JP3654046B2 - 排ガスモニタシステム - Google Patents

排ガスモニタシステム Download PDF

Info

Publication number
JP3654046B2
JP3654046B2 JP13372999A JP13372999A JP3654046B2 JP 3654046 B2 JP3654046 B2 JP 3654046B2 JP 13372999 A JP13372999 A JP 13372999A JP 13372999 A JP13372999 A JP 13372999A JP 3654046 B2 JP3654046 B2 JP 3654046B2
Authority
JP
Japan
Prior art keywords
exhaust gas
atmospheric pressure
monitoring system
chamber
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13372999A
Other languages
English (en)
Other versions
JP2000137025A (ja
Inventor
将三 阪本
朋之 飛田
宏明 橋本
義昭 加藤
実 坂入
雄一郎 橋本
守 水本
真二 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP13372999A priority Critical patent/JP3654046B2/ja
Publication of JP2000137025A publication Critical patent/JP2000137025A/ja
Application granted granted Critical
Publication of JP3654046B2 publication Critical patent/JP3654046B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Tubes For Measurement (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、一般廃棄物や産業廃棄物を焼却した燃焼排ガスに含まれるダイオキシン類,クロロフェノール類,クロロベンゼン類の濃度を質量分析することにより求めようとする排ガスモニタシステムに関する。
【0002】
【従来の技術】
ごみ焼却場で廃棄物を焼却すると、その排ガス中に猛毒のダイオキシンが発生し環境汚染を起こし深刻な社会問題となっている。
【0003】
ここで、ダイオキシンとは、75種類の異性体をもつポリ塩化ジベンゾパラジオキシン(PCDDs)および135種類の異性体をもつポリ塩化ジベンゾフラン(PCDFs)の総称であり、より広義にはコプラナーポリ塩化ビフェニル (Coplanar PCBs )を含めることもある。以後ダイオキシンおよびそれに関連した化合物群を総称してダイオキシン類と略記する。
【0004】
ダイオキシン類の定量分析は、極めて複雑な化学的処理と高価な分析機器を駆使して行われる。そのため、分析結果の取得までには一週間/一検体の時間が必要である。当然、実際の焼却炉の運転状況下でのリアルタイムモニタは不可能である。その代案として、極く低濃度(ppt レベル)のダイオキシン類の濃度を直接求めるのではなく、ダイオキシン類より相対的に高濃度の他の代替物質の測定を行い、その結果からダイオキシン類の濃度を推定する方法が提案されている。この技術としては、横浜国大環境研紀要18:1−8(1992),特開平4− 161849号公報,特開平5−312796号公報,特開平7−155731号公報,特開平9− 15229号公報,特開平9−243601号公報に記載されている方法ならびに装置が開示されている。
【0005】
横浜国大環境研紀要18:1−8(1992),特開平4−161849号公報,特開平5−312796 号公報に記載されている技術は、クロロベンゼン類をガスクロマトグラフィー(GC)により測定し、ダイオキシン類の代替指標として用いるものである。両者の相関からダイオキシン類を推定する方法である。
【0006】
特開平7−155731 号公報に示された技術は、燃焼灰を加熱処理することにより、灰中に含まれるダイオキシン類などを熱分解しダイオキシン類等抑制しようとするものである。加熱処理前後の灰中のクロロベンゼン類またはクロロフェノール類を分析しダイオキシン類の除去率を推定する。これにより、熱分解条件の最適化を図ろうとするものである。
【0007】
特開平9−15229号公報に示された技術は、排ガス中のクロロベンゼン類とクロロフェノール類の濃度を測定し、これらと別途求めたダスト濃度と排ガスの滞留時間からダイオキシン類の濃度を求めようとする方法である。
【0008】
特開平9−243601号公報に示された技術は、排ガス中のクロロベンゼン類,クロロフェノール類をリアルタイムで測定し、ダイオキシン類の濃度を連続的に求めようとするものである。排ガスをレーザイオン化質量分析装置に導きイオン化,質量分析することでクロロベンゼン類,クロロフェノール類の濃度を求め、ひいてはダイオキシン類の濃度を間接的に求めようとするものである。
【0009】
【発明が解決しようとする課題】
横浜国大環境研紀要18:1−8(1992),特開平4−161849 号公報,特開平5−312796 号公報に記載されている技術は、ダイオキシン類の前駆物質として考えられるクロロベンゼン類をトラップ管に捕捉濃縮し、ガスクロマトグラフィー(GC)により分離,検出を行っている。そのため、試料濃縮採取及びGC測定に最低一時間以上の時間が必要である。また、GCの検知器では大量に存在する有機化合物の中から目的とするクロロベンゼン類を過ちなくかつ選択的に検出することは困難である。また、妨害物質による定量値の誤認も頻繁に起きる危険性が常に存在する。
【0010】
特開平7−155731 号公報に記載されている技術は、熱処理前後の灰中のクロロベンゼン類またはクロロフェノール類の定量を行おうとするものである。クロロベンゼン類やクロロフェノール類は灰からアセトン等の溶媒により抽出し、測定する。本公報にはオンラインの試料導入,自動測定など具体的な技術は開示されていない。また、測定もGCなど従来法を使用するもので、抽出操作を除いても一試料あたり20,30分の測定時間を必要とされる。
【0011】
特開平9−15229号公報に記載されている技術は、ダイオキシン類とクロロベンゼン類,クロロフェノール類の相関を述べている。しかし、発明の前提となるダイオキシン類とクロロフェノール類,クロロベンゼン類等の間の関係式には、明確な根拠があるわけではない。さらに、クロロフェノール類,クロロベンゼン類等の定量は専ら、時間のかかる在来法(GCなど)によってなされたものである。即ち、測定時間は1検体(測定)あたり1時間以上必要である。
【0012】
特開平9−243601 号公報に示された技術は、クロロベンゼン類のリアルタイム濃度測定の可能性を示している。しかし、この方式におけるイオン化は多光子イオン化である。このイオン化では、モノクロロベンゼン類はある程度測定できる。しかし、この多光子イオン化においてはベンゼン核に置換した塩素の数が1ケずつ増えるたびに1/7から1/10の感度低下が起こるとされる。例えば、トリクロロベンゼンはモノクロロベンゼンの約1/100の効率でしかイオン化されない。即ちトリクロロベンゼンはモノクロロベンゼンの1/100の感度しかないといえる。
【0013】
一方、毒性が最も高いダイオキシンとして知られている2,3,7,8−テトラクロロジベンゾ−p−ジオキシン(2,3,7,8−TCDD)は、ダイオキシンの2,3,7,8位の4個の水素が塩素に置換された化合物である。また、有毒なダイオキシン類は全て塩素が4個以上置換したダイオキシン類である。この猛毒のダイオキシン類が、クロロフェノール類,クロロベンゼン類を前駆体として、焼却場内で合成されるとすると、少なくとも、塩素が2個または3個以上置換したクロロフェノール類,クロロベンゼン類が前駆物質でなければならない。従って、この発明で示された多光子イオン化方式では、多置換塩素化合物を効率よくイオン化することができない。即ち、実際の焼却炉の排ガス中に含まれるクロロフェノール類やクロロベンゼン類の濃度(1000ng/Nm3(1ppb)程度)での測定は、非常に難しいといえる。
【0014】
現在まで、排ガスをオンラインで採取し、ダイオキシン類またはその前駆物質をリアルタイムで測定する手段,装置は開示されていない。ダイオキシン類のリアルタイムモニタ法がないために、以下のような問題を生じていた。
【0015】
(1)焼却炉などの排ガスにどれだけのダイオキシン類が含まれているか、変動がどのくらいあるのか、把握されていなかった。
【0016】
(2)焼却炉において、燃焼をはじめてから排ガスが煙突から大気中に排出されるまで、排ガスは多くの温度の異なる空間を経ると共に、排ガス中における多くの化学反応プロセスを経て排出される。この複雑なプロセス一つ一つにおけるダイオキシン類の生成,分解などを追跡することはできない。また、当然プロセス条件を変更,最適化してダイオキシン類の削減を図ることもできない。
【0017】
(3)また、ダイオキシン類モニタのリアルタイム化ができないため、焼却炉内の多くの場所でのダイオキシン類の濃度測定はできない。各部でのダイオキシン類の挙動を把握できない。
【0018】
本発明は、かかる問題点を解決するためになされたものであり、ダイオキシン類,クロロフェノール類,クロロベンゼン類のリアルタイムでの測定を可能にするシステムを提供することを目的とするものである。
【0019】
【課題を解決するための手段】
上記目的を達成するための本発明の特徴は、排ガスを採取するガス採取部と、前記排ガスをほぼ大気圧下でイオン化する大気圧イオン源と、当該大気圧イオン源にて生成したイオンを大気圧よりも低い圧力に排気された室で質量分析を行う質量分析部と、計測された信号を処理するデータ処理部とを備えた排ガスモニタシステムであって、前記大気圧イオン源は、導入した排ガスを負イオン化することである。
【0020】
本発明はダイオキシン類,クロロフェノール類やクロロベンゼン類などが負イオンになり易いことを積極的に利用している。
【0021】
ダイオキシン類の排ガス中の濃度は1ppt 以下であり、クロロフェノール類,クロロベンゼン類等の濃度は1ppb 程度といわれている。このように極微量の成分をモニタするためには、以下の二項目が重要である。(1)極微量成分の信号を効率よく発するようにする。(2)微量成分より圧倒的に存在量の多い成分 (窒素,酸素,二酸化炭素等)は妨害信号を発しないようにする。即ち高いS/B比(Signal/Backgound )が達成できる手法が必要になる。
【0022】
発明者等は多くの実験の結果、負イオンモードの大気圧化学イオン化が、排ガス中のダイオキシン類等の選択的イオン化,検出に最適であることを見出した。
本発明によれば、塩素,酸素元素を複数分子内に有するダイオキシン類,クロロフェノール類,クロロベンゼン類の検出を高感度に行うことができる。塩素や酸素は電気陰性度の高い元素で、これら元素を多数含む有機化合物は低エネルギの熱電子を捕獲して負イオンになり易い。クロロフェノール類は分子内に塩素原子を一個以上、酸素原子を一個有している。またクロロベンゼン類は分子内に塩素原子を一個以上持っている。猛毒のダイオキシン類は分子内に4個から8個の塩素原子、2個の酸素原子を有している。そのため、ダイオキシン類などは大気圧下における負のコロナ放電により生じた熱電子により効率よくイオン化され、質量分析計により高感度にモニタが可能になる。
【0023】
又、試料ガスは連続してイオン源に送られ、質量分析計にも常時生成したイオンが導入されるので、連続した測定が可能になる。更に、イオントラップ式の質量分析計の場合、測定するためのイオン溜め込み時間は数秒で、1回の測定スピードはmsオーダーなので、データ処理を含めても10秒/回以下の連続測定ができ、オンラインリアルタイム測定が可能となる。しかも、同時に多項目分析ができるので、ダイオキシン類,クロロフェノール類,クロロベンゼン類などの濃度を同時に測定することが可能となる。
【0024】
【発明の実施の形態】
図1に本発明のモニタ装置の構成を示す。
【0025】
本発明は図1に示すように、主に3つの部分より成り立っている。測定対象場所である煙道1から排気ガスを採取する排気ガス採取部2,採取した排気ガス中から測定対象物質を検出するモニタ部4、更に検出,取得したデータを処理するデータ処理部6である。
【0026】
排気ガス採取部2は排気ガス採取プローブ21,配管22,ダスト処理部20,送気ポンプ30などよりなっている。モニタ部4は送り込まれた排気ガス中の分析対象物質を大気圧化学イオン源40における負のコロナ放電により選択的にかつ高い効率でイオン化を行い、質量分析部50で質量分析し、分析対象物質を検出(モニタ)する。検出された信号はデータ処理部6に送られ検量線から濃度に換算され、データとしてCRTやプリンタに出力される。また、ごみ焼却場の燃焼制御のためのデータとして外部の燃焼制御装置などに送られる。
【0027】
図2に、本発明のモニタ装置の詳細な構成を示す。
【0028】
煙道1には、排気ガス採取プローブ21が取り付けられ、ダスト処理部20まで排気ガス導入配管22aが接続されている。ダスト処理部20には、ダストフィルタ23と、必要に応じ塩化水素や硫化水素などの阻害物質を取り除く除去剤24が接続されている。ダスト処理部20からモニタ装置8までは、排気ガス導入管22bが接続されている。配管22は短いほど望ましい。
【0029】
又、配管22やダスト処理部20は分析対象物質(クロロフェノール,クロロベンゼン,ダイオキシン等)の吸着や、酸・アルカリ等の腐食の影響を極力小さくするために保温材27が巻かれ、必要に応じヒータ26で加温し、熱電対25や温調器35で一定温度に保つ構造としている。本実施例では、排ガスの温度に近い値(150−240℃)に設定できるようにしている。更に、吸着や腐食,耐熱性の観点から、配管22の材質は内面鏡面仕上げをしたSUS−EP管を使用している。ダストフィルタ23は石英ウールが一般的で、除去剤24は分析対象物質の吸着が少なく塩化水素や硫化水素などの除去効率が高いCa(OH)2 を使用している。これらダストフィルタ23や除去剤24は容易に着脱可能としている。
【0030】
モニタ装置8内の排気ガス導入管22bは直接送気ポンプ30に導いているが、一部をバイパス配管26にて大気圧化学イオン源40を通過させ、その後送気ポンプ30に導いている。それぞれの流路にはマスフローメータ28a,28bと絞り機構29a,29bを設け、一定の流量を維持するよう流量調節計33にて制御を行う。送気ポンプ30は大気圧化学イオン源40の前段に入れて排ガスを押し込む構造でも良いが、本実施例では排ガスに与える影響をなくすために吸引式のポンプを使用している。送気ポンプ30を通過後、排ガスはモニタ装置8外に排気している。
【0031】
大気圧化学イオン源40には排気ガスが通過するイオン化室44があり、イオンを発生するためのコロナ放電電極42が設けられている。コロナ放電電極42は高圧電源48から負の電圧(−2から−7kV程度)が印加される。放電効率をよくするために引込み電極43(−50Vから−1kV程度)を設けることもある。
【0032】
又、測定対象物質のイオン化を促進するために、酸素ボンベやドライエアーなどの酸素源34を設け、配管37を通してイオン化前室41に送り込む構造としている。ここでもマスフローメータ28cと絞り29cを備え、流量調節計33にて流量を調整している。尚、イオン化促進は、大気を導入し、大気中の酸素によって行うことも可能である。
【0033】
イオン化室44のイオン化された物質が電界によって隔壁45の細孔46aを通り中間圧力部47に導かれるように隔壁45には0から−50Vの電圧をかけている。更に引き込みをよくするために2段細孔46b(電圧0から−10V)を設けている。中間圧力部47はイオンと共に導入されたほとんどの中性ガスを排気するために、1Torr程度の真空に排気する油回転ポンプ等の真空ポンプ57が設けられている。細孔を通過したイオン内の排除しきれなかった中性ガスを取り除くためにレンズ51が設けられ、導入されたイオンを質量対電荷比(m/z)に分けてイオン量を計測(質量分析)する質量分析計50が設けられている。質量分析計50には、四重極質量分析計(QMS)や磁場型質量分析計も使用することができる。しかし、高感度測定が可能なイオン蓄積型の質量分析計すなわちイオントラップを用いれば、更なる高感度モニタが達成できる。
【0034】
本実施例ではイオントラップ52を用いて質量分析を行った。数秒以下の時間でイオントラップ52で溜め込んだイオンを掃引処理により測定したいイオンのみを吐き出し、そのイオンの電荷を増幅する電子増倍管53と長寿命化を図るためのフォトマルチプライヤ54を設けている。質量分析室55はターボ分子ポンプなどの真空ポンプ56により10-5Torr以上の高真空に維持されている。
【0035】
検出されたイオン量(電荷量)の測定、イオントラップ52,イオン源40の制御は分析制御ユニット60で行われる。又、配管の温度,流量制御も可能である。分析制御ユニット60で検出されたイオン量(電荷量)のデータ処理はパソコンなど上位のデータ処理部61で行われる。分析対象物質の総量,マススペクトルなどが結果として得られる。その情報は通信又はアナログ信号として他システムに送信可能である。
【0036】
モニタ装置8は屋外に置くことも考えられるので空調機70を設け室内を常温に維持することで分析の信頼性を上げている。
【0037】
又更に、装置の安定化対策として、排気ガス導入配管22とは別に、較正用として、較正用配管31aまたは31bの何れかを、排ガス採取プローブ21の出口近くかモニタ装置8の入り口の排ガス導入配管22に接続するよう配置し、排ガスには存在せず分析対象物質と同様なイオン化挙動をする較正用物質32(たとえばニトロフェノール類)を一定量流し続け、配管系や分析系の経時変化を補正する機構を設けている。較正用物質32の量は、マスフローメータ28dと絞り29dを設け、流量調節計33によって調節し、酸素源34の送気によって一定流量を維持するようにしている。また、較正用物質32の蒸発量は温度によって変わるので、保温材27cとヒータ26c,26dによって一定に管理されている。
【0038】
以下、本実施例の動作を説明する。
【0039】
煙道1で試料採取プローブ21から採取された排ガスは、送気ポンプ30により吸引され配管22aを経てダストフィルタ23に導かれる。ここで排ガス中のダストやミストが除去された後、塩化水素などのイオン化の阻害物質を除去する除去剤24に導かれる。その後配管22bを経由してモニタ装置8に導かれる。大部分の排ガスは送気ポンプ30により吸引され排気するが、大気圧イオン化源40のごく近傍で排ガス導入配管22bから分岐してバイパス配管26を経由してイオン化室44に排ガスが導入される。ここでフィルタ処理部20や配管22,26は分析対象物質の吸着を最小限にするためと、水分の結露を避けるため、150−220℃程度に保温材27a,27bとヒータ26a,26bで保温されている。又、吸着を少なくするためには配管内での滞在時間を少なくすることが有効であるため、排ガス導入配管22bは可能な限り大流量を流す(本実施例では10−15l/min )。逆に、バイパス配管26は排ガス導入配管22bよりも流量が1桁近く減るように、且つ極力短くするようにした。イオン化室44への流量を減らしたのは分析装置40,50が長期にわたって連続運転するので、内部の汚れを極力抑えるためである。本装置は分析対象物質が極微量でも感度高く測定できるので、少流量でも問題はない。流量はマスフロー28a,28bにより測定できるので、その比によって分析対象物質の総量を知ることができる。
【0040】
イオン化室44に導入された排ガスは、高圧電源48から印加されたコロナ放電電極42からの負のコロナ放電によりイオン化される。コロナ放電電極42には高圧電源48から負の高電圧(−2kVから−7kV程度)が印加され、コロナ放電電極50の先端からは引込み電極43に向かって大気中に負のコロナ放電が発生する。導入された排ガスは負のコロナ放電で生成した熱電子の照射を受け、ダイオキシン類,クロロフェノール類やクロロベンゼン類は速やかに熱電子を捕獲して負イオンとなる。一方、排ガス中の主成分である窒素,酸素,二酸化炭素,一酸化炭素,炭化水素等はこの負のコロナ放電ではイオン化されない。即ち、ダイオキシン類やクロロフェノール類,クロロベンゼン類は排ガス中に微量にしか存在しないにも関わらず、選択的にイオン化され高感度に検知されるようになる。これらを化学平衡式で表すと
2+e- → O2 - 一次イオン化
M+O2 - → (M−H)- + HO2 二次イオン化
M:分析対象物質
となり、まずO2 - イオンができた後、分析対象物質と反応することが分かる。
但し、塩化水素(HCl)があるとClがイオンし易いため、次式のように
2 - イオンがCl- イオンになってしまい、分析対象物質のイオン化が阻害されてしまう。
【0041】
2 - + HCl → Cl- + O2
そのため、酸素源34からコロナ放電部に酸素を供給することによってO2 - イオンを促進することにより分析対象物質のイオン化効率を上げることができる。新鮮なO2 を入れるため電極42の汚れ対策にもなる。
【0042】
ほぼ大気圧下で生成したダイオキシン類等の負イオンは、イオン化室44と中間圧力部47の間の隔壁45に設けられた細孔46aから中間圧力部47に連続して導入される。ここでイオンは電界に導かれて細孔46a、更には二次細孔46bから質量分析部50に導入される。中間圧力部47は油回転ポンプ等の真空ポンプ57により1〜10-1Torr程度の真空に排気され、イオンと共に中間圧力室47に導入された中性ガスはここで排気される。細孔を通過したイオン内の排除しきれなかった中性ガスは、電界をかけたレンズ51の軸をイオントラップ52の入射軸とずらすことによりイオントラップ52に入らないようにしている。
【0043】
イオントラップ52に溜め込んだイオンをスキャンすることにより、必要な分析対象物質のイオンをイオントラップ52から摘出し電子増倍管53,フォトマルチプライヤ54で検知することができる。又、試料ガスは連続してイオン源に送られ、質量分析計にも常時生成したイオンが導入されるので、連続した測定が可能になる。更に、イオントラップ式の質量分析計の場合、測定するためのイオン溜め込み時間は数秒で、1回の測定スピードはmsオーダーなので、データ処理を含めても10秒/回以下の連続測定ができ、オンラインリアルタイム測定が可能となる。しかも、同時に多項目分析ができるので、ダイオキシン類,クロロフェノール類,クロロベンゼン類などの濃度を同時に測定することが可能となる。
【0044】
質量分析室55はターボ分子ポンプなどの真空ポンプ56により10-5Torr以上の高真空に維持され、感度の高い測定が可能となっている。
【0045】
検出されたイオン量(電荷量)の測定やイオントラップ52,イオン源40のシーケンス,電圧,温度制御は分析制御ユニット60で行われる。又、排ガス導入配管の温度,流量制御は独立した調節計で制御可能であるが、総量演算のため分析制御ユニット60かデータ処理部61に送信できるようにしている。分析制御ユニット60で検出されたイオン量(電荷量)のデータ処理はパソコンなど上位のデータ処理部61で行われる。分析対象物質の総量,マススペクトルなどが結果として得られる。その情報は通信又は4−20mAなどのアナログ信号として焼却場監視システムなどの他システムに送信可能である。
【0046】
モニタ装置8は屋外に置くことも考えられるので空調機70を設け、更には断熱構造として室内を常温に維持することで分析の信頼性を上げている。
【0047】
又、配管系や分析系が汚れ、阻害物質の蓄積のため徐々に測定値がシフトしたり、何らかの要因で突発的な環境変化が生じた場合、感度が低下することが考えられる。そのため、装置の安定化対策として、較正用として、排ガスには存在せず分析対象物質と同様なイオン化挙動をする較正用物質32(たとえばニトロフェノール類)を排ガス採取プローブ21の出口近くかモニタ装置8の入口の排ガス導入配管22に取込むよう配置し、一定量流し続けることにより、その変化率と実際の分析対象物質の実測値から配管系や分析系の経時変化を補正することができる。較正用物質32の量はマスフローセンサ28dと絞り29dもしくはマスフローコントローラ28dのみを設け、ドライエアー34の送気によって一定流量を維持するようにしている。また、較正用物質32の蒸発量は温度によって変わるので保温材27cとヒータ26cによって一定に管理されている。
【0048】
図3に本発明のモニタ装置による測定結果の一例を示す。
【0049】
図3の測定結果を得るにあたっては、既に公知の標準試料ガス発生装置と希釈装置を排ガス採取プローブ21に接続して測定を行った。試料は2,3ジクロロフェノール(分子量162)を用いた。
【0050】
測定方法としては、窒素ガスを1リットル/分で流し、この中に標準試料として、2,3ジクロロフェノールの一定量を気化混入させ、更に窒素ガスで希釈して規定の濃度になるようにした。濃度は、0.2ppb,0.4ppb、及び0.8ppbの濃度とした。モニタしたイオンの質量対電荷比(m/z)は、161で脱プロトンイオン(M−H)- である。
【0051】
図3から分かるように、本発明の装置においては、高いS/N比と直線性を得ることができる。
【0052】
【発明の効果】
排ガス中のダイオキシン類,クロロフェノール類やクロロベンゼン類をオンラインで直接モニタすることが可能になった。又、長時間安定した秒単位のリアルタイム連続測定をすることが可能となった。
【図面の簡単な説明】
【図1】本発明の概略構成を示す図である。
【図2】本発明の詳細な構成を示す図である。
【図3】本発明による測定結果を示す図である。
【符号の説明】
1…煙道、2…排気ガス採取部、4…モニタ部、6…データ処理部、8…モニタ装置、20…フィルタ処理部、21…排気ガス採取プローブ、22a,22b…排ガス導入配管、23…ダストフィルタ、24…除去剤、25…熱電対,26a,26b,26c…ヒータ、27a,27b,27c…保温材、28a,28b,28c,28d…マスフローメータ,29a,29b,29c,29d…絞り機構、30…送気ポンプ、31a,31b…較正用配管、32…較正用物質、
33…流量調節計、34…酸素源、35…温度調節計、40…大気圧化学イオン源、41…イオン源前室、42…コロナ放電電極、43…引込み電極、44…イオン化室、45…隔壁、46a,46b…細孔、47…中間圧力部、48…高圧電源、50…質量分析部、51…レンズ、52…イオントラップ、53…電子増倍管、54…フォトマルチプライア、55…質量分析室、56,57…真空ポンプ、60…分析制御ユニット、61…データ処理部、70…空調機。

Claims (7)

  1. 排ガスを採取するガス採取部と、前記排ガスをほぼ大気圧下でイオン化する大気圧イオン源と、当該大気圧イオン源にて生成したイオンを大気圧よりも低い圧力に排気された室で質量分析を行う質量分析部と、計測された信号を処理するデータ処理部とを備えた排ガスモニタシステムであって、
    前記大気圧イオン源は、コロナ放電を行い、且つ酸素が供給される第1の室と、採取した排ガスが導入される第2の室を備え、
    当該大気圧イオン源において、導入した排ガスを負イオン化することを特徴とするモニタシステム。
  2. 請求項において、
    前記第2の室は、排ガスが導入される導入口と、排ガスが排出される排出口を備えることを特徴とする排ガスモニタシステム。
  3. 請求項1において、
    前記ガス採取部から排ガスを導く第1の配管と、当該第1の配管から分岐して前記大気圧イオン源に排ガスを導く第2の配管を備え、前記第1及び第2の配管の流量比から排ガス中のダイオキシン又は前駆体の量を算出することを特徴とする排ガスモニタシステム。
  4. 請求項において、
    前記第1及び第2の配管は、150℃から240℃の間に保たれることを特徴とする排ガスモニタシステム。
  5. 請求項において、
    前記ガス採取部と前記第1の配管の間に、塩化水素又は硫化水素を捕獲するフィルタを備えることを特徴とする排ガスモニタシステム。
  6. 請求項において、
    前記第1の配管に任意の量のニトロフェノールを導入する手段を有することを特徴とする排ガスモニタシステム。
  7. 請求項1において、
    前記第2の室は、前記第1の室と前記質量分析部間に配置されることを特徴とする排ガスモニタシステム。
JP13372999A 1998-08-25 1999-05-14 排ガスモニタシステム Expired - Fee Related JP3654046B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13372999A JP3654046B2 (ja) 1998-08-25 1999-05-14 排ガスモニタシステム

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP23811198 1998-08-25
JP10-238111 1998-08-25
JP13372999A JP3654046B2 (ja) 1998-08-25 1999-05-14 排ガスモニタシステム

Publications (2)

Publication Number Publication Date
JP2000137025A JP2000137025A (ja) 2000-05-16
JP3654046B2 true JP3654046B2 (ja) 2005-06-02

Family

ID=26468004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13372999A Expired - Fee Related JP3654046B2 (ja) 1998-08-25 1999-05-14 排ガスモニタシステム

Country Status (1)

Country Link
JP (1) JP3654046B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3625667B2 (ja) * 1998-11-10 2005-03-02 株式会社タクマ ダイオキシン吸着剤評価方法
KR20020033984A (ko) * 2000-10-31 2002-05-08 문동철 안정화 장치가 설치된 코로나 방전 광 이온화 검출기
KR100498265B1 (ko) * 2003-11-20 2005-06-29 (주)센서테크 플라즈마 크로마토 그래피 장치 및 그에 따른 이온 필터셀
JP2007248114A (ja) * 2006-03-14 2007-09-27 Hitachi High-Tech Control Systems Corp ガス分析装置
DE102018216623A1 (de) * 2018-09-27 2020-04-02 Carl Zeiss Smt Gmbh Massenspektrometer und Verfahren zur massenspektrometrischen Analyse eines Gases
CN117214102B (zh) * 2023-11-09 2024-01-12 中化环境大气治理股份有限公司 一种用于监督废气处理情况的废气测定装置及方法

Also Published As

Publication number Publication date
JP2000137025A (ja) 2000-05-16

Similar Documents

Publication Publication Date Title
US6723286B2 (en) Chemical monitoring method and apparatus, and incinerator
JP4105348B2 (ja) 試料分析用モニタ装置及びそれを用いた燃焼制御システム
US7015464B2 (en) Apparatus for detecting chemical substances and method therefor
US20030020013A1 (en) Analytical apparatus
JP3654046B2 (ja) 排ガスモニタシステム
Liu et al. Online monitoring of trace chlorinated benzenes in flue gas of municipal solid waste incinerator by windowless VUV lamp single photon ionization TOFMS coupled with automatic enrichment system
Bocos-Bintintan et al. The response of a membrane inlet ion mobility spectrometer to chlorine and the effect of water contamination of the drying media on ion mobility spectrometric responses to chlorine
CN110988208A (zh) 一种基于离子迁移谱的VOCs检测设备
JP4603786B2 (ja) 化学物質モニタ装置及び化学物質モニタ方法
JP3663975B2 (ja) 排ガスモニタ装置
JP3494945B2 (ja) 有機化合物分析装置
JP3986752B2 (ja) 排ガス計測・監視システム
JP4920067B2 (ja) 化学物質モニタ装置及び化学物質モニタ方法
JP3708750B2 (ja) ダイオキシン簡易連続分析法と装置
JP3668010B2 (ja) ごみ焼却設備及びその制御方法
JP3109473B2 (ja) クロロベンゼン類の分析装置および分析方法
Song et al. Selective measurement of Cl2 and HCl based on dopant-assisted negative photoionization ion mobility spectrometer combined with the semiconductor cooling
JP4719012B2 (ja) イオン化法ガス検出装置およびイオン化法ガス検出方法
JP4062341B2 (ja) イオン化質量分析計,分析方法およびそれを用いた計測システム
JP3120768B2 (ja) クロロベンゼン類の自動分析装置および分析方法
JP4235028B2 (ja) 大気汚染物質の分析方法
JP2001096136A (ja) 活性炭吸着によるダイオキシン類除去装置の運転管理方法及び装置
OKADA et al. On-line Monitoring Equip-ments of Dioxins and their Precursors for Incineration Plants
JP2011081017A (ja) 化学物質モニタ装置及び化学物質モニタ方法
JP4197676B2 (ja) モニタリングシステム

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050221

R151 Written notification of patent or utility model registration

Ref document number: 3654046

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110311

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110311

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120311

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130311

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130311

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees