させ、動圧を発生させて潤滑効果を高めたことを特徴とする。
【0008】
また、請求項4に記載の発明は、シャフトが遊挿される軸孔を有する真円焼結含油軸受の製造方法であって、(a)軸方向に一体的に形成された大径部と中間部と小径部とを有し、上記中間部には凸部と凹部とが円周方向に等間隔に形成され、かつ、上記凸部の外径が上記大径部の外径より小さく設定される一方、上記凹部の外径が上記小径部の外径より大きく設定された治具を、円筒状の内面を有するダイと同心状に配置し、(b)上記治具と上記ダイとの間に粉末材料を充填し、(c)充填した粉末材料を圧縮成形して所定形状の圧縮成形体を製作し、(d)上記圧縮成形体を焼結し、(e)円筒状のコアロッドを小径内径部と大径内径部とを有するダイと同心状に配置して上記コアロッドに焼結後の圧縮成形体を挿入して再加圧することにより、軸方向中心及びその近傍に真円部を形成し、該真円部に少なくとも二つの凹部を形成するとともに、上記真円部の軸方向両側に上記真円部より高密度の全周真円部を形成するようにしたことを特徴とする。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態について、図面を参照しながら説明する。
図1及び図2に示されるように、本発明の第一実施形態にかかる真円焼結含油軸受2(以下、単に軸受と称する)は、例えばモーター(図示せず)のシャフト4が遊挿される軸孔2aを有するとともに、上端部6と、下端部8と、上端部6及び下端部8に挟まれた中央部10とを有している。
【0013】
上端部6と下端部8は、その内径が全周にわたって真円となるよう形成される一方、中央部10には、少なくとも二つ(図2においては六つ)の軸方向に延びる凹部12が円周方向に等間隔に形成されている。この凹部12は、5μm〜100μm程度の深さを有し、凹部12の容積の和が軸受2にしみ込んでいる油の体積の10%以下となるよう設定されている。尚、中央部10の凹部12以外の部分14の内径は、真円となるよう形成されている。
【0014】
上記構成において、シャフト4が回転すると、軸受2の自己給油作用によりシャフト4と軸受2のクリアランス部16に油18が給油される。凹部12には、多くの気孔が形成されているので、給油が促進され凹部12に油18が溜まるが、凹部12は中央部10のみに形成されており、上下端部6,8は全周真円部となっているので、凹部12に溜まった油18は凹部12内に確実に保持され円滑な潤滑が可能となる。
【0015】
図3は上記真円焼結含油軸受2の変形例である真円動圧焼結含油軸受を示しており、中央真円部14に複数(少なくとも二つ)の楔状凹部12aを等間隔に形成したものである。
【0016】
図1及び図2に示される凹部12は円周方向において大略同一の深さであったが、図3の楔状凹部12aは、シャフト4の回転方向に沿ってその深さが徐々に減少しており、真円部14から最も深い部分の深さが5μm〜50μm程度に設定されるとともに、凹部12aの容積の和が軸受2にしみ込んでいる油の体積の10%以下となるよう設定されている。
【0017】
上記構成において、シャフト4の回転に伴い、油18は凹部12a内に保持されるとともに、凹部12aが回転方向に対して楔状に形成されていることから、凹部12aに油圧が発生し、シャフト4の回転力により動圧となり、シャフト4とのクリアランスが4μm程度と小さい真円部14に油が供給され円滑な潤滑が可能となる。
【0018】
図4、図5及び図6は、上記真円動圧焼結含油軸受の更に別の変形例を示している。
図4に示される凹部12bは、図3に示される凹部12aと同様楔状に形成されているが、図3の凹部12aが平坦な底面を有しているのに対し、図4の凹部12bの底面は、シャフト4の回転方向に沿って円弧状に形成されている。また、図5に示される凹部12cは、台形状断面を有し、シャフト4の回転方向に沿って凹部12cの一部が楔状に形成されている。更に、図6に示される凹部12dは、二等辺三角形の断面形状を有しており、凹部12dの両側が楔状に形成されているので、シャフト4はいずれの方向にも回転可能である。
【0019】
図7及び図8は、本発明の第二実施形態にかかる真円動圧焼結含油軸受20を示している。
軸受20は、例えばモーター(図示せず)のシャフト4が遊挿される大略円筒状の軸孔20aを有するとともに、軸孔20aの内面には、軸心に対し所定角度傾斜した複数(少なくとも二つ)の凹部22が等間隔に形成され、凹部22以外の部分24の内径は、真円となるよう形成されている。
【0020】
凹部22は、5μm〜100μm程度の深さを有し、凹部22の容積の和が軸受20にしみ込んでいる油の体積の10%以下となるよう設定されている。
【0021】
上記構成において、シャフト4の回転に伴い、油は凹部22内に保持されるとともに、凹部22が回転方向に対しある角度をもって、あるいは、ねじれた形状に形成されていることから、凹部22に油圧が発生し、シャフト4の回転力により動圧となり、シャフト4とのクリアランスが4μm程度と小さい真円部24に油が供給され円滑な潤滑が可能となる。
【0022】
当然のことながら、図9に示されるように、凹部22を、図7及び図8の傾斜方向とは逆方向に傾斜させることもできる。
【0023】
次に、本発明にかかる真円焼結含油軸受の製造工程を図1の軸受2を例にとり説明する。
軸受2の製造に際し、粉末材料を圧縮成形して所定形状の成形体がまず製作されるが、図10及び図11は、この粉末圧縮成形において軸受2の内径を決めるコアロッド26を示している。
【0024】
コアロッド26は、軸方向に一体的に形成された大径部26aと、複数の凹凸が形成された中間部26bと、小径部26cとを有し、中間部26bには、軸受2の凹部12に対応する凸部26dと、軸受2の中央真円部14に対応する凹部26eとが円周方向に等間隔に形成されている。凸部26dの外径は大径部26aの外径より僅かに小さく設定される一方、凹部26eの外径は小径部26cの外径より5μm〜20μm程度大きく設定されている。
【0025】
図12に示されるように、上記コアロッド26を、円筒状の内面を有するダイ28と同心状に配置するとともに、上下パンチ30,32との間に所定材料の粉末34を充填した後、圧縮成形することにより、図13及び図14に示される圧縮成形体36が製作される。
【0026】
このようにして製作された圧縮成形体36は、上部に小径の真円部36aと、中央部に油を保持する凹部36bと上部径より5μm〜20μm大きい凸部36cと、下部に中央凹部36bより大きい真円部36dとを有している。
【0027】
次に、圧縮成形体36を焼結した後、図15に示されるように再加圧する。この再加圧工程で軸受2の外径を決めるダイ38は、図15に示されるように、下部38aの内径を上部38bの内径より0.1mm〜0.3mm小さく製作されている。このダイ38の軸方向中央に、円筒状の(真円で製作された)再加圧コアロッド40を同心状に配置するとともに、コアロッド40に圧縮成形体36を挿入し上下パンチ42,44により再加圧する。
【0028】
図16及び図17は、上記工程で得られた再加圧体46を示しており、上部真円部46aと下部真円部46bは高密度で気孔が少なくなる一方、中央凸部46cは上下真円部46a,46bと同一径となるが、粉末圧縮成形時に5μm〜20μm大きく形成されていることから上下真円部46a,46bより気孔が多いものとなる。また、凹部46dは再加圧時、再加圧コアロッド40に圧接されていないので焼結体の表面がそのまま維持され、気孔が多い。
【0029】
その後、再加圧体46は油に浸漬され気孔内に油をしみ込ませて製品(図1の軸受2)とする。
【0030】
尚、軸受中央部に形成される凹部は、その容積が軸受にしみ込んでいる油の体積の10%以下となるよう設定されている。
【0031】
上記したように、本発明にかかる真円焼結含油軸受は、上下真円部を標準密度あるいはそれ以上の高密度で成形することで、従来に比べ気孔が少なくなり油が体積率20%〜15%となり、気孔が小さく油が出にくくなっても、軸受中央部に設けた二つ以上の凹部に自己給油作用によりしみ出た油を保持することで円滑な潤滑が維持され、低密度に起因する軸受摩耗が改善できる。
【0032】
更に、軸受とシャフトのクリアランスが4μm程度に小さくなり、真円焼結含油軸受の自己給油作用だけでは円滑な潤滑が出来ないという課題に対しては、真円焼結含油軸受の中央部に設けた二つ以上の凹部を楔状あるいは軸心に対し所定角度傾斜させることに動圧を発生させ、真円動圧焼結含油軸受として潤滑効果を高めた。
【0033】
図18、図19及び図20は、従来の真円焼結含油軸受と、従来の真円焼結含油軸受であってその内面に複数の凸部を有する軸受と、本発明にかかる真円焼結含油軸受の各々に対し複数のサンプルを製作し、その軸ロス変化率(摩擦係数の変化率)を調べた結果を示すグラフである。
【0034】
このグラフからわかるように、従来の真円軸受あるいは軸受内面に複数の凸部を有する従来の真円軸受にあっては、それぞれ4000時間あるいは10000時間を超えると軸ロス変化率が急激に上昇するのに対し、本発明にかかる複数の凹部を有する真円軸受にあっては、30000時間を超えても軸ロス変化率はあまり変動せず、良好な潤滑効果が得られた。
【0035】
【発明の効果】
本発明は、以上説明したような形態で実施され、以下に記載されるような効果を奏する。
本発明のうちで請求項1に記載の発明によれば、軸受の軸方向中心近傍に設けた真円部に少なくとも二つの凹部を形成したので、軸受の自己給油作用によりしみ出た油を上記凹部に保持させることができ、軸受とシャフトとのクリアランスが4μm程度と小さくても円滑な潤滑が可能となる。
【0037】
また、上記真円部の軸方向両側に真円部より高密度の全周真円部を形成したので、凹部に溜まった油の流失が全周真円部で防止されるとともに耐摩耗性が向上し、寿命の長い軸受を提供することができる。また、シャフトの回転が止まっても油は流失せず毛細血管作用により軸受の元の気孔内に吸収されるので、油の損失がなく円滑な潤滑が永続して行われる。
【0038】
また、請求項に記載の発明によれば、上記凹部の少なくとも一部をシャフトの回転方向に楔状に形成したので、凹部の油はシャフトの回転力により凹部から真円部に移動し、凹部の楔形状により油圧が発生しシャフトの回転力により動圧となる。その結果、クリアランスが4μm程度の小さな真円部へ油を潤滑させるので、真円動圧焼結含油軸受として潤滑効果を高めることができる。
【0039】
また、請求項に記載の発明によれば、軸受の軸方向中心近傍に設けた真円部に、軸心に対し所定角度傾斜した少なくとも二つの凹部を形成したので、軸受の自己給油作用によりしみ出た油は上記凹部に保持されるとともに、保持された油はシャフトの回転力により凹部から真円部に移動し、凹部のねじれ形状により油圧が発生しシャフトの回転力により動圧となる。その結果、クリアランスが4μm程度の小さな真円部へ油を潤滑させるので、請求項に記載の発明同様、真円動圧焼結含油軸受として潤滑効果を高めることができる。
【0041】
また、請求項に記載の発明によれば、軸方向に一体的に形成された大径部と中間部と小径部とを有し、中間部には凸部と凹部とが円周方向に等間隔に形成され、かつ、凸部の外径が大径部の外径より小さく設定される一方、凹部の外径が小径部の外径より大きく設定された治具を、円筒状の内面を有するダイと同心状に配置し、治具とダイとの間に粉末材料を充填し、圧縮成形して所定形状の圧縮成形体を製作するようにしたので、粉末圧縮成形における軸受の内径を容易に決定することができる。
【図面の簡単な説明】
【図1】 本発明の第一実施形態にかかる真円焼結含油軸受の縦断面図である。
【図2】 図1における線II−IIに沿った断面図である。
【図3】 図1の軸受の変形例である真円動圧焼結含油軸受の図2と同様の断面図であって、特に楔状凹部を示している。
【図4】 図3の真円動圧焼結含油軸受の別の変形例を示す断面図である。
【図5】 図3の真円動圧焼結含油軸受の更に別の変形例を示す断面図である。
【図6】 図3の真円動圧焼結含油軸受の更に別の変形例を示す断面図である。
【図7】 図1の軸受の変形例である真円動圧焼結含油軸受の図2と同様の断面図であって、特にねじれ形状を有する凹部を示している。
【図8】 図7における線VIII−VIIIに沿った断面図である。
【図9】 図7の軸受の変形例を示す図8と同様の断面図である。
【図10】 図1の軸受の粉末圧縮成形において使用されるコアロッドの正面図である。
【図11】 図10のコアロッドの平面図である。
【図12】 粉末圧縮成形工程を示す縦断面図である。
【図13】 粉末圧縮成形工程で得られた成形体の縦断面図である。
【図14】 図13の成形体の底面図である。
【図15】 再加圧工程を示す縦断面図である。
【図16】 再加圧工程で得られた再加圧体の縦断面図である。
【図17】 図16における線XVII−XVIIに沿った断面図である。
【図18】 従来の真円軸受の軸ロス変化率を示すグラフである。
【図19】 従来の真円軸受であってその内面に複数の凸部を有する軸受の軸ロス変化率を示すグラフである。
【図20】 本発明にかかる真円軸受の軸ロス変化率を示すグラフである。
【符号の説明】
2,20 真円焼結含油軸受
4 シャフト
6 上端部
8 下端部
10 中央部
12,22 凹部
14,24 中央真円部
16 クリアランス部
26,40 コアロッド
28,38 ダイ
30,42 上パンチ
32,44 下パンチ
34 材料粉末
36 圧縮成形体
46 再加圧体
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sintered oil-impregnated bearing, and more particularly to a perfect circle sintered oil-impregnated bearing used as a motor bearing and a compression molding jig for the bearing.
[0002]
[Prior art]
In a conventional round-sintered oil-impregnated bearing, the pores are increased and the oil is soaked in a volume ratio of 20% to 25%, and the oil soaked in the pores is easily generated by the self-lubricating action of the true-circle sintered oil-impregnated bearing. Thus, the pores are enlarged, and for this purpose, a perfect circle sintered oil-impregnated bearing is molded at a low density.
[0003]
[Problems to be solved by the invention]
In the conventional round-sintered oil-impregnated bearings, the amount of oil that is molded and soaked at low density is increased, and the oil that comes out of many pores can be lubricated by self-lubricating action, but it is low density. There was a problem in the service life due to bearing wear. Further, when the clearance between the true circle sintered oil-impregnated bearing and the shaft was reduced to about 4 μm, smooth lubrication could not be achieved only by the self-lubricating action of the true circle sintered oil-impregnated bearing.
[0004]
The present invention has been made in view of the above-mentioned problems of the prior art, and can be used for lubrication and a long-life, completely-sintered oil-impregnated bearing and compression molding of the bearing. The purpose is to provide a jig.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the invention described in claim 1 of the present invention is a perfectly circular sintered oil-impregnated bearing that supports a shaft loosely inserted into an axial hole. A bearing is formed by forming a perfect circle part, forming at least two recesses in the true circle part, and forming a full circumference perfect circle part having a higher density than the perfect circle part on both sides in the axial direction of the true circle part. The oil exuded by the self-oiling action is held in the recess.
[0006]
The invention according to claim 2 is characterized in that at least a part of the concave portion is formed in a wedge shape in the rotational direction of the shaft to generate a dynamic pressure, thereby enhancing a lubricating effect .
[0007]
Furthermore, the invention described in claim 3 is characterized in that the concave portion is inclined at a predetermined angle with respect to the shaft center to generate a dynamic pressure to enhance a lubricating effect .
[0008]
The invention described in claim 4 is a method of manufacturing a perfect circle sintered oil-impregnated bearing having an axial hole into which a shaft is loosely inserted, and (a) a large diameter portion integrally formed in the axial direction and an intermediate portion A convex portion and a concave portion are formed at equal intervals in the circumferential direction, and the outer diameter of the convex portion is set smaller than the outer diameter of the large diameter portion. On the other hand, a jig in which the outer diameter of the concave portion is set larger than the outer diameter of the small diameter portion is disposed concentrically with a die having a cylindrical inner surface, and (b) between the jig and the die. (C) The molded powder material is compression-molded to produce a compression-molded body having a predetermined shape, (d) the compression-molded body is sintered, and (e) the cylindrical core rod has a small diameter. It is arranged concentrically with a die having an inner diameter portion and a larger diameter inner diameter portion, and the compression molded body after sintering is inserted into the core rod and repressurized. Thus, a perfect circle is formed at the axial center and the vicinity thereof, and at least two recesses are formed in the true circle, and at the both sides in the axial direction of the true circle, the whole circumference true circle is denser than the true circle. It is characterized by forming a circular part .
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
As shown in FIGS. 1 and 2, a perfect circle sintered oil-impregnated bearing 2 (hereinafter simply referred to as a bearing) according to the first embodiment of the present invention includes a shaft 4 of a motor (not shown), for example. The upper end 6, the lower end 8, and the central portion 10 sandwiched between the upper end 6 and the lower end 8 are provided.
[0013]
The upper end portion 6 and the lower end portion 8 are formed so that the inner diameter is a perfect circle over the entire circumference, while the central portion 10 has at least two (six in FIG. 2) axially extending recesses 12. It is formed at equal intervals in the circumferential direction. The recess 12 has a depth of about 5 μm to 100 μm, and is set so that the sum of the volumes of the recess 12 is 10% or less of the volume of oil that has soaked into the bearing 2. Note that the inner diameter of the portion 14 other than the concave portion 12 of the central portion 10 is formed to be a perfect circle.
[0014]
In the above configuration, when the shaft 4 rotates, the oil 18 is supplied to the clearance portion 16 between the shaft 4 and the bearing 2 by the self-oiling action of the bearing 2. Since many pores are formed in the recess 12, oil supply is promoted and oil 18 is accumulated in the recess 12. However, the recess 12 is formed only in the central portion 10, and the upper and lower end portions 6, 8 are all around the periphery. Since it is a perfect circle part, the oil 18 collected in the recess 12 is securely held in the recess 12 and smooth lubrication becomes possible.
[0015]
FIG. 3 shows a true circular dynamic pressure sintered oil-impregnated bearing, which is a modification of the perfect circle sintered oil-impregnated bearing 2, and a plurality of (at least two) wedge-shaped recesses 12 a are formed at equal intervals in the central true circle portion 14. It is what.
[0016]
The recesses 12 shown in FIGS. 1 and 2 have substantially the same depth in the circumferential direction, but the wedge-shaped recesses 12a in FIG. 3 gradually decrease in depth along the rotation direction of the shaft 4. In addition, the depth of the deepest part from the perfect circle part 14 is set to about 5 μm to 50 μm, and the sum of the volumes of the recesses 12 a is set to be 10% or less of the volume of the oil soaked in the bearing 2. Yes.
[0017]
In the above configuration, with the rotation of the shaft 4, the oil 18 is held in the recess 12 a and the recess 12 a is formed in a wedge shape with respect to the rotation direction. Due to the rotational force, the oil is supplied to the round part 14 having a clearance of about 4 μm as small as 4 μm and smooth lubrication is possible.
[0018]
4, 5 and 6 show still another modification of the above-mentioned perfectly circular dynamic pressure sintered oil-impregnated bearing.
The recess 12b shown in FIG. 4 is formed in a wedge shape like the recess 12a shown in FIG. 3, but the recess 12a in FIG. 3 has a flat bottom surface, whereas the recess 12b in FIG. The bottom surface is formed in an arc shape along the rotation direction of the shaft 4. 5 has a trapezoidal cross section, and a part of the recess 12c is formed in a wedge shape along the rotation direction of the shaft 4. As shown in FIG. Furthermore, the recess 12d shown in FIG. 6 has an isosceles triangular cross-sectional shape, and both sides of the recess 12d are formed in a wedge shape, so that the shaft 4 can rotate in any direction.
