JP3672169B2 - Capacitor, manufacturing method of core substrate body, and manufacturing method of core substrate with built-in capacitor - Google Patents

Capacitor, manufacturing method of core substrate body, and manufacturing method of core substrate with built-in capacitor Download PDF

Info

Publication number
JP3672169B2
JP3672169B2 JP05886399A JP5886399A JP3672169B2 JP 3672169 B2 JP3672169 B2 JP 3672169B2 JP 05886399 A JP05886399 A JP 05886399A JP 5886399 A JP5886399 A JP 5886399A JP 3672169 B2 JP3672169 B2 JP 3672169B2
Authority
JP
Japan
Prior art keywords
capacitor
core substrate
hole
substrate body
built
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP05886399A
Other languages
Japanese (ja)
Other versions
JP2000261124A (en
Inventor
幸樹 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP05886399A priority Critical patent/JP3672169B2/en
Publication of JP2000261124A publication Critical patent/JP2000261124A/en
Application granted granted Critical
Publication of JP3672169B2 publication Critical patent/JP3672169B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15172Fan-out arrangement of the internal vias
    • H01L2924/15174Fan-out arrangement of the internal vias in different layers of the multilayer substrate

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
  • Structures For Mounting Electric Components On Printed Circuit Boards (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、コンデンサ、及び、コンデンサ内蔵コア基板やコア基板本体の製造方法に関する。
【0002】
【従来の技術】
集積回路技術の進歩によりますますICチップの動作が高速化されているが、それに伴い、電源配線等にノイズが重畳されて、誤動作を引き起こすことがある。そこでノイズ除去のため、例えば図15に示すように、ICチップ1を搭載する配線基板2の上面2Aあるいは下面2Bに、別途、チップコンデンサ3を搭載し、コンデンサ3の2つの電極とそれぞれ接続するコンデンサ接続配線4を配線基板2の内部に設ける。これにより、コンデンサ接続配線4及びフリップチップパッド5を経由してチップコンデンサ3をICチップ1に接続することが行われている。
【0003】
【発明が解決しようとする課題】
しかしながら、上記の手法では、配線基板2の完成後に、別途チップコンデンサ3を搭載する必要があるため、工数がかかりコストアップとなる。また、チップコンデンサの接続の良否により配線基板全体の良否に影響が出るなどチップコンデンサ3の接続信頼性に依存して配線基板の信頼性が低下する場合がある。また、チップコンデンサ3を搭載する領域を予め確保しておく必要があり、他の電子部品の搭載や配線基板の補強のための補強部材の固着の自由度を低下させる。さらに、他の配線等に制限されて、ICチップ1とチップコンデンサ3とを結ぶコンデンサ接続配線4の長さが長く、また細くなりやすいため、コンデンサ接続配線4自身の持つ抵抗やインダクタンスが大きくなりがちで、低抵抗、低インダクタンスの要請に十分に応えられない。
【0004】
そこで、配線基板のうち、コア基板の上下に形成する樹脂絶縁層及び配線層の一部を、樹脂絶縁層を誘電体層として対向する配線層(電極層)で挟んだコンデンサ構造に形成し、コンデンサを内蔵させることが考えられる。しかし、コンデンサがショートや絶縁抵抗不良などにより不具合となった場合に、付加価値の付いた配線基板全体を廃棄することになるため、損失金額が大きくなって、結局配線基板を安価に製造することが困難である。また、樹脂絶縁層の比誘電率は、高誘電率セラミック粉末等を混入したとしても、一般に高々40〜50程度と見込まれるので、内蔵させるコンデンサの静電容量を十分大きくすることも困難である。
【0005】
本発明は、上記問題点に鑑みてなされたものであって、コンデンサを内蔵することにより、ノイズを確実に除去でき、しかも、コンデンサに接続される配線の抵抗やインダクタンスを低くできる配線基板、さらには、コンデンサに不具合を生じても損失金額が少なく、安価で、大きな静電容量のコンデンサを内蔵可能な配線基板を提供すべく、このようなコンデンサを内蔵した配線基板を製造するためのコンデンサ、及びコア基板本体やコンデンサ内蔵コア基板の製造方法を提供することを目的とする。
【0006】
【課題を解決するための手段、作用及び効果】
そして、配線基板上面と配線基板下面とを有し、上記配線基板上面にICチップと接続するための複数のIC接続端子を、上記配線基板下面に複数の下面接続端子を備え、コンデンサを内蔵する配線基板であって、コア基板本体上面、コア基板本体下面、上記コア基板本体上面とコア基板本体下面との間を貫通するコンデンサ内蔵用貫通孔、及び、上記コア基板本体上面とコア基板本体下面との間を貫通して形成された複数のコアスルーホール導体、を備えるコア基板本体と、コンデンサ上面、コンデンサ下面、互いに絶縁された一対の電極または電極群、上記コンデンサ上面に形成され、上記一対の電極または電極群のうちのいずれかの電極または電極群とそれぞれ導通する複数の上面接続パッドであって、上記一対の電極または電極群のいずれも上記複数の上面接続パッドのうちの少なくとも1つと導通する複数の上面接続パッド、及び、上記コンデンサ下面に形成され、上記一対の電極または電極群のうちのいずれかの電極または電極群とそれぞれ導通する複数の下面接続パッドであって、上記一対の電極または電極群のいずれも上記複数の下面接続パッドのうちの少なくとも1つと導通する複数の下面接続パッド、を備え、上記コア基板本体のコンデンサ内蔵用貫通孔内に内蔵、固定された上記コンデンサと、上記コア基板本体上面及び上記コンデンサ上面の上方に積層された1または複数の上部樹脂絶縁層と、上記コア基板本体下面及び上記コンデンサ下面の下方に積層された1または複数の下部樹脂絶縁層と、上記上部樹脂絶縁層を貫通あるいはその層間を通って、上記配線基板上面の複数のIC接続端子とこれに対応する上記コンデンサの複数の上面接続パッドとをそれぞれ接続する複数の上部コンデンサ接続配線と、上記下部樹脂絶縁層を貫通あるいはその層間を通って、上記コンデンサの複数の下面接続パッドとこれに対応する上記配線基板下面の複数の下面接続端子とをそれぞれ接続する複数の下部コンデンサ接続配線と、上記上部樹脂絶縁層を貫通あるいはその層間を通って、上記配線基板上面の複数のIC接続端子とこれに対応する上記コア基板本体上面の複数のコアスルーホール導体とをそれぞれ接続する複数の上部コア接続配線と、上記下部樹脂絶縁層を貫通あるいはその層間を通って、上記コア基板本体下面のコアスルーホール導体とこれに対応する上記配線基板下面の複数の下面接続端子とをそれぞれ接続する複数の下部コア接続配線と、を備えることを特徴とする配線基板とすると良い
【0007】
の配線基板は、コア基板本体にコンデンサ内蔵用貫通孔を形成し、その中にコンデンサを内蔵し、上部樹脂絶縁層及び下部樹脂絶縁層を形成し、フリップチップパッド等のIC接続端子と上面接続パッドとを上部コンデンサ接続配線で、下面接続パッドと下面接続端子とを下部コンデンサ接続配線で結んでいる。さらに、一対の電極または電極群のいずれも複数の上面接続パッドのうちの少なくとも1つと導通するようにしている。また下面接続パッドも同様にされている。このため、コンデンサの両極をコンデンサの上方及び下方に取り出すことができる。したがって、上面接続パッドから上部コンデンサ接続配線を通じてIC接続端子、さらにはICチップに、コンデンサの両極を接続することができる。同様に、下面接続パッドから下部コンデンサ接続配線を通じて下面接続端子にコンデンサの両極を接続することができる。このため、ICチップと接続するIC接続端子、あるいはマザーボード等の他の配線基板の電源配線や接地配線と接続させる下面接続端子等からごく近い距離にコンデンサを配置することができる。したがって、上部コンデンサ接続配線も下部コンデンサ接続配線もごく短く形成することができる。
【0008】
さらに、通常ICチップにおいて、電源電位や接地電位は各所に必要となるので、ときにはICチップに形成される接続端子(接続パッドや接続バンプ)群の半数近くの数とされるほど電源端子や接地端子はそれぞれ多数形成される。これに対し、このコンデンサ上面及びコンデンサ下面には、複数の上面接続パッド及び下面接続パッドを備える。したがって、ICチップの電源端子や接地端子に対応させて多数の上面接続パッドを形成し、これらをそれぞれ結ぶように上部コンデンサ接続配線を多数並列に形成すれば、上部コンデンサ接続配線の持つインダクタンスや抵抗を全体としてさらに低下させることができることになる。同様に、下面接続パッドに対応する下面接続パッドと配線基板下面の各接続端子とを並列に接続する下部コンデンサ接続配線に関しても、同様にインダクタンスや抵抗を全体としてさらに低下させることができる。つまり、上部コンデンサ接続配線も下部コンデンサ接続配線も、その長さを短くできしかもその本数を多くできるため、抵抗やインダクタンスを低くすることができ、コンデンサによってノイズを有効、確実に除去することができる。
【0009】
しかも、配線基板内にコンデンサを内蔵しているので、後からコンデンサを取り付ける必要が無く、チップコンデンサ搭載のための費用が不要となるため、安価な配線基板とすることができる。また、他の電子部品等の搭載や補強板の固着などの自由度も高い。さらに、コア基板本体に形成したコンデンサ内蔵用貫通孔内にコンデンサを内蔵しているので、上部樹脂絶縁層や下部樹脂絶縁層あるいは上部コンデンサ接続配線、下部コンデンサ接続配線、上部コア接続配線、及び下部コア接続配線は、いずれも公知の樹脂絶縁層や配線層の製法を用いて形成することができる点でも安価にできる。また、内蔵させるコンデンサの静電容量を自由に選択できるので、高誘電率セラミックを用いた静電容量の大きなコンデンサを内蔵させることができ、ノイズ除去能力を一層向上させることができる。
【0010】
なお特に、前記複数のIC接続端子のうち少なくとも一部が、前記コンデンサの上方に位置することを特徴とする配線基板とするのが好ましい。フリップチップパッド等のIC接続端子がコンデンサの上方に位置すると、IC接続端子とコンデンサの上面接続パッドとを結ぶ上部コンデンサ接続配線の長さを特に短くすることができる。したがって、上部コンデンサ接続配線の持つインダクタンスや抵抗をさらに低く抑えることができるので、ノイズ除去能力をさらに向上させることができる。
【0011】
さらに、上記の配線基板であって、前記コア基板本体は、前記コンデンサ内蔵用貫通孔のうち両端部のいずれかにおいて、径方向内側に向けて突出するコンデンサ受け部を備え、前記コンデンサは、上記コンデンサ受け部の内向き面に当接していることを特徴とする配線基板とすると良い。
【0012】
の配線基板では、径方向(平面方向)内側に向けて突出するコンデンサ受け部を形成し、コア基板本体のコンデンサ受け部の内向き面に、つまりコンデンサ受け部をコンデンサ内蔵用貫通孔の上端部に形成したときにはその下面に、また、コンデンサ受け部をコンデンサ内蔵用貫通孔の下端部に形成したときにはその上面に、コンデンサを当接させる。これにより、コンデンサ内蔵用貫通孔内において、コンデンサの上下方向の位置決めが容易かつ確実にできる。したがって、コンデンサの上下方向の位置ズレ不良に起因して、上面接続パッドと上部コンデンサ接続配線との接続不良や下面接続パッドと下部コンデンサ接続配線との接続不良等を生じない信頼性の高い配線基板とすることができる。
【0013】
さらに上記の配線基板であって、前記コンデンサは、前記コンデンサ上面及びコンデンサ下面のうち、前記コンデンサ受け部と当接する側の面の周縁に、切り欠き部及び凸部の少なくともいずれかが形成され、上記切り欠き部及び凸部の少なくともいずれかにより、上記コンデンサが前記コンデンサ受け部に嵌合していることを特徴とする配線基板とすると良い。
【0014】
の配線基板では、コンデンサ上面及びコンデンサ下面のうち、コア基板本体のコンデンサ受け部と当接する側の面の周縁に切り欠き部及び凸部の少なくともいずれかを有し、コンデンサが、コンデンサ受け部の内向き面に当接し、さらに切り欠き部及び凸部の少なくともいずれかにより、コンデンサ受け部と嵌合する。したがって、コンデンサは、コンデンサ受け部と当接して上下方向の位置決めがされるほか、コンデンサ受け部と嵌合して上下方向に直交するコンデンサ内蔵用貫通孔の径方向(平面方向)にも位置決めされる。このため、コンデンサ内蔵用貫通孔内でのコンデンサの上下方向のみならず平面方向の位置決めも容易かつ確実にできる。従って、コンデンサの上下方向や平面方向の位置ズレ不良に起因して、上面接続パッドと上部コンデンサ接続配線との接続不良や下面接続パッドと下部コンデンサ接続配線との接続不良等を生じない、さらに信頼性の高い配線基板とすることができる。
【0015】
、コア基板本体上面、コア基板本体下面、及び、上記コア基板本体上面とコア基板本体下面との間を貫通するコンデンサ内蔵用貫通孔、を備えるコア基板本体と、コンデンサ上面、コンデンサ下面、互いに絶縁された一対の電極または電極群、上記コンデンサ上面に形成され、上記一対の電極または電極群のうちのいずれかの電極または電極群とそれぞれ導通する複数の上面接続パッドであって、上記一対の電極または電極群のいずれも上記複数の上面接続パッドのうちの少なくとも1つと導通する複数の上面接続パッド、及び、上記コンデンサ下面に形成され、上記一対の電極または電極群のうちのいずれかの電極または電極群とそれぞれ導通する複数の下面接続パッドであって、上記一対の電極または電極群のいずれも上記複数の下面接続パッドのうちの少なくとも1つと導通する複数の下面接続パッド、を備え、上記コア基板本体のコンデンサ内蔵用貫通孔内に内蔵、固定されたコンデンサと、を備えるコンデンサ内蔵コア基板とすると良い
【0016】
のコンデンサ内蔵コア基板では、コア基板本体にコンデンサ内蔵用貫通孔を形成し、その中にコンデンサを内蔵している。さらに、このコンデンサは、一対の電極または電極群のいずれも複数の上面接続パッドのうちの少なくとも1つと導通するようにしている。また下面接続パッドも同様にされている。このため、コンデンサの両極を、コンデンサ上面の上面接続パッド及びコンデンサ下面の下面接続パッドを通じて、コア基板の上方及び下方に取り出すことができる。 したがって、このコンデンサ内蔵コア基板を用いれば、公知の樹脂絶縁層や配線層の形成手法を用いて、容易にコンデンサを内蔵した配線基板を形成することができる。また、このようにして配線基板を形成した場合には、配線基板の搭載するICチップやマザーボード等の他の配線基板とごく近い距離にコンデンサを配置し、互いにごく短い配線で結ぶことができる。したがって、内蔵コンデンサの特性を十分発揮させて、ノイズを確実に除去することができるようになる。
【0017】
さらに、上述したように、通常ICチップにおいては、電源端子や接地端子はそれぞれ多数形成される。これに対し、本発明のコンデンサ内蔵コア基板のコンデンサでは、コンデンサ上面及びコンデンサ下面に、複数の上面接続パッド及び下面接続パッドを備える。したがって、ICチップの電源端子や接地端子に対応させて多数の上面接続パッド(あるいは上下反転させて使用する場合には下面接続パッド)を形成し、これらをそれぞれ結ぶように配線を多数並列に形成すれば、これらの配線の持つインダクタンスや抵抗を全体としてさらに低下させることができる。同様に、下面接続パッド(あるいは上下反転させて使用する場合には上面接続パッド)と他の配線基板とを並列に接続する配線に関しても、同様にインダクタンスや抵抗を全体としてさらに低下させることができる。つまり、コンデンサ内蔵コア基板の上下に形成する配線の長さを短くでき、しかもその本数を多くできるため、抵抗やインダクタンスを低くすることができ、コンデンサによってノイズを有効、確実に除去することができる。また、内蔵させるコンデンサの静電容量を自由に選択できるので、高誘電率セラミックを用いた静電容量の大きなコンデンサを内蔵させることができ、ノイズ除去能力を一層向上させることができる。
【0018】
しかも、コア基板内にコンデンサを内蔵しているので、樹脂絶縁層や配線層を形成した後に別途コンデンサを取り付ける必要が無く、チップコンデンサ搭載のための費用が不要となるため、配線基板を安価に製造することができる。
また、上面接続パッドあるいは下面接続パッドを通じて、内蔵したコンデンサの良否を判断できるので、ショート等の不具合を有するコンデンサが内蔵されたコア基板は、樹脂絶縁層等を形成する前に除去することができる。このため、工数が掛かる樹脂絶縁層や配線層が形成され、付加価値の高い配線基板を廃棄する危険性を少なくでき、全体としてコンデンサの不具合による損失金額も抑制して、安価な配線基板とすることができる。
【0019】
さらに、上記のコンデンサ内蔵コア基板であって、前記コンデンサ内蔵用貫通孔内に充填した充填樹脂で前記コンデンサを上記コンデンサ内蔵用貫通孔内に固定してなることを特徴とするコンデンサ内蔵コア基板とすると良い。
【0020】
のコンデンサ内蔵コア基板では、充填樹脂でコンデンサをコンデンサ内蔵用貫通孔内に固定しているので、容易にかつ確実にコンデンサを固定することができる。また、コアスルーホール導体用の貫通孔穿孔時等に生じる振動などにより、内蔵したコンデンサが位置ズレを生じたり、脱落するなど等の不具合も抑制され、信頼性の高いコンデンサ内蔵コア基板とすることができる。
【0021】
さらに上記いずれかに記載のコンデンサ内蔵コア基板であって、前記コンデンサ上面に、または前記コア基板本体上面及び前記コンデンサ上面に上部充填樹脂層を、前記コンデンサ下面に、または前記コア基板本体下面及び前記コンデンサ下面に下部充填樹脂層を備え、上記コンデンサ上面上の上部充填樹脂層と上記コア基板本体上面またはコア基板本体上面上の上部充填樹脂層とは、略面一に整面され、前記複数の上面接続パッドがそれぞれ略面一に露出しており、上記コンデンサ下面上の下部充填樹脂層と上記コア基板本体下面またはコア基板本体下面上の下部充填樹脂層とは、略面一に整面され、前記複数の下面接続パッドがそれぞれ略面一に露出していることを特徴とするコンデンサ内蔵コア基板とすると良い。
【0022】
このコンデンサ内蔵コア基板では、コンデンサ上面の上部充填樹脂層と、コア基板本体上面またはコア基板本体上面の上部充填樹脂層とは、略面一に整面され、しかも、複数の上面接続パッドが略面一に露出している。また、コンデンサ下面の下部充填樹脂層と、コア基板本体下面またはコア基板本体下面の下部充填樹脂層とも、略面一に整面され、しかも、複数の下面接続パッドが略面一に露出している。
このため、このコア基板の上下に樹脂絶縁層や配線層を積層して配線基板を形成する際に、コンデンサ内蔵用貫通孔を形成したことによる段差、コア基板本体上面とコンデンサ上面との高さの違い、あるいは、コア基板本体下面とコンデンサ下面との高さの違いに起因して、これらの上方や下方に形成する樹脂絶縁層や配線層に段差が発生することが防止できる。したがって、樹脂絶縁層や配線層を容易に形成でき、しかも、配線層の断線やショート等の不具合も生じない。また、配線基板の上面や下面に形成するIC接続端子や下面接続端子のコプラナリティを向上させ、ICチップや他の配線基板との接続性を向上させることができる。
【0023】
さらに、上記いずれかに記載のコンデンサ内蔵コア基板であって、前記コア基板本体は、前記コンデンサ内蔵用貫通孔のうち、前記コア基板本体下面側端部において径方向内側に向けて突出するコンデンサ受け部を備え、前記コンデンサは、上記コンデンサ受け部の上面に当接していることを特徴とするコンデンサ内蔵コア基板とすると良い。
【0024】
の配線基板では、コア基板本体にコンデンサ受け部を形成し、この上面にコンデンサを当接させている。これにより、コンデンサ内蔵用貫通孔内において、コンデンサの上下方向の位置決めが容易かつ確実にできる。したがって、コンデンサの上下方向の位置ズレ不良に起因して、上面接続パッドの高さが変動したり、上面接続パッド上に充填樹脂の残渣が残り、これと接続するビア導体等を形成したときに、上面接続パッドとビア導体等との導通不良が生じるなどの不具合を生じることがない。また、下面接続パッドについても同様である。従って、上下に樹脂絶縁層、配線層やビア導体を形成する場合などにおいて、配線やビア導体との接続不良等を生じない信頼性の高いコンデンサ内蔵コア基板とすることができる。
【0025】
さらに、上記コンデンサ内蔵コア基板であって、前記コンデンサは、前記コンデンサ下面の周縁に、切り欠き部及び凸部の少なくともいずれかが形成され、上記切り欠き部及び凸部の少なくともいずれかにより、上記コンデンサが前記コンデンサ受け部に嵌合していることを特徴とするコンデンサ内蔵コア基板とすると良い。
【0026】
のコンデンサ内蔵コア基板では、コンデンサがコンデンサ受け部に当接し、しかも、コンデンサに形成した切り欠き部及び凸部の少なくともいずれかにより、コンデンサがコンデンサ受け部に嵌合している。したがって、コンデンサは、コンデンサ受け部と当接して上下方向の位置決めがされるほか、コンデンサ受け部と嵌合して上下方向に直交するコンデンサ内蔵用貫通孔の径方向(平面方向)にも位置決めされる。このため、コンデンサ内蔵用貫通孔内でのコンデンサの上下方向のみならず平面方向の位置決めも容易かつ確実にできる。従って、上面接続パッドの高さや平面方向の位置が変動したり、上面接続パッド上に充填樹脂の残渣が残りこれと接続するビア導体等を形成したときに、上面接続パッドとビア導体等との導通不良が生じるなどの不具合を生じることがない。また、下面接続パッドについても同様である。従って、上下に樹脂絶縁層、配線層やビア導体を形成する場合などにおいて、配線やビア導体との接続不良等を生じない、さらに信頼性の高いコンデンサ内蔵コア基板とすることができる。
【0027】
さらに、コア基板本体上面と、コア基板本体下面と、上記コア基板本体上面とコア基板本体下面との間を貫通するコンデンサ内蔵用貫通孔と、を備え、上記コンデンサ内蔵用貫通孔は、そのコア基板本体下面側端部において径方向内側に向けて突出し、内蔵させるコンデンサの当接面と少なくともその上面で当接可能なコンデンサ受け部を備えることを特徴とするコア基板本体とすると良い
【0028】
のコア基板本体では、上下面間を貫通するコンデンサ内蔵用貫通孔を備えるので、この貫通孔内にコンデンサを内蔵させることで、コンデンサを内蔵した配線基板を容易に形成することができる。また、この貫通孔内に内蔵させたコンデンサと、コア基板本体上面及びコア基板本体下面のいずれからも容易かつ短距離で接続させることができる。
さらに、コンデンサ受け部を有するので、コンデンサを内蔵させたときに、このコンデンサ受け部の上面でコンデンサと当接する。このため、コンデンサ内蔵用貫通孔内におけるコンデンサの上下方向の位置決めを確実にすることができるようになる。
【0029】
さらに、上記コア基板本体であって、前記コンデンサ受け部は、前記内蔵させるコンデンサの当接側の面に形成した切り欠き部及び凸部の少なくともいずれかと嵌合可能な形状であることを特徴とするコア基板本体とすると良い。
【0030】
のコア基板本体では、コンデンサを内蔵させた際に、コンデンサ受け部が、その上面で当接し、さらに、コンデンサの当接側の面に形成した切り欠き部及び凸部の少なくともいずれかと嵌合するので、コンデンサを上下方向のみならずこれに直交する平面方向(コンデンサ内蔵用貫通孔の径方向)にも確実に位置決めできる。
【0031】
そして、その解決手段は、コンデンサ上面と、コンデンサ下面と、互いに絶縁された一対の電極または電極群と、上記コンデンサ上面に形成され、上記一対の電極または電極群のうちのいずれかの電極または電極群とそれぞれ導通する複数の上面接続パッドであって、上記一対の電極または電極群のいずれも上記複数の上面接続パッドのうちの少なくとも1つと導通する複数の上面接続パッドと、上記コンデンサ下面に形成され、上記一対の電極または電極群のうちのいずれかの電極または電極群とそれぞれ導通する複数の下面接続パッドであって、上記一対の電極または電極群のいずれも上記複数の下面接続パッドのうちの少なくとも1つと導通する複数の下面接続パッドと、上記コンデンサ下面の周縁に形成され、コア基板本体のコンデンサ内蔵用貫通孔内において径方向内側に向けて突出するコンデンサ受け部と当接して嵌合可能な切り欠き部及び凸部の少なくともいずれかと、を備えるコンデンサである。
【0032】
本発明のコンデンサは、コンデンサ上面に複数の上面接続パッドを、コンデンサ下面に複数の下面接続パッドを備え、しかも、一対の電極または電極群のいずれも複数の上面接続パッドのうちの少なくとも1つと導通し、また、一対の電極または電極群のいずれも複数の下面接続パッドの少なくともいずれかと導通する。このため、コンデンサ上面から、コンデンサの両極を取り出すことができる。同様に、コンデンサ下面からも、コンデンサの両極を取り出すことができる。
したがって、コンデンサ上面及びコンデンサ下面のいずれにおいても、パッドやバンプを形成したICチップや配線基板、その他の電子部品の接続面との間での接続が可能となる。
【0033】
また、コンデンサ上面とコンデンサ下面の両面から、コンデンサの両極を取り出すことができる。このため、例えば、配線基板とICチップとの間に介在させることにより、配線基板からICチップへ電力を供給する電源配線及び接地配線の一部としての役割を果たさせると共に、電源配線と接地配線との間をこのコンデンサで結び、これらの配線の重畳されるノイズを除去する役割をも果たさせることができる。
さらに、上記コンデンサ内蔵用貫通孔を備えたコア基板本体のコンデンサ内蔵用貫通孔に内蔵、固定することで、コンデンサ内蔵コア基板とし、さらに樹脂絶縁層や配線層を形成して、コンデンサを内蔵した配線基板とすることができる。特に、このコンデンサ内蔵用貫通孔内に径方向内側に向けて突出するコンデンサ受け部と当接させ、コンデンサの切り欠き部や凸部と嵌合させれば、コンデンサの貫通孔内での位置決めも容易にできる。
【0034】
なお、上面接続パッドや下面接続パッドは、接続するICチップ等の端子や配線層に対応した位置及び数で形成すればよいが、並列に接続する端子や配線層の数が多いほど、コンデンサとICチップ等との間に生じる抵抗やインダクタンスを全体として抑制できるので、上面接続パッドや下面接続パッドは多数形成するのが好ましい。
【0035】
さらに、コンデンサ下面の周縁に、切り欠き部及び凸部の少なくともいずれかを設けたので、コア基板本体のコンデンサ内蔵用貫通孔内にコンデンサを内蔵させた際、コンデンサ受け部と当接、及び嵌合させることができ、コンデンサ内蔵用貫通孔内で、コンデンサを上下方向にもこれに直交する平面方向にも確実に位置決めすることができる。
【0036】
さらに他の解決手段は、壁部用コア基板本体上面と壁部用コア基板本体下面とを有し、これらの間を貫通する壁部用貫通孔を備える壁部用コア基板本体の上記壁部用コア基板本体下面と、受け部用コア基板本体上面と受け部用コア基板本体下面とを有し、これらの間を貫通する受け部用貫通孔を備える受け部用コア基板本体の上記受け部用コア基板本体上面とを、上記壁部用貫通孔内に上記受け部用コア基板のうち上記受け部用貫通孔の周縁の少なくとも一部を露出させて、接着する接着工程を備えることを特徴とするコア基板本体の製造方法である。
【0037】
本発明のコア基板本体の製造方法では、壁部用貫通孔を備える壁部用コア基板本体と受け部用貫通孔を備える受け部用コア基板本体とを、壁部用貫通孔内に受け部用コア基板のうち受け部用貫通孔の周縁の少なくとも一部を露出させて接着して、コア基板本体を製造する。このように壁部用コア基板本体と受け部用コア基板本体とに分けて製作し、その後両者を接着すると、容易に、壁部用貫通孔と受け部用貫通孔によってコンデンサ内蔵用貫通孔が構成でき、しかも、受け部用コア基板本体の一部をコンデンサ内蔵用貫通孔の端部において径方向内側に突出したコンデンサ受け部とすることができる。
【0038】
また他の解決手段は、コア基板本体上面、コア基板本体下面、及び、上記コア基板本体上面とコア基板本体下面との間を貫通するコンデンサ内蔵用貫通孔、を備えるコア基板本体の、上記コンデンサ内蔵用貫通孔内に、コンデンサ上面、コンデンサ下面、互いに絶縁された一対の電極または電極群、上記コンデンサ上面に形成され、上記一対の電極または電極群のうちのいずれかの電極または電極群とそれぞれ導通する複数の上面接続パッドであって、上記一対の電極または電極群のいずれも上記複数の上面接続パッドのうちの少なくとも1つと導通する複数の上面接続パッド、及び、上記コンデンサ下面に形成され、上記一対の電極または電極群のうちのいずれかの電極または電極群とそれぞれ導通する複数の下面接続パッドであって、上記一対の電極または電極群のいずれも上記複数の下面接続パッドのうちの少なくとも1つと導通する複数の下面接続パッド、を備えるコンデンサを配置するコンデンサ配置工程と、少なくとも上記コンデンサ内蔵用貫通孔内に充填樹脂を注入し、上記充填樹脂を硬化させて、充填樹脂で上記コンデンサを上記コンデンサ内蔵用貫通孔内に固定するコンデンサ固定工程と、少なくとも上記コア基板本体上面とコア基板本体下面との間を貫通するコアスルーホール導体を形成するコアスルーホール形成工程と、を備えるコンデンサ内蔵コア基板の製造方法である。
【0039】
本発明のコンデンサ内蔵コア基板の製造方法では、コンデンサ内蔵用貫通孔内にコンデンサを配置し、コンデンサ内蔵用貫通孔内に充填樹脂を注入し硬化させてコンデンサを固定する。このため、容易に固定できる上、コアスルーホール導体用の貫通孔穿孔時等に生じる振動などによりコンデンサの位置ズレを生じたり、脱落するなど等の不具合が抑制され、コンデンサ内蔵コア基板の信頼性を向上させることができる。
【0040】
さらに、上記コンデンサ内蔵コア基板の製造方法であって、前記コンデンサ固定工程は、前記コンデンサ内蔵用貫通孔内の他、前記コンデンサ上面、コンデンサ下面、コア基板本体上面、及び、コア基板本体下面のうち、少なくともコンデンサ上面及びコンデンサ下面にも充填樹脂を塗布し硬化させるコンデンサ固定−充填樹脂塗布硬化工程であり、前記コアスルーホール形成工程に先だって、上記コンデンサ上面上の、または、上記コンデンサ上面上及び前記コア基板本体上面上の、上記充填樹脂を研磨して上記複数の上面接続パッドを略面一に露出させるとともに、上記コンデンサ上面上の充填樹脂層と上記コア基板本体上面とを、または、上記コンデンサ上面上の充填樹脂層とコア基板本体上面上の充填樹脂層とを、略面一の平坦面に整面し、上記コンデンサ下面上の、または、上記コンデンサ下面上及び前記コア基板本体下面上の、上記充填樹脂を研磨して上記複数の下面接続パッドを略面一に露出させるとともに、上記コンデンサ下面上の充填樹脂層と上記コア基板本体下面とを、または、上記コンデンサ下面上の充填樹脂層とコア基板本体下面上の充填樹脂層とを、略面一の平坦面に整面する研磨整面工程を備えることを特徴とするコンデンサ内蔵コア基板の製造方法とすると良い。
【0041】
本発明のコンデンサ内蔵コア基板の製造方法では、コンデンサをコンデンサ内蔵用貫通孔内に内蔵し、さらに充填樹脂で固定するほか、少なくともコンデンサ上面及びコンデンサ下面にも充填樹脂を塗布し硬化させる。さらに、研磨により複数の上面接続パッドを略面一に露出させ、しかも、コンデンサ上面上の充填樹脂層とコア基板本体上面とを、または、コンデンサ上面上の充填樹脂層とコア基板本体上面上の充填樹脂層とを、略面一の平坦面に整面する。また、研磨により複数の下面接続パッドを略面一に露出させ、しかも、コンデンサ下面上の充填樹脂層とコア基板本体上面とを、または、コンデンサ上面上の充填樹脂層とコア基板本体上面上の充填樹脂層とを、略面一の平坦面に整面する。その後にコアスルーホール導体を形成する。
【0042】
このため、コア基板本体上面及びコンデンサ上面の上方に1または複数の樹脂絶縁層や配線層を形成する際に、コア基板本体上面の上方とコンデンサ上面の上方との間で段差を生じない。また同様に、コア基板本体下面及びコンデンサ下面の下方に1または複数の樹脂絶縁層や配線層を形成する際に、コア基板本体下面の下方とコンデンサ下面の下方との間で段差を生じない。このため、樹脂絶縁層や配線層などを容易に形成することができ、あるいは、各配線層の断線やショート等の不具合の発生を抑制することができる。さらに、IC接続端子や下面接続端子のコプラナリティを小さく抑えることができ、ICチップや他の配線基板との接続性も良好にできる。
【0043】
【発明の実施の形態】
(実施形態1)
本発明の配線基板等の実施の形態について、図面を参照しつつ説明する。図1に示す本発明のコンデンサを内蔵した配線基板100は、略正方形板状で、その上面(配線基板上面)100Aに、破線で示すICチップ1と接続するためのIC接続端子であるフリップチップパッド101が多数形成され、各フリップチップパッド101には、高温ハンダからなる略半球状のフリップチップバンプ102が形成されている。一方、配線基板下面100Bには、マザーボードなどの他の配線基板と接続するための下面接続端子であるLGAパッド103が多数形成されている。さらにこの配線基板100は、コンデンサ20を内蔵するコア基板本体10、これらの上下に積層された樹脂絶縁層41,42,43,51,52,53、さらに、これらの層間に及びこれらの樹脂絶縁層を貫通して形成された各配線層60,70,80,90を備える。
【0044】
このうち、コア基板本体10は、略正方形板状で、ガラス−エポキシ樹脂複合材料からなり、その略中央にはコア基板本体上面10Aとコア基板本体下面10Bとの間を貫通する平面視略正方形状のコンデンサ内蔵用貫通孔(以下、単に貫通孔ともいう)11を備える。このコンデンサ内蔵用貫通孔11のうち、コア基板本体下面10B側に端部には、貫通孔11の軸方向(図中上下方向)に直交する貫通孔11の径方向(平面方向、図中左右方向)に、貫通孔11内に向けて突出するコンデンサ受け部(以下、単に受け部ともいう)12が貫通孔11の周囲にわたって形成されている。また、この貫通孔11内には、コンデンサ20が内蔵されている。さらに、このコア基板本体10の周縁部には、コア基板本体上面10Aとコア基板本体下面10Bとの間を貫通するコアスルーホール導体33が多数形成されている。
【0045】
コンデンサ20は、図2(a)の平面図、及び図2(b)の下面側から見た斜視図に示すように、高誘電体セラミック、具体的には、BaTiO3 を主成分とする誘電体層24とPdを主成分とする電極層25とを交互に積層した略正方形板状の積層セラミックコンデンサである。ただし、図2(b)から判るように、コンデンサ下面20Bの周囲は、中央に正方形状の領域を残して、切り欠き部20Pにより階段状に1段低位とされて、後述するようにコア基板本体10のコンデンサ受け部12との当接面20Cが形成されている。つまり、コンデンサ20は、その下面20Bにおいて、略凸字状の形状とされている。また、このコンデンサ20は、チップコンデンサなどに用いられ、積層された誘電体層及び電極層の側面からコンデンサの両極をなす2つの電極(共通電極)を取り出す通常の積層セラミックコンデンサとは、接続のための電極の取り出し方が異なる。即ち、図2(c)に示すように、コンデンサ上面20A及びコンデンサ下面20Bに、それぞれ多数の上面接続パッド21(図2(c)では、21A,21B,21C)及び下面接続パッド22(図2(c)では、22A,22B,22C)を備えており、これらのパッド21,22によって、コンデンサ上面20A及びコンデンサ下面20B内で、図図2(c)中上方あるいは下方に接続可能になっている。
【0046】
コンデンサ20の電極層25は、図2(c)にその内部構造の概要を示すように、ビア導体26E、26Fでそれぞれ1層おきに導通された1対の電極層の群25E,25Fに分けられている。しかも、電極層の群25E,25Fは互いに絶縁されている。したがって、各誘電体層24を挟んで対向する2つの電極群25E,25Fは、コンデンサ20の2つの電極をなす。また、上面接続パッド21の一部(図中右及び左のパッド21A,21C)は、この電極層25のうち最も上方に位置し一方の電極群25Eに属するトップ電極層25ETと、誘電体層24のうち最も上方に位置するトップ誘電体層24Tを貫通するビア導体27Eによって接続している。また、上面接続パッド21の他の一部(図中中央のパッド21B)は、上記トップ電極層25ETより下層に位置し他方の電極群25Fに属する電極層25と、ビア導体27F及び26Fによって接続している。このように、多数の上面接続パッド21は、コンデンサの2つの電極をなす一対の電極群25E,25Fのいずれかに接続しており、しかも、この一対の電極群25E,25Fのいずれも複数の上面接続パッド21のうちの少なくとも1つと接続している。つまり、多数の上面接続パッド21のうちある上面接続パッド21(例えば、21A)は、一方の電極群25Eに接続している。またある上面接続パッド21(例えば、21B)は、他方の電極群25Fと接続している。このため、コンデンサ20の上方から、上面接続パッド21を通じて、一対の電極群25E,25Fのいずれとも導通することができる。
【0047】
同様に、下面接続パッド22の一部(図中右及び左のパッド22A,22C)は、電極層25のうち最も下方のボトム電極層25FDより上層に位置し、一方の電極群25Eに属する電極層25と、誘電体層24のうち最も下方に位置するボトム誘電体層24Dを貫通するビア導体28F及び26Fによって接続している。また、下面接続パッド22の他の一部(図中中央のパッド22B)は、他方の電極群25Fに属する上記ボトム電極層25FDと、ビア導体28Fによって接続している。このように、多数の下面接続パッド22は、コンデンサの2つの電極をなす一対の電極群25E,25Fのいずれかに接続しており、しかも、この一対の電極群25E,25Fのどちらもが下面接続パッド22の少なくともいずれかと接続している。つまり、多数の下面接続パッド22のうちある下面接続パッド22(例えば、22A)は、一方の電極群25Eに接続している。またある下面接続パッド22(例えば、22B)は、他方の電極群25Fと接続している。このため、コンデンサ20の下方から、下面接続パッド22を通じて、一対の電極群25E,25Fのいずれとも導通することができる。なお、図2(b)に示して上述したように、下面接続パッド22が形成されるボトム誘電体層24Dは、他の誘電体層24よりも平面方向(図中左右方向)の大きさが小さくされることにより、切り欠き部20Pが構成され、これによってその周囲には、1層上方の誘電体層24が露出して上述の当接面20Cが形成される。また、ボトム電極層25FDもボトム誘電体層24Dの形状に合わせ、電極群25Fに属する他の電極層よりも平面方向に小さな寸法とされている。
【0048】
そして、図1に示すように、コンデンサ20の切り欠かれて凸字状となったコンデンサ下面20B近傍が、コンデンサ受け部12の内周縁12Hに嵌合している。このため、当接面20Cと受け部12の内向き面12S(図中上面)とが当接することで、コンデンサ20の図中上下方向の位置決めが、また、受け部貫通孔12Hが切り欠き部20Pと嵌合することで、径方向(平面方向、図中左右方向)の位置決めが行われる。さらに、このコンデンサ20は、エポキシ樹脂からなる充填樹脂32によってコンデンサ内蔵用貫通孔11内に固定されて、コア基板本体10と一体となっている。これにより、コア基板本体10に内蔵されたコンデンサ20は、図中上方には上面接続パッド21で、図中下方には下面接続パッド22ででそれぞれ接続可能になっている。
【0049】
さらに、コア基板本体上面10A及びコンデンサ上面20Aの上方には、エポキシ樹脂を主成分とする3層の上部樹脂絶縁層41,42,43を備える。一方、コア基板本体下面10B及びコンデンサ下面20Bの下方には、同じく3層の下部樹脂絶縁層51,52,53を備える。さらに上部樹脂絶縁層41と42の層間及び上部樹脂配線層42と43の層間には、それぞれ上部樹脂絶縁層41,42をも貫通し、Cuメッキからなる配線層45,46が形成されている。同様に、下部樹脂絶縁層51と52の層間及び下部樹脂配線層52と53の層間には、それぞれ下部樹脂絶縁層51,52をも貫通し、Cuメッキからなる配線層55,56が形成されている。
【0050】
このうち、上部樹脂絶縁層41,42,43の層間、及び上部樹脂絶縁層41,42をそれぞれ貫通して、フリップチップパッド101とこれに対応するコンデンサ20の上面接続パッド21とをそれぞれ結ぶ配線層45,46は、上部コンデンサ接続配線60を構成する。また、上部樹脂絶縁層41,42,43の層間、及上部樹脂絶縁層41,42をそれぞれ貫通して、フリップチップパッド101とこれに対応するコアスルーホール導体33とをそれぞれ結ぶ配線層45,46は、上部コア接続配線80を構成する。一方、下部樹脂絶縁層51,52,53の層間、及び上部樹脂絶縁層51,52をそれぞれ貫通して、下面接続パッド22とこれに対応するLGAパッド103とをそれぞれ結ぶ配線層55,56は、下部コンデンサ接続配線70を構成する。また、下部樹脂絶縁層51,52,53の層間、及び下部樹脂絶縁層51,52をそれぞれ貫通して、コアスルーホール導体33とこれに対応するLGAパッド103とをそれぞれ結ぶ配線層55,56は、下部コア接続配線90を構成する。
【0051】
これにより、フリップチップバンプ102に接続されたICチップ1は、フリップチップパッド101、上部コンデンサ接続配線60、上面接続パッド21を通じて、コンデンサ20の一対の電極群25E,25Fとそれぞれ接続することになる。
さらに、LGAパッド103は、下部コンデンサ接続配線70、下面接続パッド22を通じて、コンデンサ20の一対の電極群25E,25Fとそれぞれ接続している。
したがって、図2(d)に示すように、フリップチップパッド101とLGAパッド103との間を結び、一方の電極群25Eと接続する上部コンデンサ接続配線60及び下部コンデンサ接続配線70と、同じく他方の電極群25Fと接続する上部コンデンサ接続配線60及び下部コンデンサ接続配線70との間に、コンデンサ20が挿入された状態となる。
【0052】
このため、LGAパッド103に接続したマザーボードなどから供給される電源電位及び接地電位は、LGAパッド103から、下部コンデンサ接続配線70、コンデンサ20、上部コンデンサ接続配線60、フリップチップパッド101、フリップチップバンプ102を通じて、ICチップ1に供給することができるようになる。さらに、コンデンサ20により電源電位や接地電位に重畳されるノイズを除去することができる。
しかも、コンデンサ20は、コア基板本体10に内蔵されているので、ICチップ1のごく近くに配置することができるため、上部コンデンサ接続配線60の長さを短くできる。したがって、コンデンサ20によるノイズ除去能力をより高めることができる。特に、本実施形態では、コンデンサ20を、ICチップ1の直下に、したがって、フリップチップパッド101の直下に配置する構造としたので、上部コンデンサ接続配線60の長さをごく短くすることができる。したがって、ICチップ1とコンデンサ20との距離をごく短くすることができるから、この間でノイズが重畳されることが少なく、特にノイズ除去に有効となる。
【0053】
また、上部コンデンサ接続配線60は多数形成され、多数のフリップチップパッド101と多数の上面接続パッド21との間を並列に接続している。したがって、多数の上部コンデンサ接続配線60が形成されることにより、全体として、ICチップ1(フリップチップパッド101)とコンデンサ20とを結ぶ上部コンデンサ接続配線60の持つ抵抗やインダクタンスも、小さくなり、この点からも、ノイズ除去に有利となる。同様に、下部コンデンサ接続配線70も多数形成され、多数のLGAパッド103と多数の下面接続パッド22との間を並列に接続している。したがって、多数の下部コンデンサ接続配線70が形成されることにより、全体として、LGAパッド103とコンデンサ20とを結ぶ下部コンデンサ接続配線70の持つ抵抗やインダクタンスも、小さくなり、この点からも、ノイズ除去に有利となる。
【0054】
一方、信号線などコンデンサ20に接続しないで、ICチップ1とマザーボード等とを結ぶ配線は、フリップチップパッド101から上部コア接続配線80を通じて、コアスルーホール導体33に接続し、コア基板本体10を貫通して、下部コア接続配線90からLGAパッド103に接続する。この構造は、スルーホール導体を形成したコア基板を用いた通常のビルドアップ配線基板と同様である。
このように、本実施形態の配線基板100では、ICチップ1のごく近くにコンデンサ20を内蔵して、有効にノイズを除去すると共に、信号線等については、従来と同様の構造にすることができる。
【0055】
なお、上記では、コンデンサ20として、ボトム誘電体層24Dを1層のみの平面寸法を小さくしたことにより切り欠き部20Pを設けたものを示したが、コンデンサ下面20B側の複数層の誘電体層について平面寸法を小さくすることにより、切り欠き部20Pの段差を大きくすることができる。また、ボトム誘電体層24Dの厚さを他の誘電体層24より厚くすることにより、あるいは複数の誘電体層について厚さを変えることによっても切り欠き部20Pの段差を大きくすることができる。
【0056】
次いで、上記配線基板100の製造方法について、個別の部材であるコンデンサ20、コア基板本体10の製造方法を含めて説明する。まず、コンデンサ20の製造方法について、図3を参照しつつ説明する。まず、図3(a)に示すように、公知のグリーンシート製造技術により、BaTiO3 粉末を主成分とする高誘電体セラミックグリーンシート(以下、単にシートともいう)124を多数製造する。次いで、図3(b)に示すように、このシート124の所定位置に、その表裏面124A,124B間を貫通するビア孔124Hをパンチングにより形成する。
【0057】
さらに、図3(c)に示すように、各シート124のビア孔124H内に、Pdペーストを充填して未焼成ビア導体126,127,128を形成し、さらに、各シート124の上面124A側に、Pdペーストからなる所定形状の未焼成電極層125E,125Fを形成する。このうち、一方の未焼成電極層125Eは、図3(c)において3つ形成した未焼成ビア導体126,127のうち、左右2つと接続し、中央の未焼成ビア導体126,127とは接続しないパターンに形成されている。他方の未焼成電極層125Fは、これとは逆に、3つ形成した未焼成ビア導体126のうち、中央の未焼成ビア導体126と接続し、左右のものとは接続しないパターンに形成されている。
【0058】
なお、未焼成ビアパッド125Eあるいは125Fと接続しないビア126,127については、後述する積層時に確実に上下方向にビア導体同士を接触、導通させるため、各未焼成ビア導体126,127の上方に、未焼成電極層125E,125Fと同時にカバーパッド129を形成しておくと良い。
また、次述する積層時に最も上に積層する未焼成誘電体層124Dは、他の未焼成誘電体層124よりもやや小さな寸法に形成しておき、未焼成電極層125E,125Fのいずれも形成せず、各未焼成ビア導体128の上方に、カバーパッド122のみを形成するようにしている。
さらに、次述するようにこの未焼成誘電体層124Dと圧着される未焼成電極層についても、他の未焼成電極層125Fよりも外形をやや小さくした未焼成電極層125FDとしておく。
【0059】
次いで、図3(d)に示すように、未焼成電極層125Eが積層されたシート124と、125F(125FD)が積層されたシート124とを、交互に積み重ねるようにして積層する。そして、最も上には、未焼成電極層125E,125Fのいずれも形成せず、カバーパッド122のみを形成したシート124Dを積層し、これらを圧着して積層体120を形成する。これにより、未焼成誘電体層124と未焼成電極層125E,125Fとは、交互に積層され、しかも、未焼成電極層125Eと125Fとは互いに1層おきに配置された状態となる。また、未焼成電極層125E,125Eはそれぞれ未焼成ビア導体126,127を介して、互いに接続され、同様に、未焼成電極層125F,125Fもそれぞれ未焼成ビア導体126,127を介して、互いに接続される。その上、未焼成電極層125Eの群と125Fの群とは、接触することはなく、互いに絶縁された状態となる。
さらに、未焼成誘電体層124Dの平面寸法のみを他の未焼成誘電体層124より小さくしたことにより、この積層体120の図中上面周囲には、階段状の切り欠き部120Pが形成される。
【0060】
その後、この積層体120を上下反転させて、未焼成ビア導体127が露出する積層体120の上面にカバーパッドを形成した上で、この積層体120を焼成(同時焼成)して、図2に示すコンデンサ20を形成する。コンデンサ20をこのようにして形成したので、例えば、焼成後に誘電体層24の側面に電極層25E、あるいは25Fと接続するための共通電極を形成する必要はなく、焼成後、直ちにコンデンサとして使用することができる。なお、ビア導体26,27,28(未焼成ビア導体126,127,128)は、上層や下層のビア導体の位置や隣り合うビア導体24との間隔等を考慮すれば、誘電体層24の面内いずれの位置にも形成できる。
【0061】
したがって、上部コンデンサ接続配線60や下部コンデンサ接続配線70の引き回しの容易さ、上部コンデンサ接続配線60に接続するフリップチップパッド101の数や、下部コンデンサ接続配線70に接続するLGAパッド103の数などに応じて、上面接続パッド21および下面接続パッド22の位置や数も任意に選択して形成することができる。なお、Pdからなる上面接続パッド21あるいは下面接続パッド22は、Cuからなる配線層45との接続性あるいはハンダ付け性等を考慮して、Ni−Auメッキや、Cuメッキ等を施しておくこともできる。また、上面接続パッド21、及び/または、下面接続パッド22の周囲には、公知の手法により、セラミックや樹脂などからなるソルダーレジスト層を形成しておくこともできる。
【0062】
完成したコンデンサ20は、ショートの有無、静電容量値、電極群25Eと25Fとの間の絶縁抵抗値、各上面接続パッド21及び各下面接続パッド22と、電極群25E,25Fとの導通あるいは絶縁のチェック等、各種のチェックを行い、不具合のあるコンデンサ20は廃棄する。これにより、後述する工程で不具合のあるコンデンサ20を使用する危険性を減少させることができる。
【0063】
次いで、コア基板本体10およびその製造方法について説明する。コア基板本体10は、まず、コンデンサ20を内蔵する前に、図4に示す状態にする。即ち、図4(a)(b)に示すコア基板本体10は、平面視略正方形板状で、略中央に略正方形状の貫通孔11を有する。この貫通孔11は、その下端近傍でやや径小にされていることにより、コア基板上面10A側から平面視すると、貫通孔11内には、これよりやや小さな略正方形状の貫通孔(内周縁)12Hを持つコンデンサ受け部12が露出している。このコア基板本体10は、図4(b)に示すように、コア基板本体上面10Aとコア基板本体下面10Bとを有し、ガラス−エポキシ樹脂複合材料からなる受け部用コア基板本体13と、同じくガラス−エポキシ樹脂複合材料からなる壁部用コア基板本体16とが、接着層17で接着されて形成されている。コア基板本体上面10Aとコア基板本体下面10Bとの間には、壁部用コア基板本体16を貫通する貫通孔16Hと、受け用コア基板本体13を貫通し、上記貫通孔16Hよりもやや径方向寸法の小さな貫通孔13Hとで、コンデンサ内蔵用貫通孔11が形成されている。
【0064】
このため、貫通孔11の図中下端側では、貫通孔13Hの周縁近傍が貫通孔16Hよりも平面方向(図中左右方向)内側に向けて突出して、内周縁12H(貫通孔13H)を有するコンデンサ受け部12を構成している。コンデンサ受け部12の内向き面(図中上面)12Sは、上記したコンデンサ20を内蔵させた際に、コンデンサ20の当接面20Cと当接することで、コンデンサ20の貫通孔11内での軸方向(上下方向)の位置決めをすることができる。また、コンデンサ受け部12、さらにいえばその内周縁12Hは、コンデンサ20の切り欠き部20Pと嵌合することで、コンデンサ20の貫通孔11内での平面方向(左右方向)の位置決めをすることができる。一方、コンデンサ受け部12の外向き面(図中下面)12Tは、コア基板本体下面10Bと一致する。
【0065】
なお、このコア基板本体10には、そのコア基板本体上面10Aとコア基板本体下面10Bとの間を貫通するコアスルーホール導体33は形成されていない。コアスルーホール導体33は、コア基板本体10の貫通孔11内に、上述のコンデンサ20を内蔵、固定してから形成するからである。
【0066】
このコア基板本体10は、以下のようにして製造する。即ち、まず図5(a)に示すように、ガラス−エポキシ樹脂複合材料からなり、その受け部用コア基板本体上面13Aと受け部用コア基板本体下面13Bとを有し、中央に略正方形状の貫通孔13Hを有する受け部用コア基板本体13を用意する。なお、貫通孔13Hは、次述する貫通孔16Hよりやや小さな寸法にしておく。この貫通孔13は、公知の手法によって形成すれば良く、例えば、ドリル、パンチング、レーザ等が挙げられる。
【0067】
一方、図5(b)に示すように、同じくガラス−エポキシ樹脂複合材料からなり、上記受け部用コア基板本体13より厚さの厚い壁用コア基板本体16を用意する。この壁部用コア基板本体16にも、予め上記貫通孔11に対応した中央の位置に、略正方形状の貫通孔16Hをパンチング等により形成しておく。
【0068】
次いで、図5(c)に示すように、受け部用コア基板本体上面13Aと、壁部用コア基板本体下面16Bとを、半硬化のエポキシ樹脂からなり、貫通孔16Hに適合させて略ロ字状に成型した接着シート17Rを介して挟み、加熱、圧着する。これにより、両者13,16は、接着層17を介して接着され、図4に示すコア基板本体10が作成できる。
【0069】
本実施形態のように、受け部12を有する貫通孔11を備えたコア基板本体10を作成するのに、予め貫通孔13Hの内周近傍が受け部12となる受け部用コア基板本体13と、受け部12以外の径大部、つまり貫通孔11の大半を構成する壁部用コア基板本体16とに分けて製作し、その後貼り合わせるようにすると、受け部12を有する貫通孔11を公知の手法によって容易かつ正確な寸法で形成できる。したがって安価にコア基板本体10を形成することができる。
【0070】
次いで、このコア基板本体10にコンデンサ20を内蔵させ、コアスルーホール導体33を形成する工程を説明する。まず、図6(a)に示すように、コア基板本体10の貫通孔11内に、上述のコンデンサ20をコンデンサ下面20Bを下にして配置する。すると上記したように、コンデンサ20の当接面20Cが受け部12の内向き面12Sに当接し、さらに、受け部12と、さらにいえばその内周縁12Hと切り欠き部20Pとが嵌合して、コンデンサ20の貫通孔11内での上下方向及び平面方向の位置決めができる。
【0071】
その後、図6(b)に示すように、貫通孔11内の他、コア基板本体上面10A及びコンデンサ上面20A上、コア基板本体下面10B及びコンデンサ下面20B上(図中下方)に、エポキシ樹脂を主成分とする充填樹脂32を注入及び塗布し硬化させる。これにより、コンデンサ20が受け部12に当接、嵌合しつつ、貫通孔11内において充填樹脂32(32A)で固定されて、コア基板本体10に内蔵され、熱や振動等が掛かった場合にも、コア基板本体10とコンデンサ20との間の位置ズレが生じる等の不具合が防止される。
【0072】
さらに、図6(c)に示すように、コア基板本体上面10A上及びコンデンサ上面20A上の充填樹脂層32B,32Cを平面に研磨して、上面接続パッド21を露出させると共に、この上面接続パッド21と、コンデンサ上面20A上及びコア基板本体上面10A上に残した充填樹脂層32B,32Cとを略面一に整面する。同様に、コア基板本体下面10B上及びコンデンサ下面20B上の充填樹脂層32D,32Eを平面に研磨して、下面接続パッド22を露出させると共に、この下面接続パッド22と、コンデンサ下面20B上及びコア基板本体下面10B上に残した充填樹脂層32D,32Eとを略面一に整面する。このようにして製作したコンデンサ内蔵コア基板では、コア基板本体10に貫通孔11を形成し、その中にコンデンサ20を内蔵させたことによる段差の発生は吸収され、以降に形成する樹脂絶縁層41,51等や配線層45,55等が段差によって歪み、断線やショート等の不具合を生じることはなくなる。また、フリップチップパッド101(あるいはフリップチップバンプ102)やLGAパッド103への段差の影響もなくなるため、フリップチップパッド101やLGAパッド103等のコプラナリティも良好にできる。
【0073】
さらに、図7に示すように、このコア基板本体10の貫通孔11の周縁に、コア基板本体上面10Aとコア基板本体下面10Bとの間、さらには、充填樹脂層32Cの上面32CUと充填樹脂層32Eの下面32EDとの間を貫通するコアスルーホール孔30Hをドリルによって形成する。なお、孔径や間隔を小さくしたい場合などでは、レーザ(CO2,YAG等)で穿孔すると良い。
【0074】
次いで、公知のスルーホール導体形成手法によって、このコアスルーホール孔30H内及びその周縁にCuからなるコアスルーホール導体33を形成する。なお、充填樹脂層上面32CU及び充填樹脂層下面32EDには、コアスルーホール導体33から延在して配線層45,55と接続するための接続配線34,35も形成する。また、充填樹脂層32Bと面一にした上面接続パッド21、及び充填樹脂層32Dと面一にした下面接続パッド22も、Cuメッキによってその厚さを増して充填樹脂層32Bより上方、または充填樹脂層32Dより下方に突出した状態とする。このようにして、コンデンサ内蔵コア基板(以下、単にコア基板ともいう)30を作成する。
【0075】
このコア基板30は、コア基板本体10の他、コンデンサ20をその貫通孔11に内蔵している。しかし、コア基板上面30A(充填樹脂層上面32CU)やコア基板30B(充填樹脂層下面32ED)には、所定部位にこれらの間を貫通するコアスルーホール導体33、あるいは、上面接続端子21や下面接続端子22、接続配線34,35が形成されており、コア基板上面30A及びコア基板下面30Bは平坦にされている。したがって、コンデンサを内蔵しない通常の配線基板に用いるコア基板と同様に用いることができる。
【0076】
コアスルーホール導体33の具体的な製造方法は、例えば以下のようである。即ち、まずコア基板本体10(図6(c)参照)にスルーホール孔30Hを穿孔後、その全面に無電解Cuメッキを施して、スルーホール孔30H内、充填樹脂層上面32CU、及び充填樹脂層下面32EDに無電解Cuメッキ層を形成する。その後、充填樹脂層上面32CU上、及び充填樹脂層下面32ED上(図中下方)に、ドライフィルムを貼り、露光現像してコアスルーホール孔の周縁など電解メッキ形成部分を開口させる。さらに、無電解Cuメッキ層を共通電極として電流を流して電解Cuメッキを施し、ドライフィルムを除去した後、不要な無電解Cuメッキ層をソフトエッチングで除去してコアスルーホール導体33、接続配線34,35等を形成する。なお、上面接続パッド21及び下面接続パッド22にも無電解Cuメッキ及び電解Cuメッキを施す。
【0077】
その他、本実施形態では、コアスルーホール導体33をコアスルーホール孔30Hの内周及び周縁に形成された略円筒形状に形成したが、その内部に充填用樹脂を充填しその上下をメッキ層で閉塞するようにしても良い。このようにすれば、接続配線34,35を介さず、配線層45,55とコアスルーホール導体33とを直接接続することができるので、コアスルーホール導体33の間隔を高密度に形成することができる。
【0078】
なお、この状態、即ち、後述するようにこのコンデンサ20を内蔵したコア基板30に樹脂絶縁層や配線層を形成する前に、内蔵したコンデンサ20の特性検査を行うと良い。コア基板30に内蔵された状態で、コンデンサ20の、ショートの有無、静電容量値、一対の電極群25Eと25Fと間の絶縁抵抗値、各上面接続パッド21及び各底面スルーホール導体12と、各電極群25E,25Fとの導通あるいは絶縁のチェック等、各種の検査を行い、不具合のあるコンデンサ20が内蔵されたコア基板30は廃棄する。これにより、後述するように工数の掛かる樹脂絶縁層や配線層を形成した後に、コンデンサ20に不具合があることが判明することで、付加価値の高い配線基板100全体を廃棄せざるを得なくなる危険性を減少させることができる。
【0079】
その後は、このコア基板30を用いて、公知の樹脂絶縁層形成技術、配線層形成技術を用いて樹脂絶縁層や配線層を形成し、配線基板100を形成すればよい。
なお、本実施形態では、樹脂絶縁層を形成する前に、以下の処理を行う。即ち、図8(a)に示すように、コアスルーホール導体33の内部の他、充填樹脂層32B,32Cの上方や上面接続パッド21、接続配線34の上方、また、充填樹脂層32D,32Eの下方や下面接続パッド22、接続配線35の下方にエポキシ樹脂を主成分とする平坦化樹脂36,37,38を、充填塗布し、硬化させる。あるいは、まずコアスルーホール導体33の内部に平坦化樹脂36を充填し硬化させた後に、平坦化樹脂37,38を塗布して硬化させても良い。
【0080】
さらに、図8(b)に示すように、平坦化樹脂37,38の上面あるいは下面を研磨して平坦にする。それと共に、上面接続パッド21、コアスルーホール導体33及び接続配線34を平坦化樹脂層37と略面一に露出させる。また、下面接続パッド22、コアスルーホール導体33及び接続配線35を平坦化樹脂層38と略面一に露出させる。これにより、上面接続パッド21や下面接続パッド22、コアスルーホール導体33、接続配線34,35等が、コア基板上面30Aあるいはコア基板下面30Bから突出して形成されているために、その上下に形成する樹脂絶縁層41,51等あるいは配線層45,55等が受ける影響を無くすことができる。したがって、配線層45等の断線やショートの防止、あるいは、フリップチップパッド101やLGAパッド103等のコプラナリティの向上を図ることができる。
【0081】
以降は、平坦化樹脂層37の上面37U及び平坦化樹脂層38の下面38Dに、エポキシ樹脂を主成分とする感光性フィルムを貼り付ける。さらに、露光現像して、底面にそれぞれ上面接続パッド21、下面接続パッド22、接続配線34,35等が露出するビアホール41VH,51VHを形成し、感光性フィルムを硬化させて、図9(a)に示すように、樹脂絶縁層41,51をそれぞれ形成する。なお、樹脂絶縁層41,51を感光性のない樹脂で形成した後に、レーザ(CO2 ,YAG等)を用いてビアホール41VH,51VHを穿孔するようにしても良い。
【0082】
さらに、無電解Cuメッキを施し、ドライフィルムを貼り付け露光現像して電解メッキ層形成部分のみ開口させ、無電解Cuメッキ層を共通電極として開口内に電解Cuメッキ層を形成し、ドライフィルムを除去した後、不要な無電解Cuメッキ層をソフトエッチングにより除去する。これにより、図9(b)に示すように、ビアホール41VH、51VH内に樹脂絶縁層41,51をそれぞれ貫通し、上面接続パッド21や下面接続パッド22等とそれぞれ接続するビア部45V,55Vを有する配線層45,55が、互いに絶縁されて形成される。なお、この配線層45,55は、さらに上部に樹脂絶縁層42,52が形成されると樹脂絶縁層41と42、あるいは樹脂絶縁層51と52の層間に配置されることになる。
【0083】
以降は、同様にして樹脂絶縁層42,52、配線層46,56及びフリップチップパッド101、樹脂絶縁層(ソルダレジスト層)43,53を順に形成し、さらに、樹脂絶縁層43から露出するフリップチップパッド101にハンダペーストを塗布しリフローすることで、ハンダからなるフリップチップバンプ102を形成する。このようにして、図1に示す配線基板100が完成する。なお、LGAパッド103の表面には、酸化防止のため、Ni−Auメッキ層を形成しても良い。
【0084】
本実施形態においては、コア基板本体10の貫通孔11内にコンデンサ20を内蔵させ充填樹脂32で固定した後に、充填樹脂層32B,32C,32D,32Eの上面または下面を研磨し整面した。さらに、コアスルーホール導体33等を形成した後にも、平坦化樹脂層37,38の上面または下面を研磨して整面した。このため、コンデンサ20を貫通孔11内に内蔵させたことによって生じる段差を解消し、さらには、コアスルーホール導体33や上面接続パッド21等の突出による段差も解消したので、配線層45,55等の断線やショート、さらには、フリップチップパッド101やフリップチップバンプ102、LGAパッド103のコプラナリティも向上させることができる。
【0085】
また本実施形態では、上述のように樹脂絶縁層41,42,43,51,52,53を、感光性樹脂フィルムを用いたフォトリソグラフィ技術によって形成し、また、配線層45,55を、いわゆるセミアディティブ法によって形成した。しかし、樹脂絶縁層41等を樹脂ペーストを塗布するなど他の手法で、また、配線層45等も、サブトラクティブ法、フルアディティブ法、その他の手法で形成しても良い。即ち、公知のいずれの手法によって、樹脂絶縁層41等及び配線層45等を形成しても良い。
【0086】
(実施形態2)
次いで、第2の実施の形態にかかる配線基板200ついて、図10を参照しつつ説明する。前記実施形態1の配線基板100では、コンデンサ20を内蔵するコア基板本体10の貫通孔11に形成された受け部12が、貫通孔11の図中下方端部に形成されていた。これに対して、本実施形態の配線基板200では、コンデンサ220を内蔵するコア基板本体210のコンデンサ内蔵用貫通孔211のうち、図中上方端部にコンデンサ受け部212が形成されている点で異なる。また、コンデンサ220の上面220A側に当接面220C及び切り欠き部220Pが形成され、受け部212の内向き面(図中下面)212Sと当接面220Cとが当接し、受け部212に切り欠き部220Pが嵌合している点で異なる。さらに、コア基板本体上面210Aのうち受け部212の外向き面(図中上面)212Tにまで接続配線234が延設されている点で異なるが、その他は同様であるので、異なる部分を中心に説明し、同様な部分については説明を省略あるいは簡略化する。
【0087】
配線基板200は、その配線基板上面200Aに、破線で示すICチップ1との接続用のフリップチップパッド101及びフリップチップバンプ102が多数形成されている。一方、配線基板下面200Bには、LGAパッド103が多数形成されている。さらにこの配線基板200は、コンデンサ220を内蔵するコア基板本体210、これらの上下に積層された樹脂絶縁層41,42,43,51,52,53及びこれらの層間に及び樹脂絶縁層を貫通して形成された各配線層60,70,80,90を備える。
【0088】
このうち、コア基板本体210は、平面視略正方形板状で、ガラス−エポキシ樹脂複合材料からなり、その略中央にはその上下を貫通する平面視略正方形のコンデンサ内蔵用貫通孔211を備える。この貫通孔211の図中上方端部には、貫通孔211の径方向内側に向けて突出し、その内周縁212Hが略正方形状とされたコンデンサ受け部212が形成されている。また、この貫通孔211内には、コンデンサ220が内蔵されている。また、このコア基板本体210の周縁部には、コア基板本体上面210Aとコア基板本体下面210Bとの間を貫通するコアスルーホール導体233が多数形成されている。また、コア基板本体上面210Aには、コアスルーホール導体233から受け部212の上面212Tまで延びる接続配線234が形成されている。一方、コア基板本体赤面210Bには、コアスルーホール導体233から延びる接続配線235が形成されている。
【0089】
コンデンサ220は、実施形態1で説明したコンデンサ20と同様の材質、構造を有する、但し、コンデンサ20とちょうど上下反転させた形状、即ち、当接面220Cおよび切り欠き部220Pがコンデンサ上面220A側に形成された積層セラミックコンデンサである(図2(a)(b)(c)参照)。つまり、コンデンサ上面220Aの周囲は、階段状の切り欠き部220Pとされ、一段低位にされて当接面220Cを構成する。なお、コンデンサ20と同様に、コンデンサ上面220A及びコンデンサ下面220Bには、それぞれ多数の上面接続パッド221及び下面接続パッド222を備えており、これらのパッド221,222によって、コンデンサ上面220A及びコンデンサ下面220B内で、図中上方あるいは下方に接続可能になっている。
これにより、コア基板本体210に内蔵されたコンデンサ220は、図中上方には上面接続パッド221で、図中下方には下面接続パッド222で、それぞれ接続可能になっている。さらに、このコンデンサ220は、エポキシ樹脂からなる充填樹脂232によって貫通孔211内に固定されて、コア基板本体210と一体となっている。
【0090】
さらに、実施形態1と同様に、コア基板本体上面210A及びコンデンサ上面220Aの上方には、エポキシ樹脂を主成分とする3層の上部樹脂絶縁層41,42,43を備える。一方、コア基板本体下面210B及びコンデンサ下面220Bの下方にも、同じく3層の下部樹脂絶縁層51,52,53を備える。さらに上部樹脂絶縁層41と42の層間及び上部樹脂配線層42と43の層間には、それぞれ上部樹脂絶縁層41,42をも貫通し、Cuメッキからなる配線層45,46が形成されている。同様に、下部樹脂絶縁層51と52の層間及び下部樹脂配線層52と53の層間には、それぞれ下部樹脂絶縁層51,52をも貫通し、Cuメッキからなる配線層55,56が形成されている。
【0091】
このうち、フリップチップパッド101とこれに対応する上面接続パッド221とをそれぞれ結ぶ配線層45,46は、上部コンデンサ接続配線60を構成し、フリップチップパッド101とこれに対応するコアスルーホール導体33とをそれぞれ結ぶ配線層45,46は、上部コア接続配線80を構成する。一方、コンデンサ20の下面接続パッド222とこれに対応するLGAパッド103とをそれぞれ結ぶ配線層55,56は、下部コンデンサ接続配線70を構成し、コアスルーホール導体33とこれに対応するLGAパッド103とをそれぞれ結ぶ配線層55,56は、下部コア接続配線90を構成する。
【0092】
これにより、フリップチップバンプ102に接続されたICチップ1は、コンデンサ220の一対の電極群とそれぞれ接続することになる。さらに、LGAパッド103は、コンデンサ220の一対の電極群とそれぞれ接続している。
このため、LGAパッド103に接続したマザーボードなどから供給される電源電位及び接地電位は、LGAパッド103から、下部コンデンサ接続配線70、コンデンサ220、上部コンデンサ接続配線60、フリップチップパッド101、フリップチップバンプ102を通じて、ICチップ1に供給することができるようになる。さらに、コンデンサ220により電源電位や接地電位に重畳されるノイズを除去することができる。
【0093】
しかも、コンデンサ220は、コア基板本体210に内蔵されているので、ICチップ1のごく近くに配置することができるため、上部コンデンサ接続配線60の長さを短くできる。したがって、コンデンサ220によるノイズ除去能力をより高めることができる。特に、本実施形態では、コンデンサ220を、ICチップ1の直下に、したがって、フリップチップパッド101の直下に配置する構造としたので、上部コンデンサ接続配線60の長さをごく短くすることができる。したがって、ICチップ1とコンデンサ220との距離をごく短くすることができるから、この間でノイズが重畳されることが少なく、特にノイズ除去に有効となる。
【0094】
また、上部コンデンサ接続配線60は並列に多数形成されている。また同様に、下部コンデンサ接続配線70も多数形成されている。このため、全体として、上部コンデンサ接続配線60や下部コンデンサ接続配線70の持つ抵抗やインダクタンスも小さくなり、この点からもノイズ除去に有利となる。
【0095】
一方、信号線などコンデンサ220に接続しないで、ICチップ1とマザーボード等とを結ぶ配線は、フリップチップパッド101から上部コア接続配線80、接続配線234を通じて、コアスルーホール導体33に接続し、コア基板本体210を貫通して、下部コア接続配線90からLGAパッド103に接続する。この構造は、スルーホール導体を形成したコア基板を用いた通常のビルドアップ配線基板と同様である。
このように、本実施形態の配線基板200でも、ICチップ1のごく近くにコンデンサ220を内蔵して、有効にノイズを除去すると共に、信号線等については、従来と同様の構造にすることができる。
しかも、本実施形態では、接続配線234が受け部212の外向き面(図中上面)212Tまで延在しているものもある。このような接続配線234を形成すると、上面接続パッド221の近傍でも上部コア接続配線80と接続ができるようになり、配線の自由度をさらに向上させることができる。
【0096】
なお、この配線基板200は、実施形態1のコンデンサ20や配線基板本体10と同様のコンデンサ220やコア基板本体210を製作し、コア基板本体210にコンデンサ220を内蔵させ、上下反転させた上で実施形態1と同様に樹脂絶縁層41等や配線層45等を形成すれば製作できるので、その詳細な説明を省略する。
【0097】
以上において、本発明を実施形態に即して説明したが、本発明は上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることはいうまでもない。
例えば、上記実施形態では、コア基板本体10、さらにいえば、受け部用コア基板本体13及び壁部用コア基板本体16の材質として、ガラス−エポキシ樹脂複合材料を用いたが、コア基板本体としては、耐熱性、機械的強度、可撓性、加工の容易さ等を考慮して選択すればよい。したがって、例えば、ガラス織布、ガラス不織布などのガラス繊維とエポキシ樹脂、ポリイミド樹脂、BT樹脂等の樹脂とのガラス繊維−樹脂複合材料や、ポリアミド繊維などの有機繊維と樹脂との複合材料、連続気孔を有するPTFEなど3次元網目構造のフッ素系樹脂にエポキシ樹脂等の樹脂を含浸させた樹脂−樹脂複合材料などを用いることができる。
【0098】
また、樹脂絶縁層41等として、エポキシ樹脂を主成分とするものを用いたが、耐熱性、パターン成形性等を考慮して適宜選択すれば良く、例えば、ポリイミド樹脂、BT樹脂、PPE樹脂、連続気孔を有するPTFEなど3次元網目構造のフッ素系樹脂にエポキシ樹脂等の樹脂を含浸させた樹脂−樹脂複合材料等が挙げられる。
同様に、配線層45等を、無電解Cuメッキ及び電解Cuメッキによって形成したが、その他の材質、例えば、Ni、Ni−Au等によって形成しても良く、さらには、メッキによらず、導電性樹脂を塗布する等の手法によって配線層45等を形成しても良い。
【0099】
上記実施形態では、ICチップ1との接続のために、配線基板上面100A,200Aにフリップチップパッド101及びフリップチップバンプ102を多数設けた。しかし、IC接続端子としては、接続するICチップに形成され端子に応じて、適切な形態のものを選択すれば良く、フリップチップバンプを形成したものの他、フリップチップパッドのみのもの、あるいは、ワイヤボンディングパッドやTAB接続用のパッドを形成したものなどが挙げられる。
【0100】
上記実施形態では、コア基板本体の略中央に貫通孔を1つ設けたものを示したが、略中央に形成する必要はなく、また、必要に応じて貫通孔を複数設けてコンデンサを内蔵するようにしても良い。また逆に、複数の電源電位に対応するなどのため、1つの貫通孔内に、複数のコンデンサを内蔵するようにしても良い。
また、コンデンサ20として、コンデンサ上面20Aやコンデンサ下面20Bに略平行に誘電体層24及び電極層25を積層した積層セラミックコンデンサを示した。しかし、内蔵させるコンデンサは、コンデンサ上面20Aやコンデンサ下面20Bに上面接続パッド21や下面接続パッド22が形成されたもので有ればよく、例えば、誘電体層や電極層がコンデンサ上面と略直交する方向に積層されているなど、コンデンサの積層方向や内部構造は適宜変更することができる。また、上記実施形態1では、コンデンサ内に形成したビア導体26,27,28は、いずれも他のビア導体と上下方向に重なった位置に形成されたものを示したが(図2(c)参照)、他のビア導体が上方あるいは下方にある位置に限定する必要はなく、各ビア導体26等の配置あるいはその数は、適宜選択することができる。
【0101】
さらに、上記実施形態では、誘電体層24にBaTiO3 を主成分とする高誘電体セラミックを用いたが、誘電体層の材質はこれに限定されず、例えば、PbTiO3,PbZrO3,TiO2,SrTiO3,CaTiO3,MgTiO3,KNbO3,NaTiO3,KTaO3,RbTaO3,(Na1/2Bi1/2)TiO3 ,Pb(Mg1/21/2)O3,(K1/2Bi1/2)TiO3などが挙げられ、要求されるコンデンサの静電容量その他に応じて適宜選択すればよい。
また、電極層25やビア導体26等には、Pdを用いたが、誘電体層の材質等との適合性を考慮して選択すれば良く、例えば、Pt,Ag,Ag−Pt,Ag−Pd,Cu,Au,Ni等が挙げられる。
さらに、高誘電体セラミックを主成分とする誘電体層やAg−Pd等からなる電極層と、樹脂層やCuメッキ,Niメッキ等からなるビア導体や配線層とを複合させてコンデンサとしたものを用いることもできる。
【0102】
また、上記実施形態では、貫通孔11内にコンデンサ20を内蔵した後、貫通孔11内に充填樹脂32(32A)を充填したほか、コンデンサ上面20A上及びコア基板本体上面10A上や、コンデンサ下面20B上及びコア基板本体下面10B上(図中下方)にも、充填樹脂層32B,32C,32D,32Eを形成した(図6参照)。しかし、少なくとも充填樹脂32(32A)でコンデンサ20を貫通孔11内に固定できれば良い。したがって、貫通孔11内にのみ充填樹脂32を注入しても良い。
【0103】
あるいは、充填樹脂32(32A)の他にコンデンサ上面20A上やコンデンサ下面20B上の充填樹脂層32B,32Dのみ形成するようにすることもできる。即ち、貫通孔11(受け部12)やコンデンサ20の寸法を調整しておき、コンデンサ20を貫通孔11内で位置決めした状態で、コンデンサ上面20Aがコア基板本体上面10Aよりも低位(図中下方)となり、かつ、上面接続パッド21がコア基板本体上面10Aよりも上位(図中上方)となるようにする。また、コンデンサ下面20Bがコア基板本体下面10Bよりも上位(図中上方)となり、かつ、下面接続パッド22がコア基板本体下面10Bよりも低位(図中上方)となるようにする。次いで、貫通孔11内に充填樹脂32を注入するほか、コンデンサ上面20A、コンデンサ下面20B上にもそれぞれ充填樹脂層32B,32Dを形成する。その後、この充填樹脂層32Bの上面に上面接続パッド21が露出し、この上面がコア基板本体上面10Aと面一になるように、また、この充填樹脂層32Dの上面に下面接続パッド22が露出し、この下面がコア基板本体下面10Bと面一になるように整面しても良い。このようにしても、貫通孔11の存在やコンデンサ20を内蔵したために生じる段差が解消でき、さらに上層に上部樹脂絶縁層41等や配線層45等を形成する際に、配線層45等の断線やショートを防止し、あるいはフリップチップパッド101等のコプラナリティ低下を防止できる。
【0104】
また、上記実施形態では、コンデンサ20を内蔵させた後に、コア基板本体10にコアスルーホール導体33を形成したが、予めコア基板本体上面10Aとコア基板本体下面10Bとの間を貫通するコアスルーホール導体を形成しておき、その後コンデンサ20を貫通孔11内に内蔵させることもできる。即ち、受け部用コア基板本体13と壁部用コア基板本体16とを接着した後(図4,図5参照)、コア基板本体上面10Aとコア基板本体下面10Bとの間を貫通する貫通孔を形成し、公知の手法によりコアスルーホール導体を形成する。その後、上記と同様にして、貫通孔11内にコンデンサ20を内蔵させる。このようにすると、コンデンサ20を内蔵した後、コアスルーホール孔30Hの形成の際に発生する振動や衝撃等で、コンデンサ20や充填樹脂32にクラック等の不具合を生じさせる危険を回避することができる。
【0105】
さらに、上記実施形態においては、コアスルーホール導体33や接続導体34,35を形成した後に、平坦化樹脂36,37,38を形成して、コア基板30の上下を平坦にした。しかし、上記平坦化樹脂を用いないで、即ち、図7に示す状態から、コアスルーホール導体33内を樹脂で埋めた上で、樹脂絶縁層41,51を形成するようにしても良い。このようにすれば、配線基板をより安価に形成することができる。
【0106】
さらに、上記実施形態では、貫通孔11,211にコンデンサ受け部12,212をそれぞれ形成し、当接部20C,220C、及び切り欠き部20P,220Pが形成されたコンデンサ20,220が、この受け部12等に当接し、かつ、嵌合するようにした。
しかし、受け部12等に当接するのみでも、コンデンサ20等の図中上下方向の位置決めをすることができる。例えば、図11の変形例1に示す配線基板300のようなものが挙げられる。この配線基板300について説明すると、内蔵するコンデンサ320には、実施形態1のコンデンサ20と異なり、切り欠き部が形成されておらず、その厚さがコンデンサ20よりやや薄くされ、その代わりに、コンデンサ下面320Bに形成された下面接続パッド322の厚さが厚くされている。一方、コア基板本体10その他については、実施形態1の配線基板100とほぼ同様とされている。この配線基板300では、受け部12の内向き面12Sとコンデンサ下面(当接面)320Bとが当接することで、コンデンサ320の図中上下方向の位置決めがなされている。これにより、容易にコンデンサ320の上下方向の位置ズレに起因する上方コンデンサ接続配線60(配線層45)や下方コンデンサ接続配線70(配線層55)との接続不良を防止でき、これらと確実に接続できる。また、配線基板300では、切り欠き部を形成しない略直方体形状のコンデンサ320を用いることができ、コンデンサ320の製造が容易で安価になるため、配線基板300も安価にできる。なお、コンデンサ320の平面方向(図中左右方向)の位置決めは、適宜治工具を用いて行い、充填樹脂332によってコンデンサ320を貫通孔11内に固定すればよい。
【0107】
さらには、例えば、図12の変形例2に示す配線基板400のように、受け部12等を形成しないものもとすることができる。この配線基板400では、コア基板本体410の上面410Aと下面410Bとの間に形成した平面視略正方形状の貫通孔411の径(平面方向寸法)は、上端から下端にわたって変わらず、受け部が形成されていない。また、この貫通孔411内に内蔵されたコンデンサ420は、その厚さはコア基板本体410のそれとほぼ同じであり、実施形態1のコンデンサ20と異なり、切り欠き部が形成されていない略直方体形状とされている。本配線基板400では、コア基板本体410に受け部を形成しないため、実施形態1で説明したように、受け部用コア基板本体13と壁部用コア基板本体16とを貼り合わせる必要が無く、コア基板本体410に公知の手法で貫通孔411を形成すれば足りる。また、コンデンサ420も、切り欠き部を形成しない略直方体形状のものを用いることができ、コンデンサ420の製造が容易で安価になる。従って、配線基板400は、さらに安価にできる。なお、コンデンサ420の上下方向、及び平面方向(図中左右方向)の位置決めは、適宜治工具を用いて行い、充填樹脂432によってコンデンサ420を貫通孔411内に固定すればよい。
【0108】
さらに、実施形態1においてコア基板本体10の受け部12の形状は、図4(a)に示したように、コア基板本体上面10Aから平面視すると、貫通孔11の全周にわたって、略一定の幅を持つ略ロ字形状とされているが、他の形状であっても良い。
例えば、図13(a)に示すコア基板本体510のように、略正方形の貫通孔11の4つの角部からそれぞれ略「く」の字状に突出するコンデンサ受け部512A,512B,512C,512Dが形成されたもの、図13(b)に示すコア基板本体520のように、略正方形の貫通孔11のうちの対向する2辺(本例では、左右の2辺)に沿って突出する2本の帯状のコンデンサ受け部522A,522Bが形成されたものが挙げられる。また、図13(c)に示すコア基板本体530のように、略正方形の貫通孔11の4つの辺にそれぞれ略台形状に突出するコンデンサ受け部532A,532B,532C,532Dが形成されたものなども挙げられる。これらコンデンサ受け部512,522,532の内向き面512S,522S,532Sもコンデンサ20を内蔵させた際に、コンデンサ20の当接面20Cと当接し、かつ、コンデンサ受け部512,522,532、つまりその内周縁512H,522H,532Hが切り欠き部20Pと嵌合するので、コンデンサ20の貫通孔11内の上下方向及び平面方向の位置決めをすることができる。
【0109】
さらに、上記実施形態1では、切り欠き部20Pをコンデンサ下面20Bの周縁にロ字状に設けた(図2(b)参照)が、切り欠き部はコンデンサ受け部(例えば実施形態1における受け部12(図4参照))に嵌合する形状であれば、他の形状としても良い。
例えば、上記コア基板本体520(図13(b)参照)の受け部522に嵌合するコンデンサとして、例えば、図14(a)に示すコンデンサ540が挙げられる。このコンデンサ540では、平面視正方形状のコンデンサ下面540Bの周縁のうち、対向する二辺に沿う部分のみ階段状に切り欠き部540Pが設けられ、当接面540Cが形成されている。これにより、上記コア基板本体520の貫通孔11内で、コンデンサ540の当接面540Cと受け部522の内向き面522Sとが当接し、その内周縁522Hと切り欠き部540Pとが嵌合する。このようにしても、コンデンサ540の貫通孔11内における軸方向及び径方向の位置決めを容易にすることができる。
【0110】
また、コンデンサには、切り欠き部ではなく、コンデンサ下面から突出する凸部を設けて、コンデンサ受け部と嵌合するようにしても良い。例えば、上記コア基板本体510(図13(a)参照)の受け部512に嵌合するコンデンサとして、例えば、図14(b)に示すコンデンサ550が挙げられる。このコンデンサ550では、平面視正方形状のコンデンサ下面550Bの周縁のうち、各辺中央部近傍にそれぞれ略矩形状の凸部550TA,550TB,550TC,550TDが設けられている。これにより、上記コア基板本体510の貫通孔11内で、コンデンサ550のコンデンサ下面(当接面)550Bと受け部512の内向き面512Sとが当接し、その内周縁512Hと各凸部550TA等とが嵌合する。このようにしても、コンデンサ550の貫通孔11内における軸方向及び径方向の位置決めを容易にすることができる。
【0111】
また同様に、上記コア基板本体530(図13(c)参照)の受け部532に嵌合するコンデンサとして、例えば、図14(c)に示すコンデンサ560が挙げられる。このコンデンサ560では、平面視正方形状のコンデンサ下面560Bの周縁のうち、各角部近傍にそれぞれ略家型状の凸部560TA,560TB,560TC,560TDが設けられている。これにより、上記コア基板本体530の貫通孔11内で、コンデンサ560のコンデンサ下面(当接面)560Bと受け部532のそれぞれの内向き面532Sとが当接し、その内周縁512Hと各凸部560TA等とが嵌合する。このようにしても、コンデンサ560の貫通孔11内における軸方向及び径方向の位置決めを容易にすることができる。
また、コンデンサとコア基板本体の受け部の形状としては、上記各例に限定されるものではなく、切り欠き部と凸部のいずれも形成したものなど、互いに当接し嵌合する形状に形成すればよい。
【0112】
上記から説明から容易に理解できるように、コンデンサ受け部とコンデンサとは、受け部の内向き面とコンデンサの当接面とが互いに当接する形状にされていれば、貫通孔内におけるコンデンサの上下方向の位置決めをすることができる。またさらに、コンデンサ受け部とコンデンサとは、受け部(受け部の内周縁)とコンデンサの切り欠きとが互いに嵌合する形状とされていれば、貫通孔内におけるコンデンサの平面方向の位置決めをすることができる。
【図面の簡単な説明】
【図1】 実施形態1にかかり、コア基板本体に形成されたコンデンサ内蔵用貫通孔の下方端部にコンデンサ受け部が形成され、この貫通孔内にこの受け部に当接、嵌合するコンデンサを内蔵する配線基板の断面図である。
【図2】 実施形態1にかかる配線基板に内蔵させるコンデンサの(a)は平面図、(b)は下面側から見た斜視図、(c)はコンデンサの内部構造説明するための断面説明図、(d)はコンデンサとLGAパッド及びフリップチップパッドとの関係を示す回路図である。
【図3】 図2のコンデンサの製造方法を説明する説明図である。
【図4】 実施形態1にかかる配線基板において、コンデンサ内蔵するための貫通孔を有するコア基板本体の(a)平面図、及び(b)部分拡大断面図である。
【図5】 図4のコア基板本体の製造方法を説明する説明図である。
【図6】 図2のコンデンサを図4のコア基板本体の貫通孔内に内蔵させるコンデンサ内蔵コア基板の製造方法の説明図である。
【図7】 コンデンサ内蔵コア基板の部分拡大断面図である。
【図8】 図7のコンデンサ内蔵コア基板の上下面をさらに平坦化する工程を説明する説明図である。
【図9】 図8の平坦化されたコンデンサ内蔵コア基板の上下に樹脂絶縁層および各配線層を形成する工程を示す説明図である。
【図10】 実施形態2にかかり、コア基板本体に形成されたコンデンサ内蔵用貫通孔の上方端部にコンデンサ受け部が形成され、この貫通孔内にこの受け部に当接、嵌合するコンデンサを内蔵する配線基板の断面図である。
【図11】 変形例1にかかり、コア基板本体に形成されたコンデンサ内蔵用貫通孔の下方端部にコンデンサ受け部が形成され、この貫通孔内にこの受け部に当接するコンデンサを内蔵する配線基板の断面図である。
【図12】 変形例2にかかり、コア基板本体に形成されたコンデンサ内蔵用貫通孔内にコンデンサを内蔵する配線基板の断面図である。
【図13】 コア基板本体のコンデンサ受け部の他の形態を示す平面図である。
【図14】 コンデンサの切り欠き部及び凸部の他の形態を示す斜視図である。
【図15】 コンデンサを上面や下面に搭載した従来の配線基板におけるコンデンサ接続配線の様子を説明する説明図である。
【符号の説明】
100,200,300,400 (コンデンサ内蔵)配線基板
100A,200A,300A,400A 配線基板上面
100B,200B,300B,400B 配線基板下面
101 フリップチップパッド
102 フリップチップバンプ
103 LGAパッド(下面接続端子)
10,210,410 コア基板本体
10A,210A,410A コア基板本体上面
10B,210B,410B コア基板本体下面
11,211,411 コンデンサ内蔵用貫通孔
12,212 コンデンサ受け部
20,220,320,420 コンデンサ
20A,220A,320A,420A コンデンサ上面
20B,220B,320B,420B コンデンサ下面
21,221,321,421 上面接続パッド
22,222,322,422 下面接続パッド
24 誘電体層
25 電極層
25E,25F (一対の)電極群
30 コア基板
32,232,332,432 充填樹脂
32B,32C,32D,32E 充填樹脂層
33,233 コアスルーホール導体
41,42,43,51,52,53 樹脂絶縁層
45,46,55,56 配線層
60 上部コンデンサ接続配線
70 下部コンデンサ接続配線
80 上部コア接続配線
90 下部コア接続配線
[0001]
BACKGROUND OF THE INVENTION
The present invention , The present invention relates to a capacitor and a method of manufacturing a capacitor-embedded core substrate and a core substrate body.
[0002]
[Prior art]
With the progress of integrated circuit technology, the operation of an IC chip is increasingly speeded up, but with this, noise may be superimposed on the power supply wiring and the like to cause malfunction. In order to eliminate noise, for example, as shown in FIG. 15, a chip capacitor 3 is separately mounted on the upper surface 2A or the lower surface 2B of the wiring board 2 on which the IC chip 1 is mounted, and is connected to the two electrodes of the capacitor 3, respectively. The capacitor connection wiring 4 is provided inside the wiring board 2. Thus, the chip capacitor 3 is connected to the IC chip 1 via the capacitor connection wiring 4 and the flip chip pad 5.
[0003]
[Problems to be solved by the invention]
However, in the above method, since it is necessary to separately mount the chip capacitor 3 after the wiring board 2 is completed, man-hours are required and the cost is increased. Further, depending on the connection reliability of the chip capacitor 3, the reliability of the wiring substrate may be lowered, such as the quality of the entire wiring substrate being affected by the connection of the chip capacitor. In addition, it is necessary to secure a region for mounting the chip capacitor 3 in advance, which reduces the degree of freedom of fixing of the reinforcing member for mounting other electronic components or reinforcing the wiring board. Furthermore, the length of the capacitor connection wiring 4 that connects the IC chip 1 and the chip capacitor 3 is long and is likely to be narrowed by being limited to other wirings, etc., so that the resistance and inductance of the capacitor connection wiring 4 itself increase. Therefore, it cannot fully meet the demand for low resistance and low inductance.
[0004]
Therefore, among the wiring substrates, a resin insulating layer formed on the top and bottom of the core substrate and a part of the wiring layer are formed in a capacitor structure in which the resin insulating layer is sandwiched between opposing wiring layers (electrode layers) as a dielectric layer, It is conceivable to incorporate a capacitor. However, if the capacitor becomes defective due to a short circuit or defective insulation resistance, the entire wiring board with added value will be discarded, resulting in a large loss amount and eventually manufacturing the wiring board at a low cost. Is difficult. Moreover, even if a high dielectric constant ceramic powder or the like is mixed, the relative dielectric constant of the resin insulating layer is generally expected to be about 40 to 50 at most, so it is difficult to sufficiently increase the capacitance of the built-in capacitor. .
[0005]
The present invention has been made in view of the above problems, and by incorporating a capacitor, it is possible to reliably remove noise, and to further reduce the resistance and inductance of wiring connected to the capacitor, and Provides a wiring board that can be built into a capacitor with low capacitance, low cost, and large capacitance even if a capacitor malfunctions. Therefore, It is an object of the present invention to provide a capacitor for manufacturing a wiring board incorporating such a capacitor, and a method for manufacturing a core substrate body and a capacitor built-in core substrate.
[0006]
[Means, actions and effects for solving the problems]
So And A wiring board having a wiring board upper surface and a wiring board lower surface, and having a plurality of IC connection terminals for connecting to an IC chip on the wiring board upper surface and a plurality of lower surface connection terminals on the lower surface of the wiring board, and having a built-in capacitor. A core substrate body upper surface, a core substrate body lower surface, a capacitor built-in through-hole penetrating between the core substrate body upper surface and the core substrate body lower surface, and the core substrate body upper surface and the core substrate body lower surface A core substrate body having a plurality of core through-hole conductors formed therethrough, a capacitor upper surface, a capacitor lower surface, a pair of electrodes or electrode groups insulated from each other, and the pair of electrodes formed on the capacitor upper surface. Or a plurality of upper surface connection pads respectively conducting to any one of the electrodes or electrode group of the electrode group, and any of the pair of electrodes or electrode groups A plurality of upper surface connection pads that are electrically connected to at least one of the plurality of upper surface connection pads, and are formed on the lower surface of the capacitor and are electrically connected to any one of the pair of electrodes or electrode groups. A plurality of lower surface connection pads, wherein each of the pair of electrodes or electrode groups includes a plurality of lower surface connection pads that are electrically connected to at least one of the plurality of lower surface connection pads. The capacitor built in and fixed in the through hole, one or more upper resin insulation layers stacked above the core substrate main body upper surface and the capacitor upper surface, the core substrate main body lower surface and the capacitor lower surface below One or more laminated lower resin insulation layers and the upper resin insulation layer or through the layers, the wiring substrate A plurality of upper capacitor connection wires respectively connecting a plurality of IC connection terminals on the upper surface and a plurality of upper surface connection pads of the capacitor corresponding thereto, and passing through or passing through the lower resin insulating layer, A plurality of lower capacitor connection wires respectively connecting a plurality of lower surface connection pads and a plurality of lower surface connection terminals on the lower surface of the wiring substrate corresponding thereto, and through the upper resin insulating layer or through the layers, the wiring substrate A plurality of upper core connection wirings respectively connecting a plurality of IC connection terminals on the upper surface and a corresponding plurality of core through-hole conductors on the upper surface of the core substrate body, and passing through or passing through the lower resin insulating layer A core through-hole conductor on the lower surface of the core substrate body and a plurality of lower surface connection terminals on the lower surface of the wiring substrate corresponding thereto. A plurality of lower core connection wirings connected to each other; and a wiring board comprising: And good .
[0007]
This In the wiring board, a through hole for incorporating a capacitor is formed in the core substrate body, the capacitor is incorporated therein, an upper resin insulating layer and a lower resin insulating layer are formed, and an IC connection terminal such as a flip chip pad is connected to the upper surface. The pad is connected by the upper capacitor connection wiring, and the lower surface connection pad and the lower surface connection terminal are connected by the lower capacitor connection wiring. Further, each of the pair of electrodes or the electrode group is electrically connected to at least one of the plurality of upper surface connection pads. The lower surface connection pads are also the same. For this reason, both poles of the capacitor can be taken out above and below the capacitor. Therefore, both poles of the capacitor can be connected from the upper surface connection pad to the IC connection terminal and further to the IC chip through the upper capacitor connection wiring. Similarly, both poles of the capacitor can be connected from the lower surface connection pad to the lower surface connection terminal through the lower capacitor connection wiring. For this reason, the capacitor can be disposed at a very close distance from an IC connection terminal connected to the IC chip or a lower surface connection terminal connected to a power supply wiring or a ground wiring of another wiring board such as a mother board. Therefore, both the upper capacitor connection wiring and the lower capacitor connection wiring can be formed very short.
[0008]
Furthermore, since a power supply potential and a ground potential are usually required at various locations in an IC chip, the power supply terminals and grounding are sometimes made closer to half the number of connection terminals (connection pads and connection bumps) formed on the IC chip. A large number of terminals are formed. On the other hand, the upper surface and the lower surface of the capacitor are provided with a plurality of upper surface connection pads and lower surface connection pads. Therefore, if a large number of upper surface connection pads are formed corresponding to the power supply terminals and ground terminals of the IC chip, and a large number of upper capacitor connection wires are formed in parallel so as to connect them, the inductance and resistance of the upper capacitor connection wires can be obtained. Can be further reduced as a whole. Similarly, the inductance and resistance as a whole can be further reduced similarly for the lower capacitor connection wiring that connects the lower surface connection pads corresponding to the lower surface connection pads and the connection terminals on the lower surface of the wiring board in parallel. In other words, the length of both the upper capacitor connection wiring and the lower capacitor connection wiring can be shortened and the number thereof can be increased, so that the resistance and inductance can be reduced, and the noise can be effectively and reliably removed by the capacitor. .
[0009]
In addition, since the capacitor is built in the wiring board, it is not necessary to attach the capacitor later, and the cost for mounting the chip capacitor is not required, so that an inexpensive wiring board can be obtained. In addition, the degree of freedom of mounting other electronic components and the like and fixing the reinforcing plate is high. Furthermore, since the capacitor is built in the capacitor built-in through hole formed in the core substrate body, the upper resin insulating layer, the lower resin insulating layer or the upper capacitor connection wiring, the lower capacitor connection wiring, the upper core connection wiring, and the lower The core connection wiring can be made inexpensive in that any core connection wiring can be formed using a known resin insulation layer or wiring layer manufacturing method. In addition, since the capacitance of the capacitor to be incorporated can be freely selected, a capacitor having a large capacitance using a high dielectric constant ceramic can be incorporated, and the noise removal capability can be further improved.
[0010]
In particular, it is preferable that at least a part of the plurality of IC connection terminals is located above the capacitor. When an IC connection terminal such as a flip chip pad is positioned above the capacitor, the length of the upper capacitor connection wiring connecting the IC connection terminal and the upper surface connection pad of the capacitor can be particularly shortened. Therefore, since the inductance and resistance of the upper capacitor connection wiring can be further reduced, the noise removal capability can be further improved.
[0011]
Further, in the above wiring board, the core substrate body includes a capacitor receiving portion projecting radially inward at either end of the capacitor built-in through hole, A wiring board characterized by being in contact with the inward surface of the capacitor receiving portion is preferable.
[0012]
This In this wiring board, a capacitor receiving portion that protrudes inward in the radial direction (planar direction) is formed, and the capacitor receiving portion is formed on the inward surface of the capacitor receiving portion of the core board body, that is, the upper end portion of the through hole for incorporating the capacitor When the capacitor is formed, the capacitor is brought into contact with the lower surface, and when the capacitor receiving portion is formed at the lower end portion of the capacitor built-in through hole, the capacitor is brought into contact with the upper surface. As a result, the capacitor can be easily and reliably positioned in the vertical direction within the capacitor built-in through hole. Therefore, a highly reliable wiring board that does not cause poor connection between the upper surface connection pad and the upper capacitor connection wiring or poor connection between the lower surface connection pad and the lower capacitor connection wiring due to the positional misalignment in the vertical direction of the capacitor. It can be.
[0013]
Further, in the above wiring board, the capacitor is formed with at least one of a notch portion and a convex portion on a peripheral edge of the capacitor upper surface and the capacitor lower surface on the side in contact with the capacitor receiving portion, The wiring board may be characterized in that the capacitor is fitted into the capacitor receiving portion by at least one of the notched portion and the convex portion.
[0014]
This The wiring board has at least one of a notch portion and a convex portion on the periphery of the surface on the side contacting the capacitor receiving portion of the core substrate body among the capacitor upper surface and the capacitor lower surface. It abuts on the inward surface and is further fitted to the capacitor receiving portion by at least one of a notch and a convex portion. Therefore, the capacitor is positioned in the vertical direction by contacting the capacitor receiving portion, and is also positioned in the radial direction (planar direction) of the through hole for incorporating a capacitor perpendicular to the vertical direction by fitting with the capacitor receiving portion. The For this reason, it is possible to easily and reliably position the capacitor in the planar direction as well as the vertical direction in the capacitor built-in through hole. Therefore, it does not cause poor connection between the upper surface connection pad and the upper capacitor connection wiring or poor connection between the lower surface connection pad and the lower capacitor connection wiring due to misalignment in the vertical direction or planar direction of the capacitor. It can be set as a highly reliable wiring board.
[0015]
Ma The A core substrate body comprising a core substrate body upper surface, a core substrate body lower surface, and a capacitor built-in through-hole penetrating between the core substrate body upper surface and the core substrate body lower surface; A plurality of upper surface connection pads formed on the upper surface of the capacitor and electrically connected to any one of the electrodes or electrode groups of the pair of electrodes or electrode groups, and the pair of electrodes Alternatively, each of the electrode groups is formed on a plurality of upper surface connection pads that are electrically connected to at least one of the plurality of upper surface connection pads, and on the lower surface of the capacitor. A plurality of bottom surface connection pads respectively conducting to the electrode group, wherein each of the pair of electrodes or the electrode group is the plurality of bottom surface contact pads. At least one plurality of lower surface connection pads for electrical connection of the pads, with a capacitor built core substrate; and a capacitor built, fixed to the core substrate main body built-in capacitor through-hole And good .
[0016]
This In the capacitor built-in core substrate, a capacitor built-in through hole is formed in the core substrate body, and the capacitor is built therein. Further, the capacitor is configured such that any of the pair of electrodes or the electrode group is electrically connected to at least one of the plurality of upper surface connection pads. The lower surface connection pads are also the same. Therefore, both poles of the capacitor can be taken out above and below the core substrate through the upper surface connection pad on the upper surface of the capacitor and the lower surface connection pad on the lower surface of the capacitor. Therefore, if this core board with a built-in capacitor is used, a wiring board with a built-in capacitor can be easily formed by using a known method for forming a resin insulating layer or a wiring layer. Further, when the wiring board is formed in this way, capacitors can be arranged at a very close distance from other wiring boards such as an IC chip and a mother board mounted on the wiring board, and can be connected to each other with very short wiring. Therefore, the characteristics of the built-in capacitor can be fully exhibited and noise can be reliably removed.
[0017]
Further, as described above, in a normal IC chip, a large number of power terminals and ground terminals are formed. On the other hand, the capacitor of the core substrate with built-in capacitor according to the present invention includes a plurality of upper surface connection pads and lower surface connection pads on the capacitor upper surface and the capacitor lower surface. Therefore, a large number of upper surface connection pads (or a lower surface connection pad when used upside down) are formed corresponding to the power supply terminal and ground terminal of the IC chip, and a large number of wirings are formed in parallel so as to connect them. Then, the inductance and resistance of these wirings can be further reduced as a whole. Similarly, regarding the wiring for connecting the lower surface connection pad (or the upper surface connection pad in the case of being inverted upside down) and another wiring board in parallel, the inductance and resistance can be further reduced as a whole. . In other words, the length of the wiring formed above and below the capacitor-embedded core substrate can be shortened and the number of wires can be increased, so that the resistance and inductance can be lowered, and the noise can be effectively and reliably removed by the capacitor. . In addition, since the capacitance of the capacitor to be incorporated can be freely selected, a capacitor having a large capacitance using a high dielectric constant ceramic can be incorporated, and the noise removal capability can be further improved.
[0018]
In addition, since the capacitor is built in the core substrate, there is no need to install a separate capacitor after the resin insulation layer or wiring layer is formed, and the cost for mounting the chip capacitor is not required. Can be manufactured.
Further, since the quality of the built-in capacitor can be judged through the upper surface connection pad or the lower surface connection pad, the core substrate with the capacitor having a defect such as a short circuit can be removed before forming the resin insulating layer or the like. . For this reason, resin insulation layers and wiring layers that require man-hours are formed, and the risk of discarding high value-added wiring boards can be reduced, and the loss due to capacitor defects as a whole is also reduced, resulting in an inexpensive wiring board. be able to.
[0019]
Furthermore, the capacitor built-in core substrate, wherein the capacitor is fixed in the capacitor built-in through hole with a filling resin filled in the capacitor built-in through hole; and Good.
[0020]
This In the capacitor built-in core substrate, the capacitor is fixed in the capacitor built-in through hole with the filling resin, so that the capacitor can be fixed easily and reliably. In addition, the built-in capacitor can be prevented from being misaligned or dropped due to vibration generated when drilling through-holes for core through-hole conductors. Can do.
[0021]
Furthermore, in any one of the above-described core substrates with a built-in capacitor, an upper filling resin layer is formed on the upper surface of the capacitor, or the upper surface of the core substrate body and the upper surface of the capacitor, and the lower surface of the capacitor substrate, or the lower surface of the core substrate body and the A lower filling resin layer is provided on the lower surface of the capacitor, and the upper filling resin layer on the upper surface of the capacitor and the upper filling resin layer on the upper surface of the core substrate body or the upper surface of the core substrate body are substantially flush, The upper surface connection pads are substantially flush with each other, and the lower filling resin layer on the lower surface of the capacitor and the lower filling resin layer on the lower surface of the core substrate body or the lower surface of the core substrate body are substantially flush with each other. The plurality of lower surface connection pads are preferably exposed to be substantially flush with each other.
[0022]
In this core substrate with a built-in capacitor, the upper filling resin layer on the upper surface of the capacitor and the upper filling resin layer on the upper surface of the core substrate body or the upper surface of the core substrate body are substantially flush, and a plurality of upper surface connection pads are substantially omitted. It is exposed to the same level. Further, the lower filling resin layer on the lower surface of the capacitor and the lower filling resin layer on the lower surface of the core substrate body or the lower surface of the core substrate body are substantially flush, and a plurality of lower surface connection pads are substantially flush with each other. Yes.
For this reason, when forming a wiring board by laminating resin insulation layers and wiring layers on the top and bottom of this core substrate, the height difference between the top surface of the core substrate body and the capacitor top surface due to the formation of the capacitor built-in through hole It is possible to prevent the occurrence of a step in the resin insulating layer and the wiring layer formed above and below due to the difference in height or the difference in height between the lower surface of the core substrate body and the lower surface of the capacitor. Therefore, the resin insulating layer and the wiring layer can be easily formed, and the wiring layer is not broken or short-circuited. Further, the coplanarity of the IC connection terminals and the lower surface connection terminals formed on the upper surface and the lower surface of the wiring board can be improved, and the connectivity with the IC chip and other wiring boards can be improved.
[0023]
Furthermore, in any one of the above-described capacitor-embedded core substrates, the core substrate body includes a capacitor receiver that protrudes radially inwardly at an end portion on the lower surface side of the core substrate body among the through holes for incorporating capacitors. The capacitor is preferably a core substrate with a built-in capacitor, wherein the capacitor is in contact with the upper surface of the capacitor receiving portion.
[0024]
This In this wiring board, a capacitor receiving portion is formed on the core substrate body, and the capacitor is brought into contact with the upper surface. As a result, the capacitor can be easily and reliably positioned in the vertical direction within the capacitor built-in through hole. Therefore, when the height of the upper surface connection pad fluctuates due to the vertical misalignment of the capacitor, or when the residue of the filling resin remains on the upper surface connection pad and a via conductor or the like connected to this remains formed In addition, there is no inconvenience such as poor conduction between the upper surface connection pad and the via conductor. The same applies to the lower surface connection pads. Therefore, when a resin insulating layer, a wiring layer, and a via conductor are formed above and below, a highly reliable core substrate with a built-in capacitor that does not cause poor connection with the wiring or via conductor can be obtained.
[0025]
Further, in the core substrate with a built-in capacitor, the capacitor is formed with at least one of a notch and a protrusion on a peripheral edge of the lower surface of the capacitor, and the capacitor is formed by at least one of the notch and the protrusion. A capacitor-embedded core substrate is preferable in which a capacitor is fitted in the capacitor receiving portion.
[0026]
This In the capacitor built-in core substrate, the capacitor is in contact with the capacitor receiving portion, and the capacitor is fitted into the capacitor receiving portion by at least one of a notch portion and a convex portion formed in the capacitor. Therefore, the capacitor is positioned in the vertical direction by contacting the capacitor receiving portion, and is also positioned in the radial direction (planar direction) of the through hole for incorporating a capacitor perpendicular to the vertical direction by fitting with the capacitor receiving portion. The For this reason, it is possible to easily and reliably position the capacitor in the planar direction as well as the vertical direction in the capacitor built-in through hole. Therefore, when the height of the upper surface connection pad and the position in the planar direction fluctuate, or when a via conductor or the like is formed on the upper surface connection pad, the residue of the filling resin remains and is connected to the upper surface connection pad. There are no problems such as poor conduction. The same applies to the lower surface connection pads. Therefore, when a resin insulating layer, a wiring layer, and a via conductor are formed on the upper and lower sides, a highly reliable core substrate with a built-in capacitor that does not cause poor connection with the wiring or the via conductor can be obtained.
[0027]
More In addition, A core board body upper surface; a core board body lower surface; and a capacitor built-in through-hole penetrating between the core substrate body upper surface and the core substrate body lower surface, wherein the capacitor built-in through hole is formed in the core substrate body. A core substrate body characterized by comprising a capacitor receiving portion that protrudes radially inward at the lower surface side end portion, and a capacitor receiving portion that can be contacted at least on the upper surface thereof And good .
[0028]
This Since the core substrate body includes a capacitor built-in through-hole penetrating between the upper and lower surfaces, the wiring substrate incorporating the capacitor can be easily formed by incorporating the capacitor in the through-hole. In addition, the capacitor built in the through hole can be connected easily and at a short distance from any of the upper surface of the core substrate body and the lower surface of the core substrate body.
Further, since the capacitor receiving portion is provided, when the capacitor is built in, the capacitor comes into contact with the upper surface of the capacitor receiving portion. For this reason, the vertical positioning of the capacitor in the capacitor built-in through hole can be ensured.
[0029]
Furthermore, in the core substrate body, the capacitor receiving portion has a shape that can be fitted to at least one of a notch portion and a convex portion formed on a surface on the contact side of the capacitor to be built-in. It is preferable to use a core substrate body.
[0030]
This In the core substrate body, when the capacitor is built in, the capacitor receiving portion abuts on the upper surface thereof, and further fits with at least one of the notch portion and the convex portion formed on the abutting side surface of the capacitor. Therefore, the capacitor can be reliably positioned not only in the vertical direction but also in the plane direction perpendicular to the vertical direction (the radial direction of the capacitor built-in through hole).
[0031]
And The solution includes: a capacitor upper surface; a capacitor lower surface; a pair of electrodes or electrode groups insulated from each other; and an electrode or electrode group of any one of the pair of electrodes or electrode groups formed on the capacitor upper surface. A plurality of upper surface connection pads that are electrically connected to each other, and each of the pair of electrodes or electrode groups is formed on the lower surface of the capacitor, and a plurality of upper surface connection pads that are electrically connected to at least one of the plurality of upper surface connection pads. A plurality of lower surface connection pads respectively conducting with any one of the pair of electrodes or electrode groups, wherein each of the pair of electrodes or electrode groups is at least one of the plurality of lower surface connection pads; A plurality of lower surface connection pads that are electrically connected to one and formed on the periphery of the lower surface of the capacitor, for incorporating a capacitor in the core substrate body At least one of which can be fitted notches and protrusions in the capacitor receiving portion projecting toward the radial inner contact within the through holes, a capacitor comprising a.
[0032]
The capacitor of the present invention includes a plurality of upper surface connection pads on the upper surface of the capacitor and a plurality of lower surface connection pads on the lower surface of the capacitor, and both the pair of electrodes or the electrode group are electrically connected to at least one of the plurality of upper surface connection pads. In addition, each of the pair of electrodes or the electrode group is electrically connected to at least one of the plurality of lower surface connection pads. For this reason, both poles of the capacitor can be taken out from the upper surface of the capacitor. Similarly, both poles of the capacitor can be taken out from the lower surface of the capacitor.
Therefore, it is possible to connect between the connection surface of the IC chip, the wiring board, and other electronic components on which the pads and bumps are formed, both on the upper surface and the lower surface of the capacitor.
[0033]
Further, both poles of the capacitor can be taken out from both the upper surface and the lower surface of the capacitor. For this reason, for example, by interposing between the wiring board and the IC chip, it can serve as a part of the power wiring and the ground wiring for supplying power from the wiring board to the IC chip, and the power wiring and the ground. The capacitor is connected to the wiring by this capacitor, and the role of removing noise superimposed on these wirings can also be fulfilled.
Furthermore, by incorporating and fixing in the capacitor built-in through hole of the core substrate body provided with the capacitor built-in through hole, a capacitor built-in core substrate is formed, and a resin insulating layer and a wiring layer are formed to incorporate the capacitor. It can be set as a wiring board. In particular, positioning in the through hole of the capacitor is possible by contacting the capacitor receiving part protruding inward in the radial direction in this capacitor built-in through hole and fitting with the notch or convex part of the capacitor. Easy to do.
[0034]
The upper surface connection pads and the lower surface connection pads may be formed at positions and numbers corresponding to the terminals and wiring layers of IC chips to be connected, but as the number of terminals and wiring layers connected in parallel increases, Since resistance and inductance generated between the IC chip and the like can be suppressed as a whole, a large number of upper surface connection pads and lower surface connection pads are preferably formed.
[0035]
Furthermore, since at least one of a notch and a protrusion is provided on the periphery of the lower surface of the capacitor, when the capacitor is built in the capacitor built-in through hole of the core substrate body, the capacitor receiving portion is abutted and fitted. The capacitor can be reliably positioned both in the vertical direction and in the plane direction orthogonal thereto within the capacitor built-in through hole.
[0036]
Still another solution is the above-mentioned wall portion of the wall core substrate main body having a wall core substrate main body upper surface and a wall core substrate main body lower surface, and including a wall through hole penetrating therebetween. The receiving portion of the core substrate body for a receiving portion having a lower surface of the core substrate body for receiving, a top surface of the core substrate body for receiving portion and a lower surface of the core substrate body for receiving portion, and having a through hole for receiving portion passing therethrough A bonding step of adhering the upper surface of the core substrate body to the upper surface of the core substrate body by exposing at least part of the periphery of the through hole for the receiving portion of the core substrate for receiving portion in the through hole for the wall portion. And a manufacturing method of the core substrate body.
[0037]
In the method for manufacturing a core substrate body of the present invention, a wall core substrate body having a wall through hole and a receiving core substrate body having a receiving through hole are received in the wall through hole. The core substrate body is manufactured by exposing and bonding at least a part of the periphery of the through hole for the receiving portion of the core substrate for use. In this way, when the wall core substrate body and the receiving core substrate body are separately manufactured and then bonded together, the through hole for built-in capacitor is easily formed by the through hole for the wall portion and the through hole for the receiving portion. In addition, a part of the core substrate body for receiving portion can be a capacitor receiving portion protruding radially inward at the end of the capacitor built-in through hole.
[0038]
In another solution, the capacitor of the core substrate body comprising a core substrate body upper surface, a core substrate body lower surface, and a capacitor built-in through-hole penetrating between the core substrate body upper surface and the core substrate body lower surface. In the built-in through hole, the capacitor upper surface, the capacitor lower surface, a pair of electrodes or electrode groups insulated from each other, and formed on the capacitor upper surface, each of the electrodes or electrode groups of the pair of electrodes or electrode groups, respectively A plurality of upper surface connection pads that are electrically conductive, wherein each of the pair of electrodes or electrode groups is formed on a plurality of upper surface connection pads that are electrically connected to at least one of the plurality of upper surface connection pads, and the capacitor lower surface; A plurality of lower surface connection pads respectively conducting with any one of the pair of electrodes or electrode groups, Capacitor placement step of placing a capacitor having a plurality of bottom surface connection pads that are electrically connected to at least one of the plurality of bottom surface connection pads, and filling in at least the capacitor built-in through hole A capacitor fixing step of injecting resin, curing the filling resin, and fixing the capacitor in the through hole for incorporating the capacitor with the filling resin, and penetrating at least between the upper surface of the core substrate body and the lower surface of the core substrate body A core through-hole forming step for forming a core through-hole conductor to be manufactured.
[0039]
In the method for manufacturing a capacitor built-in core substrate according to the present invention, a capacitor is disposed in a capacitor built-in through hole, and a filling resin is injected into the capacitor built-in through hole and cured to fix the capacitor. For this reason, it can be easily fixed, and the defects such as displacement and dropout of the capacitor due to vibration generated when drilling through-holes for core through-hole conductors are suppressed, and the reliability of the core board with built-in capacitors is reduced. Can be improved.
[0040]
Furthermore, in the method of manufacturing the capacitor built-in core substrate, the capacitor fixing step includes the capacitor upper surface, the capacitor lower surface, the core substrate body upper surface, and the core substrate body lower surface in addition to the inside of the capacitor built-in through hole. A capacitor fixing-filling resin coating / curing step in which at least the capacitor upper surface and the capacitor lower surface are coated and cured, and prior to the core through hole forming step, on the capacitor upper surface, or on the capacitor upper surface and the capacitor The filling resin on the upper surface of the core substrate body is polished to expose the plurality of upper surface connection pads substantially flush with each other, and the filling resin layer on the capacitor upper surface and the upper surface of the core substrate body are used. The filling resin layer on the upper surface and the filling resin layer on the upper surface of the core substrate body are substantially flush with each other. And polishing the filler resin on the capacitor lower surface or on the capacitor lower surface and the core substrate body lower surface to expose the plurality of lower surface connection pads substantially flush with each other and on the capacitor lower surface. Polishing step for leveling the filling resin layer and the lower surface of the core substrate body, or the filling resin layer on the lower surface of the capacitor and the filling resin layer on the lower surface of the core substrate body to a substantially flat surface. It is preferable to provide a method of manufacturing a core substrate with a built-in capacitor.
[0041]
In the method for manufacturing a capacitor built-in core substrate according to the present invention, the capacitor is built in the capacitor built-in through hole, and is further fixed with the filling resin, and at least the filling resin is applied to the capacitor upper surface and the capacitor lower surface and cured. Further, the plurality of upper surface connection pads are exposed to be substantially flush by polishing, and the filling resin layer on the capacitor upper surface and the upper surface of the core substrate main body, or the filling resin layer on the capacitor upper surface and the upper surface of the core substrate main body are exposed. The filling resin layer is leveled to a substantially flat surface. Further, the plurality of lower surface connection pads are exposed to be substantially flush by polishing, and the filling resin layer on the capacitor lower surface and the upper surface of the core substrate main body, or the filling resin layer on the capacitor upper surface and the upper surface of the core substrate main body are exposed. The filling resin layer is leveled to a substantially flat surface. Thereafter, a core through-hole conductor is formed.
[0042]
For this reason, when one or a plurality of resin insulation layers or wiring layers are formed above the upper surface of the core substrate body and the upper surface of the capacitor, there is no step between the upper surface of the core substrate body and the upper surface of the capacitor. Similarly, when one or a plurality of resin insulating layers or wiring layers are formed below the core substrate main body lower surface and the capacitor lower surface, no step is generated between the lower surface of the core substrate main body and the lower surface of the capacitor lower surface. For this reason, a resin insulation layer, a wiring layer, etc. can be formed easily, or generation | occurrence | production of malfunctions, such as a disconnection of each wiring layer and a short circuit, can be suppressed. Furthermore, the coplanarity of the IC connection terminal and the lower surface connection terminal can be kept small, and the connectivity with the IC chip and other wiring boards can be improved.
[0043]
DETAILED DESCRIPTION OF THE INVENTION
(Embodiment 1)
DESCRIPTION OF EMBODIMENTS Embodiments of a wiring board and the like of the present invention will be described with reference to the drawings. A wiring board 100 incorporating the capacitor of the present invention shown in FIG. 1 has a substantially square plate shape, and a flip chip which is an IC connection terminal for connecting to an IC chip 1 indicated by a broken line on its upper surface (wiring board upper surface) 100A. A large number of pads 101 are formed, and each flip chip pad 101 is formed with a substantially hemispherical flip chip bump 102 made of high-temperature solder. On the other hand, on the lower surface 100B of the wiring board, a large number of LGA pads 103 which are lower surface connection terminals for connecting to other wiring boards such as a mother board are formed. Further, the wiring substrate 100 includes a core substrate body 10 including the capacitor 20, resin insulating layers 41, 42, 43, 51, 52, and 53 stacked on the upper and lower sides thereof, and between these layers and the resin insulating layers. Each wiring layer 60, 70, 80, 90 formed through the layer is provided.
[0044]
Among these, the core substrate body 10 is a substantially square plate shape and is made of a glass-epoxy resin composite material, and has a substantially square shape in plan view that penetrates between the core substrate body upper surface 10A and the core substrate body lower surface 10B. A capacitor built-in through hole (hereinafter also simply referred to as a through hole) 11 is provided. In the through hole 11 for incorporating a capacitor, the radial direction (planar direction, left and right in the figure) of the through hole 11 orthogonal to the axial direction (up and down direction in the figure) of the through hole 11 is located at the end on the core substrate main body lower surface 10B side. In the direction, a capacitor receiving portion (hereinafter also simply referred to as a receiving portion) 12 that protrudes into the through hole 11 is formed over the periphery of the through hole 11. A capacitor 20 is built in the through hole 11. Further, a large number of core through-hole conductors 33 are formed on the peripheral edge of the core substrate body 10 so as to penetrate between the core substrate body upper surface 10A and the core substrate body lower surface 10B.
[0045]
As shown in the plan view of FIG. 2A and the perspective view seen from the lower surface side of FIG. 2B, the capacitor 20 is made of a high dielectric ceramic, specifically, BaTiO. Three This is a multilayer ceramic capacitor having a substantially square plate shape in which dielectric layers 24 mainly containing Pd and electrode layers 25 mainly containing Pd are alternately laminated. However, as can be seen from FIG. 2B, the periphery of the capacitor lower surface 20B is lowered by one step in a step shape by the cutout portion 20P, leaving a square area in the center, and the core substrate as will be described later. A contact surface 20 </ b> C with the capacitor receiving portion 12 of the main body 10 is formed. That is, the capacitor 20 has a substantially convex shape on the lower surface 20B. The capacitor 20 is used for a chip capacitor or the like, and is connected to a normal multilayer ceramic capacitor in which two electrodes (common electrodes) forming both poles of the capacitor are taken out from the side surfaces of the laminated dielectric layer and electrode layer. The method of taking out the electrodes for the purpose is different. That is, as shown in FIG. 2 (c), a large number of upper surface connection pads 21 (21A, 21B, 21C in FIG. 2 (c)) and lower surface connection pads 22 (FIG. 2) are formed on the capacitor upper surface 20A and the capacitor lower surface 20B, respectively. (C) includes 22A, 22B, and 22C), and these pads 21 and 22 enable connection to the upper or lower side in FIG. 2C within the capacitor upper surface 20A and capacitor lower surface 20B. Yes.
[0046]
2C, the electrode layer 25 of the capacitor 20 is divided into a pair of electrode layers 25E and 25F which are electrically connected to every other layer by via conductors 26E and 26F, respectively. It has been. Moreover, the electrode layer groups 25E and 25F are insulated from each other. Therefore, the two electrode groups 25 </ b> E and 25 </ b> F that face each other with each dielectric layer 24 interposed therebetween form two electrodes of the capacitor 20. Further, a part of the upper surface connection pad 21 (the right and left pads 21A and 21C in the figure) is located at the uppermost position of the electrode layer 25, the top electrode layer 25ET belonging to one electrode group 25E, and the dielectric layer. 24, via conductors 27E penetrating through the top dielectric layer 24T located at the uppermost position. Further, another part of the upper surface connection pad 21 (the center pad 21B in the figure) is connected to the electrode layer 25 located below the top electrode layer 25ET and belonging to the other electrode group 25F by the via conductors 27F and 26F. doing. As described above, the large number of upper surface connection pads 21 are connected to one of a pair of electrode groups 25E and 25F forming two electrodes of the capacitor, and each of the pair of electrode groups 25E and 25F includes a plurality of electrodes. It is connected to at least one of the upper surface connection pads 21. That is, one upper surface connection pad 21 (for example, 21A) among the many upper surface connection pads 21 is connected to one electrode group 25E. A certain upper surface connection pad 21 (for example, 21B) is connected to the other electrode group 25F. For this reason, it is possible to conduct both the pair of electrode groups 25E and 25F from above the capacitor 20 through the upper surface connection pad 21.
[0047]
Similarly, some of the lower surface connection pads 22 (right and left pads 22A and 22C in the figure) are located above the lowermost bottom electrode layer 25FD in the electrode layer 25, and belong to one electrode group 25E. The layer 25 and the dielectric layer 24 are connected by via conductors 28F and 26F penetrating the bottom dielectric layer 24D located at the lowermost position. Further, another part of the lower surface connection pad 22 (the center pad 22B in the figure) is connected to the bottom electrode layer 25FD belonging to the other electrode group 25F by the via conductor 28F. Thus, the large number of lower surface connection pads 22 are connected to one of a pair of electrode groups 25E and 25F forming two electrodes of the capacitor, and both of the pair of electrode groups 25E and 25F are connected to the lower surface. It is connected to at least one of the connection pads 22. That is, the lower surface connection pad 22 (for example, 22A) among the multiple lower surface connection pads 22 is connected to one electrode group 25E. A certain lower surface connection pad 22 (for example, 22B) is connected to the other electrode group 25F. For this reason, it is possible to conduct both of the pair of electrode groups 25 </ b> E and 25 </ b> F from below the capacitor 20 through the lower surface connection pad 22. As shown in FIG. 2B and described above, the bottom dielectric layer 24D on which the lower surface connection pads 22 are formed has a size in the plane direction (left and right direction in the drawing) larger than that of the other dielectric layers 24. By making it smaller, the notch 20P is formed, and thereby the dielectric layer 24 one layer above is exposed and the above-described contact surface 20C is formed. Also, the bottom electrode layer 25FD has a size smaller in the plane direction than the other electrode layers belonging to the electrode group 25F in accordance with the shape of the bottom dielectric layer 24D.
[0048]
As shown in FIG. 1, the vicinity of the capacitor lower surface 20 </ b> B, which is notched and formed in a convex shape, is fitted to the inner peripheral edge 12 </ b> H of the capacitor receiving portion 12. For this reason, the contact surface 20C and the inward surface 12S (upper surface in the drawing) of the receiving portion 12 are in contact with each other so that the capacitor 20 is positioned in the vertical direction in the drawing, and the receiving portion through hole 12H is notched. By positioning with 20P, positioning in the radial direction (planar direction, left-right direction in the figure) is performed. Further, the capacitor 20 is fixed in the capacitor built-in through hole 11 by a filling resin 32 made of an epoxy resin, and is integrated with the core substrate body 10. Thereby, the capacitor 20 built in the core substrate body 10 can be connected by the upper surface connection pad 21 in the upper part of the drawing and by the lower surface connection pad 22 in the lower part of the drawing.
[0049]
Further, three upper resin insulating layers 41, 42, 43 mainly composed of epoxy resin are provided above the core substrate main body upper surface 10A and the capacitor upper surface 20A. On the other hand, three lower resin insulating layers 51, 52, and 53 are provided below the core substrate main body lower surface 10B and the capacitor lower surface 20B. Further, between the upper resin insulating layers 41 and 42 and between the upper resin wiring layers 42 and 43, wiring layers 45 and 46 made of Cu plating are formed so as to penetrate the upper resin insulating layers 41 and 42, respectively. . Similarly, wiring layers 55 and 56 made of Cu plating are formed between the lower resin insulating layers 51 and 52 and between the lower resin wiring layers 52 and 53, respectively, through the lower resin insulating layers 51 and 52. ing.
[0050]
Among these, the wiring which penetrates between the upper resin insulation layers 41, 42 and 43 and the upper resin insulation layers 41 and 42, respectively, and connects the flip chip pad 101 and the upper surface connection pad 21 of the capacitor 20 corresponding thereto. The layers 45 and 46 constitute the upper capacitor connection wiring 60. Further, wiring layers 45, which pass through the upper resin insulation layers 41, 42, 43 and the upper resin insulation layers 41, 42, respectively, connect the flip chip pad 101 and the corresponding core through-hole conductor 33, respectively. 46 constitutes the upper core connection wiring 80. On the other hand, the wiring layers 55 and 56 that pass through the lower resin insulating layers 51, 52, and 53 and the upper resin insulating layers 51 and 52, respectively, and connect the lower surface connection pad 22 and the corresponding LGA pad 103, respectively. The lower capacitor connection wiring 70 is configured. In addition, wiring layers 55 and 56 that pass through the lower resin insulating layers 51, 52, and 53 and the lower resin insulating layers 51 and 52, respectively, and connect the core through-hole conductor 33 and the corresponding LGA pad 103, respectively. Constitutes the lower core connection wiring 90.
[0051]
As a result, the IC chip 1 connected to the flip chip bump 102 is connected to the pair of electrode groups 25E and 25F of the capacitor 20 through the flip chip pad 101, the upper capacitor connection wiring 60, and the upper surface connection pad 21, respectively. .
Further, the LGA pad 103 is connected to the pair of electrode groups 25E and 25F of the capacitor 20 through the lower capacitor connection wiring 70 and the lower surface connection pad 22, respectively.
Therefore, as shown in FIG. 2D, the upper capacitor connection wiring 60 and the lower capacitor connection wiring 70 connected between the flip chip pad 101 and the LGA pad 103 and connected to one electrode group 25E, and the other The capacitor 20 is inserted between the upper capacitor connection wiring 60 and the lower capacitor connection wiring 70 connected to the electrode group 25F.
[0052]
For this reason, the power supply potential and the ground potential supplied from the motherboard connected to the LGA pad 103 are transmitted from the LGA pad 103 to the lower capacitor connection wiring 70, the capacitor 20, the upper capacitor connection wiring 60, the flip chip pad 101, and the flip chip bump. Through 102, the IC chip 1 can be supplied. Furthermore, noise superimposed on the power supply potential and the ground potential can be removed by the capacitor 20.
In addition, since the capacitor 20 is built in the core substrate body 10, the capacitor 20 can be arranged very close to the IC chip 1, so that the length of the upper capacitor connection wiring 60 can be shortened. Therefore, the noise removal capability by the capacitor 20 can be further enhanced. In particular, in this embodiment, since the capacitor 20 is arranged directly under the IC chip 1 and therefore directly under the flip chip pad 101, the length of the upper capacitor connection wiring 60 can be extremely shortened. Therefore, since the distance between the IC chip 1 and the capacitor 20 can be made extremely short, noise is hardly superimposed between them, and this is particularly effective for noise removal.
[0053]
A large number of upper capacitor connection wirings 60 are formed, and a large number of flip chip pads 101 and a large number of upper surface connection pads 21 are connected in parallel. Therefore, by forming a large number of upper capacitor connection wirings 60, the resistance and inductance of the upper capacitor connection wiring 60 connecting the IC chip 1 (flip chip pad 101) and the capacitor 20 as a whole are also reduced. This is also advantageous for noise removal. Similarly, a large number of lower capacitor connection wires 70 are formed, and a large number of LGA pads 103 and a large number of lower surface connection pads 22 are connected in parallel. Accordingly, the formation of a large number of lower capacitor connection wirings 70 reduces the resistance and inductance of the lower capacitor connection wiring 70 connecting the LGA pad 103 and the capacitor 20 as a whole. Is advantageous.
[0054]
On the other hand, the wiring connecting the IC chip 1 and the mother board etc. without being connected to the capacitor 20 such as a signal line is connected to the core through-hole conductor 33 from the flip chip pad 101 through the upper core connection wiring 80, and the core substrate body 10 is connected. It penetrates and is connected to the LGA pad 103 from the lower core connection wiring 90. This structure is the same as that of a normal build-up wiring board using a core board on which through-hole conductors are formed.
As described above, in the wiring board 100 according to the present embodiment, the capacitor 20 is built in very close to the IC chip 1 to effectively remove noise, and the signal lines and the like can have the same structure as the conventional one. it can.
[0055]
In the above description, the capacitor 20 has the bottom dielectric layer 24D provided with the cutout portion 20P by reducing the planar dimension of only one layer. However, a plurality of dielectric layers on the capacitor lower surface 20B side are shown. By reducing the plane dimension of the step, the step of the notch 20P can be increased. Further, the step of the notch 20P can be increased by making the bottom dielectric layer 24D thicker than the other dielectric layers 24, or by changing the thickness of the plurality of dielectric layers.
[0056]
Next, the manufacturing method of the wiring board 100 will be described including the manufacturing method of the capacitor 20 and the core substrate body 10 which are individual members. First, a method for manufacturing the capacitor 20 will be described with reference to FIG. First, as shown in FIG. 3 (a), BaTiO3 is produced by a known green sheet manufacturing technique. Three A large number of high dielectric ceramic green sheets (hereinafter also simply referred to as sheets) 124 mainly composed of powder are manufactured. Next, as shown in FIG. 3B, via holes 124H penetrating between the front and back surfaces 124A and 124B are formed at predetermined positions of the sheet 124 by punching.
[0057]
Further, as shown in FIG. 3C, the via holes 124H of each sheet 124 are filled with Pd paste to form unsintered via conductors 126, 127, 128, and further, the upper surface 124A side of each sheet 124 Then, unfired electrode layers 125E and 125F having a predetermined shape made of Pd paste are formed. Of these, one unfired electrode layer 125E is connected to the left and right two of the unfired via conductors 126 and 127 formed in FIG. 3C, and is connected to the unfired via conductors 126 and 127 at the center. It is formed in a pattern that does not. On the other hand, the other unfired electrode layer 125F is formed in a pattern that is connected to the unfired via conductor 126 at the center among the three unfired via conductors 126 formed and not connected to the left and right ones. Yes.
[0058]
Note that the vias 126 and 127 that are not connected to the unfired via pads 125E or 125F are not connected above the unfired via conductors 126 and 127 in order to ensure that the via conductors are brought into contact with each other in the vertical direction at the time of later-described lamination. The cover pad 129 is preferably formed simultaneously with the fired electrode layers 125E and 125F.
In addition, the unfired dielectric layer 124D that is stacked on the top in the stacking described below is formed to have a slightly smaller dimension than the other unfired dielectric layers 124, and both of the unfired electrode layers 125E and 125F are formed. Instead, only the cover pad 122 is formed above each unfired via conductor 128.
Further, as will be described below, the unfired electrode layer 125FD having a slightly smaller outer shape than the other unfired electrode layers 125F is also formed on the unfired dielectric layer 124D.
[0059]
Next, as shown in FIG. 3D, the sheets 124 on which the unfired electrode layers 125E are stacked and the sheets 124 on which 125F (125FD) are stacked are stacked so as to be alternately stacked. Then, on the top, neither of the unfired electrode layers 125E and 125F is formed, and a sheet 124D in which only the cover pad 122 is formed is laminated, and these are pressed to form the laminated body 120. As a result, the unfired dielectric layers 124 and the unfired electrode layers 125E and 125F are alternately stacked, and the unfired electrode layers 125E and 125F are alternately disposed. Further, the unfired electrode layers 125E and 125E are connected to each other via unfired via conductors 126 and 127, respectively. Similarly, the unfired electrode layers 125F and 125F are also connected to each other via unfired via conductors 126 and 127, respectively. Connected. In addition, the group of unfired electrode layers 125E and the group of 125F are not in contact with each other and are insulative from each other.
Further, only the planar dimensions of the unfired dielectric layer 124D are made smaller than those of the other unfired dielectric layers 124, so that a stepped notch 120P is formed around the upper surface of the laminate 120 in the drawing. .
[0060]
Thereafter, the laminated body 120 is turned upside down to form a cover pad on the upper surface of the laminated body 120 where the unfired via conductor 127 is exposed, and then the laminated body 120 is fired (simultaneously fired). The capacitor 20 shown is formed. Since the capacitor 20 is formed in this way, for example, it is not necessary to form a common electrode for connecting to the electrode layer 25E or 25F on the side surface of the dielectric layer 24 after firing, and it is used as a capacitor immediately after firing. be able to. The via conductors 26, 27, and 28 (unfired via conductors 126, 127, and 128) are formed on the dielectric layer 24 in consideration of the positions of the upper and lower via conductors and the distance between adjacent via conductors 24. It can be formed at any position in the plane.
[0061]
Accordingly, the ease of routing the upper capacitor connection wiring 60 and the lower capacitor connection wiring 70, the number of flip chip pads 101 connected to the upper capacitor connection wiring 60, the number of LGA pads 103 connected to the lower capacitor connection wiring 70, and the like. Accordingly, the positions and numbers of the upper surface connection pads 21 and the lower surface connection pads 22 can be arbitrarily selected and formed. The upper surface connection pad 21 or the lower surface connection pad 22 made of Pd is subjected to Ni—Au plating, Cu plating, or the like in consideration of the connectivity with the wiring layer 45 made of Cu or solderability. You can also. In addition, a solder resist layer made of ceramic, resin, or the like may be formed around the upper surface connection pad 21 and / or the lower surface connection pad 22 by a known method.
[0062]
The completed capacitor 20 has the presence or absence of a short circuit, the capacitance value, the insulation resistance value between the electrode groups 25E and 25F, the conduction between the upper surface connection pads 21 and the lower surface connection pads 22, and the electrode groups 25E and 25F. Various checks such as an insulation check are performed, and the defective capacitor 20 is discarded. Thereby, the danger of using the capacitor | condenser 20 with a malfunction at the process mentioned later can be reduced.
[0063]
Next, the core substrate body 10 and the manufacturing method thereof will be described. The core substrate body 10 is first brought into the state shown in FIG. 4 before the capacitor 20 is built therein. That is, the core substrate body 10 shown in FIGS. 4 (a) and 4 (b) has a substantially square plate shape in plan view, and has a substantially square-shaped through hole 11 at a substantially center. The through hole 11 is slightly smaller in the vicinity of the lower end thereof, and when viewed in plan from the core substrate upper surface 10A side, the through hole 11 has a substantially square through hole (inner peripheral edge) slightly smaller than this. ) The capacitor receiving portion 12 having 12H is exposed. As shown in FIG. 4B, the core substrate body 10 has a core substrate body upper surface 10A and a core substrate body lower surface 10B, and is a core substrate body 13 for a receiving portion made of a glass-epoxy resin composite material. Similarly, a wall core substrate body 16 made of a glass-epoxy resin composite material is adhered to the adhesive layer 17. Between the core substrate main body upper surface 10A and the core substrate main body lower surface 10B, the through hole 16H that penetrates the wall core substrate main body 16 and the receiving core substrate main body 13 pass, and have a diameter slightly larger than the through hole 16H. The capacitor built-in through-hole 11 is formed by the through-hole 13H having a small directional dimension.
[0064]
Therefore, at the lower end side of the through hole 11 in the figure, the vicinity of the peripheral edge of the through hole 13H protrudes inward in the plane direction (left and right direction in the figure) from the through hole 16H, and has an inner peripheral edge 12H (through hole 13H). A capacitor receiving portion 12 is configured. The inwardly facing surface (upper surface in the figure) 12S of the capacitor receiving portion 12 is in contact with the contact surface 20C of the capacitor 20 when the capacitor 20 is built in, so that the shaft in the through hole 11 of the capacitor 20 is provided. The direction (vertical direction) can be determined. Further, the capacitor receiving portion 12, more specifically, the inner peripheral edge 12 </ b> H, is fitted with the notch portion 20 </ b> P of the capacitor 20, thereby positioning in the planar direction (left-right direction) in the through hole 11 of the capacitor 20. Can do. On the other hand, the outward surface (lower surface in the drawing) 12T of the capacitor receiving portion 12 coincides with the core substrate main body lower surface 10B.
[0065]
The core substrate body 10 is not formed with a core through-hole conductor 33 penetrating between the core substrate body upper surface 10A and the core substrate body lower surface 10B. This is because the core through-hole conductor 33 is formed after the capacitor 20 is built in and fixed in the through hole 11 of the core substrate body 10.
[0066]
The core substrate body 10 is manufactured as follows. That is, first, as shown in FIG. 5 (a), it is made of a glass-epoxy resin composite material, and has a receiving portion core substrate main body upper surface 13A and a receiving portion core substrate main body lower surface 13B. The receiving portion core substrate body 13 having a through hole 13H is prepared. The through hole 13H has a size slightly smaller than a through hole 16H described below. The through hole 13 may be formed by a known method, and examples thereof include a drill, punching, and laser.
[0067]
On the other hand, as shown in FIG. 5B, a wall core substrate body 16 is prepared which is also made of a glass-epoxy resin composite material and is thicker than the receiving portion core substrate body 13. In the wall core substrate body 16, a substantially square through hole 16 </ b> H is formed in advance at the center position corresponding to the through hole 11 by punching or the like.
[0068]
Next, as shown in FIG. 5C, the receiving portion core substrate main body upper surface 13A and the wall core substrate main body lower surface 16B are made of a semi-cured epoxy resin, and are fitted to the through holes 16H. It is sandwiched through an adhesive sheet 17R molded in a letter shape, heated and pressed. Thereby, both 13 and 16 are adhere | attached through the contact bonding layer 17, and the core substrate main body 10 shown in FIG. 4 can be created.
[0069]
In order to create the core substrate body 10 having the through hole 11 having the receiving portion 12 as in the present embodiment, the receiving portion core substrate body 13 in which the vicinity of the inner periphery of the through hole 13H becomes the receiving portion 12 in advance The through-hole 11 having the receiving portion 12 is publicly known by manufacturing separately from the large-diameter portion other than the receiving portion 12, that is, the wall core substrate body 16 constituting most of the through-hole 11 and then bonding them together. By this method, it can be formed with easy and accurate dimensions. Therefore, the core substrate body 10 can be formed at a low cost.
[0070]
Next, a process of forming the core through-hole conductor 33 by incorporating the capacitor 20 in the core substrate body 10 will be described. First, as shown in FIG. 6A, the above-described capacitor 20 is disposed in the through hole 11 of the core substrate body 10 with the capacitor lower surface 20B facing down. Then, as described above, the contact surface 20C of the capacitor 20 contacts the inward surface 12S of the receiving portion 12, and the receiving portion 12, more specifically, the inner peripheral edge 12H and the cutout portion 20P are fitted. Thus, positioning in the vertical direction and the planar direction in the through hole 11 of the capacitor 20 can be performed.
[0071]
Thereafter, as shown in FIG. 6B, in addition to the inside of the through-hole 11, epoxy resin is applied on the core substrate main body upper surface 10A and the capacitor upper surface 20A, on the core substrate main body lower surface 10B and the capacitor lower surface 20B (lower in the drawing). Filling resin 32 as a main component is injected, applied, and cured. Thereby, the capacitor 20 is fixed with the filling resin 32 (32A) in the through hole 11 while being in contact with and fitted to the receiving portion 12, and is embedded in the core substrate body 10, and is subjected to heat, vibration, or the like. In addition, problems such as misalignment between the core substrate body 10 and the capacitor 20 are prevented.
[0072]
Further, as shown in FIG. 6C, the filling resin layers 32B and 32C on the core substrate main body upper surface 10A and the capacitor upper surface 20A are polished to a flat surface to expose the upper surface connection pad 21, and the upper surface connection pad. 21 and the filling resin layers 32B and 32C left on the capacitor upper surface 20A and the core substrate body upper surface 10A are substantially flush with each other. Similarly, the filling resin layers 32D and 32E on the core substrate main body lower surface 10B and the capacitor lower surface 20B are polished to a flat surface to expose the lower surface connection pad 22, and the lower surface connection pad 22, the capacitor lower surface 20B, and the core. The filling resin layers 32D and 32E left on the lower surface 10B of the substrate body are leveled with each other. In the core board with a built-in capacitor thus formed, the through hole 11 is formed in the core board body 10 and the generation of the step due to the built-in capacitor 20 is absorbed, and the resin insulating layer 41 to be formed later is absorbed. , 51, etc. and the wiring layers 45, 55, etc., are not distorted by steps, and problems such as disconnection and short circuit are not caused. Further, since the influence of the step on the flip chip pad 101 (or the flip chip bump 102) and the LGA pad 103 is eliminated, the coplanarity of the flip chip pad 101 and the LGA pad 103 can be improved.
[0073]
Further, as shown in FIG. 7, at the periphery of the through hole 11 of the core substrate body 10, between the core substrate body upper surface 10A and the core substrate body lower surface 10B, and further, the upper surface 32CU of the filling resin layer 32C and the filling resin A core through-hole hole 30H penetrating between the lower surface 32ED of the layer 32E is formed by a drill. If you want to reduce the hole diameter or spacing, use a laser (CO 2 , YAG, etc.).
[0074]
Next, a core through-hole conductor 33 made of Cu is formed in and around the core through-hole hole 30H by a known through-hole conductor forming method. Note that connection wirings 34 and 35 extending from the core through-hole conductor 33 and connecting to the wiring layers 45 and 55 are also formed on the filling resin layer upper surface 32CU and the filling resin layer lower surface 32ED. Further, the upper surface connection pad 21 that is flush with the filling resin layer 32B and the lower surface connection pad 22 that is flush with the filling resin layer 32D are also increased in thickness by Cu plating or above the filling resin layer 32B. The resin layer 32D protrudes downward. In this manner, a capacitor built-in core substrate (hereinafter also simply referred to as a core substrate) 30 is formed.
[0075]
In addition to the core substrate body 10, the core substrate 30 includes a capacitor 20 in the through hole 11. However, the core substrate upper surface 30A (filled resin layer upper surface 32CU) and the core substrate 30B (filled resin layer lower surface 32ED) have a core through-hole conductor 33 penetrating between them at a predetermined portion, or the upper surface connection terminal 21 and the lower surface. The connection terminals 22 and the connection wirings 34 and 35 are formed, and the core substrate upper surface 30A and the core substrate lower surface 30B are flattened. Therefore, it can be used in the same manner as a core substrate used for a normal wiring board without a built-in capacitor.
[0076]
A specific method for manufacturing the core through-hole conductor 33 is, for example, as follows. That is, first, after the through-hole hole 30H is drilled in the core substrate body 10 (see FIG. 6C), electroless Cu plating is applied to the entire surface, and the inside of the through-hole 30H, the filling resin layer upper surface 32CU, and the filling resin An electroless Cu plating layer is formed on the layer lower surface 32ED. Thereafter, a dry film is pasted on the upper surface 32CU of the filled resin layer and the lower surface 32ED of the filled resin layer (lower in the figure), exposed and developed to open electrolytic plating forming portions such as the periphery of the core through-hole hole. Further, an electroless Cu plating layer is used as a common electrode to conduct an electrolytic Cu plating, and after removing the dry film, an unnecessary electroless Cu plating layer is removed by soft etching to remove the core through-hole conductor 33 and the connection wiring. 34, 35, etc. are formed. The upper surface connection pad 21 and the lower surface connection pad 22 are also subjected to electroless Cu plating and electrolytic Cu plating.
[0077]
In addition, in this embodiment, the core through-hole conductor 33 is formed in a substantially cylindrical shape formed on the inner periphery and the peripheral edge of the core through-hole hole 30H, but the inside is filled with a filling resin, and the upper and lower sides thereof are plated layers. You may make it obstruct | occlude. In this way, since the wiring layers 45 and 55 and the core through-hole conductor 33 can be directly connected without using the connection wirings 34 and 35, the intervals between the core through-hole conductors 33 are formed with high density. Can do.
[0078]
In this state, that is, as will be described later, before the resin insulating layer and the wiring layer are formed on the core substrate 30 in which the capacitor 20 is embedded, it is preferable to inspect the characteristics of the capacitor 20 incorporated. In the state of being built in the core substrate 30, the presence or absence of a short circuit, the capacitance value, the insulation resistance value between the pair of electrode groups 25 </ b> E and 25 </ b> F, the upper surface connection pads 21 and the lower surface through-hole conductors 12 Various inspections such as continuity or insulation with the electrode groups 25E and 25F are performed, and the core substrate 30 in which the defective capacitor 20 is built is discarded. As a result, it becomes clear that the capacitor 20 has a defect after forming a resin insulating layer and a wiring layer that require man-hours as will be described later, and the entire wiring board 100 with high added value has to be discarded. Sex can be reduced.
[0079]
Thereafter, the core substrate 30 is used to form a resin insulating layer and a wiring layer using a known resin insulating layer forming technique and wiring layer forming technique, and the wiring board 100 may be formed.
In the present embodiment, the following processing is performed before forming the resin insulating layer. That is, as shown in FIG. 8A, in addition to the inside of the core through-hole conductor 33, the filling resin layers 32B and 32C, the upper surface connection pads 21 and the connection wirings 34, and the filling resin layers 32D and 32E. A flattening resin 36, 37, 38 mainly composed of an epoxy resin is filled and applied below the lower surface, the lower surface connection pad 22, and the connection wiring 35, and then cured. Alternatively, first, the planarizing resin 36 may be filled and cured inside the core through-hole conductor 33, and then the planarizing resins 37 and 38 may be applied and cured.
[0080]
Further, as shown in FIG. 8B, the upper or lower surfaces of the planarizing resins 37 and 38 are polished to be flattened. At the same time, the upper surface connection pad 21, the core through-hole conductor 33 and the connection wiring 34 are exposed substantially flush with the planarizing resin layer 37. Further, the lower surface connection pad 22, the core through-hole conductor 33, and the connection wiring 35 are exposed to be substantially flush with the planarizing resin layer 38. As a result, the upper surface connection pad 21, the lower surface connection pad 22, the core through-hole conductor 33, the connection wirings 34, 35, and the like are formed so as to protrude from the core substrate upper surface 30A or the core substrate lower surface 30B. It is possible to eliminate the influence of the resin insulating layers 41 and 51 and the wiring layers 45 and 55 and the like. Therefore, it is possible to prevent disconnection or short circuit of the wiring layer 45 or the like, or to improve the coplanarity of the flip chip pad 101 or the LGA pad 103.
[0081]
Thereafter, a photosensitive film mainly composed of an epoxy resin is attached to the upper surface 37U of the planarizing resin layer 37 and the lower surface 38D of the planarizing resin layer 38. Further, exposure and development are performed to form via holes 41VH and 51VH in which the upper surface connection pad 21, the lower surface connection pad 22, the connection wirings 34 and 35, etc. are exposed on the bottom surface, and the photosensitive film is cured to obtain FIG. 9A. As shown in FIG. 2, resin insulation layers 41 and 51 are formed. In addition, after forming the resin insulating layers 41 and 51 with non-photosensitive resin, the laser (CO 2 , YAG, etc.) may be used to drill the via holes 41VH and 51VH.
[0082]
Furthermore, electroless Cu plating is applied, a dry film is pasted, exposed and developed, and only an electrolytic plating layer forming portion is opened. An electroless Cu plating layer is formed in the opening using the electroless Cu plating layer as a common electrode. After the removal, an unnecessary electroless Cu plating layer is removed by soft etching. As a result, as shown in FIG. 9B, via portions 45V and 55V that penetrate through the resin insulating layers 41 and 51 into the via holes 41VH and 51VH, respectively, and connect to the upper surface connection pad 21, the lower surface connection pad 22, and the like, respectively. The wiring layers 45 and 55 are formed so as to be insulated from each other. The wiring layers 45 and 55 are arranged between the resin insulating layers 41 and 42 or between the resin insulating layers 51 and 52 when the resin insulating layers 42 and 52 are further formed thereon.
[0083]
Thereafter, the resin insulating layers 42 and 52, the wiring layers 46 and 56, the flip chip pad 101, the resin insulating layers (solder resist layers) 43 and 53 are sequentially formed in the same manner, and the flip exposed from the resin insulating layer 43 is formed. A solder paste is applied to the chip pad 101 and reflowed to form a flip chip bump 102 made of solder. In this way, the wiring board 100 shown in FIG. 1 is completed. Note that a Ni—Au plating layer may be formed on the surface of the LGA pad 103 to prevent oxidation.
[0084]
In the present embodiment, after the capacitor 20 is built in the through hole 11 of the core substrate body 10 and fixed with the filling resin 32, the upper or lower surfaces of the filling resin layers 32B, 32C, 32D, and 32E are polished and leveled. Further, even after the core through-hole conductor 33 and the like were formed, the upper surface or the lower surface of the planarizing resin layers 37 and 38 was polished and leveled. For this reason, the level difference caused by incorporating the capacitor 20 in the through hole 11 is eliminated, and further, the level difference caused by the protrusion of the core through-hole conductor 33, the upper surface connection pad 21, etc. is also eliminated. It is also possible to improve the disconnection or short-circuiting, and the coplanarity of the flip chip pad 101, the flip chip bump 102, and the LGA pad 103.
[0085]
In the present embodiment, as described above, the resin insulating layers 41, 42, 43, 51, 52, 53 are formed by photolithography using a photosensitive resin film, and the wiring layers 45, 55 are so-called. It was formed by the semi-additive method. However, the resin insulating layer 41 and the like may be formed by other methods such as applying a resin paste, and the wiring layer 45 and the like may be formed by a subtractive method, a full additive method, and other methods. That is, the resin insulating layer 41 and the wiring layer 45 and the like may be formed by any known method.
[0086]
(Embodiment 2)
Next, a wiring board 200 according to the second embodiment will be described with reference to FIG. In the wiring substrate 100 of the first embodiment, the receiving portion 12 formed in the through hole 11 of the core substrate body 10 containing the capacitor 20 is formed at the lower end portion of the through hole 11 in the drawing. On the other hand, in the wiring board 200 of the present embodiment, the capacitor receiving part 212 is formed at the upper end in the figure of the capacitor built-in through hole 211 of the core board body 210 containing the capacitor 220. Different. Further, a contact surface 220C and a notch 220P are formed on the upper surface 220A side of the capacitor 220, and the inward surface (lower surface in the figure) 212S of the receiving portion 212 and the contact surface 220C come into contact with each other to cut into the receiving portion 212. The difference is that the notch 220P is fitted. Further, the difference is that the connection wiring 234 extends to the outward surface (upper surface in the drawing) 212T of the receiving portion 212 in the core substrate main body upper surface 210A. Explanation will be given, and explanation of similar parts will be omitted or simplified.
[0087]
The wiring substrate 200 has a large number of flip chip pads 101 and flip chip bumps 102 for connection with the IC chip 1 indicated by broken lines formed on the upper surface 200A of the wiring substrate. On the other hand, many LGA pads 103 are formed on the lower surface 200B of the wiring board. Furthermore, the wiring board 200 penetrates the resin insulation layer between the core board body 210 containing the capacitor 220, the resin insulation layers 41, 42, 43, 51, 52, 53 stacked above and below them. Each wiring layer 60, 70, 80, 90 is formed.
[0088]
Among these, the core substrate main body 210 has a substantially square plate shape in plan view, is made of a glass-epoxy resin composite material, and has a capacitor built-in through-hole 211 having a substantially square shape in plan view that passes through the top and bottom of the core substrate body 210. At the upper end of the through hole 211 in the figure, a capacitor receiving part 212 is formed that protrudes radially inward of the through hole 211 and whose inner peripheral edge 212H is substantially square. A capacitor 220 is built in the through hole 211. In addition, a large number of core through-hole conductors 233 that penetrate between the core substrate main body upper surface 210A and the core substrate main body lower surface 210B are formed on the peripheral edge of the core substrate main body 210. In addition, a connection wiring 234 extending from the core through-hole conductor 233 to the upper surface 212T of the receiving portion 212 is formed on the core substrate main body upper surface 210A. On the other hand, a connection wiring 235 extending from the core through-hole conductor 233 is formed on the core substrate main body red surface 210B.
[0089]
The capacitor 220 has the same material and structure as those of the capacitor 20 described in the first embodiment. However, the capacitor 220 is just upside down, that is, the contact surface 220C and the notch 220P are on the capacitor upper surface 220A side. This is a formed multilayer ceramic capacitor (see FIGS. 2A, 2B, and 2C). That is, the periphery of the capacitor upper surface 220A is a stepped notch 220P, which is lowered by one step to form the contact surface 220C. Similar to the capacitor 20, the capacitor upper surface 220 </ b> A and the capacitor lower surface 220 </ b> B are provided with a large number of upper surface connection pads 221 and lower surface connection pads 222, respectively, and the capacitor upper surface 220 </ b> A and the capacitor lower surface 220 </ b> B are provided by these pads 221 and 222. In the figure, it can be connected upward or downward in the figure.
Thereby, the capacitor 220 built in the core substrate body 210 can be connected by the upper surface connection pad 221 in the upper part of the drawing and by the lower surface connection pad 222 in the lower part of the drawing. Further, the capacitor 220 is fixed in the through hole 211 by a filling resin 232 made of an epoxy resin, and is integrated with the core substrate body 210.
[0090]
Further, as in the first embodiment, three upper resin insulating layers 41, 42, and 43 mainly composed of an epoxy resin are provided above the core substrate main body upper surface 210A and the capacitor upper surface 220A. On the other hand, the lower resin insulation layers 51, 52, and 53 are also provided below the core substrate main body lower surface 210B and the capacitor lower surface 220B. Further, between the upper resin insulating layers 41 and 42 and between the upper resin wiring layers 42 and 43, wiring layers 45 and 46 made of Cu plating are formed so as to penetrate the upper resin insulating layers 41 and 42, respectively. . Similarly, wiring layers 55 and 56 made of Cu plating are formed between the lower resin insulating layers 51 and 52 and between the lower resin wiring layers 52 and 53, respectively, through the lower resin insulating layers 51 and 52. ing.
[0091]
Among these, the wiring layers 45 and 46 respectively connecting the flip chip pad 101 and the upper surface connection pad 221 corresponding thereto constitute the upper capacitor connection wiring 60, and the flip chip pad 101 and the corresponding core through hole conductor 33. The wiring layers 45 and 46, respectively, constitute an upper core connection wiring 80. On the other hand, the wiring layers 55 and 56 respectively connecting the lower surface connection pad 222 of the capacitor 20 and the corresponding LGA pad 103 constitute the lower capacitor connection wiring 70, and the core through-hole conductor 33 and the corresponding LGA pad 103. The wiring layers 55 and 56 that connect to each other constitute a lower core connection wiring 90.
[0092]
Thereby, the IC chip 1 connected to the flip chip bump 102 is connected to the pair of electrodes of the capacitor 220, respectively. Further, the LGA pad 103 is connected to a pair of electrodes of the capacitor 220, respectively.
Therefore, the power supply potential and the ground potential supplied from the motherboard connected to the LGA pad 103 are the lower capacitor connection wiring 70, the capacitor 220, the upper capacitor connection wiring 60, the flip chip pad 101, and the flip chip bump from the LGA pad 103. Through 102, the IC chip 1 can be supplied. Further, noise superimposed on the power supply potential and the ground potential can be removed by the capacitor 220.
[0093]
In addition, since the capacitor 220 is built in the core substrate body 210, it can be disposed very close to the IC chip 1, so that the length of the upper capacitor connection wiring 60 can be shortened. Therefore, the noise removal capability by the capacitor 220 can be further enhanced. In particular, in the present embodiment, since the capacitor 220 is arranged directly under the IC chip 1 and therefore directly under the flip chip pad 101, the length of the upper capacitor connection wiring 60 can be extremely shortened. Accordingly, since the distance between the IC chip 1 and the capacitor 220 can be made extremely short, noise is hardly superimposed between them, and this is particularly effective for noise removal.
[0094]
A large number of upper capacitor connection wirings 60 are formed in parallel. Similarly, a large number of lower capacitor connection wirings 70 are also formed. For this reason, the resistance and inductance of the upper capacitor connection wiring 60 and the lower capacitor connection wiring 70 are reduced as a whole, and this is also advantageous for noise removal.
[0095]
On the other hand, the wiring connecting the IC chip 1 and the mother board without connecting to the capacitor 220 such as a signal line is connected from the flip chip pad 101 to the core through-hole conductor 33 through the upper core connection wiring 80 and the connection wiring 234, The lower core connection wiring 90 is connected to the LGA pad 103 through the substrate body 210. This structure is the same as that of a normal build-up wiring board using a core board on which through-hole conductors are formed.
As described above, the wiring board 200 of the present embodiment also incorporates the capacitor 220 in the immediate vicinity of the IC chip 1 to effectively remove noise, and the signal line and the like can have the same structure as before. it can.
In addition, in the present embodiment, the connection wiring 234 may extend to the outward surface (upper surface in the drawing) 212T of the receiving portion 212. When such connection wiring 234 is formed, it becomes possible to connect to the upper core connection wiring 80 even in the vicinity of the upper surface connection pad 221, and the degree of freedom of wiring can be further improved.
[0096]
In this wiring board 200, the capacitor 220 and the core board body 210 similar to the capacitor 20 and the wiring board body 10 of the first embodiment are manufactured, the capacitor 220 is built in the core board body 210, and turned upside down. Since it can be manufactured by forming the resin insulating layer 41 and the like, the wiring layer 45 and the like as in the first embodiment, detailed description thereof will be omitted.
[0097]
In the above, the present invention has been described with reference to the embodiments. However, the present invention is not limited to the above embodiments, and it is needless to say that the present invention can be appropriately modified and applied without departing from the gist thereof.
For example, in the above embodiment, a glass-epoxy resin composite material is used as the material of the core substrate body 10, more specifically, the core substrate body 13 for receiving portion and the core substrate body 16 for wall portion. May be selected in consideration of heat resistance, mechanical strength, flexibility, ease of processing, and the like. Therefore, for example, glass fiber-resin composite material of glass fiber such as glass woven fabric and glass nonwoven fabric and resin such as epoxy resin, polyimide resin, BT resin, and composite material of organic fiber and resin such as polyamide fiber, continuous A resin-resin composite material in which a fluororesin having a three-dimensional network structure such as PTFE having pores is impregnated with a resin such as an epoxy resin can be used.
[0098]
In addition, the resin insulating layer 41 or the like is mainly composed of an epoxy resin, but may be appropriately selected in consideration of heat resistance, pattern formability, and the like. For example, polyimide resin, BT resin, PPE resin, Examples thereof include a resin-resin composite material obtained by impregnating a resin such as an epoxy resin into a fluororesin having a three-dimensional network structure such as PTFE having continuous pores.
Similarly, the wiring layer 45 and the like are formed by electroless Cu plating and electrolytic Cu plating, but may be formed by other materials, for example, Ni, Ni-Au, and the like. The wiring layer 45 or the like may be formed by a technique such as applying a functional resin.
[0099]
In the above embodiment, for connection to the IC chip 1, a large number of flip chip pads 101 and flip chip bumps 102 are provided on the wiring substrate upper surfaces 100 </ b> A and 200 </ b> A. However, as an IC connection terminal, an appropriate form may be selected according to the terminal formed on the IC chip to be connected. In addition to a flip chip bump formed, only a flip chip pad, or a wire Examples include a bonding pad and a TAB connection pad.
[0100]
In the above-described embodiment, one through hole is provided in the approximate center of the core substrate body. However, it is not necessary to form in the approximate center, and a plurality of through holes are provided as necessary to incorporate a capacitor. You may do it. Conversely, in order to deal with a plurality of power supply potentials, a plurality of capacitors may be built in one through hole.
Further, as the capacitor 20, a multilayer ceramic capacitor in which a dielectric layer 24 and an electrode layer 25 are stacked substantially parallel to the capacitor upper surface 20A and the capacitor lower surface 20B is shown. However, the built-in capacitor only needs to have the upper surface connection pad 21 and the lower surface connection pad 22 formed on the capacitor upper surface 20A and the capacitor lower surface 20B. For example, the dielectric layer and the electrode layer are substantially orthogonal to the capacitor upper surface. The stacking direction and internal structure of the capacitors can be changed as appropriate, such as being stacked in the direction. In the first embodiment, the via conductors 26, 27, and 28 formed in the capacitor are all formed at positions overlapping with other via conductors in the vertical direction (FIG. 2C). It is not necessary to limit the positions of the other via conductors above or below, and the arrangement or number of the via conductors 26 can be selected as appropriate.
[0101]
Furthermore, in the above embodiment, the dielectric layer 24 has BaTiO. Three However, the material of the dielectric layer is not limited to this. For example, PbTiO Three , PbZrO Three , TiO 2 , SrTiO Three , CaTiO Three , MgTiO Three , KNbO Three , NaTiO Three , KTaO Three , RbTaO Three , (Na 1/2 Bi 1/2 ) TiO Three , Pb (Mg 1/2 W 1/2 ) O Three , (K 1/2 Bi 1/2 ) TiO Three And may be appropriately selected depending on the required capacitance of the capacitor and the like.
Further, although Pd is used for the electrode layer 25, the via conductor 26, and the like, it may be selected in consideration of compatibility with the material of the dielectric layer, for example, Pt, Ag, Ag-Pt, Ag- Pd, Cu, Au, Ni etc. are mentioned.
Furthermore, a capacitor is obtained by combining a dielectric layer mainly composed of a high dielectric ceramic, an electrode layer made of Ag-Pd, etc., and a via conductor or wiring layer made of a resin layer, Cu plating, Ni plating or the like. Can also be used.
[0102]
Further, in the above embodiment, after the capacitor 20 is built in the through-hole 11, the through-hole 11 is filled with the filling resin 32 (32A), the capacitor upper surface 20A, the core substrate main body upper surface 10A, and the capacitor lower surface. Filled resin layers 32B, 32C, 32D, and 32E were also formed on 20B and on the core substrate main body lower surface 10B (downward in the figure) (see FIG. 6). However, it is sufficient that the capacitor 20 can be fixed in the through-hole 11 with at least the filling resin 32 (32A). Therefore, the filling resin 32 may be injected only into the through hole 11.
[0103]
Alternatively, in addition to the filling resin 32 (32A), only the filling resin layers 32B and 32D on the capacitor upper surface 20A and the capacitor lower surface 20B may be formed. That is, the dimensions of the through hole 11 (receiving portion 12) and the capacitor 20 are adjusted, and the capacitor upper surface 20A is lower than the core substrate main body upper surface 10A (lower in the figure) in a state where the capacitor 20 is positioned in the through hole 11. In addition, the upper surface connection pad 21 is higher than the upper surface 10A of the core substrate body (upper in the drawing). In addition, the capacitor lower surface 20B is higher than the core substrate main body lower surface 10B (upper in the drawing), and the lower surface connection pad 22 is lower than the core substrate main body lower surface 10B (upper in the drawing). Next, in addition to injecting the filling resin 32 into the through hole 11, filling resin layers 32B and 32D are also formed on the capacitor upper surface 20A and the capacitor lower surface 20B, respectively. Thereafter, the upper surface connection pad 21 is exposed on the upper surface of the filling resin layer 32B, the upper surface is flush with the core substrate body upper surface 10A, and the lower surface connection pad 22 is exposed on the upper surface of the filling resin layer 32D. However, the lower surface may be leveled so as to be flush with the core substrate main body lower surface 10B. Even in this case, the step formed due to the presence of the through hole 11 and the built-in capacitor 20 can be eliminated, and further, when the upper resin insulating layer 41 or the like, the wiring layer 45 or the like is formed in the upper layer, the wiring layer 45 or the like is disconnected. Or a short circuit, or a decrease in coplanarity of the flip chip pad 101 or the like.
[0104]
In the above embodiment, the core through-hole conductor 33 is formed in the core substrate body 10 after the capacitor 20 is built in. However, the core through that penetrates between the core substrate body upper surface 10A and the core substrate body lower surface 10B in advance is formed. It is also possible to form a hole conductor and then incorporate the capacitor 20 in the through hole 11. That is, a through-hole penetrating between the core substrate main body upper surface 10A and the core substrate main body lower surface 10B after bonding the receiving portion core substrate main body 13 and the wall core substrate main body 16 (see FIGS. 4 and 5). And a core through-hole conductor is formed by a known method. Thereafter, the capacitor 20 is built in the through hole 11 in the same manner as described above. In this way, after incorporating the capacitor 20, it is possible to avoid the risk of causing defects such as cracks in the capacitor 20 or the filling resin 32 due to vibration or impact generated when the core through hole 30H is formed. it can.
[0105]
Further, in the above embodiment, after the core through-hole conductor 33 and the connection conductors 34 and 35 are formed, the planarizing resins 36, 37, and 38 are formed so that the top and bottom of the core substrate 30 are flattened. However, the resin insulating layers 41 and 51 may be formed without using the planarizing resin, that is, from the state shown in FIG. 7, after the core through-hole conductor 33 is filled with resin. In this way, the wiring board can be formed at a lower cost.
[0106]
Further, in the above-described embodiment, the capacitor receiving portions 12 and 212 are formed in the through holes 11 and 211, respectively, and the capacitors 20 and 220 in which the contact portions 20C and 220C and the cutout portions 20P and 220P are formed are received by the receiving portions. It abuts on the part 12 etc. and is fitted.
However, the capacitor 20 and the like can be positioned in the vertical direction in the figure only by contacting the receiving portion 12 and the like. For example, a wiring board 300 shown in Modification 1 in FIG. The wiring board 300 will be described. Unlike the capacitor 20 of the first embodiment, the built-in capacitor 320 is not formed with a notch, and is slightly thinner than the capacitor 20. The thickness of the lower surface connection pad 322 formed on the lower surface 320B is increased. On the other hand, the core substrate body 10 and others are substantially the same as the wiring substrate 100 of the first embodiment. In this wiring board 300, the inward surface 12S of the receiving portion 12 and the capacitor lower surface (contact surface) 320B are in contact with each other, whereby the capacitor 320 is positioned in the vertical direction in the figure. As a result, it is possible to easily prevent poor connection with the upper capacitor connection wiring 60 (wiring layer 45) and the lower capacitor connection wiring 70 (wiring layer 55) due to the vertical displacement of the capacitor 320, and to reliably connect with these. it can. Moreover, in the wiring board 300, the substantially rectangular parallelepiped capacitor 320 which does not form a notch part can be used, and since the manufacture of the capacitor 320 becomes easy and cheap, the wiring board 300 can also be made cheap. Note that the capacitor 320 may be positioned in the planar direction (left and right in the figure) using an appropriate jig and tool, and the capacitor 320 may be fixed in the through hole 11 with the filling resin 332.
[0107]
Furthermore, for example, the wiring board 400 shown in Modification 2 in FIG. 12 may be configured such that the receiving portion 12 or the like is not formed. In this wiring substrate 400, the diameter (planar dimension) of the through hole 411 having a substantially square shape in plan view formed between the upper surface 410A and the lower surface 410B of the core substrate body 410 does not change from the upper end to the lower end, and the receiving portion is Not formed. Further, the capacitor 420 incorporated in the through hole 411 has substantially the same thickness as that of the core substrate body 410, and unlike the capacitor 20 of the first embodiment, the capacitor 420 has a substantially rectangular parallelepiped shape in which notches are not formed. It is said that. In this wiring board 400, since the receiving part is not formed in the core substrate body 410, it is not necessary to bond the receiving part core substrate body 13 and the wall core substrate body 16 together as described in the first embodiment. It is sufficient to form the through hole 411 in the core substrate body 410 by a known method. In addition, the capacitor 420 can be a substantially rectangular parallelepiped having no notch, so that the capacitor 420 can be manufactured easily and inexpensively. Therefore, the wiring board 400 can be made more inexpensive. Note that the positioning of the capacitor 420 in the vertical direction and the planar direction (left and right direction in the drawing) may be performed using a tool as appropriate, and the capacitor 420 may be fixed in the through hole 411 with the filling resin 432.
[0108]
Furthermore, in Embodiment 1, the shape of the receiving portion 12 of the core substrate body 10 is substantially constant over the entire circumference of the through hole 11 when viewed from the top of the core substrate body upper surface 10A as shown in FIG. Although it has a substantially square shape with a width, other shapes may be used.
For example, as in the core substrate body 510 shown in FIG. 13A, capacitor receiving portions 512A, 512B, 512C, and 512D that protrude from the four corners of the substantially square through hole 11 in a substantially “<” shape. 2 which protrudes along two opposing sides (in this example, two sides on the left and right sides) of the substantially square through-hole 11 like a core substrate body 520 shown in FIG. 13B. One having the strip-shaped capacitor receiving portions 522A and 522B formed therein may be mentioned. Further, like the core substrate body 530 shown in FIG. 13 (c), capacitor receiving portions 532A, 532B, 532C, and 532D protruding in a substantially trapezoidal shape are formed on the four sides of the substantially square through hole 11, respectively. And so on. The inward surfaces 512S, 522S, and 532S of the capacitor receiving portions 512, 522, and 532 also come into contact with the contact surface 20C of the capacitor 20 when the capacitor 20 is incorporated, and the capacitor receiving portions 512, 522, 532, That is, since the inner peripheral edges 512H, 522H, and 532H are fitted into the notches 20P, positioning in the vertical direction and the planar direction in the through hole 11 of the capacitor 20 can be performed.
[0109]
Further, in the first embodiment, the notch 20P is provided in a square shape on the periphery of the capacitor lower surface 20B (see FIG. 2B), but the notch is a capacitor receiving portion (for example, the receiving portion in the first embodiment). 12 (see FIG. 4)), other shapes may be used.
For example, a capacitor 540 shown in FIG. 14A is an example of a capacitor that fits into the receiving portion 522 of the core substrate body 520 (see FIG. 13B). In this capacitor 540, a notch 540P is provided in a stepped manner only in the portion along two opposing sides of the periphery of the capacitor lower surface 540B having a square shape in plan view, and a contact surface 540C is formed. Thereby, in the through hole 11 of the core substrate body 520, the contact surface 540C of the capacitor 540 and the inward surface 522S of the receiving portion 522 contact each other, and the inner peripheral edge 522H and the cutout portion 540P are fitted. . Even in this way, positioning in the axial direction and the radial direction in the through hole 11 of the capacitor 540 can be facilitated.
[0110]
Further, the capacitor may be provided with a protruding portion that protrudes from the lower surface of the capacitor instead of the notch portion, and may be fitted to the capacitor receiving portion. For example, a capacitor 550 shown in FIG. 14B is an example of a capacitor that fits into the receiving portion 512 of the core substrate body 510 (see FIG. 13A). In this capacitor 550, substantially rectangular convex portions 550TA, 550TB, 550TC, and 550TD are provided in the vicinity of the central portion of each side of the periphery of the capacitor lower surface 550B that is square in plan view. As a result, the capacitor lower surface (contact surface) 550B of the capacitor 550 and the inward surface 512S of the receiving portion 512 are in contact with each other in the through hole 11 of the core substrate body 510, and the inner peripheral edge 512H and the convex portions 550TA, etc. And fit. Even in this way, positioning in the axial direction and the radial direction in the through hole 11 of the capacitor 550 can be facilitated.
[0111]
Similarly, a capacitor 560 shown in FIG. 14C is an example of a capacitor that fits into the receiving portion 532 of the core substrate body 530 (see FIG. 13C). In this capacitor 560, substantially house-shaped convex portions 560TA, 560TB, 560TC, and 560TD are provided in the vicinity of each corner portion of the periphery of the capacitor lower surface 560B that is square in a plan view. As a result, the capacitor lower surface (contact surface) 560B of the capacitor 560 and the inward surface 532S of the receiving portion 532 come into contact with each other in the through hole 11 of the core substrate body 530, and the inner peripheral edge 512H and each convex portion 560TA etc. are fitted. Even in this way, positioning in the axial direction and the radial direction in the through hole 11 of the capacitor 560 can be facilitated.
In addition, the shape of the receiving portion of the capacitor and the core substrate body is not limited to the above examples, and may be formed in a shape that contacts and fits with each other, such as those in which both the notch portion and the convex portion are formed. That's fine.
[0112]
As can be easily understood from the above description, if the capacitor receiving portion and the capacitor are shaped so that the inward surface of the receiving portion and the contact surface of the capacitor are in contact with each other, the upper and lower sides of the capacitor in the through hole Directional positioning can be performed. Still further, if the capacitor receiving portion and the capacitor are shaped so that the receiving portion (the inner peripheral edge of the receiving portion) and the notch of the capacitor are fitted to each other, the capacitor is positioned in the through hole in the planar direction. be able to.
[Brief description of the drawings]
FIG. 1 shows a capacitor according to a first embodiment in which a capacitor receiving portion is formed at a lower end portion of a capacitor built-in through hole formed in a core substrate body, and abuts against and fits into the receiving portion in the through hole. It is sectional drawing of the wiring board which incorporates.
2A is a plan view, FIG. 2B is a perspective view as viewed from the lower surface side, and FIG. 2C is a cross-sectional explanatory diagram for explaining the internal structure of the capacitor. (D) is a circuit diagram which shows the relationship between a capacitor | condenser, a LGA pad, and a flip chip pad.
FIG. 3 is an explanatory diagram illustrating a method for manufacturing the capacitor of FIG. 2;
4A is a plan view and FIG. 4B is a partially enlarged cross-sectional view of a core substrate body having a through hole for incorporating a capacitor in the wiring board according to the first embodiment.
5 is an explanatory view illustrating a method for manufacturing the core substrate body of FIG. 4; FIG.
6 is an explanatory diagram of a manufacturing method of a capacitor built-in core substrate in which the capacitor of FIG. 2 is built in the through hole of the core substrate body of FIG. 4;
FIG. 7 is a partially enlarged cross-sectional view of a capacitor built-in core substrate.
8 is an explanatory diagram for explaining a process of further flattening the upper and lower surfaces of the capacitor built-in core substrate of FIG. 7;
9 is an explanatory diagram showing a process of forming a resin insulating layer and wiring layers on the upper and lower sides of the flattened capacitor built-in core substrate of FIG. 8;
FIG. 10 shows a capacitor according to the second embodiment, in which a capacitor receiving portion is formed at the upper end of the capacitor built-in through hole formed in the core substrate body, and abuts against and fits into the receiving portion in the through hole. It is sectional drawing of the wiring board which incorporates.
FIG. 11 is a wiring diagram in which a capacitor receiving portion is formed at a lower end portion of a capacitor built-in through hole formed in the core substrate body according to Modification 1 and a capacitor that contacts the receiving portion is built in the through hole; It is sectional drawing of a board | substrate.
12 is a cross-sectional view of a wiring board according to Modification 2 in which a capacitor is built in a capacitor built-in through hole formed in a core substrate body. FIG.
FIG. 13 is a plan view showing another form of the capacitor receiving portion of the core substrate body.
FIG. 14 is a perspective view showing another form of the notch portion and the convex portion of the capacitor.
FIG. 15 is an explanatory diagram for explaining a state of capacitor connection wiring in a conventional wiring board on which capacitors are mounted on an upper surface and a lower surface.
[Explanation of symbols]
100, 200, 300, 400 (Built-in capacitor) Wiring board
100A, 200A, 300A, 400A Wiring board top surface
100B, 200B, 300B, 400B Underside of wiring board
101 flip chip pad
102 Flip chip bump
103 LGA pad (bottom connection terminal)
10, 210, 410 Core substrate body
10A, 210A, 410A Core board body top surface
10B, 210B, 410B Core substrate body bottom surface
11, 211, 411 Capacitor built-in through hole
12,212 Capacitor receiving part
20, 220, 320, 420 capacitor
20A, 220A, 320A, 420A Capacitor top surface
20B, 220B, 320B, 420B Capacitor bottom surface
21, 221, 321, 421 Top connection pad
22, 222, 322, 422 Bottom connection pad
24 Dielectric layer
25 Electrode layer
25E, 25F (pair) electrode group
30 core substrate
32,232,332,432 Filled resin
32B, 32C, 32D, 32E Filled resin layer
33,233 Core through-hole conductor
41, 42, 43, 51, 52, 53 Resin insulation layer
45, 46, 55, 56 Wiring layer
60 Upper capacitor connection wiring
70 Lower capacitor connection wiring
80 Upper core connection wiring
90 Lower core connection wiring

Claims (4)

コンデンサ上面と、
コンデンサ下面と、
互いに絶縁された一対の電極または電極群と、
上記コンデンサ上面に形成され、上記一対の電極または電極群のうちのいずれかの電極または電極群とそれぞれ導通する複数の上面接続パッドであって、上記一対の電極または電極群のいずれも上記複数の上面接続パッドのうちの少なくとも1つと導通する複数の上面接続パッドと、
上記コンデンサ下面に形成され、上記一対の電極または電極群のうちのいずれかの電極または電極群とそれぞれ導通する複数の下面接続パッドであって、上記一対の電極または電極群のいずれも上記複数の下面接続パッドのうちの少なくとも1つと導通する複数の下面接続パッドと、
上記コンデンサ下面の周縁に形成され、コア基板本体のコンデンサ内蔵用貫通孔内において径方向内側に向けて突出するコンデンサ受け部と当接して嵌合可能な切り欠き部及び凸部の少なくともいずれかと、
を備えるコンデンサ。
A capacitor top surface;
The bottom surface of the capacitor;
A pair of electrodes or electrode groups insulated from each other;
A plurality of upper surface connection pads formed on the upper surface of the capacitor and electrically connected to any one of the electrodes or electrode groups of the pair of electrodes or electrode groups, wherein each of the pair of electrodes or electrode groups includes the plurality of electrodes A plurality of upper surface connection pads that are conductive with at least one of the upper surface connection pads;
A plurality of lower surface connection pads formed on the lower surface of the capacitor and respectively conducting with any one of the electrodes or electrode groups of the pair of electrodes or electrode groups, wherein each of the pair of electrodes or electrode groups includes the plurality of electrodes A plurality of lower surface connection pads that are electrically connected to at least one of the lower surface connection pads;
At least one of a notch portion and a convex portion that are formed on the periphery of the capacitor lower surface and can be fitted into contact with a capacitor receiving portion that protrudes radially inward in the capacitor built-in through-hole of the core substrate body,
With a capacitor.
壁部用コア基板本体上面と壁部用コア基板本体下面とを有し、これらの間を貫通する壁部用貫通孔を備える壁部用コア基板本体の上記壁部用コア基板本体下面と、
受け部用コア基板本体上面と受け部用コア基板本体下面とを有し、これらの間を貫通する受け部用貫通孔を備える受け部用コア基板本体の上記受け部用コア基板本体上面とを、
上記壁部用貫通孔内に上記受け部用コア基板のうち上記受け部用貫通孔の周縁の少なくとも一部を露出させて、
接着する接着工程を備えること
を特徴とするコア基板本体の製造方法。
The wall core substrate main body upper surface and the wall core substrate main body lower surface, and the wall core substrate main body lower surface of the wall core substrate main body including a wall through hole penetrating therebetween,
The receiving portion core substrate main body upper surface and the receiving portion core substrate main body lower surface, and the receiving portion core substrate main body including the receiving portion core substrate main body provided with a receiving portion through hole penetrating therebetween. ,
Exposing at least a part of the periphery of the through hole for the receiving portion of the core substrate for the receiving portion in the through hole for the wall portion;
A method of manufacturing a core substrate body, comprising a bonding step of bonding.
コア基板本体上面、
コア基板本体下面、
及び、上記コア基板本体上面とコア基板本体下面との間を貫通するコンデンサ内蔵用貫通孔、
を備えるコア基板本体の、上記コンデンサ内蔵用貫通孔内に、
コンデンサ上面、
コンデンサ下面、
互いに絶縁された一対の電極または電極群、
上記コンデンサ上面に形成され、上記一対の電極または電極群のうちのいずれかの電極または電極群とそれぞれ導通する複数の上面接続パッドであって、上記一対の電極または電極群のいずれも上記複数の上面接続パッドのうちの少なくとも1つと導通する複数の上面接続パッド、
及び、上記コンデンサ下面に形成され、上記一対の電極または電極群のうちのいずれかの電極または電極群とそれぞれ導通する複数の下面接続パッドであって、上記一対の電極または電極群のいずれも上記複数の下面接続パッドのうちの少なくとも1つと導通する複数の下面接続パッド、
を備えるコンデンサを配置するコンデンサ配置工程と、
少なくとも上記コンデンサ内蔵用貫通孔内に充填樹脂を注入し、上記充填樹脂を硬化させて、充填樹脂で上記コンデンサを上記コンデンサ内蔵用貫通孔内に固定するコンデンサ固定工程と、
少なくとも上記コア基板本体上面とコア基板本体下面との間を貫通するコアスルーホール導体を形成するコアスルーホール形成工程と、
を備えるコンデンサ内蔵コア基板の製造方法。
Core substrate top surface,
The bottom surface of the core substrate body,
And a capacitor built-in through-hole penetrating between the upper surface of the core substrate body and the lower surface of the core substrate body,
In the through hole for the built-in capacitor of the core substrate body provided with
Capacitor top surface,
Capacitor bottom,
A pair of electrodes or electrode groups insulated from each other;
A plurality of upper surface connection pads formed on the upper surface of the capacitor and respectively conducting with any one of the electrodes or electrode groups of the pair of electrodes or electrode groups, each of the pair of electrodes or electrode groups including the plurality of electrodes; A plurality of upper surface connection pads in electrical communication with at least one of the upper surface connection pads;
And a plurality of lower surface connection pads formed on the lower surface of the capacitor and respectively conducting with any one of the electrodes or electrode groups of the pair of electrodes or electrode groups, both of the pair of electrodes or electrode groups being the above A plurality of bottom surface connection pads that are electrically connected to at least one of the plurality of bottom surface connection pads;
A capacitor placement step of placing a capacitor comprising:
A capacitor fixing step of injecting at least a filling resin into the capacitor built-in through hole, curing the filling resin, and fixing the capacitor in the capacitor built-in through hole with the filling resin;
A core through hole forming step of forming a core through hole conductor penetrating at least between the upper surface of the core substrate body and the lower surface of the core substrate body;
A manufacturing method of a core substrate with a built-in capacitor.
請求項3に記載のコンデンサ内蔵コア基板の製造方法であって、
前記コンデンサ固定工程は、前記コンデンサ内蔵用貫通孔内の他、前記コンデンサ上面、コンデンサ下面、コア基板本体上面、及び、コア基板本体下面のうち、少なくともコンデンサ上面及びコンデンサ下面にも充填樹脂を塗布し硬化させるコンデンサ固定−充填樹脂塗布硬化工程であり、
前記コアスルーホール形成工程に先だって、
上記コンデンサ上面上の、または、上記コンデンサ上面上及び前記コア基板本体上面上の、上記充填樹脂を研磨して上記複数の上面接続パッドを略面一に露出させるとともに、上記コンデンサ上面上の充填樹脂層と上記コア基板本体上面とを、または、上記コンデンサ上面上の充填樹脂層とコア基板本体上面上の充填樹脂層とを、略面一の平坦面に整面し、
上記コンデンサ下面上の、または、上記コンデンサ下面上及び前記コア基板本体下面上の、上記充填樹脂を研磨して上記複数の下面接続パッドを略面一に露出させるとともに、上記コンデンサ下面上の充填樹脂層と上記コア基板本体下面とを、または、上記コンデンサ下面上の充填樹脂層とコア基板本体下面上の充填樹脂層とを、略面一の平坦面に整面する研磨整面工程を備えること
を特徴とするコンデンサ内蔵コア基板の製造方法。
It is a manufacturing method of the core board with a built-in capacitor according to claim 3 ,
In the capacitor fixing step, a filling resin is applied to at least the capacitor upper surface and the capacitor lower surface among the capacitor upper surface, the capacitor lower surface, the core substrate body upper surface, and the core substrate body lower surface in addition to the inside of the capacitor built-in through hole. It is a capacitor fixing-filling resin coating curing process for curing,
Prior to the core through hole formation process,
Polishing the filling resin on the upper surface of the capacitor or on the upper surface of the capacitor and the upper surface of the core substrate body to expose the plurality of upper surface connection pads substantially flush with each other, and filling the resin on the upper surface of the capacitor Leveling the layer and the top surface of the core substrate body, or the filling resin layer on the top surface of the capacitor and the filling resin layer on the top surface of the core substrate body to a substantially flat surface,
Polishing the filling resin on the lower surface of the capacitor or on the lower surface of the capacitor and the lower surface of the core substrate body to expose the plurality of lower surface connection pads substantially flush with each other, and filling the resin on the lower surface of the capacitor A polishing and leveling step of leveling the layer and the lower surface of the core substrate body, or the filling resin layer on the lower surface of the capacitor and the filling resin layer on the lower surface of the core substrate body to a substantially flat surface. A method of manufacturing a core substrate with a built-in capacitor.
JP05886399A 1999-03-05 1999-03-05 Capacitor, manufacturing method of core substrate body, and manufacturing method of core substrate with built-in capacitor Expired - Lifetime JP3672169B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05886399A JP3672169B2 (en) 1999-03-05 1999-03-05 Capacitor, manufacturing method of core substrate body, and manufacturing method of core substrate with built-in capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05886399A JP3672169B2 (en) 1999-03-05 1999-03-05 Capacitor, manufacturing method of core substrate body, and manufacturing method of core substrate with built-in capacitor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004357062A Division JP4339781B2 (en) 2004-12-09 2004-12-09 Wiring board

Publications (2)

Publication Number Publication Date
JP2000261124A JP2000261124A (en) 2000-09-22
JP3672169B2 true JP3672169B2 (en) 2005-07-13

Family

ID=13096572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05886399A Expired - Lifetime JP3672169B2 (en) 1999-03-05 1999-03-05 Capacitor, manufacturing method of core substrate body, and manufacturing method of core substrate with built-in capacitor

Country Status (1)

Country Link
JP (1) JP3672169B2 (en)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101084525B1 (en) 1999-09-02 2011-11-18 이비덴 가부시키가이샤 Printed circuit board and method of manufacturing printed circuit board
JP5066311B2 (en) * 2000-10-27 2012-11-07 日本特殊陶業株式会社 Wiring board
JP2003152317A (en) * 2000-12-25 2003-05-23 Ngk Spark Plug Co Ltd Wiring board
JP2002237683A (en) * 2001-02-08 2002-08-23 Ngk Spark Plug Co Ltd Method for manufacturing circuit board
JP4697828B2 (en) * 2001-03-13 2011-06-08 イビデン株式会社 Printed wiring board and printed wiring board manufacturing method
JP4863562B2 (en) * 2001-03-13 2012-01-25 イビデン株式会社 Printed wiring board and printed wiring board manufacturing method
US7474538B2 (en) 2002-05-27 2009-01-06 Nec Corporation Semiconductor device mounting board, method of manufacturing the same, method of inspecting the same, and semiconductor package
JP3591524B2 (en) * 2002-05-27 2004-11-24 日本電気株式会社 Semiconductor device mounting board, method of manufacturing the same, board inspection method thereof, and semiconductor package
JP4508540B2 (en) * 2003-03-04 2010-07-21 京セラ株式会社 Wiring board and electronic device
JP2005039243A (en) * 2003-06-24 2005-02-10 Ngk Spark Plug Co Ltd Intermediate substrate
JP4509972B2 (en) 2005-09-01 2010-07-21 日本特殊陶業株式会社 Wiring board, embedded ceramic chip
US7808799B2 (en) * 2006-04-25 2010-10-05 Ngk Spark Plug Co., Ltd. Wiring board
JP2007318089A (en) * 2006-04-25 2007-12-06 Ngk Spark Plug Co Ltd Wiring board
JP4954765B2 (en) * 2006-04-25 2012-06-20 日本特殊陶業株式会社 Wiring board manufacturing method
JP2008244029A (en) * 2007-03-27 2008-10-09 Ngk Spark Plug Co Ltd Wiring board with built-in component, and component used therefor
US7936567B2 (en) * 2007-05-07 2011-05-03 Ngk Spark Plug Co., Ltd. Wiring board with built-in component and method for manufacturing the same
JP4954824B2 (en) * 2007-08-02 2012-06-20 日本特殊陶業株式会社 Wiring board with built-in components, capacitor for wiring board
US8314343B2 (en) * 2007-09-05 2012-11-20 Taiyo Yuden Co., Ltd. Multi-layer board incorporating electronic component and method for producing the same
JP5112005B2 (en) * 2007-10-25 2013-01-09 日本特殊陶業株式会社 Wiring board with built-in plate-shaped component and manufacturing method thereof
JP5153417B2 (en) * 2008-04-01 2013-02-27 京セラ株式会社 Component built-in board and mounting structure
JP5221228B2 (en) * 2008-07-10 2013-06-26 日本特殊陶業株式会社 Component built-in wiring board and manufacturing method thereof
JP5512558B2 (en) * 2011-01-14 2014-06-04 日本特殊陶業株式会社 Manufacturing method of wiring board with built-in components
KR101472640B1 (en) 2012-12-31 2014-12-15 삼성전기주식회사 Circuit board and method of manufacturing the same
JP6478309B2 (en) 2012-12-31 2019-03-06 サムソン エレクトロ−メカニックス カンパニーリミテッド. Multilayer substrate and method for manufacturing multilayer substrate
JP6173781B2 (en) * 2013-06-10 2017-08-02 新光電気工業株式会社 Wiring board and method of manufacturing wiring board
JP6158601B2 (en) * 2013-06-10 2017-07-05 新光電気工業株式会社 Wiring board and method of manufacturing wiring board
KR101514539B1 (en) 2013-08-29 2015-04-22 삼성전기주식회사 Substrate embedding electronic component
KR102186149B1 (en) * 2015-03-11 2020-12-03 삼성전기주식회사 Printed circuit board and method for manufacturing the same

Also Published As

Publication number Publication date
JP2000261124A (en) 2000-09-22

Similar Documents

Publication Publication Date Title
JP3672169B2 (en) Capacitor, manufacturing method of core substrate body, and manufacturing method of core substrate with built-in capacitor
JP3878663B2 (en) Wiring board manufacturing method and wiring board
JP3792445B2 (en) Wiring board with capacitor
US7808799B2 (en) Wiring board
US8115113B2 (en) Multilayer printed wiring board with a built-in capacitor
JP3640560B2 (en) Wiring board, core board with built-in capacitor, and manufacturing method thereof
JP4079699B2 (en) Multilayer wiring circuit board
TWI295912B (en) Method for manufacturing a substrate embedded with an electronic component and device from the same
JP2000332057A (en) Wiring board and manufacture thereof with mounted electronic component
JP2002016327A (en) Wiring board and its manufacturing method
JP4339781B2 (en) Wiring board
JP4521017B2 (en) Wiring substrate manufacturing method, capacitor built-in core substrate manufacturing method
JP4851652B2 (en) Wiring board and manufacturing method thereof
TWI293237B (en) Method for manufacturing a substrate embedded with an electronic component and device from the same
JP4751474B2 (en) Wiring board, core board with built-in capacitor
JP2002171072A (en) Wiring board
JP4814129B2 (en) Wiring board with built-in components, Wiring board built-in components
JP2004320043A (en) Capacitor and its producing process
JP3859225B2 (en) Wiring board
JP2008244029A (en) Wiring board with built-in component, and component used therefor
JPH01183196A (en) Manufacture of multilayer printed wiring board device
JP5095456B2 (en) Manufacturing method of wiring board with built-in components
JP2005197763A (en) Wiring board with capacitor, wiring board, and capacitor
JPH01183195A (en) Manufacture of multilayer printed wiring board device
JP2004320042A (en) Process for producing wiring board

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050414

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080428

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term