JP3669790B2 - 4値fsk復調回路 - Google Patents

4値fsk復調回路 Download PDF

Info

Publication number
JP3669790B2
JP3669790B2 JP24712996A JP24712996A JP3669790B2 JP 3669790 B2 JP3669790 B2 JP 3669790B2 JP 24712996 A JP24712996 A JP 24712996A JP 24712996 A JP24712996 A JP 24712996A JP 3669790 B2 JP3669790 B2 JP 3669790B2
Authority
JP
Japan
Prior art keywords
circuit
signal
phase
component
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24712996A
Other languages
English (en)
Other versions
JPH1075269A (ja
Inventor
英人 山口
健三 占部
久嗣 川井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP24712996A priority Critical patent/JP3669790B2/ja
Publication of JPH1075269A publication Critical patent/JPH1075269A/ja
Application granted granted Critical
Publication of JP3669790B2 publication Critical patent/JP3669790B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ディジタル無線受信機等に用いられる4値FSK復調回路に係り、特に容易な回路構成で、変調指数の如何にかかわらず適正に復調できる4値FSK復調回路に関する。
【0002】
【従来の技術】
周波数偏移変調(FSK変調)は、周波数変調方式の一つで、入力信号に応じてキャリア信号の周波数を予め定められた量だけシフトさせて出力波とする変調方式であって、出力波には位相の不連続が生じないように回路が構成されている。
【0003】
このように変調されたFSK復調の一方法として、FSK変調されたキャリア信号を受信すると、変調前の該キャリア信号の周波数の信号を発振する局部発振器を用いて該キャリア信号を直交検波し、直交ベースバンド信号としてI成分(同相成分)及びQ成分(直交成分)を得て、これにFSK復調を行う方法(いわゆる「零IF検波方式」)がある。
【0004】
ここでは、まず、零IF検波方式による従来の2値FSK復調回路を説明し、しかる後に従来の4値FSK復調回路について説明を行うこととする。
従来の2値FSK復調回路について、図14と図15を用いて説明する。図14は、従来の2値FSK復調回路の構成ブロック図であり、図15は、従来の2値FSK復調回路における零IF検波回路の一例の構成ブロック図である。
従来の2値FSK復調回路は、図14に示すように、零IF検波回路1と、コンパレータ2と、位相比較回路3とから主に構成されている。
【0005】
次に、各部を具体的に説明する。
零IF検波回路1は、受信したFSK変調されたキャリア信号を直交検波して直交ベースバンド信号をそのI成分とQ成分とに分けてそれぞれコンパレータ2a,2bに出力するものである。
零IF検波回路1の具体的な構成については、後に説明する。
【0006】
コンパレータ2aは、直交ベースバンド信号のI成分の入力を受けて、これを矩形に変化するディジタル信号を表す波形に整形するものである(以下、この動作を「2値整形」と称する)。
コンパレータ2bは、直交ベースバンド信号のQ成分の入力を受けて、2値整形するものである。
尚、以下でコンパレータ2aの出力する信号を「整形I信号」と、コンパレータ2bの出力する信号を「整形Q信号」と称することとする。
【0007】
位相比較回路3は、コンパレータ2a,2bから整形I信号と整形Q信号との入力を受けて、どちらの信号の位相が先進しているかを表す信号を検波出力として出力するものである。具体的には、この検波出力は、「0」又は「1」の2値信号となっている。
【0008】
つまり、位相比較回路3は、受信したキャリア信号の瞬時周波数が高い場合と低い場合とで整形I信号と整形Q信号とで表現されるベクトルの回転方向が逆になることを利用して、この回転方向を比較判定して瞬時周波数の高低を2値信号として出力するものである。
【0009】
ここで、零IF検波回路1について、より詳細に説明する。
零IF検波回路1は、例えば、図15に示すように、局部発振器11と、90゜分配回路12と、第1のミキサー回路13と、第2のミキサー回路14と、第1のLPF15と、第2のLPF16とから構成されているようなものが考えられる。
【0010】
以下、各部を具体的に説明する。
局部発振器11は、変調前のキャリア信号の周波数の信号を局部発振信号として90゜分配回路12に出力するものである。
90゜分配回路12は、局部発振信号の入力を受けて、これを同相信号としてそのまま第1のミキサー回路13に出力するとともに、局部発振信号の位相を90゜シフトさせて直交信号として第2のミキサー回路14に出力するものである。
【0011】
第1のミキサー回路13は、乗算回路であって、同相信号と受信したキャリア信号とを乗算した信号を第1のLPF15に出力するものである。
第2のミキサー回路14は、乗算回路であって、直交信号と受信したキャリア信号とを乗算した信号を第2のLPF16に出力するものである。
【0012】
第1のLPF15は、高周波成分を除去する低域濾波器であり、第1のミキサー回路13から入力される信号の高周波成分を除去して直交ベースバンド信号のI成分として出力するものである。
第2のLPF16は、第1のLPF15と同様のものであって、第2のミキサー回路14から入力される信号の高周波成分を除去して直交ベースバンド信号のQ成分として出力するものである。
【0013】
つまり、局部発振信号の周波数よりも受信したキャリア信号の周波数が高ければ(そのようにFSK変調されていれば)、整形I信号と整形Q信号とで表現されるベクトルは、正の向きに回転し、局部発振信号の周波数よりも受信したキャリア信号の周波数が低ければ(そのようにFSK変調されていれば)、整形I信号と整形Q信号とで表現されるベクトルは、負の向きに回転するようになる。
【0014】
そこで、位相比較回路3がこの回転の方向を判定して、キャリア信号がどのようにFSK変調されているかを検知するようになる。
【0015】
ここで、従来の2値FSK復調回路の動作について説明する。
零IF検波回路1がFSK変調されたキャリア信号を受信して、これを直交検波し、直交ベースバンド信号のI成分とQ成分とに分けて出力する。
そして、コンパレータ2a,2bが、これらの成分を2値整形して、それぞれ整形I信号と整形Q信号とを出力する。
【0016】
そして、位相比較回路3が、整形I信号と整形Q信号との位相を比較して(整形I信号と整形Q信号とで表現されるベクトルの回転方向を検知して)、それを2値信号の検波出力として出力する。
【0017】
次に、従来の4値FSK復調回路について説明する。
4値FSK復調回路において、上述の2値FSK復調回路と同様の零IF検波方式を採用したものは、「4値FSK信号のダイレクトコンバージョン受信方式」,斉藤,赤岩,電子情報通信学会技術研究報告RCS94-124 ,pp.43-48に記載されている。
【0018】
そこで、以下この文献に記載されている方法の概略を説明する。
4値FSK復調回路は、受信したキャリア信号を直交検波して2値整形し、整形I信号と整形Q信号とを得るところまでは、上述の2値FSK復調回路と同じであるが、これらの信号で表現されるベクトルの回転方向を検知するとともに、さらに回転速度をも別個に検知し、これらの検知の結果によって4値FSKを復調するものである。
【0019】
4値FSK復調における直交ベースバンド信号では、各信号点は2ビットのシンボル「00」と「01」と「11」と「10」とのいずれかを表すようになっており、図16に示すように各MSBが回転方向に、LSBが回転速度に対応するようになっている。図16は、4値FSK復調回路における直交ベースバンド信号のIQ平面での動きを表す説明図である。
【0020】
すなわち回転方向は、MSBが「0」であるときに負の方向に(図16(a))、「1」であるときに正の方向に(図16(b))、それぞれ回転するようになっており、回転速度は、次に示す[数1]で定義される変調指数と呼ばれる値に対応する。
【0021】
【数1】
Figure 0003669790
【0022】
ここで、Rは、変調速度を、ΔFmax は、最大周波数偏移を表しており、変調指数mはLSBに対応して2つ設定される。尚、回転速度は、mπである。
例えばm=1,3とした場合、特にLSBが「0」のときに、m=3としたとすると、その際の回転速度はmπ=3πなので、図16(a),(b)の破線のように1.5回転し、また、LSBが「1」のときに、m=1としたとすると、その際の回転速度は、mπ=πなので、図16(a),(b)の実線のように0.5回転する。
【0023】
ここで、4値FSK復調回路について具体的に、「111001」と変化するディジタル信号でFSK変調されたキャリア信号を直交検波したときの直交ベースバンド信号を例にとって、図17と図18とを用いて説明する。図17は、4値FSK復調回路における信号の一例を表す説明図であり、図18は、4値FSK復調回路における信号点配置の一例を表す説明図である。
【0024】
前述したように、シンボル長を2ビットとしているので、「111001」は、「11」と、「10」と、「01」とに分けられ、この順に一定時間ごとに受信している。そのため、時間を横軸にとって、受信したキャリア信号を直交検波した直交ベースバンド信号のQ成分は、図17(a)に示すような信号となり、I成分は、図17(b)に示すような信号となる。
【0025】
従って、それぞれを2値整形すると、図17(c)と図17(d)とに示されるような矩形波となる。これらが整形Q信号と整形I信号である。
ここで、これらの信号を図18に示す信号点の動きとして追跡してみると、図17の時刻t1の時点では、整形Q信号と整形I信号とはともに正であり、その状態は、図18の信号点Aで表される。
【0026】
そして、時刻t2になると、整形I信号が負となるので、その状態は図18の信号点Bに移行する。このとき状態の変化を表す軌跡は、sgn(Q)の軸と交わるようになる。つまり、LSBが「1」であるときには、1シンボルあたりの回転速度が0.5回転であるので、状態の変化を表す軌跡がsgn(Q)又はsgn(I)の軸と交差する回数は、1〜3回である。
【0027】
一方、時刻t3〜t9までの間、つまりLSBが「0」であるときには、1シンボル当たりの回転速度が1.5回転であるので、状態の変化を表す軌跡が各軸と交差する回数が5〜7回になる。
【0028】
そこで従来の4値FSK復調回路は、2値FSKと同様にしてMSBを検知した後、1シンボル当たりに、状態の変化の軌跡がsgn(Q)又はsgn(I)の軸と交わる回数をカウントし、予め設定されたしきい値との比較によって行うものであった。例えば上述の例では、LSBが「1」のときの交差回数が1〜3回であり、「0」のときの交差回数が5〜7回なので、しきい値を「4回」とすればよい。つまり、このときの変調指数を検知する(LSBを決定する)ためのマージンは±1回となっている。
【0029】
また、従来の4値FSK復調回路におけるシンボルタイミングの抽出には、例えば、図14に示されるような回路がよく用いられている。図14は、従来よく用いられるシンボルタイミング抽出回路の構成ブロック図である。
【0030】
図14に示したシンボルタイミング抽出回路は、整形I信号と形成Q信号を入力し、シンボルの変化点を検出して検出パルスaを出力するシンボル変化点検出器101と、検出パルスaを受け取り、外部から得られるクロック信号との位相を比較し、その比較結果を2値判定して出力する2値量子化位相比較器102と、位相比較結果cを受け取り、平滑化するループフィルタ103と、回路全体の駆動クロックを発生する局部発振回路104と、ループフィルタ103の出力dを周波数制御信号として受け取り、局部発振回路104の発振出力を基にパルスの付加・除去を行った後、基準クロックScとして外部に出力するディジタルVCO(Voltage Control Oscillator)105と、基準クロックScを分周したシンボルタイミングSTを出力すると共に2値量子化位相比較器102の入力へ供給する分周器106とから構成されている。
【0031】
2値量子化位相比較器102と、ループフィルタ103と、局部発振回路104と、ディジタルVCO105と、分周器106とは、ディジタルPLL(Phase Locked Loop:位相同期ループ)を構成しており、シンボル変化点検出器101から出力される検出パルスに位相同期し、かつ比較的周波数の安定なディジタル信号をシンボルタイミングSTとして出力するようになっている。
【0032】
【発明が解決しようとする課題】
しかしながら、かかる従来の4値FSK復調回路では、まず、シンボルタイミング抽出回路が、2値整形された信号を用いてシンボルタイミングを検出するため、シンボル変化点検出器101におけるシンボル変化点検出のタイミングは、本来のシンボル変化点より遅れてしまうことがある上、シンボル変化点検出の際のジッターが大きくなり、真のシンボル変化点から多少ずれたシンボルタイミングを出力することがあり、適正なシンボルタイミングを得ることができないという問題点があった。
【0033】
例えば、シンボル変化点検出器101の具体例として図15に示した回路を用いてシンボル変化点検出を行った場合の、シンボル変化点検出までのタイムチャートを図16に示す。図16で示したベースバンド信号の変調指数mの値はm=3とした。
【0034】
図15に示したシンボル変化点検出器は、2つの極性反転器111a,111bと、4つのDタイプフリップフロップ112a〜112dと、4入力OR回路113と、4入力NAND回路114と、2つの立上がりエッジ検出器115a,115bと、2入力OR回路116とから構成されている。
【0035】
2つの極性反転回路111a,111bと4つのDタイプフリップフロップ112a〜112dでは、入力された整形I信号と整形Q信号の立ち上がり及び立ち下がりのタイミング(以下、変化点)において、整形I信号の変化点では整形Q信号の状態を、整形Q信号の変化点では整形I信号の状態を知ることにより、同相成分と直交成分との2軸で形成される平面上に配置される整形I信号と整形Q信号で表される信号点の回転方向を、4つの軸(同相成分の正軸と負軸、直交成分の正軸と負軸)に関して検知している。
【0036】
即ち、例えば、整形I信号が負から正へ変化したタイミングにおいて、もし整形Q信号が正ならば、信号点は第4象限から第1象限へ変化したと考えられ、信号点は左回転していると判断できる。もし整形Q信号が逆に負ならば、信号点は第3象限から第2象限へ変化したと考えられ、信号点は右回転していると考えられる。また、4入力OR回路113と4入力NAND回路114と2つの立上がりエッジ検出器115a,115bと2入力OR回路116では、回転方向に関する4つの検知情報から回転方向が変化するタイミングをとらえて検出パルスを出力している。
【0037】
図17に示すタイムチャートの上から2段は、FSK変調が施されたベースバンド信号を点線で、整形I信号、整形Q信号を実線で示している。次に続く2段は、4入力OR回路113の出力g1と4入力NAND回路114の出力g2を、最下段は、検出パルスを示している。図中のMSBが「1」のシンボルからMSBが「0」のシンボルに変化する変化点検出タイミングと、MSBが「0」のシンボルからMSBが「1」のシンボルに変化する変化点検出タイミングを比較すると、真のシンボル変化点タイミングからの遅延は明らかに両者で異なる。
【0038】
このように、図15で示したシンボル変化点検出器は、原理的に、I成分とQ成分で表される信号点の軌跡がI成分とQ成分の2軸と交わった時のみ、その存在位置と回転方向が判明する構成であるので、図17のようにシンボル変化点検出が0〜π/2だけ遅れてしまい、検出パルスのジッターが大きくなる。
【0039】
シンボル変化点前後の信号点の軌跡を描いた図16を用いて説明すると、シンボルの変化点の前後で信号点が図16の(1) →(2) →(3) のような軌跡を通るとき(図17中1段目の(1) →(2) →(3) に対応する)、真のシンボル変化点は(2) であるが、図15に代表されるシンボル変化点検出器ではその後(3) に至るまでそのことを認識できない。更に図14の102から106で構成されるディジタルPLLではこれらの遅れやジッターを完全に取り除くことはできず、出力されるシンボルタイミングSTは真のシンボルタイミングに対して多少ずれたものとなり、しかも時間的ずれは一定ではない。
【0040】
また、従来の4値FSK復調回路では、2値整形された信号を以て回転方向と回転速度とを検知するため、精度を高めることができず、例えば雑音や零IF検波回路における位相歪み、直流オフセット、シンボルタイミングの検出のずれ等の影響を受けやすく、検波出力の品質が劣化しやすいという問題点があり、特に状態の変化の軌跡とIQ平面を張る軸との交差の回数を比較する方法で回転速度を検知する方法では、雑音の混入によって、当該交差の回数が増大することが多いことが経験上知られており、変調指数の差が小さいほどマージンが狭くなり、検知の精度を高めないと変調指数を正しく検知できず、検知の精度を高めると回路構成が複雑となって、その回路規模が大きくなり、例えば1チップ化が困難であるという問題点があった。
【0041】
本発明は上記実情に鑑みて為されたもので、簡易な回路構成で、復調精度を高めることができる4値FSK復調回路を提供することを目的とする。
【0042】
【課題を解決するための手段】
上記従来例の問題点を解決するための請求項1記載の発明は、4値FSK復調回路において、4値FSK変調されたキャリア信号を直交検波する際に、同相成分と直交成分との2軸で形成される平面上に配置される信号点の間の位相差を平均化し、前記平均化した信号点の間の位相差を積分することによって前記信号点の移動の方向を検知し、同相成分と直交成分をそれぞれ平均化し、前記平均化した同相成分と直交成分を各成分毎に時間的に差分し、前記各成分の差分の絶対値の和を積分することによって前記信号点間の移動の速度を検知することを特徴としており、検知結果を基に復調を行えば、シンボルタイミングのずれの影響を少なくして、適正に復調を行うことができる。
【0044】
上記従来例の問題点を解決するための請求項2記載の発明は、4値FSK変調されたキャリア信号を直交検波する際に、同相成分と直交成分との2軸で形成される平面上に配置される信号点の間の移動の回転方向と回転速度を検知する4値FSK復調回路であって、前記移動の回転方向を検知する手段として、同相成分と直交成分との2軸で形成される平面上に配置される信号点の位相を示す信号又は該位相が属する象限を表す象限信号を出力する位相デコーダと、前記位相を示す信号又は象限信号が変化した瞬間に、該信号の移動量を時間的な差分として出力する位相差分回路と、一定時間に入力される前記差分を平均化して出力することによって、前記一定時間の間は、前記差分の平均値を出力し続ける第1の移動平均回路と、前記差分の平均値を特定の時間に亘って積分して、該積分結果を出力する第1の積分放電回路とを有する回転方向検知部を備え、前記移動の回転速度を検知する手段として、一定時間に入力される同相成分と直交成分の信号について各成分の変動量の平均値を出力する第2の移動平均回路と、前記変動量の平均値を前記各成分毎に時間的に差分を算出する差分回路と、前記差分の絶対値を算出する絶対値回路と、前記各成分の差分の絶対値の和を積分する第2の積分放電回路とを有する回転速度検知部を備えることを特徴としており、特定の時間を1シンボル時間とすれば、積分結果が1シンボル時間当たりの回転量を表すため、その正負を以て回転方向を検知でき、またシンボルタイミングが多少ずれても、積分の概略の結果に現れる影響が少なく、さらに雑音の混入や回路の特性によって発生する位相歪み並びに直流オフセット等が存在して信号点の回転に短時間に頻繁に誤りが発生しても、積分によってその影響を打ち消しているので、回転方向を適正に判定することができ、これを基に復調を行えば、復調の結果を適正にできる。
【0045】
上記従来例の問題点を解決するための請求項3記載の発明は、4値FSK変調されたキャリア信号を直交検波する際に、同相成分と直交成分との2軸で形成される平面上に配置される信号点の間の移動の回転方向と回転速度を検知する4値FSK復調回路であって、前記移動の回転方向を検知する手段として、同相成分と直交成分との2軸で形成される平面上に配置される信号点の位相を示す信号又は該位相が属する象限を表す象限信号を出力する位相デコーダと、前記位相を示す信号又は象限信号が変化した瞬間に、該信号の移動量を時間的な差分として出力する位相差分回路と、前記差分を保持して、一定時間の間出力し続ける一時保持回路と、前記保持された差分を特定の時間に亘って積分して、該積分結果を出力する第1の積分放電回路とを有する回転方向検知部を備え、前記移動の回転速度を検知する手段として、一定時間に入力される同相成分と直交成分の信号について各成分の変動量の平均値を出力する第2の移動平均回路と、前記変動量の平均値を前記各成分毎に時間的に差分を算出する差分回路と、前記差分の絶対値を算出する絶対値回路と、前記各成分の差分の絶対値の和を積分する第2の積分放電回路とを有する回転速度検知部を備えることを特徴としており、特定の時間を1シンボル時間とすれば、積分結果が1シンボル時間当たりの回転量を表すため、その正負を以て回転方向を検知でき、またシンボルタイミングが多少ずれても、積分の概略の結果に現れる影響が少なく、さらに雑音の混入や回路の特性によって発生する位相歪み並びに直流オフセット等が存在して信号点の回転に短時間に頻繁に誤りが発生しても、積分によってその影響を打ち消しているので、回転方向を適正に判定することができ、これを基に復調を行えば、復調の結果を適正にできる。
【0046】
上記従来例の問題点を解決するための請求項4記載の発明は、4値FSK変調されたキャリア信号を直交検波する際に、同相成分と直交成分との2軸で形成される平面上に配置される信号点の間の移動の回転方向と回転速度を検知する4値FSK復調回路であって、前記移動の回転方向を検知する手段である請求項2又は請求項3記載の回転方向検知部と、前記移動の回転速度を検知する手段として、一定時間に入力される同相成分と直交成分の信号について各成分の変動量の平均値を出力する第2の移動平均回路、前記変動量の平均値を前記各成分毎に時間的に差分を算出する差分回路、前記差分の絶対値を算出する絶対値回路、前記各成分の差分の絶対値の和を積分する第2の積分放電回路を有する回転速度検知部と、前記回転方向検知部から入力される信号を基にシンボルのMSBを判定し、前記回転速度検知部から入力される信号を基にシンボルのLSBを判定して復調を行う判定回路とを備えることを特徴としており、シンボルタイミングが多少ずれても、また雑音の混入や回路の特性によって発生する位相歪み並びに直流オフセット等が存在して信号点の回転に短時間に頻繁に誤りが発生しても、復調を適正にできる。
【0047】
上記従来例の問題点を解決するための請求項記載の発明は、請求項又は請求項又は請求項記載の4値FSK復調回路において、位相デコーダは、2値整形された信号の入力を受けて、4値FSK変調されたキャリア信号を直交検波する際に、同相成分と直交成分との2軸で形成される平面上に配置される前記2値整形された信号が表す信号点が属する象限を前記2値整形された信号の組合せ毎に予め設定されたテーブルを検索して、前記象限を象限信号として出力する位相デコーダであることを特徴としており、請求項又は請求項又は請求項の効果に加えて、動作を高速にしつつ、回路をより簡略にでき、ワンチップ化を促進できる。
【0048】
【発明の実施の形態】
本発明の実施の形態を図面を参照しながら説明する。
本発明に係る4値FSK復調回路(本回路)は、コンパレータが2値整形したI信号とQ信号とを差分と積分とによって緩やかに変化する信号に変換し、これによって回転方向と回転速度とを判定し、その結果に基づいて4値FSK復調するものであり、復調時に頻繁に信号が変化するような誤りの影響を低減できる。
【0049】
本回路は、図1に示すように、零IF検波回路1と、コンパレータ2と、位相デコーダ21と、位相差分回路22と、第1の移動平均回路23と、第1の積分放電回路24と、第2の移動平均回路31と、差分回路32と、絶対値回路33と、第2の積分放電回路34と、シンボルタイミング抽出回路35と、判定回路36とから構成されている。図1は、本回路の構成ブロック図である。
【0050】
以下、各部を具体的に説明する。
零IF検波回路1は、従来と同様にFSK変調されているキャリア信号の入力を受けて、これを直交検波し、直交ベースバンド信号の同相成分(I成分)と、直交成分(Q成分)とを出力するものである。
【0051】
コンパレータ2aは、直交ベースバンド信号のI成分の入力を受けて、2値整形して整形I信号を出力するものであり、コンパレータ2bは、同じくQ成分を2値整形して整形Q信号を出力するものである。
【0052】
位相デコーダ21は、整形I信号と整形Q信号との入力を受けて、次の[数2]を用いて、その位相角θを算出して出力するものである。
【0053】
【数2】
Figure 0003669790
【0054】
ここで、位相デコーダ21は、整形I信号を[数2]のIと、整形Q信号を[数2]のQとして位相角θを算出するものであり、sgn 関数は、次の[数3]で定義される関数である。
【0055】
【数3】
Figure 0003669790
【0056】
従って、位相角θは、45゜,135゜,225゜,315゜のいずれかであり、それぞれ角θの属する象限を代表する値となっている。そのため、位相デコーダ21は、位相角θがどの象限に属するかを表す信号(以下、「象限信号」と称する)を出力するようになっていても構わない。
【0057】
位相差分回路22は、位相デコーダ21から位相角θ又は象限信号の入力を受けて、それを一時的に保持し、位相デコーダ21から入力される位相角θ又は象限信号が変化する瞬間に、前回保持した位相角θ又は象限信号の差分を算出し、位相角の瞬時変化量を−πから+πの範囲の値である位相差分値として、予め設定されている微小時間δ1 の間だけ出力するものである。
【0058】
尚、位相角θ又は象限信号は、既に説明したように4種類があるのみであるので、予めそれらに対応したテーブルを備えて、位相デコーダ21から入力を受けた位相角θ又は象限信号と、直前に入力された位相角θ又は象限信号を検索して、それに対応して予め指定された値を位相差分値として微小時間だけ出力するようにしておくことも考えられる。
【0059】
このようにすれば、位相差分回路22を簡略な回路で実現でき、また演算を行わないので、動作を高速にできる。
【0060】
第1の移動平均回路23は、特定の時間τ1 内に入力された位相差分値の平均を算出するものである。第1の移動平均回路23の具体的な回路については、後に説明する第2の移動平均回路31の具体的な回路と併せて後述することにするが、第1の移動平均回路23は、微小時間δ1 の間だけ入力される平均値を特定の時間τ1 の間出力し続けるようにするための回路であり、信号が入力されると、これを一時的に保持するとともに、時間τ1 の間出力し続ける一時保持回路と置き換えてもよい。
【0061】
第1の積分放電回路24は、後に説明するシンボルタイミング抽出回路35から入力されるシンボルタイミングSTに示される時間(つまり、1シンボル時間)だけ、第1の移動平均回路23から入力される位相差分値の平均を積分して出力するものである。
【0062】
ここで、具体的に第1の積分放電回路24について、図13を参照しつつ説明する。図13は、第1の積分放電回路24の一例を表す構成ブロック図である。
第1の積分放電回路24は、図13に示すように、クロック発生回路91と、サンプリング回路92と、記憶回路93と、加算器94と、遅延回路95とから構成されている。
【0063】
クロック発生回路91は、予め設定された一定の時間毎にクロック信号を出力するものである。クロック発生回路91で設定されるクロック周期は、遅延回路31で設定された時間(τ1)に対し、少なくとも、τ1/2(τ1の2分の1)より小さい値に設定される。
【0064】
サンプリング回路92は、入力された信号を、クロック発生回路91からのクロックタイミングで標本化し、出力するものである。
【0065】
記憶回路93は、クロック発生回路91からのクロック毎に入力された値を記憶し更新するとともに、遅延回路95からのシンボルタイミングST毎に記憶値を零に初期化するものである。
【0066】
加算器94は、入力される2値を加算して出力するものであり、サンプリング回路92と記憶回路93からの値を加算し、積分放電回路34の出力として出力するようになっている。
【0067】
遅延回路95は、入力された信号を予め設定された時間だけ遅延させて出力するものである。遅延回路95で設定される時間は、遅延回路31と位相差検出回路33で推定される信号の遅れと、シンボルタイミング検出回路51で推定される信号の遅れを考慮し、記憶回路93で初期化するタイミングが最適になるように設定される。
【0068】
上記構成により、クロック発生回路91のタイミングで加算器94の入力と記憶回路93の出力の和が再び記憶回路93に積算され、積算がシンボルタイミングの間行われるので、積分放電回路が実現できる。
【0069】
これら位相デコーダ21と、位相差分回路22と、第1の移動平均回路23と、第1の積分放電回路24とは、ベクトルの回転方向を検知するための回路であるので、以下、「回転方向検知部」と称することがある。
【0070】
第2の移動平均回路31は、特定の時間に入力される整形信号の変動量の平均値を出力するものであり、特に第2の移動平均回路31aは、予め設定された時間(例えばτ2 )当たりの整形I信号の変動量の平均値を差分回路32aに出力するものであり、第2の移動平均回路31bは、予め設定された時間(例えばτ2 )当たりの整形Q信号の変動量の平均値を差分回路32bに出力するものである。
第2の移動平均回路31の具体的な回路については、先に説明した第1の移動平均回路23の具体的な回路と併せて後述する。
【0071】
差分回路32は、予め設定された微小時間の間に入力された各整形信号の変動量の平均値を一時的に格納し、これと次回入力される平均値との差分を算出して、各整形信号ごとに差分値として出力するものである。特に差分回路32aは整形I信号に係り、差分回路32bは整形Q信号に係るようになっている。
【0072】
絶対値回路33は、各整形信号の差分値の絶対値を算出して出力するものである。ここで、絶対値回路33aは整形I信号に係り、絶対値回路33bは整形Q信号に係るようになっている。
【0073】
第2の積分放電回路34は、後に説明するシンボルタイミング抽出回路35からシンボルタイミングST信号の入力を受けて、当該信号に示された1シンボル時間だけ、絶対値回路33から入力される2つの絶対値の和を積分して判定回路26の出力するものである。
これら第2の移動平均回路31と、差分回路32と、絶対値回路33と、第2の積分放電回路34とは、ベクトルの回転速度を検知するための回路であるので、以下、「回転速度検知部」と称することがある。
【0074】
シンボルタイミング抽出回路35は、整形I信号と整形Q信号との入力を受けて、これらから1シンボル時間を表す受信シンボルタイミングST信号を推定して出力するものであり、第1の積分放電回路24と、第2の積分放電回路34とに共通して出力するようにしている。
判定回路36は、回転方向検知部の第1の移動平均回路23と、回転速度検知部の第2の積分放電回路34とから入力される信号と、予め設定されているしきい値とを比較し、その比較結果に応じて4値FSKのシンボル判定を行うものである。
【0075】
ここで、具体的に第1の移動平均回路23及び第2の移動平均回路31(以下、単に「移動平均回路」と称する)の具体的な回路について、図2を参照しつつ説明する。図2は、移動平均回路の概略回路図である。
移動平均回路は、図2に示すように、クロック発生回路41と、複数のDタイプフリップフロップ(以下、「D−FF」と称する)42と、D−FFに対応して設けられた加算器43とから構成されている。
【0076】
以下、各部を説明すると、クロック発生回路41は、予め設定された一定の時間毎にクロック信号を出力するものである。
D−FF42は、クロック発生回路41からクロック信号の入力をCLK端子より受けて、D端子から入力された信号を保持するとともに、現在保持している信号をQ端子を介して出力するようになっている。ここで、各D−FF42のQ端子は、次段のD−FF42のD端子に接続されているとともに加算器43にも入力されている。
【0077】
加算器43は、入力される2値を加算して出力するものであり、特に加算器43aは、外部(すなわちコンパレータ2)から入力される整形信号と、前回入力され、D−FF42aが保持している信号とを加算して、次段の加算器である加算器43bに出力する。
そして、加算器43bは、加算器43aから入力される信号と、前々回入力され、D−FF42bが保持している信号とを加算して、さらに次段の加算器である加算器43cに出力する。
【0078】
そのため、最後段の加算器である加算器43eが出力する信号は、今回入力されている値と今までに入力されてきた値とを加算したものであるから、結局、例えば図3に示すように、信号点間の移動の軌跡を細分化したものを次々に出力しているようになる。図3は、第2の移動平均回路31が出力する信号を表す説明図である。
【0079】
尚、ここで、D−FF42と加算器43とは、5つあるので、各信号点間を5つの点で分割(区間を6分割)したものになっており、移動平均化された整形I信号を<I>軸の方向に、また整形Q信号を<Q>軸の方向にそれぞれ示している。
【0080】
つまり、例えば第2の移動平均回路31は、信号点間の移動を細分化して少しずつ出力するようになっており、コンパレータ2の2値整形によって失われた信号点の細かな動きを一部再現している。
尚、複数のD−FF42は、シフトレジスタと同等の機能を提供するものであるので、シフトレジスタで置き換えても構わない。
【0081】
次に、本回路の動作について説明する。
まず、本回路の回転速度検知部の動作について図4と図5とを用いて説明する。図4は、本回路の回転速度検知部における第2の移動平均回路31の動作を表すタイミングチャート図であり、図5は、本回路の回転速度検知部の動作を表すタイミングチャート図である。
【0082】
ここでは、「1001」なるディジタルデータによって、4値FSK変調されたキャリア信号を例にとって説明することとする。この場合の整形I信号と整形Q信号とは、既に従来でも説明したように、図4の実線で表されるようなデータとなる。
また、整形I信号は、図5(a)にも示されている。
【0083】
第2の移動平均回路31が、整形I信号と整形Q信号と(図4における実線)の入力を受けて、これを複数の段階に分割して階段状とし、図4の破線で示すような信号波形を得る。例えば、移動平均回路31aは理想的には、整形I信号に対する出力信号として、図5(b)に示すような信号を出力するようになる。
【0084】
そして、差分回路32aが図5(b)の信号を差分して、絶対値回路33aが絶対値を算出し、図5(c)に示すような信号を出力するようになる。
同様に、整形Q信号に対しても、移動平均回路31bと差分回路32bと絶対値回路33bが、図5(d)に示すような信号を出力するようになる。
【0085】
そして、第2の積分放電回路34がこれらの信号の和を1シンボル時間に亘って積分し、図5(e)に示すような信号を回転量を表す信号として出力する。
【0086】
尚、判定回路36が図5(e)にTHとして示されている、しきい値を設定されていれば、判定結果を適正に出力することができるようになる。
【0087】
すなわち、このような回転速度検出部によれば、整形I信号と整形Q信号とに関する2値整形の出力の変化がτ2 の時間分だけ分散され、積分が少しずつ行われるようになっているので、積分結果の分解能がτ2 だけ向上して、シンボルタイミングのずれによる積分結果への影響を低減でき、回転速度判定を適正に行うことができる。
【0088】
また、雑音や零IF検波回路1における位相歪み並びに直流オフセットが存在して、各整形信号や各遅延整形信号の出力が不規則に、特に信号点の変化の前後で頻繁にコンパレータ2の出力が変化しても、積分が行われているので、その影響を低減でき、回転速度判定を適正に行うことができる。
【0089】
次に、本回路の回転方向検知部の動作について図6を用いて説明する。図6は、本回路の回転方向検知部の動作を表すタイミングチャート図である。
ここでも、先に説明した回転速度検知部の動作と同様に、「1001」なるディジタルデータによって、4値FSK変調されたキャリア信号を例にとって説明することとする。従って、以下の説明で整形I信号と整形Q信号とは、図4の実線で表されるような信号となる。
【0090】
そこで、位相デコーダ21が、図4の実線で表されるような整形された信号の入力を受けて、図6(a)に示すような象限信号を出力する。例えば当初は、整形I信号と整形Q信号とがともに負であるので、信号点の位相角θが第3象限に属することを表す象限信号を出力する。
【0091】
そして、位相差分回路22が、象限信号の入力を受けて、象限信号が変化する瞬間に微小時間δ1 の間だけ、図6(b)に示すような変化前後の差分を出力する。例えば、図6に示す時刻t1では、象限信号が第3象限から第4象限へと変化するので、図6(b)に示すように、その差分である「+1」が時間δ1 の間だけ出力されるようになっている。
【0092】
第1の移動平均回路23が、位相差分回路22から入力される信号を平均して時間τ1 の間出力し続けることによって、図6(c)に示すような信号を出力するようになる。
そして第1の積分放電回路24が、図6(c)に示す信号を1シンボル時間毎に積分することによって、図6(d)に示すような信号を回転方向を表す信号として出力するようになる。
【0093】
そして、判定回路36が、回転方向検出部から入力される信号の正負によって、回転方向を検知し、回転速度検出部から入力される信号と予め設定されたしきい値との比較から回転速度を検知して、さらに検知した回転方向からシンボルのMSBを、回転速度からシンボルのLSBをそれぞれ判定して、その判定結果に基づいてシンボルを復調して出力する。
【0094】
本回路によれば、整形I信号と整形Q信号とで表現されるベクトルの回転方向を検知するとともに、さらに回転速度をも別個に検知し、これらの検知の結果によって4値FSKを復調する4値FSK復調回路であって、回転方向と回転速度とを1シンボル時間当たりの積分を算出して平滑化しているので、シンボルタイミングのずれによる影響を低減でき、また、雑音や零IF検波回路1における位相歪み並びに直流オフセットが存在して、各整形信号や各遅延整形信号の出力が不規則に、特に信号点の変化の前後で頻繁にコンパレータ2の出力が変化しても、その影響を低減して、回転方向判定及び回転速度判定を適正に行うことができ、4値FSK変調されたキャリア信号の復調を適正に行うことができる効果がある。
【0095】
【実施例】
本発明の実施例について説明する。
本回路の実施例のビット誤り率(BER)特性を図7を参照しつつ説明する。図7は、本発明のビット誤り率を計算機シミュレートした結果を表す説明図である。
【0096】
ここで、伝送速度を6.4kbpsとし、変調速度Rは、その半分の3.2kboudであり、周波数偏移はm=3とm=1とした。これは、ΔF=4.8kHz、1.6kHz に対応している。また、1シンボル時間を64とするとき、τ1 =17、τ2 =21としている。
また、図7に示す計算機シミュレーションでは、雑音の影響をパラメータとして含んだものとなっており、複数のシンボルについて示したものである。
【0097】
図7では、横軸にシンボルタイミングとのずれを採り、縦軸に平均のビット誤り率を採っている。図7に示すように従来の4値FSK復調回路(上向きの黒三角)では、シンボルタイミングが±4サンプル程度ずれたところからビット誤り率が無視できない程度に増加して、適正な復調ができなくなっている。
【0098】
一方、本回路(下向きの黒三角)によれば、シンボルタイミングが±10サンプルのずれとなっていても、十分適正な復調を行うことができる。
【0099】
【発明の効果】
請求項1記載の発明によれば、4値FSK変調されたキャリア信号を直交検波する際に、同相成分と直交成分との2軸で形成される平面上に配置される信号点間の位相差を平均化し、平均化した信号点の間の位相差を積分して信号点間の回転移動の方向を検知し、同相成分と直交成分をそれぞれ平均化し、前記平均化した同相成分と直交成分を各成分毎に時間的に差分し、各成分の差分の絶対値の和を積分して信号点間の移動の回転速度を検知する4値FSK復調回路としているので、検知結果を基に復調を行えば、シンボルタイミングのずれの影響を少なくして、適正に復調を行うことができる効果がある。
【0101】
請求項2記載の発明によれば、4値FSK変調されたキャリア信号を直交検波する際に、同相成分と直交成分との2軸で形成される平面上に配置される信号点の間の移動の回転方向と回転速度を検知する4値FSK復調回路であって、移動の回転方向を検知する手段として、位相デコーダが2値整形された同相成分と直交成分の信号が表す信号点の位相を示す信号又は該位相が属する象限を表す象限信号を出力し、位相差分回路が該位相を示す信号又は象限信号が変化した瞬間に、該信号の移動量を時間的な差分として出力し、第1の移動平均回路が該差分を一定の時間保持しつつ、これを平均化して出力し、第1の積分放電回路が移動平均回路から入力される平均化された差分を特定の時間に亘って積分して出力する回転方向検知部を備え、移動の回転速度を検知する手段として、第2の移動平均回路が一定時間に入力される同相成分と直交成分の信号について各成分の変動量の平均値を出力し、差分回路が変動量の平均値を各成分毎に時間的に差分を算出し、絶対値回路が差分の絶対値を算出し、第2の積分放電回路が各成分の差分の絶対値の和を積分する回転速度検知部を備える4値FSK復調回路としているので、特定の時間を1シンボル時間とすれば、積分結果が1シンボル時間当たりの回転量を表すため、その正負を以て回転方向を検知でき、またシンボルタイミングが多少ずれても、積分の概略の結果に現れる影響が少なく、さらに雑音の混入や回路の特性によって発生する位相歪み並びに直流オフセット等が存在して信号点の回転に短時間に頻繁に誤りが発生しても、積分によってその影響を打ち消しているので、回転方向を適正に判定することができ、これを基に復調を行えば、復調の結果を適正にできる効果がある。
【0102】
請求項3記載の発明によれば、4値FSK変調されたキャリア信号を直交検波する際に、同相成分と直交成分との2軸で形成される平面上に配置される信号点の間の移動の回転方向と回転速度を検知する4値FSK復調回路であって、移動の回転方向を検知する手段として、位相デコーダが2値整形された同相成分と直交成分の信号が表す信号点の位相を示す信号又は該位相が属する象限を表す象限信号を出力し、位相差分回路が該位相を示す信号又は象限信号が変化した瞬間に、該信号の移動量を時間的な差分として出力し、一時保持回路が該差分を一定の時間保持しつつ、これを出力し、第1の積分放電回路が一時保持回路から入力される保持された差分を特定の時間に亘って積分して出力する回転方向検知部を備え、移動の回転速度を検知する手段として、第2の移動平均回路が一定時間に入力される同相成分と直交成分の信号について各成分の変動量の平均値を出力し、差分回路が変動量の平均値を各成分毎に時間的に差分を算出し、絶対値回路が差分の絶対値を算出し、第2の積分放電回路が各成分の差分の絶対値の和を積分する回転速度検知部を備える4値FSK復調回路としているので、特定の時間を1シンボル時間とすれば、積分結果が1シンボル時間当たりの回転量を表すため、その正負を以て回転方向を検知でき、またシンボルタイミングが多少ずれても、積分の概略の結果に現れる影響が少なく、さらに雑音の混入や回路の特性によって発生する位相歪み並びに直流オフセット等が存在して信号点の回転に短時間に頻繁に誤りが発生しても、積分によってその影響を打ち消しているので、回転方向を適正に判定することができ、これを基に復調を行えば、復調の結果を適正にできる効果がある。
【0103】
請求項4記載の発明によれば、請求項2又は請求項3記載の回転方向検知部と、信号点の回転速度を検知する手段として、第2の移動平均回路が一定時間に入力される同相成分と直交成分の信号について各成分の変動量の平均値を出力し、差分回路が変動量の平均値を各成分毎に時間的に差分を算出し、絶対値回路が差分の絶対値を算出し、第2の積分放電回路が各成分の差分の絶対値の和を積分する回転速度検知部を備える回転速度検知部とを備え、判定回路が、これらの回転方向検知部と回転速度検知部とが出力する信号を基にシンボルを判定して復調を行う4値FSK復調回路としているので、シンボルタイミングが多少ずれても、また雑音の混入や回路の特性によって発生する位相歪み並びに直流オフセット等が存在して信号点の回転に短時間に頻繁に誤りが発生しても、復調を適正にできる効果がある。
【0104】
請求項記載の発明によれば、位相デコーダがテーブルの検索によって、2値整形された信号の各成分に対応して予め設定されている象限信号を出力する請求項又は請求項又は請求項記載の4値FSK復調回路としているので、請求項又は請求項又は請求項の効果に加えて、動作を高速にしつつ、回路をより簡略にでき、ワンチップ化を促進できる効果がある。
【図面の簡単な説明】
【図1】本回路の構成ブロック図である。
【図2】移動平均回路の概略回路図である。
【図3】第2の移動平均回路31が出力する信号を表す説明図である。
【図4】本回路の回転速度検知部における第2の移動平均回路31の動作を表すタイミングチャート図である。
【図5】本回路の回転速度検知部の動作を表すタイミングチャート図である。
【図6】本回路の回転方向検知部の動作を表すタイミングチャート図である。
【図7】本発明のビット誤り率を計算機シミュレートした結果を表す説明図である。
【図8】従来の2値FSK復調回路の構成ブロック図である。
【図9】従来の2値FSK復調回路における零IF検波回路の一例の構成ブロック図である。
【図10】4値FSK復調回路における直交ベースバンド信号のIQ平面での動きを表す説明図である。
【図11】4値FSK復調回路における信号の一例を表す説明図である。
【図12】4値FSK復調回路における信号点配置の一例を表す説明図である。
【図13】第1の積分放電回路34の一例を表す構成ブロック図である。
【図14】従来よく用いられるシンボルタイミング抽出回路の構成ブロック図である。
【図15】シンボル変化点検出器の構成ブロック図である。
【図16】シンボル変化点前後の信号点の軌跡を描いた図である。
【図17】シンボル変化点検出までのタイムチャート図である。
【符号の説明】
1…零IF検波回路、 2…コンパレータ、 3…位相比較回路、 11…局部発振器、 12…90゜分配回路、 13…第1のミキサー回路、 14…第2のミキサー回路、 15…第1のLPF、 16…第2のLPF、 21…位相デコーダ、 22…位相差分回路、 23…第1の移動平均回路、 24…第1の積分放電回路、 31…第2の移動平均回路、 32…差分回路、 33…絶対値回路、 34…第2の積分放電回路、 35…シンボルタイミング抽出回路、 36…判定回路、 41…クロック発生回路41、 42…D−FF、 43…加算器、 91…クロック発生回路、 92…サンプリング回路、 93…記憶回路、 94…加算器、 95…遅延回路、 101…シンボル変化点検出器、 102…2値量子化位相比較器、 103…ループフィルタ、 104…局部発振回路、 105…ディジタルVCO、 106…分周器、 111…極性反転器、 112…Dタイプフリップフロップ、 113…4入力OR回路、 114…4入力NAND回路、 115…立上がりエッジ検出器、 116…2入力OR回路

Claims (5)

  1. 4値FSK変調されたキャリア信号を直交検波する際に、同相成分と直交成分との2軸で形成される平面上に配置される信号点の間の位相差を平均化し、前記平均化した信号点の間の位相差を積分することによって前記信号点の移動の方向を検知し、同相成分と直交成分をそれぞれ平均化し、前記平均化した同相成分と直交成分を各成分毎に時間的に差分し、前記各成分の差分の絶対値の和を積分することによって前記信号点間の移動の速度を検知することを特徴とする4値FSK復調回路。
  2. 4値FSK変調されたキャリア信号を直交検波する際に、同相成分と直交成分との2軸で形成される平面上に配置される信号点の間の移動の回転方向と回転速度を検知する4値FSK復調回路であって、
    前記移動の回転方向を検知する手段として、同相成分と直交成分との2軸で形成される平面上に配置される信号点の位相を示す信号又は該位相が属する象限を表す象限信号を出力する位相デコーダと、前記位相を示す信号又は象限信号が変化した瞬間に、該信号の移動量を時間的な差分として出力する位相差分回路と、一定時間に入力される前記差分を平均化して出力することによって、前記一定時間の間は、前記差分の平均値を出力し続ける第1の移動平均回路と、前記差分の平均値を特定の時間に亘って積分して、該積分結果を出力する第1の積分放電回路とを有する回転方向検知部を備え、
    前記移動の回転速度を検知する手段として、一定時間に入力される同相成分と直交成分の信号について各成分の変動量の平均値を出力する第2の移動平均回路と、前記変動量の平均値を前記各成分毎に時間的に差分を算出する差分回路と、前記差分の絶対値を算出する絶対値回路と、前記各成分の差分の絶対値の和を積分する第2の積分放電回路とを有する回転速度検知部を備えることを特徴とする4値FSK復調回路。
  3. 4値FSK変調されたキャリア信号を直交検波する際に、同相成分と直交成分との2軸で形成される平面上に配置される信号点の間の移動の回転方向と回転速度を検知する4値FSK復調回路であって、
    前記移動の回転方向を検知する手段として、回転方向検知部は、同相成分と直交成分との2軸で形成される平面上に配置される信号点の位相を示す信号又は該位相が属する象限を表す象限信号を出力する位相デコーダと、前記位相を示す信号又は象限信号が変化した瞬間に、該信号の移動量を時間的な差分として出力する位相差分回路と、前記差分を保持して、一定時間の間出力し続ける一時保持回路と、前記保持された差分を特定の時間に亘って積分して、該積分結果を出力する第1の積分放電回路とを有する回転方向検知部を備え、
    前記移動の回転速度を検知する手段として、一定時間に入力される同相成分と直交成分の信号について各成分の変動量の平均値を出力する第2の移動平均回路と、前記変動量の平均値を前記各成分毎に時間的に差分を算出する差分回路と、前記差分の絶対値を算出する絶対値回路と、前記各成分の差分の絶対値の和を積分する第2の積分放電回路とを有する回転速度検知部を備えることを特徴とする4値FSK復調回路。
  4. 4値FSK変調されたキャリア信号を直交検波する際に、同相成分と直交成分との2軸で形成される平面上に配置される信号点の間の移動の回転方向と回転速度を検知する4値FSK復調回路であって、
    前記移動の回転方向を検知する手段である請求項2又は請求項3記載の回転方向検知部と、
    前記移動の回転速度を検知する手段として、一定時間に入力される同相成分と直交成分の信号について各成分の変動量の平均値を出力する第2の移動平均回路、前記変動量の平均値を前記各成分毎に時間的に差分を算出する差分回路、前記差分の絶対値を算出する絶対値回路、前記各成分の差分の絶対値の和を積分する第2の積分放電回路を有する回転速度検知部と、
    前記回転方向検知部から入力される信号を基にシンボルのMSBを判定し、前記回転速度検知部から入力される信号を基にシンボルのLSBを判定して復調を行う判定回路とを備えることを特徴とする4値FSK復調回路。
  5. 位相デコーダは、2値整形された信号の入力を受けて、4値FSK変調されたキャリア信号を直交検波する際に、同相成分と直交成分との2軸で形成される平面上に配置される前記2値整形された信号が表す信号点が属する象限を前記2値整形された信号の組合せ毎に予め設定されたテーブルを検索して、前記象限を象限信号として出力する位相デコーダであることを特徴とする請求項2又は請求項3又は請求項4記載の4値FSK復調回路。
JP24712996A 1996-08-29 1996-08-29 4値fsk復調回路 Expired - Fee Related JP3669790B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24712996A JP3669790B2 (ja) 1996-08-29 1996-08-29 4値fsk復調回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24712996A JP3669790B2 (ja) 1996-08-29 1996-08-29 4値fsk復調回路

Publications (2)

Publication Number Publication Date
JPH1075269A JPH1075269A (ja) 1998-03-17
JP3669790B2 true JP3669790B2 (ja) 2005-07-13

Family

ID=17158872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24712996A Expired - Fee Related JP3669790B2 (ja) 1996-08-29 1996-08-29 4値fsk復調回路

Country Status (1)

Country Link
JP (1) JP3669790B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4583240B2 (ja) * 2005-05-20 2010-11-17 Okiセミコンダクタ株式会社 Fsk復調器
JP6229518B2 (ja) * 2014-02-06 2017-11-15 国立研究開発法人産業技術総合研究所 無線受信装置及び無線受信方法

Also Published As

Publication number Publication date
JPH1075269A (ja) 1998-03-17

Similar Documents

Publication Publication Date Title
US6307898B1 (en) Phase error detector
JP3669790B2 (ja) 4値fsk復調回路
JP2000115266A (ja) シンボル同期装置および周波数ホッピング受信装置
JP3669786B2 (ja) 4値fsk復調回路
JP3489493B2 (ja) シンボル同期装置および周波数ホッピング受信装置
JPH11313117A (ja) 周波数制御方法及び直交検波回路及びfsk受信機
US7450655B2 (en) Timing error detection for a digital receiver
JP3737592B2 (ja) 4値fsk復調回路
JP3592489B2 (ja) クロックタイミング再生方法および回路
JP3552183B2 (ja) 搬送波再生方法および装置
JP3971706B2 (ja) 位相誤差の影響を含む信号を復調する方法およびそれを用いた受信機
JPH1075270A (ja) 4値fsk復調回路
JPS6362931B2 (ja)
JP3169755B2 (ja) デジタル位相変調信号を復調する方法及び装置
JPH09116579A (ja) 多値fsk復調回路
JP2785165B2 (ja) バースト信号の位相検波回路
JP3808633B2 (ja) Fsk受信機
Neelam Hardware-efficient FPGA implementation of symbol & carrier synchronization for 16-QAM
JP3559377B2 (ja) 4値fsk復調回路
JP2000224246A (ja) 4値fsk復調回路
JP4310594B2 (ja) ディジタル受信復調装置
JPH09116578A (ja) 多値fsk復調回路
JPH07212423A (ja) データ受信装置
JP4391433B2 (ja) 回転角度導出装置
JPH0614070A (ja) デジタル復調器

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050412

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100422

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110422

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120422

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130422

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees