JP4655609B2 - Sliding member - Google Patents

Sliding member Download PDF

Info

Publication number
JP4655609B2
JP4655609B2 JP2004352651A JP2004352651A JP4655609B2 JP 4655609 B2 JP4655609 B2 JP 4655609B2 JP 2004352651 A JP2004352651 A JP 2004352651A JP 2004352651 A JP2004352651 A JP 2004352651A JP 4655609 B2 JP4655609 B2 JP 4655609B2
Authority
JP
Japan
Prior art keywords
sliding
recess
shape
sliding member
length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004352651A
Other languages
Japanese (ja)
Other versions
JP2005249194A (en
Inventor
俊和 南部
芳輝 保田
洋輔 肥塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004352651A priority Critical patent/JP4655609B2/en
Priority to US11/044,047 priority patent/US7270482B2/en
Publication of JP2005249194A publication Critical patent/JP2005249194A/en
Application granted granted Critical
Publication of JP4655609B2 publication Critical patent/JP4655609B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、粘性流体を介して摺動させる摺動部材に関する。   The present invention relates to a sliding member that is slid through a viscous fluid.

従来から、油を始めとする粘性流体を介して摺動させる摺動部材における摩擦を低減するためには、摺動部材の摺動面に微細な窪みや凹部、溝などを形成することが行われている。   Conventionally, in order to reduce friction in a sliding member that is slid through a viscous fluid such as oil, it has been practiced to form fine depressions, recesses, grooves, or the like on the sliding surface of the sliding member. It has been broken.

このような窪み、凹部、溝などを摺動部材に形成する技術は、たとえば、往復摺動を行う内燃機関などに用いられているピストン/ボアの摩擦の低減を目的としている。   The technology for forming such depressions, recesses, grooves, and the like in the sliding member is aimed at reducing the friction of the piston / bore used in, for example, an internal combustion engine that performs reciprocal sliding.

このような従来の技術の一例としては、摩擦を低減させるための摺動部材として、摺動面において、摺動方向に対してその深さを変化させた微細な凹部を形成したものがある(特許文献1参照)。
特開2003−235852号公報
As an example of such a conventional technique, there is a sliding member for reducing friction, in which a sliding surface is formed with a minute recess whose depth is changed with respect to the sliding direction ( Patent Document 1).
JP 2003-235852 A

しかしながら、従来の摺動部材においては、摺動面に形成されている微細な凹部の断面形状に関して言及されたものはない。   However, in the conventional sliding member, there is no mention about the cross-sectional shape of the fine recessed part currently formed in the sliding surface.

たとえば、マスクブラスト処理などを用いて、摺動部に直角に硬質粒子を投射し形成された微細凹部の断面形状は、凹部中央を最深部とするU字型形状となっている。このような微細凹部形状の場合、ある程度の摩擦低減効果が得られるものの、限定的な効果にとどまっており、より一層の摩擦係数の低減が望まれている。   For example, the cross-sectional shape of the fine recess formed by projecting hard particles at a right angle to the sliding portion using a mask blasting process or the like is a U-shape with the center of the recess as the deepest portion. In the case of such a fine recess shape, although a certain degree of friction reduction effect is obtained, the effect is limited, and further reduction of the friction coefficient is desired.

そこで本発明の目的は、摩擦係数の低減効果の高い摺動部材を提供することである。   Accordingly, an object of the present invention is to provide a sliding member having a high effect of reducing the friction coefficient.

上記課題を解決するための本発明は、粘性流体を介在させて摺動させる摺動部材において、前記摺動部材の摺動する2物体間で硬度が高い方の摺動面に設けられた微細な凹部を有し、前記凹部の開口部摺動方向の長さをLとし、前記凹部の開口部摺動方向の一端から前記凹部の最低部位置までの長さをSとして、S/Lが0〜0.3であり、前記摺動面における前記凹部の占有面積率が0.5〜10%であることを特徴とする。 In order to solve the above problems, the present invention provides a sliding member that is slid by interposing a viscous fluid, and is provided on a sliding surface having a higher hardness between two sliding objects of the sliding member. S / L is a length from the one end of the recess in the opening sliding direction to the lowest position of the recess. 0-0.3 der is, occupying area ratio of the recesses in the sliding surface, characterized in that 0.5 to 10%.

本発明によれば、摺動部材の摺動する2物体間で硬度が高い方の摺動面に形成された微細な凹部の形状を、凹部の開口部摺動方向の長さをLとし、前記凹部の開口部摺動方向の一端から前記凹部の最低部位置までの長さをSとして、S/Lが0〜0.3となるようにすることで、摺動部材の摩擦係数が少なくなり、耐磨耗性や耐焼き付き性を向上させることができる。さらに、摺動面における凹部の占有面積率を0.5%以上としたことから、凹部の機能を十分発現できて摩擦係数の低減が十分発現され、また、摺動面における凹部の占有面積率を10%以下としたことから、固体接触の割合が増大せず、摩擦が増大せず、焼き付き性の悪化を抑えることができる。 According to the present invention, the shape of the fine recess formed on the sliding surface having the higher hardness between the two objects sliding on the sliding member is L, and the length of the recess in the opening sliding direction is L, By setting the length from one end of the concave portion in the sliding direction of the concave portion to the lowest position of the concave portion as S, so that S / L is 0 to 0.3, the friction coefficient of the sliding member is reduced. Thus, wear resistance and seizure resistance can be improved. Furthermore, since the occupied area ratio of the recesses on the sliding surface is 0.5% or more, the function of the recesses can be sufficiently expressed, and the reduction of the friction coefficient is sufficiently expressed. Also, the occupied area ratio of the recesses on the sliding surface Therefore, the ratio of solid contact does not increase, friction does not increase, and deterioration of seizure property can be suppressed.

以下、図面を参照して本発明を実施するための最良の形態を説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

図1および2は、本発明を適用した摺動部材の構造を示す図面であり、図1(a)は平面図、図1(b)は図1(a)におけるA−A線に沿う断面図、図1(c)は摺動面の拡大図である。図2は摺動面に形成されている凹部の断面形状の一例を示す断面図である。   1 and 2 are drawings showing the structure of a sliding member to which the present invention is applied. FIG. 1 (a) is a plan view, and FIG. 1 (b) is a cross section taken along the line AA in FIG. 1 (a). FIG. 1C is an enlarged view of the sliding surface. FIG. 2 is a cross-sectional view showing an example of the cross-sectional shape of the recess formed on the sliding surface.

この摺動部材1は、第1部材11と第2部材12よりなり、第1部材11は第2部材12に対して図示U1方向に、第2部材12は第1部材11に対して図示U2方向に相対的に回転する。   The sliding member 1 includes a first member 11 and a second member 12. The first member 11 is illustrated in the U1 direction with respect to the second member 12, and the second member 12 is illustrated U2 with respect to the first member 11. Rotates relative to the direction.

第2部材12の摺動面23には、図1(c)に示すように、微細な凹部21が複数設けられている。なお、図1(c)は摺動面の微細な凹部を概念的に示したものであって実際に図示するような大きさや配置により形成されているものではない。   As shown in FIG. 1C, a plurality of fine concave portions 21 are provided on the sliding surface 23 of the second member 12. FIG. 1C conceptually shows fine concave portions on the sliding surface, and is not formed with a size or arrangement as shown in the drawings.

このような微細な凹部の形状は、図2に示すように、その断面が、凹部21の開口部摺動方向(図示矢印方向)の長さをLとし、凹部21の開口部摺動方向の一端から凹部21の最低部位置までの長さをSとした場合、S/Lが0〜0.3以下、好ましくは0.2以下、より好ましくは0.1以下である。なお、下限はいずれの場合も0である。   As shown in FIG. 2, the shape of such a fine recess is such that the length of the cross section of the recess 21 in the opening sliding direction (arrow direction in the drawing) is L, and the recess 21 has an opening sliding direction. When the length from one end to the lowest position of the recess 21 is S, S / L is 0 to 0.3 or less, preferably 0.2 or less, more preferably 0.1 or less. The lower limit is 0 in all cases.

さらに、この微細な凹部21の形状は、その断面が、凹部内の少なくとも一部の壁面22が摺動面23に直角な線Cに対して0度(すなわち摺動面23と直角)〜30度、好ましくは0〜10度の傾きθを有する。より好ましくは、この壁面22の傾きが摺動面23に対してできる限り直角に近付けることである。   Further, the shape of the fine concave portion 21 is such that the cross section thereof is 0 degree (that is, perpendicular to the sliding surface 23) to 30 degrees with respect to a line C in which at least a part of the wall surface 22 in the concave portion is perpendicular to the sliding surface 23. Degree, preferably 0 to 10 degrees. More preferably, the inclination of the wall surface 22 is as close to a right angle as possible with respect to the sliding surface 23.

これは、S/Lを0.3以下、もしくはこの壁面22の傾きを摺動面23に対して直角に近付けることにより、微細な凹部21による幾何学的な平均油膜厚さの増大によるせん断率の減少に加えて、マイクロ動圧効果が増大して油膜が増大し、摩擦係数が減少できるという優れた効果がもたらされる。   This is because the S / L is 0.3 or less, or the shear rate due to the increase in the geometric average oil film thickness due to the fine recesses 21 by bringing the inclination of the wall surface 22 close to the sliding surface 23 at a right angle. In addition to the reduction of the above, the micro dynamic pressure effect is increased, the oil film is increased, and the excellent effect that the friction coefficient can be reduced is brought about.

このようなS/Lの値、および壁面23の角度は、S/Lが0.3を超えるとまたは30度を超える角度になると、マイクロ動厚効果が十分発現されなくなり、油膜増大効果が減少し、摩擦係数の減少効果が低下するため好ましくない。   When the S / L value and the angle of the wall surface 23 exceed 0.3 or exceed 30 degrees, the micro-dynamic thickness effect is not sufficiently exhibited, and the oil film increasing effect is reduced. However, it is not preferable because the effect of reducing the friction coefficient is lowered.

この凹部の断面形状は、後述する実施例のように、たとえば、直角三角形状、W型形状、矩形状など、好ましくは摺動方向の前端の壁面が摺動面23に対してほぼ直角な形状とする。   The cross-sectional shape of the concave portion is, for example, a right triangle shape, a W shape, a rectangular shape, or the like, as in the embodiments described later, preferably a shape in which the wall surface at the front end in the sliding direction is substantially perpendicular to the sliding surface 23. And

また、凹部21の深さは、凹部21の最低部位置までの深さをt、摺動中の粘性流体膜(通常油膜)の厚さをhとした場合に、その比h/tが0.04〜5となるように形成する。これにより優れた摩擦低減効果を発揮する。上記の比h/tが0.04より小さい場合には、固体接触割合が増大し、耐焼き付き性が悪化するおそれがあり好ましくなく、一方、h/tが5より大きい場合には、摩擦係数低減効果が十分発現されなくなるので好ましくない。   The depth of the concave portion 21 is such that the ratio h / t is 0, where t is the depth to the lowest position of the concave portion 21 and h is the thickness of the viscous fluid film (normal oil film) during sliding. .04-5. This demonstrates an excellent friction reducing effect. When the ratio h / t is smaller than 0.04, the solid contact ratio increases and the seizure resistance may be deteriorated, which is not preferable. On the other hand, when h / t is larger than 5, the coefficient of friction is not preferable. Since the reduction effect is not sufficiently expressed, it is not preferable.

さらに、摺動面23に形成した凹部21の占有面積率(凹部の開口面積の総計/摺動面の全面積)が0.5〜10%とすることが好ましい。これは、占有面積率が0.5%未満の場合には、凹部の機能が十分発現できず、摩擦係数の低減が十分発現されないため好ましくないものであり、一方、占有面積率が10%を超えると固体接触の割合が増大し、摩擦が増大するばかりでなく、焼き付き性も悪化する傾向にあるため好ましくないものである。   Furthermore, it is preferable that the occupation area ratio of the concave portion 21 formed on the sliding surface 23 (the total opening area of the concave portion / the total area of the sliding surface) is 0.5 to 10%. This is not preferable when the occupied area ratio is less than 0.5% because the function of the recess cannot be sufficiently expressed and the reduction of the friction coefficient is not sufficiently expressed. On the other hand, the occupied area ratio is less than 10%. Exceeding this is not preferable because the solid contact ratio increases and friction not only increases but also seizure tends to deteriorate.

さらに、微細な凹部21の摺動面23から見た形状は、摺動方向よりも摺動方向に直交する方向に長い扁平した形状である。そして、その短辺の長さ(摺動方向の長さ)が50〜150μmであり、長辺の長さ(摺動方向に直交する方向の長さ)が短辺の2〜10倍とすることが好ましい。   Furthermore, the shape seen from the sliding surface 23 of the fine recess 21 is a flat shape that is longer in the direction perpendicular to the sliding direction than in the sliding direction. And the length of the short side (length in the sliding direction) is 50 to 150 μm, and the length of the long side (length in the direction perpendicular to the sliding direction) is 2 to 10 times the short side. It is preferable.

このように凹部の開口の大きさを扁平とし、その短辺の長さを50〜150μmとするのは、多くの内燃機関の摺動部品では弾性変形を伴うため実際の接触面積が剛体の場合の投影面積に比べて極めて小さくなるために、150μmより長くなると接触面積に対する凹部の占める割合が増大して、摩擦低減機能が十分に発現されなくなるので好ましくなく、一方、50μmより短い場合には、凹部の深さと凹部の大きさの関係から、動圧効果が十分得られなくなり、摩擦低減効果が十分得られなくなるので好ましくないものである。   The reason why the size of the opening of the concave portion is flattened and the length of the short side is 50 to 150 μm is that when the actual contact area is a rigid body because the sliding parts of many internal combustion engines are accompanied by elastic deformation. Therefore, when the length is longer than 150 μm, the ratio of the concave portion to the contact area increases, and the friction reducing function is not sufficiently exhibited. On the other hand, when the length is shorter than 50 μm, From the relationship between the depth of the recess and the size of the recess, the dynamic pressure effect cannot be sufficiently obtained, and the friction reducing effect cannot be sufficiently obtained, which is not preferable.

また、長辺の長さ(摺動方向に直交する方向の長さ)を短辺の2〜10倍とするのは、2倍未満の場合には、摺動方向に対して凹部の油たまり効果が十分に発揮されず、好ましくない。   In addition, when the length of the long side (the length in the direction orthogonal to the sliding direction) is 2 to 10 times the short side, if it is less than 2 times, the oil pool in the concave portion with respect to the sliding direction. The effect is not sufficiently exhibited, which is not preferable.

一方、実際のエンジン摺動部品では、クランク軸を例に取ると、軸とメタルの投影面積に対して、実際には軸のたわみにより軸の端部に油膜の薄い箇所が存在する。このような接触状態において、凹部の大きさが10倍を超えると、端部の油膜の薄い接触領域に対して凹部がはみ出して存在するため、油膜が薄くなり好ましくないためである。   On the other hand, in an actual engine sliding part, when a crankshaft is taken as an example, there is actually a thin portion of the oil film at the end of the shaft due to the deflection of the shaft relative to the projected area of the shaft and metal. In such a contact state, if the size of the concave portion exceeds 10 times, the concave portion protrudes from the thin contact area of the oil film at the end portion, so that the oil film becomes thin, which is not preferable.

また、このような凹部は、摺動部材の少なくともいずれか一方に形成されていればよいものであるが、たとえば、第1部材11と第2部材12からなる摺動部材の摺動面23における硬度が2つの部材間で異なる場合、硬度が高い方の摺動面に微細な凹部21を形成することが好ましい。これは、硬度の高い方に凹部21を形成することで凹部21の深さの変化が少なくて済み、耐久性に優れた摺動部材となる。   In addition, such a recess is only required to be formed in at least one of the sliding members. For example, in the sliding surface 23 of the sliding member composed of the first member 11 and the second member 12. When the hardness is different between the two members, it is preferable to form fine concave portions 21 on the sliding surface having the higher hardness. This is because the concave portion 21 is formed on the harder side so that the change in the depth of the concave portion 21 is small, and the sliding member is excellent in durability.

このような凹部21は、たとえばエキシマレーザ、塑性加工、マスクブラスト、MRF(マイクロロールフォーミング、微細塑性加工法)などにより形成することができる。なお、摺動部材間に介在させる粘性流体は、特に限定されるものではなく、通常、摺動部材に用いられる、たとえば潤滑油などである。   Such a recess 21 can be formed by, for example, excimer laser, plastic working, mask blasting, MRF (micro roll forming, fine plastic working). In addition, the viscous fluid interposed between sliding members is not specifically limited, For example, it is lubricating oil etc. which are normally used for a sliding member.

次に、上述のように構成された実施の形態に基づいて、実際にさまざまな凹部形状を形成した摺動部材を製作して摩擦係数を求める実験を行った。   Next, based on the embodiment configured as described above, an experiment was performed in which sliding members actually having various concave shapes were manufactured to obtain a friction coefficient.

実験に用いる摺動部材は、図1に示したとおり、第1部材11である外円筒と、第2部材12である内円筒からなる。このような部材に対する試験として、図4に示す内接2円筒試験機を用いた。   As shown in FIG. 1, the sliding member used in the experiment includes an outer cylinder that is the first member 11 and an inner cylinder that is the second member 12. As a test for such a member, an inscribed two-cylinder testing machine shown in FIG. 4 was used.

用いた円筒試験機は、外円筒101として外径φ60の鋼製円筒に内径φ45mmのアルミメタルを圧入したものを用い、一方、内円筒102は外径がφ43、軸方向曲率半径R700mmの鋼鉄(SCM420H鋼)の浸炭焼き入れ焼き戻し材を用いた。そして内筒を軸103で軸支し、矢印W方向に所定のラジアル荷重で外筒101に接触させている。なお、内円筒102および外円筒101の幅はともに20mmである。また、外円筒101および内円筒102にはそれぞれACサーボモータ(不図示)を取り付け独立に回転制御できるようにしている。   The cylindrical testing machine used is an outer cylinder 101 in which an aluminum metal with an inner diameter of 45 mm is press-fitted into a steel cylinder with an outer diameter of φ60, while the inner cylinder 102 has a steel with an outer diameter of φ43 and an axial curvature radius of R700 mm ( SCM420H steel) carburizing and tempering material was used. The inner cylinder is pivotally supported by the shaft 103 and is brought into contact with the outer cylinder 101 in the arrow W direction with a predetermined radial load. The widths of the inner cylinder 102 and the outer cylinder 101 are both 20 mm. An AC servomotor (not shown) is attached to each of the outer cylinder 101 and the inner cylinder 102 so that the rotation can be controlled independently.

そして、5W30の油を入れた油浴105内にこの外円筒102および内円筒102を浸すことで、外円筒102および内円筒102の間に油膜を形成させた。   Then, the outer cylinder 102 and the inner cylinder 102 were immersed in an oil bath 105 containing 5 W 30 of oil to form an oil film between the outer cylinder 102 and the inner cylinder 102.

実験は、ラジアル荷重20kg、油温度80℃、相対滑り速度0.3〜12m/sにおいて、平均速度を0〜2m/sまで変化させ、内円筒軸103に取り付けたトルクセンサにより回転トルクを計測して接線力を算出し、ラジアル荷重で除することにより摩擦係数を求めた。なお、平均速度は内円筒速度をu1、外円筒速度u2とした場合、(u1+u2)/2である。同様に相対滑り速度は、(u1−u2)である。   In the experiment, when the radial load is 20 kg, the oil temperature is 80 ° C., the relative sliding speed is 0.3 to 12 m / s, the average speed is changed from 0 to 2 m / s, and the rotational torque is measured by the torque sensor attached to the inner cylindrical shaft 103. Then, the tangential force was calculated, and the coefficient of friction was obtained by dividing by the radial load. The average speed is (u1 + u2) / 2 when the inner cylinder speed is u1 and the outer cylinder speed u2. Similarly, the relative slip speed is (u1-u2).

(実施例および比較例)
実施例1〜6は、いずれもφ43mmの内円筒表面に本発明を適用した微細な凹部を形成した。一方、比較例1および2には、本発明を適用していない凹部を形成した。これら凹部は、エキシマレーザ、塑性加工、MRF加工、マスクブラスト処理などにより形成した。なお、断面形状が、直角三角形状、矩形形状、2等辺三角形状は、塑性加工を用いたインデンターにより、W形状に関してはエキシマレ−ザ加工により、U字形状に関してはマスクブラスト加工によりそれぞれ作製した。
(Examples and Comparative Examples)
In each of Examples 1 to 6, fine concave portions to which the present invention was applied were formed on the inner cylindrical surface of φ43 mm. On the other hand, in Comparative Examples 1 and 2, a concave portion to which the present invention was not applied was formed. These recesses were formed by excimer laser, plastic processing, MRF processing, mask blasting, or the like. The cross-sectional shapes are a right triangle shape, a rectangular shape, and an isosceles triangle shape, which were produced by an indenter using plastic working, an W shape by excimer laser processing, and a U shape by mask blasting. .

実施例、比較例のいずれも凹部形成後、凹部形状周辺に形成されたエッジ部の盛り上がりを粒径9μmのテープラップフィルムにより除去し、試験に供した。   In each of the examples and comparative examples, after the formation of the recesses, the bulge of the edge portion formed around the recess shape was removed with a tape wrap film having a particle size of 9 μm and subjected to the test.

図3は、各実施例および比較例における凹部形状を示す図面である。なお、図中の矢印は、相対的な摺動方向を示す。   FIG. 3 is a drawing showing the shape of a recess in each example and comparative example. In addition, the arrow in a figure shows a relative sliding direction.

実施例1は、図3(a)に示すように、断面が直角三角形状であり、摺動方向前端の壁面を摺動面に直角な線に対して直角となるようにしている。   In the first embodiment, as shown in FIG. 3A, the cross section is a right triangle, and the wall surface at the front end in the sliding direction is perpendicular to the line perpendicular to the sliding surface.

実施例2は、図2(b)に示すように、断面がW形状であり、摺動方向前端および後端の壁面を摺動面に直角な線に対して直角となるようにしている。   In the second embodiment, as shown in FIG. 2B, the cross section is W-shaped, and the wall surfaces at the front end and the rear end in the sliding direction are perpendicular to the line perpendicular to the sliding surface.

実施例3は、図3(c)に示すように、断面が矩形形状であり、摺動方向前端および後端の壁面を摺動面に直角な線に対して直角となるようにしている。   In the third embodiment, as shown in FIG. 3C, the cross section is rectangular, and the wall surfaces at the front and rear ends in the sliding direction are perpendicular to the line perpendicular to the sliding surface.

実施例4は、図3(a)に示すように、断面が直角三角形状であり、摺動方向前端および後端の壁面を摺動面に直角な線に対して直角となるようにしている(実施例1と大きさ異なる)。   In Example 4, as shown in FIG. 3A, the cross section has a right triangle shape, and the wall surfaces at the front end and the rear end in the sliding direction are perpendicular to the line perpendicular to the sliding surface. (The size is different from Example 1.)

実施例5は、図3(b)に示すように、断面がW形状であり、摺動方向前端および後端の壁面を摺動面に直角な線に対して直角となるようにしている(実施例2と大きさ異なる)。   In Example 5, as shown in FIG. 3B, the cross section is W-shaped, and the wall surfaces at the front and rear ends in the sliding direction are perpendicular to the line perpendicular to the sliding surface ( The size is different from Example 2.)

実施例6は、図3(c)に示すように、断面が矩形形状であり、摺動方向前端および後端の壁面を摺動面に直角な線に対して直角となるようにしている(実施例3と大きさ異なる)。   In Example 6, as shown in FIG. 3C, the cross section is rectangular, and the wall surfaces at the front and rear ends in the sliding direction are perpendicular to the line perpendicular to the sliding surface ( The size is different from Example 3.)

比較例1は、図3(d)に示すように、断面がU字形状で、その壁面は摺動面に直角な線に対して30度を超え、なだらかにカーブする形状となっている。   As shown in FIG. 3 (d), Comparative Example 1 has a U-shaped cross section, and its wall surface has a shape that gently curves over 30 degrees with respect to a line perpendicular to the sliding surface.

比較例2は、図3(e)に示すように、断面がほぼ2等辺三角形状であり、その壁面は全て摺動面に直角な線に対して45度を超えるものとなっている。   As shown in FIG. 3E, the comparative example 2 has a substantially isosceles triangular cross section, and all the wall surfaces exceed 45 degrees with respect to a line perpendicular to the sliding surface.

表1に各実施例および比較例における凹部の大きさ、占有面積率(表中面積率)、深さ、および図3中の断面形状、および実験結果を示す。   Table 1 shows the size of the recess, the occupied area ratio (area ratio in the table), the depth, the cross-sectional shape in FIG. 3, and the experimental results in each example and comparative example.

次に凹部形状におけるS/Lと摩擦係数の関係について実験した結果を示す。図5に実際に制作した凹部の断面形状の計測形状を示し、図6に凹部21を形成した摺動面23の凹部21形成パターンを示す(図5に示した(a)〜(c)の全ての凹部で同じパターンとなるようにした)。   Next, the results of experiments on the relationship between S / L and the friction coefficient in the concave shape are shown. FIG. 5 shows the measurement shape of the cross-sectional shape of the actually produced recess, and FIG. 6 shows the recess 21 formation pattern of the sliding surface 23 in which the recess 21 is formed (of (a) to (c) shown in FIG. 5). All the recesses have the same pattern).

そして、図7に図5に示した各凹部形状におけるS/Lと摩擦係数の減少率(%)の関係を示す。なお、図5に示した凹部断面形状は、図5(a)がS/L=0.5とした凹部(ブラスト加工により制作)、図5(b)がS/L=0.2となるように摺動方向前端壁が摺動面に対して直角な垂線から角度を持たせた凹部(MRF加工により制作)、図5(c)がS/L=約0.1以下となるように、摺動方向前端壁が摺動面に対してほぼ直角の凹部(インデンターによるインデント加工により制作)である。また、図7に示した摩擦係数の減少率はS/L=0.5のときを基準としての減少率である。   FIG. 7 shows the relationship between the S / L and the reduction rate (%) of the friction coefficient in each concave shape shown in FIG. Note that the recess cross-sectional shape shown in FIG. 5 is a recess (produced by blasting) with S / L = 0.5 in FIG. 5A, and S / L = 0.2 in FIG. 5B. As shown in FIG. 5C, the front end wall in the sliding direction has an angle from a perpendicular perpendicular to the sliding surface (produced by MRF processing), so that S / L = about 0.1 or less. The front wall in the sliding direction is a recess (produced by indenting with an indenter) substantially perpendicular to the sliding surface. Further, the reduction rate of the friction coefficient shown in FIG. 7 is a reduction rate based on the case where S / L = 0.5.

Figure 0004655609
Figure 0004655609

まず表1から、本発明を適用した実施例は、いずれも比較例と比べて摩擦係数が低くなっていることがわかる。また、各実施例から、摺動方向前端のみ直角な壁面を有する2等辺三角形状が特に好ましいことがわかる。また、比較例の形状と実施例の形状から、凹部内の壁面が、なだらかな形状(比較例1)よりもより急峻な角度(比較例2および実施例)となる方が、摩擦係数が小さくなる傾向を示していることがわかる。   First, it can be seen from Table 1 that each of the examples to which the present invention is applied has a lower coefficient of friction than the comparative example. Further, from each of the examples, it is understood that an isosceles triangle shape having a wall surface perpendicular to only the front end in the sliding direction is particularly preferable. Further, from the shape of the comparative example and the shape of the example, the friction coefficient is smaller when the wall surface in the recess has a steeper angle (Comparative Example 2 and Example) than the gentle shape (Comparative Example 1). It can be seen that this tendency is shown.

次に図7から、S/Lの値が小さくなるほど、摩擦係数が減少することがわかる。特にS/L=0.3付近でほぼ10%程度の減少率となっており、S/L=0.3で有効な摩擦係数の減少効果があることがわかる。また、S/L=0.2以下では、S/L=0.5〜0.3の間よりも減少率の傾きが大きくなっていて、摩擦係数の減少効果が大きくなっていることがわかる。したがって、S/Lの値は、0.2以下であればより好ましく、さらにS/L=0.1以下ではいっそう好ましいものである。   Next, FIG. 7 shows that the friction coefficient decreases as the value of S / L decreases. In particular, the reduction rate is about 10% near S / L = 0.3, and it can be seen that there is an effective friction coefficient reduction effect at S / L = 0.3. In addition, at S / L = 0.2 or less, it is understood that the slope of the reduction rate is larger than that between S / L = 0.5 to 0.3, and the effect of reducing the friction coefficient is greater. . Therefore, the value of S / L is more preferably 0.2 or less, and further more preferably S / L = 0.1 or less.

このような摺動部材における摩擦係数低減のメカニズムは今のところ明確ではないが、以下のように推論している。すなわち、微細な凹部を摺動方向に形成することで、凹部が存在しない平滑面に対して、凹部の分だけ平均油膜厚さが増大し、平均せん断率が減少している効果に加えて、摺動方向と直交する方向の凹部の壁面を急峻にし、できる限り直角に近付けることで、より多くの油を接触部に流入させることが可能となり、また、凹部による微視的な動圧効果を合わせて発生することで、より広い作動条件で摩擦低減効果を発現しているものと考えている。   The mechanism for reducing the friction coefficient in such a sliding member is not clear at present, but is inferred as follows. That is, by forming fine recesses in the sliding direction, in addition to the effect that the average oil film thickness is increased by the amount of the recesses and the average shear rate is reduced relative to the smooth surface where there are no recesses, By making the wall surface of the recess in the direction perpendicular to the sliding direction steep and as close to a right angle as possible, it becomes possible to allow more oil to flow into the contact portion, and to reduce the microscopic dynamic pressure effect due to the recess. It is considered that the friction reduction effect is expressed under a wider operating condition.

以上のように、本発明を適用することで、油などの粘性流体を介在した少なくとも2物体の摺動部材に関して、少なくとも一方の摺動表面に微細な凹部を形成し、その凹部内の少なくとも一つの壁面を急峻として、できる限り直角に近付けることで、摩擦係数が少なくなり、摺動特性が向上する。また、これにより油膜厚さも厚く維持されるようになって摩擦が低減し、耐磨耗性や耐焼き付き性が向上する。   As described above, by applying the present invention, a fine recess is formed on at least one sliding surface of at least two sliding members with a viscous fluid such as oil interposed therebetween, and at least one in the recess is formed. By making two wall surfaces steep and as close to a right angle as possible, the friction coefficient is reduced and the sliding characteristics are improved. This also keeps the oil film thickness thick, reducing friction and improving wear resistance and seizure resistance.

本発明は、内燃機関の摺動部分、たとえば、内燃機関(エンジン)のピストン/ボアに好適である。   The present invention is suitable for a sliding portion of an internal combustion engine, for example, a piston / bore of an internal combustion engine (engine).

摺動部材を示す図面であり、(a)は平面図、(b)は図1(a)におけるA−A線に沿う断面図、(c)は摺動面の表面の拡大図である。It is drawing which shows a sliding member, (a) is a top view, (b) is sectional drawing which follows the AA line in Fig.1 (a), (c) is an enlarged view of the surface of a sliding surface. 上記摺動部材の摺動面に形成されている凹部の断面形状の一例を示す断面図である。It is sectional drawing which shows an example of the cross-sectional shape of the recessed part currently formed in the sliding surface of the said sliding member. 実施例および比較例にける凹部断面形状を説明するための図面である。It is drawing for demonstrating the recessed part cross-sectional shape in an Example and a comparative example. 内接2円筒試験機を概略図である。It is a schematic diagram of an inscribed 2 cylinder testing machine. S/Lと摩擦係数の関係を実験した凹部形状を示す図面である。It is drawing which shows the recessed part shape which experimented the relationship between S / L and a friction coefficient. 摺動面の凹部形成パターンを示す図面である。It is drawing which shows the recessed part formation pattern of a sliding surface. S/Lと摩擦係数の減少率を示すグラフである。It is a graph which shows the decreasing rate of S / L and a friction coefficient.

符号の説明Explanation of symbols

1…摺動部材、
11…第1部材、
12…第2部材、
22…壁面、
23…摺動面。
1 ... sliding member,
11 ... 1st member,
12 ... 2nd member,
22 ... wall surface,
23: Sliding surface.

Claims (9)

粘性流体を介在させて摺動させる摺動部材において、
前記摺動部材の摺動する2物体間で硬度が高い方の摺動面に設けられた微細な凹部を有し、
前記凹部の開口部摺動方向の長さをLとし、前記凹部の開口部摺動方向の一端から前記凹部の最低部位置までの長さをSとして、S/Lが0〜0.3であり、
前記摺動面における前記凹部の占有面積率が0.5〜10%であることを特徴とする摺動部材。
In a sliding member that slides with a viscous fluid interposed,
Having a fine recess provided on the sliding surface of the higher hardness between the two sliding objects of the sliding member;
The length of the recess in the opening sliding direction is L, the length from one end of the recess in the opening sliding direction to the lowest position of the recess is S, and S / L is 0 to 0.3. Oh it is,
The sliding member, wherein an area ratio occupied by the recesses on the sliding surface is 0.5 to 10% .
前記凹部の開口部の形状が、前記摺動方向よりも摺動方向に直交する方向に長い扁平した形状であると共に、摺動方向に直交する方向の長さが、摺動方向の長さの2〜10倍であることを特徴とする請求項1記載の摺動部材。   The shape of the opening of the recess is a flat shape that is longer in the direction orthogonal to the sliding direction than the sliding direction, and the length in the direction orthogonal to the sliding direction is the length of the sliding direction. The sliding member according to claim 1, wherein the sliding member is 2 to 10 times. 前記凹部の開口部の形状が、前記摺動方向よりも摺動方向に直交する方向に長い扁平した形状であると共に、前記開口部の摺動方向の長さが、50〜150μmであることを特徴とする請求項1又は2に記載の摺動部材。   The shape of the opening of the recess is a flat shape that is longer in the direction perpendicular to the sliding direction than the sliding direction, and the length of the opening in the sliding direction is 50 to 150 μm. The sliding member according to claim 1 or 2, characterized by the above. 前記S/Lが0〜0.2であることを特徴とする請求項1〜3のいずれか1つに記載の摺動部材。   The sliding member according to any one of claims 1 to 3, wherein the S / L is 0 to 0.2. 前記凹部内の壁面の少なくとも一部が摺動面に直角な線に対して0〜30度の傾きを有することを特徴とする請求項1〜4のいずれか1つに記載の摺動部材。   The sliding member according to any one of claims 1 to 4, wherein at least a part of the wall surface in the recess has an inclination of 0 to 30 degrees with respect to a line perpendicular to the sliding surface. 前記凹部の開口部摺動方向の一端は、前記凹部の前記摺動方向前端であることを特徴とする請求項1〜5のいずれか1つに記載の摺動部材。   The sliding member according to any one of claims 1 to 5, wherein one end of the concave portion in the sliding direction of the opening is a front end of the concave portion in the sliding direction. 前記角度を有する壁面は、少なくとも前記摺動方向の前端方向に位置する壁面であることを特徴とする請求項5又は6に記載の摺動部材。   The sliding member according to claim 5 or 6, wherein the wall surface having the angle is a wall surface positioned at least in a front end direction of the sliding direction. 前記凹部の断面形状は、直角三角形状、矩形状、およびW型状のうちいずれかであることを特徴とする請求項1〜7のいずれか一つに記載の摺動部材。   8. The sliding member according to claim 1, wherein a cross-sectional shape of the concave portion is any one of a right triangle shape, a rectangular shape, and a W shape. 前記凹部は、その前記最低部位置までの深さをtとし、前記摺動面における摺動時の粘性流体膜厚さをhとした場合に、その比h/tが0.04〜5となるように形成されていることを特徴とする請求項1〜8のいずれか一つに記載の摺動部材。   The recess has a ratio h / t of 0.04 to 5 when the depth to the lowest position is t and the viscous fluid film thickness when sliding on the sliding surface is h. It is formed so that it may become. The sliding member as described in any one of Claims 1-8 characterized by the above-mentioned.
JP2004352651A 2004-02-05 2004-12-06 Sliding member Active JP4655609B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004352651A JP4655609B2 (en) 2004-02-05 2004-12-06 Sliding member
US11/044,047 US7270482B2 (en) 2004-02-05 2005-01-28 Sliding device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004029829 2004-02-05
JP2004352651A JP4655609B2 (en) 2004-02-05 2004-12-06 Sliding member

Publications (2)

Publication Number Publication Date
JP2005249194A JP2005249194A (en) 2005-09-15
JP4655609B2 true JP4655609B2 (en) 2011-03-23

Family

ID=35029840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004352651A Active JP4655609B2 (en) 2004-02-05 2004-12-06 Sliding member

Country Status (1)

Country Link
JP (1) JP4655609B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5228303B2 (en) 2006-01-24 2013-07-03 日産自動車株式会社 Low friction sliding member, manufacturing apparatus and manufacturing method thereof
JP2008095721A (en) * 2006-10-06 2008-04-24 Nissan Motor Co Ltd Sliding member
JP5604800B2 (en) * 2009-03-06 2014-10-15 日産自動車株式会社 Fine recess machining tool and fine recess machining method
JP6451775B2 (en) * 2017-04-28 2019-01-16 マツダ株式会社 Reciprocating piston engine
JP6468451B2 (en) * 2017-04-28 2019-02-13 マツダ株式会社 Reciprocating piston engine
JP6508252B2 (en) * 2017-04-28 2019-05-08 マツダ株式会社 Sliding structure
JP6489151B2 (en) * 2017-04-28 2019-03-27 マツダ株式会社 Sliding structure
JP6468450B2 (en) * 2017-04-28 2019-02-13 マツダ株式会社 Sliding structure
DE102017125137A1 (en) * 2017-10-26 2019-05-02 Man Diesel & Turbo Se Bushing of a turbocharger and turbocharger

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6325821U (en) * 1986-08-04 1988-02-20
JPH07259861A (en) * 1994-03-23 1995-10-09 Sutaaraito Kogyo Kk Slide bearing
JPH09210067A (en) * 1996-02-02 1997-08-12 Nippon Kagaku Yakin Kk Complete round sintered oil retaining bearing and jig for compression molding of the bearing
JPH1162974A (en) * 1997-08-26 1999-03-05 Hitachi Powdered Metals Co Ltd Manufacture of sintered oil retaining bearing with inside diameter groove
JPH11351242A (en) * 1998-06-08 1999-12-24 Ebara Corp Low viscosity fluid lubricating bearing
JP2000041359A (en) * 1998-07-21 2000-02-08 Sankyo Seiki Mfg Co Ltd Shaft fixing type motor
JP2003013710A (en) * 2001-07-02 2003-01-15 Nissan Motor Co Ltd Sliding device, and valve system of internal combustion engine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6325821U (en) * 1986-08-04 1988-02-20
JPH07259861A (en) * 1994-03-23 1995-10-09 Sutaaraito Kogyo Kk Slide bearing
JPH09210067A (en) * 1996-02-02 1997-08-12 Nippon Kagaku Yakin Kk Complete round sintered oil retaining bearing and jig for compression molding of the bearing
JPH1162974A (en) * 1997-08-26 1999-03-05 Hitachi Powdered Metals Co Ltd Manufacture of sintered oil retaining bearing with inside diameter groove
JPH11351242A (en) * 1998-06-08 1999-12-24 Ebara Corp Low viscosity fluid lubricating bearing
JP2000041359A (en) * 1998-07-21 2000-02-08 Sankyo Seiki Mfg Co Ltd Shaft fixing type motor
JP2003013710A (en) * 2001-07-02 2003-01-15 Nissan Motor Co Ltd Sliding device, and valve system of internal combustion engine

Also Published As

Publication number Publication date
JP2005249194A (en) 2005-09-15

Similar Documents

Publication Publication Date Title
EP1630396B1 (en) A sliding structure for a reciprocating internal combustion engine and a reciprocating internal combustion engine using the sliding structure
JP3897238B2 (en) Sliding member and piston for internal combustion engine
JP4132815B2 (en) Side rail and combination oil ring
JP4655609B2 (en) Sliding member
JP2002235852A (en) Low frictional sliding member
JP2008095721A (en) Sliding member
JPWO2019008780A1 (en) Combination oil ring
US7797829B2 (en) Oil ring, manufacturing method thereof, and piston structure using the oil ring
WO2019008780A1 (en) Combined oil ring
JP4710263B2 (en) Sliding device
JP2007002989A (en) Slide member, cylinder using the slide member, and internal combustion engine using the cylinder
JP2002213612A (en) Sliding part for internal combustion engine and internal combustion engine using the sliding part
JP2011075065A (en) Oil ring for internal combustion engine
EP1748225A1 (en) Cam follower
JP4702186B2 (en) Low friction sliding member
JP2008025828A (en) Sliding member
JP5376669B2 (en) Metal member press working method and die for press working
JP5595916B2 (en) Sliding device with sliding bearing
JP2004211751A (en) Cylindrical bearing for reciprocation sliding
JP2006017259A (en) Sliding device
Kumar et al. Tribological Performance of Bearing Steel with Bi-triangular and Circular Textures under Lubricated Sliding
JP2008095745A (en) Sliding member and manufacturing method of sliding member
Etsion Laser surface texturing and applications
CN114320652A (en) Piston and design method of piston
WO2016072305A1 (en) Rotational sliding bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101213

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4655609

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150