[0019]
7 and 8 show a true circular dynamic pressure sintered oil-impregnated bearing 20 according to the second embodiment of the present invention.
The bearing 20 has a substantially cylindrical shaft hole 20a into which the shaft 4 of a motor (not shown), for example, is loosely inserted, and a plurality of (at least two) inclined inner surfaces of the shaft hole 20a at a predetermined angle with respect to the shaft center. ) Recesses 22 are formed at equal intervals, and the inner diameter of the portion 24 other than the recesses 22 is formed to be a perfect circle.
[0020]
The concave portion 22 has a depth of about 5 μm to 100 μm, and is set so that the sum of the volume of the concave portion 22 is 10% or less of the volume of oil that has soaked into the bearing 20.
[0021]
In the above configuration, the oil is held in the recess 22 as the shaft 4 rotates, and the recess 22 is formed at a certain angle with respect to the rotation direction or in a twisted shape. Is generated by the rotational force of the shaft 4, and oil is supplied to the round part 24 having a clearance of about 4 μm as small as 4 μm to enable smooth lubrication.
[0022]
As a matter of course, as shown in FIG. 9, the recess 22 can be inclined in a direction opposite to the inclination direction of FIGS. 7 and 8.
[0023]
Next, the manufacturing process of the perfect circle sintered oil-impregnated bearing according to the present invention will be described taking the bearing 2 of FIG. 1 as an example.
When the bearing 2 is manufactured, a powder material is compression molded to produce a molded body having a predetermined shape. FIGS. 10 and 11 show a core rod 26 that determines the inner diameter of the bearing 2 in this powder compression molding.
[0024]
The core rod 26 includes a large-diameter portion 26a formed integrally in the axial direction, an intermediate portion 26b formed with a plurality of irregularities, and a small-diameter portion 26c, and the intermediate portion 26b includes the recess 12 of the bearing 2. And a recess 26e corresponding to the central perfect circle part 14 of the bearing 2 are formed at equal intervals in the circumferential direction. The outer diameter of the convex portion 26d is set to be slightly smaller than the outer diameter of the large diameter portion 26a, while the outer diameter of the concave portion 26e is set to be about 5 μm to 20 μm larger than the outer diameter of the small diameter portion 26c.
[0025]
As shown in FIG. 12, the core rod 26 is arranged concentrically with a die 28 having a cylindrical inner surface, and a powder 34 of a predetermined material is filled between the upper and lower punches 30 and 32, and then compression molding is performed. Thus, the compression molded body 36 shown in FIGS. 13 and 14 is manufactured.
[0026]
The compression molded body 36 manufactured in this way has a small circular part 36a at the upper part, a concave part 36b for retaining oil at the central part, a convex part 36c larger than the upper diameter by 5 μm to 20 μm, and a central concave part 36b at the lower part. It has a larger perfect circle part 36d.
[0027]
Next, after the compression-molded body 36 is sintered, it is re-pressurized as shown in FIG. As shown in FIG. 15, the die 38 that determines the outer diameter of the bearing 2 in this re-pressurization step is manufactured such that the inner diameter of the lower portion 38a is 0.1 mm to 0.3 mm smaller than the inner diameter of the upper portion 38b. At the center of the die 38 in the axial direction, a cylindrical repressurizing core rod 40 (concentrated in a perfect circle) is concentrically disposed, and a compression molded body 36 is inserted into the core rod 40 and re-engaged by upper and lower punches 42 and 44. Pressurize.
[0028]
FIGS. 16 and 17 show the re-pressurized body 46 obtained in the above process. The upper perfect circle part 46a and the lower true circle part 46b have high density and fewer pores, while the central convex part 46c Although it has the same diameter as the perfect circle portions 46a and 46b, it has a larger number of pores than the upper and lower perfect circle portions 46a and 46b because it is formed larger by 5 to 20 μm during powder compression molding. Moreover, since the recessed part 46d is not press-contacted to the repressurization core rod 40 at the time of repressurization, the surface of the sintered body is maintained as it is and there are many pores.
[0029]
Thereafter, the re-pressurizing body 46 is immersed in oil and soaked in the pores to obtain a product (bearing 2 in FIG. 1).
[0030]
In addition, the recessed part formed in a bearing center part is set so that the volume may be 10% or less of the volume of the oil which has soaked into the bearing.
[0031]
As described above, the perfect circle sintered oil-impregnated bearing according to the present invention is formed by molding the upper and lower perfect circle portions at a standard density or higher density so that the number of pores is smaller than conventional and the oil has a volume ratio of 20% to Even if the pores are small and it is difficult for oil to come out, smooth lubrication is maintained by retaining the oil that has exuded by self-lubricating action in two or more recesses provided in the center of the bearing, resulting in low density. The resulting bearing wear can be improved.
[0032]
Furthermore, the clearance between the bearing and the shaft is reduced to about 4 μm, and the problem that smooth lubrication cannot be achieved only by the self-lubricating action of the true circle sintered oil-impregnated bearing is provided in the center of the true circle sintered oil-impregnated bearing. In addition, dynamic pressure was generated by inclining two or more concave portions at a predetermined angle with respect to the wedge shape or the shaft center, and the lubrication effect was enhanced as a true circular dynamic pressure sintered oil-impregnated bearing.
[0033]
18, 19 and 20 show a conventional perfect circle sintered oil impregnated bearing, a conventional perfect circle sintered oil impregnated bearing having a plurality of convex portions on the inner surface thereof, It is a graph which shows the result of having manufactured the several sample with respect to each of an oil impregnation bearing, and having investigated the axial loss change rate (change rate of a friction coefficient).
[0034]
As can be seen from this graph, in the conventional perfect circular bearing or the conventional perfect circular bearing having a plurality of convex portions on the inner surface of the bearing, the rate of change in shaft loss increases rapidly after 4000 hours or 10,000 hours, respectively. On the other hand, in the perfect circle bearing having a plurality of recesses according to the present invention, the rate of change in shaft loss did not fluctuate much even after 30000 hours, and a good lubricating effect was obtained.
[0035]
【The invention's effect】
The present invention is implemented in the form as described above, and has the following effects.
According to the first aspect of the present invention, since at least two concave portions are formed in the perfect circle portion provided in the vicinity of the axial center of the bearing, the oil exuded by the self-lubricating action of the bearing is Even if the clearance between the bearing and the shaft is as small as about 4 μm, smooth lubrication is possible.
[0037]
In addition, since the entire circumference of the perfect circle is formed on both sides in the axial direction of the perfect circle, the oil flow that has accumulated in the recess is prevented from flowing out in the circumference of the circumference and the wear resistance is improved. It is possible to provide a bearing having an improved and long life. Further, even if the rotation of the shaft stops, the oil is not washed away and is absorbed into the original pores of the bearing by the capillary action, so that smooth lubrication is performed without any loss of oil.
[0038]
Further, according to the invention described in claim 2, since at least a part of the upper Symbol recess formed in a wedge shape in the rotational direction of the shaft, the oil of the recess is moved to a true circle portion from the recess by the rotational force of the shaft, Hydraulic pressure is generated by the wedge shape of the recess, and dynamic pressure is generated by the rotational force of the shaft. As a result, since the oil is lubricated to a small round part having a clearance of about 4 μm, the lubrication effect can be enhanced as a true circular dynamic pressure sintered oil-impregnated bearing.
[0039]
According to the invention described in claim 3 , since at least two concave portions inclined at a predetermined angle with respect to the shaft center are formed in the perfect circle portion provided in the vicinity of the axial center of the bearing, the self-lubricating action of the bearing The exuded oil is held in the recess, and the held oil moves from the recess to the perfect circle by the rotational force of the shaft, and hydraulic pressure is generated by the twisted shape of the recess and becomes dynamic pressure by the rotational force of the shaft. . As a result, since the oil is lubricated to a small round part having a clearance of about 4 μm, the lubrication effect can be enhanced as a true circular dynamic pressure sintered oil-impregnated bearing as in the second aspect of the invention.
[0041]
According to the invention described in claim 4 , it has a large-diameter portion, an intermediate portion, and a small-diameter portion that are integrally formed in the axial direction, and the convex portion and the concave portion are arranged in the circumferential direction in the intermediate portion. A jig that is formed at equal intervals and whose outer diameter of the convex portion is set smaller than the outer diameter of the large diameter portion, while the outer diameter of the concave portion is set larger than the outer diameter of the small diameter portion, is a cylindrical inner surface. It is arranged concentrically with a die having a diameter, filled with a powder material between a jig and a die, and compression molded to produce a compression molded body of a predetermined shape. Can be easily determined.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a perfect circle sintered oil impregnated bearing according to a first embodiment of the present invention.
FIG. 2 is a cross-sectional view taken along line II-II in FIG.
3 is a cross-sectional view similar to FIG. 2 of a perfectly dynamic pressure sintered oil-impregnated bearing, which is a modification of the bearing of FIG. 1, and particularly shows a wedge-shaped recess.
4 is a cross-sectional view showing another modification of the true circular dynamic pressure sintered oil-impregnated bearing of FIG. 3. FIG.
5 is a cross-sectional view showing still another modified example of the true circular dynamic pressure sintered oil-impregnated bearing of FIG. 3. FIG.
6 is a cross-sectional view showing still another modified example of the true circular dynamic pressure sintered oil-impregnated bearing of FIG. 3. FIG.
7 is a cross-sectional view similar to FIG. 2 of a true circular dynamic pressure sintered oil-impregnated bearing, which is a modification of the bearing of FIG. 1, and particularly shows a recess having a twisted shape.
8 is a cross-sectional view taken along line VIII-VIII in FIG.
9 is a cross-sectional view similar to FIG. 8, showing a modification of the bearing of FIG.
10 is a front view of a core rod used in powder compression molding of the bearing of FIG. 1. FIG.
11 is a plan view of the core rod of FIG.
FIG. 12 is a longitudinal sectional view showing a powder compression molding process.
FIG. 13 is a longitudinal sectional view of a molded body obtained in a powder compression molding process.
14 is a bottom view of the molded body of FIG. 13;
FIG. 15 is a longitudinal sectional view showing a re-pressurization step.
FIG. 16 is a longitudinal sectional view of a repressurized body obtained in a repressurization step.
17 is a cross-sectional view taken along line XVII-XVII in FIG.
FIG. 18 is a graph showing an axial loss change rate of a conventional perfect circle bearing.
FIG. 19 is a graph showing an axial loss change rate of a conventional perfect circle bearing having a plurality of convex portions on the inner surface thereof.
FIG. 20 is a graph showing the rate of change of shaft loss of a perfect circle bearing according to the present invention.
[Explanation of symbols]
2,20 Perfectly round sintered oil-impregnated bearing 4 Shaft 6 Upper end 8 Lower end 10 Central part 12, 22 Recess 14, 24 Central perfect part 16 Clearance part 26, 40 Core rod 28, 38 Die 30, 42 Upper punch 32, 44 Lower punch 34 Material powder 36 Compression molded body 46 Repressurized body

Claims (4)

軸孔に遊挿されたシャフトを支持する真円焼結含油軸受において、
軸受の軸方向中心及びその近傍に真円部を形成するとともに、該真円部に少なくとも二つの凹部を形成し、上記真円部の軸方向両側に上記真円部より高密度の全周真円部を形成することにより、軸受の自己給油作用によりしみ出た油を上記凹部に保持させるようにしたことを特徴とする真円焼結含油軸受。
In the perfect circle sintered oil-impregnated bearing that supports the shaft loosely inserted in the shaft hole,
A perfect circle portion is formed at and near the axial center of the bearing, and at least two concave portions are formed in the true circle portion. A true-circle sintered oil-impregnated bearing characterized in that the oil exuded by the self-lubricating action of the bearing is held in the concave portion by forming a circular portion .
上記凹部の少なくとも一部を上記シャフトの回転方向に楔状に形成して動圧を発生させることにより潤滑効果を高めたことを特徴とする請求項1に記載の真円焼結含油軸受 2. The true circle sintered oil-impregnated bearing according to claim 1, wherein a lubricating effect is enhanced by forming a dynamic pressure by forming at least a part of the recess in a wedge shape in the rotation direction of the shaft . 上記凹部を軸心に対し所定角度傾斜させ、動圧を発生させて潤滑効果を高めたことを特徴とする請求項1に記載の真円焼結含油軸受 2. The true circle sintered oil-impregnated bearing according to claim 1, wherein the concave portion is inclined at a predetermined angle with respect to the shaft center to generate a dynamic pressure to enhance a lubricating effect . シャフトが遊挿される軸孔を有する真円焼結含油軸受の製造方法であって、A method for producing a perfect circle sintered oil-impregnated bearing having a shaft hole into which a shaft is loosely inserted,
(a)軸方向に一体的に形成された大径部と中間部と小径部とを有し、上記中間部には凸部と凹部とが円周方向に等間隔に形成され、かつ、上記凸部の外径が上記大径部の外径より小さく設定される一方、上記凹部の外径が上記小径部の外径より大きく設定された治具を、円筒状の内面を有するダイと同心状に配置し、(A) having a large-diameter portion, an intermediate portion, and a small-diameter portion that are integrally formed in the axial direction, wherein the convex portion and the concave portion are formed at equal intervals in the circumferential direction; and A jig in which the outer diameter of the convex portion is set smaller than the outer diameter of the large-diameter portion while the outer diameter of the concave portion is set larger than the outer diameter of the small-diameter portion is concentric with a die having a cylindrical inner surface Arranged in a shape,
(b)上記治具と上記ダイとの間に粉末材料を充填し、(B) filling a powder material between the jig and the die;
(c)充填した粉末材料を圧縮成形して所定形状の圧縮成形体を製作し、(C) compression-molding the filled powder material to produce a compression-molded body having a predetermined shape;
(d)上記圧縮成形体を焼結し、(D) sintering the compression molded body,
(e)円筒状のコアロッドを小径内径部と大径内径部とを有するダイと同心状に配置して上記コアロッドに焼結後の圧縮成形体を挿入して再加圧することにより、(E) By placing a cylindrical core rod concentrically with a die having a small-diameter inner diameter portion and a large-diameter inner diameter portion and inserting the sintered compact into the core rod and repressurizing,
軸方向中心及びその近傍に真円部を形成し、該真円部に少なくとも二つの凹部を形成するとともに、上記真円部の軸方向両側に上記真円部より高密度の全周真円部を形成するようにしたことを特徴とする真円焼結含油軸受の製造方法。A perfect circle part is formed in the axial center and the vicinity thereof, and at least two concave parts are formed in the true circle part, and an entire circumference perfect circle part having a higher density than the true circle part on both sides in the axial direction of the true circle part A method of manufacturing a perfect circle sintered oil-impregnated bearing, wherein
JP01750896A 1996-02-02 1996-02-02 Full circle sintered oil impregnated bearing and compression molding jig for the bearing Expired - Fee Related JP3675550B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01750896A JP3675550B2 (en) 1996-02-02 1996-02-02 Full circle sintered oil impregnated bearing and compression molding jig for the bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01750896A JP3675550B2 (en) 1996-02-02 1996-02-02 Full circle sintered oil impregnated bearing and compression molding jig for the bearing

Publications (2)

Publication Number Publication Date
JPH09210067A JPH09210067A (en) 1997-08-12
JP3675550B2 true JP3675550B2 (en) 2005-07-27

Family

ID=11945926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01750896A Expired - Fee Related JP3675550B2 (en) 1996-02-02 1996-02-02 Full circle sintered oil impregnated bearing and compression molding jig for the bearing

Country Status (1)

Country Link
JP (1) JP3675550B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6120188A (en) * 1997-06-19 2000-09-19 Matsushita Electric Industiral Co., Ltd. Bearing unit manufacturing method bearing unit and motor using the bearing unit
JP4655609B2 (en) * 2004-02-05 2011-03-23 日産自動車株式会社 Sliding member
KR20080099763A (en) 2007-05-09 2008-11-13 엘지이노텍 주식회사 Bearing of spindle motor and spindle motor using the same

Also Published As

Publication number Publication date
JPH09210067A (en) 1997-08-12

Similar Documents

Publication Publication Date Title
US6119346A (en) Composite porous bearing and method of making same
JP2000240653A (en) Oil-impregnated sintered bearing, manufacture therefor, and spindle motor for information apparatus
JP3675550B2 (en) Full circle sintered oil impregnated bearing and compression molding jig for the bearing
US7211219B2 (en) Oil-impregnant sintered bearing and manufacturing method thereof, and motor
JP2006183807A (en) Bearing device
JP4573349B2 (en) Manufacturing method of hydrodynamic bearing
US6120188A (en) Bearing unit manufacturing method bearing unit and motor using the bearing unit
JP2006520877A (en) Sintered plain bearing with continuously changing hole compression
JPWO2005124171A1 (en) Sintered bearing, manufacturing method thereof, and motor provided with sintered bearing
JP4448401B2 (en) Composite sintered bearing
JP3607478B2 (en) Dynamic pressure type porous oil-impregnated bearing
JP3856363B2 (en) Manufacturing method of bearing
JPH05180229A (en) Manufacture of oil-impregnated sintered bearing
JP3818626B2 (en) Method for producing sintered oil-impregnated bearing
JP4420339B2 (en) Manufacturing method of hydrodynamic bearing
JP2011021649A (en) Fluid bearing device
JP3698352B2 (en) Manufacturing method of bearing
JP2001032838A (en) Manufacture of bearing
JP2001059106A (en) Manufacture of bearing
JP3797465B2 (en) Manufacturing method of bearing
JP3620817B2 (en) Sintered oil-impregnated bearing
JP2001020956A (en) Manufacture method of bearing
JP3647008B2 (en) Method for producing sintered oil-impregnated bearing
JP2001041244A (en) Manufacture of bearing
JP2001012470A (en) Manufacture of bearing

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050426

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100513

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees