JP3649130B2 - 内燃機関の排気浄化装置 - Google Patents

内燃機関の排気浄化装置 Download PDF

Info

Publication number
JP3649130B2
JP3649130B2 JP2001013684A JP2001013684A JP3649130B2 JP 3649130 B2 JP3649130 B2 JP 3649130B2 JP 2001013684 A JP2001013684 A JP 2001013684A JP 2001013684 A JP2001013684 A JP 2001013684A JP 3649130 B2 JP3649130 B2 JP 3649130B2
Authority
JP
Japan
Prior art keywords
nox
catalyst
reducing agent
exhaust
supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001013684A
Other languages
English (en)
Other versions
JP2002221028A (ja
Inventor
泰生 原田
忍 石山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2001013684A priority Critical patent/JP3649130B2/ja
Priority to EP02001430A priority patent/EP1225323B1/en
Priority to DE60203201T priority patent/DE60203201T2/de
Publication of JP2002221028A publication Critical patent/JP2002221028A/ja
Application granted granted Critical
Publication of JP3649130B2 publication Critical patent/JP3649130B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0814Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with catalytic converters, e.g. NOx absorption/storage reduction catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0871Regulation of absorbents or adsorbents, e.g. purging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0871Regulation of absorbents or adsorbents, e.g. purging
    • F01N3/0885Regeneration of deteriorated absorbents or adsorbents, e.g. desulfurization of NOx traps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • F02D41/028Desulfurisation of NOx traps or adsorbent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • F02D41/1463Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases downstream of exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/02Catalytic activity of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/03Monitoring or diagnosing the deterioration of exhaust systems of sorbing activity of adsorbents or absorbents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/04Sulfur or sulfur oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/14Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/03Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0422Methods of control or diagnosing measuring the elapsed time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0806NOx storage amount, i.e. amount of NOx stored on NOx trap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0818SOx storage amount, e.g. for SOx trap or NOx trap
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Description

【0001】
【発明の属する技術分野】
本発明は、希薄燃焼可能な内燃機関の排気系内であって、同排気系内に設けられたNOx触媒上流に還元剤を供給し、排気中の有害成分の浄化を促す内燃機関の排気浄化装置に関する。
【0002】
【従来の技術】
ディーゼルエンジンや希薄燃焼を行うガソリンエンジンでは、高い空燃比(リーン雰囲気)の混合気を燃焼に供して機関運転を行う運転領域が、全運転領域の大部分を占める。この種のエンジン(内燃機関)では一般に、リーン雰囲気で窒素酸化物(NOx)を吸収することのできるNOx吸収剤(NOx触媒)がその排気系に備えられる。
【0003】
NOx触媒は排気中の酸素濃度が高い状態ではNOxを吸収し、排気中の酸素濃度が低い状態ではNOxを放出する特性を有する。ちなみに排気中に放出されたNOxは、排気中に炭化水素(HC)や一酸化炭素(CO)等の還元成分が存在していれば、それら還元成分と速やかに反応して窒素(N2)に還元される。また、NOx触媒が保持(吸蔵)できるNOxの量には限界量(飽和量)が存在し、当該触媒がある程度の量を上回るNOxを吸蔵している場合には、排気中の酸素濃度が高い状態にあってもそれ以上NOxを吸収しなくなる。
【0004】
そこで、このようなNOx触媒を排気系に備えた内燃機関では、当該NOx触媒のNOx吸蔵量が所定量に達する前に、排気系内に還元剤を供給する等して排気中の還元成分濃度を高め且つ酸素濃度を低下させる制御(以下、還元剤供給制御という)を実行することで、NOx触媒に吸蔵されているNOxを放出および還元浄化するとともに、NOx触媒のNOx吸収能力を回復させるといった制御を所定のインターバルで繰り返すのが一般的である。
【0005】
ところで、内燃機関の燃料には硫黄成分が含まれているのが通常であり、排気中にはNOxの他、このような燃料中の硫黄成分を起源とする硫黄酸化物(SOx)も存在する。排気中に存在するSOxは、NOxに比べてより高い効率でNOx触媒に吸収され、しかも、同触媒に吸蔵されているNOxを放出するために十分な条件下(排気中の酸素濃度が所定値を下回る条件下)にあっても当該触媒から容易には放出されない。このため、機関運転の継続に伴い、排気中のSOxが徐々にNOx触媒に堆積していくといった所謂SOx被毒が生じることとなる。
【0006】
また、長期に亘る使用や、所定温度を超える高温条件下での使用により、NOx触媒が熱劣化することもある。
【0007】
また同じく、長期に亘る使用や、特定の運転条件下での使用により、排気中の炭化水素(HC)がNOx触媒の表面に堆積し、HCの被膜が形成されることもある。
【0008】
これらSO被毒、熱劣化、及びHC被膜等といったNOx触媒の劣化現象は、いずれもNOx触媒によるNOxの吸蔵量の限界値や、NOxの吸収効率を減少させ、結果としてNOxの浄化効率を低下させることとなる。このような劣化現象が発生した場合には、その発生を正確且つ速やかに認識し、適宜の処置を講ずることが好ましい。
【0009】
例えば、特開2000−104536号公報に記載された排気浄化装置は、内燃機関の排気系に設けられたNOx触媒の下流にNOxセンサを配設し、NOx触媒下流における排気中のNOx濃度を観測する。NOx触媒が吸蔵しているNOxの量が飽和量に近づくほど、当該触媒によるNOxの吸収効率は低下し、同触媒を素通りするNOx量が増大する。そこで、観測されるNOx濃度が徐々に上昇して所定の上限値(以下、設定上限値という)を上回ると、NOx触媒に吸蔵されているNOxの量が飽和量に達したものと判断し、還元剤供給制御を実行して同触媒に吸蔵されているNOxの放出及び還元浄化を行うといったことを周期的に繰り返す。さらに同公報記載の装置は、NOx触媒からのNOxの放出及び還元浄化を実行した後、観測されるNOx濃度が、設定上限値を再度上回るまでに要する時間(インターバル)を毎回計測する。そして、このインターバルが所定時間を下回った場合には、NOx触媒が劣化し、その浄化効率が低下しているものと判断し、適宜の処置を講ずるようにしている。このように、還元剤供給制御の実行後に観測されるNOx濃度の推移態様に基づき、NOx触媒の劣化の有無や程度を判断する一連の処理手順を、以下、NOx触媒の劣化判定という。
【0010】
このように、排気中のNOx濃度の推移を経時的に観測することのできる機器(例えばNOxセンサ)を採用してNOx触媒下流における排気中のNOx濃度を把握し、このNOx濃度に基づいてNOx触媒に流入する排気中の還元成分を調整する制御(フィードバック制御)を行いつつ、当該制御によってフィードバックされるNOx濃度の変化を監視すれば、当該NOx触媒について、劣化の有無や程度を正確に認識することができる。
【0011】
【発明が解決しようとする課題】
ところで、NOx触媒が排気中のNOxに対し還元浄化機能を十分発揮するためには、触媒として活性化された状態にあることが必要条件となる。例えば、NOx触媒は、当該触媒の温度(或いは当該触媒の晒されている雰囲気の温度)が所定範囲(以下、触媒活性領域)にあることではじめて活性化された状態となる。このため、NOx触媒を採用する内燃機関の排気浄化装置では、当該触媒の温度が触媒活性領域から外れている場合には、還元剤供給制御を行わないのが通常である。
【0012】
還元剤供給制御が行われない状態が持続すると、NOx触媒内にNOxが吸収され続け、多量のNOxが当該触媒内に吸蔵されることになる。このため、NOx触媒の温度が触媒活性領域内に移行した直後に還元剤供給制御が実行された場合、還元剤供給制御が所定のインターバルで行われているとき(当該触媒の温度が安定して触媒活性領域内にあるとき)に比して過剰なNOxが当該触媒から放出されるようになる。このように過剰なNOxが放出されると、当該触媒に浄化(還元)されず下流に流出するNOxの量が一時的に増量することとなる他、その後に当該触媒下流で観測されるNOx濃度の推移態様も、還元剤供給制御が通常の条件で行われているときに観測される態様とは異なるものとなる。こうした条件下で上記NOx触媒の劣化判定が行われると、誤った判断がなされてしまう懸念があった。
【0013】
また、上記公報記載の装置のように、NOx触媒下流における排気中のNOx濃度を把握し、このNOx濃度に基づいてNOx触媒に流入する排気中の還元成分を調整する制御(フィードバック制御)にとって、当該制御が十分な精度を確保するためには、NOx触媒下流において観測されるNOx濃度が当該触媒への還元剤の供給量を正確に反映していることが前提となる。ところが、上述したようにNOx触媒供給制御が行われない状態が持続すると、還元剤供給制御の実行後に前記NOx触媒下流に流出するNOx濃度の推移態様が、当該還元剤供給制御が通常の条件で行われている場合と比べて大きく異なるものになってしまうため、当該フィードバック制御によって高い触媒効率(浄化効率)を保持することは困難になる。
【0014】
本発明は、このような実情に鑑みてなされたものであって、その目的とするところは、内燃機関の排気系に設けられたNOx触媒について、当該触媒の劣化の有無や程度を正確に把握することのできる内燃機関の排気浄化装置を提供することにある。
【0015】
また、その目的とするところは、内燃機関の排気系に設けられたNOx触媒について、その触媒効率の最適化を常時安定して図ることのできる内燃機関の排気浄化装置を提供することにある。
【0016】
【課題を解決するための手段】
上記目的を達成するために、第1の発明は、内燃機関の排気系に設けられ、同排気系内を流れる排気中の還元成分濃度が低いときにNOxを吸収し、前記排気中の還元成分濃度が高くなると吸収したNOxを放出及び還元するNOx触媒と、前記NOx触媒下流における排気中のNOx濃度を検出するNOx検出手段と、前記検出されるNOx濃度に基づいて前記NOx触媒の劣化判定を行う劣化判定手段と、前記NOx触媒に流入する排気中に還元剤を供給する還元剤供給手段と、前記還元剤供給手段が前記還元剤の供給を行う期間及び前記還元剤の供給を行わない期間を決定する供給期間決定手段と、還元剤の供給が実施されない状態が第1所定期間より長く持続した場合であって、前記還元剤の供給が行われない期間から前記還元剤の供給が行われる期間に移行した後、第2所定期間は、前記劣化判定の実行を禁止する判定禁止手段とを有することを要旨とする。
【0017】
ここで、前記還元剤の供給は、断続的且つ周期的に行うのが好ましい。
【0018】
前記還元剤の供給が行われない状態が持続することにより、前記NOx触媒に吸蔵されているNOx量が増大し、前記還元剤の供給が行われている期間中、当該還元剤の供給が行われることによって放出され且つ還元・浄化されるNOx量を、上回るようになる。このような条件下で前記還元剤の供給が行われると、前記NOx触媒から放出されるNOxの一部が還元・浄化されずに当該NOx触媒の下流に流出し、前記検出されるNOx濃度に影響を及ぼす。
【0019】
同構成によれば、還元剤の供給が実施されない状態が第1所定期間より長く持続した場合であって、前記還元剤の供給が行われない期間から前記還元剤の供給が行われる期間に移行した後、第2所定期間は、前記劣化判定の実行を禁止することにより、上記のように前記NOx触媒の下流に流出する過剰なNOxが当該NOx触媒の劣化判定に関し誤判定を生じさせる懸念を解消することができるようになる。よって、前記NOx触媒の劣化判定にかかる精度や信頼性の向上が図られるようになる。
【0020】
また、前記供給期間決定手段は、当該内燃機関の運転状態および前記NOx触媒の活性状態のうち少なくとも一方に基づいて、前記還元剤供給手段が前記還元剤の供給を行う期間及び前記還元剤の供給を行わない期間を決定するのがよい。
【0021】
「排気系内を流れる排気中の還元成分濃度が低いときにNOxを吸収し、所定の活性条件が成立しており且つ前記排気中の還元成分濃度が高くなると吸収したNOxを放出及び還元する」といった前記NOx触媒の作用について、その吸収能力や放出および還元能力は、概ね当該NOx触媒の活性状態によって決定づけられる。また、前記NOx触媒の活性状態は、例えば当該NOx触媒自身の温度、或いは当該NOx触媒の晒される雰囲気の温度のような温度条件をはじめ、これら温度条件を含めた当該内燃機関の各種運転状態と高い相関性を有する。
【0022】
同構成によれば、前記NOx触媒の作用と直接的、或いは間接的に有意な関係を有するパラメータである「当該内燃機関の運転状態および前記NOx触媒の活性状態のうち少なくとも一方」に基づいて、「前記還元剤供給手段が前記還元剤の供給を行う期間および前記還元剤の供給を行わない期間」を決定することとなる。このため、前記還元剤の供給と、当該還元剤の供給によって変化するNOx濃度との対応関係について、高い再現性を得ることができる。よって、前記検出されるNOx濃度に基づいて行われる前記NOx触媒の劣化判定について、その精度や信頼性が一層向上するようになる。
【0023】
また、前記還元剤供給手段が還元剤を供給するタイミングを、前記検出されるNOx濃度に基づいて決定する還元剤供給時期決定手段を有して、且つ、前記劣化判定手段は、前記還元剤供給時期決定手段により決定されるタイミングの時間間隔に基づいて前記NOx触媒の劣化判定を行うのがよい。
【0024】
ここで、前記劣化判定手段は、前記還元剤供給時期決定手段により決定されるタイミングの時間間隔が所定時間を上回った場合に、前記NOx触媒が劣化している旨の判定を行うのが好ましい。
【0025】
また、前記劣化判定手段は、前記還元剤の供給後に検出される前記NOx濃度の変化に基づいて、前記NOx触媒の劣化判定を行うのがよい。
【0026】
ここで、前記劣化判定手段は、前記還元剤の供給後に検出される前記NOx濃度の最小値に基づいて、前記NOx触媒の劣化判定を行うのが好ましい。
【0027】
本来、前記検出されるNOx濃度は、前記還元剤の供給後、上昇して比較的小さな極大値を示した後、下降して極小値に達し、さらにその後、徐々に再上昇するといった推移態様を示すこととなる。そして、還元剤の供給時におけるNOx濃度や還元剤供給量が同等であれば、極小値、極大値、或いは推移の傾斜等に関する再現性は高い。ところが、前記NOx触媒の劣化が進行し、当該NOx触媒にとってNOxの吸蔵能力や還元・浄化能力が低下すると、前記還元剤の供給後に観測されるNOx濃度は、本来の推移態様とは異なった推移態様を示すようになる。例えば、当該NOx触媒の劣化が進行するほど、前記極小値や極大値に相当するNOx濃度は高くなり、当該極大値から極小値に至るまでにみられる推移速度は遅くなる。その一方、前記検出されるNOx濃度が当該極小値を示した後、再上昇する際の推移速度は速くなり、前記還元剤の今回の供給タイミングから次回の供給タイミングに至る時間は短くなるといった傾向を示す。
【0028】
すなわち、上記各構成によれば、「前記還元剤の供給後に検出される前記NOx濃度の変化(推移態様)」や「前記還元剤供給時期決定手段により決定されるタイミングの時間間隔」のように、前記NOx触媒の劣化の有無や劣化の程度を正確に反映するパラメータを基準としてNOx触媒の劣化判定を行うこととなる。よって、当該劣化判定に十分な精度や信頼性が確保されるようになる。
【0029】
また、前記検出されるNOx濃度が所定値を下回ったときには、前記劣化判定の禁止を解除することとしてもよい。
【0030】
また、前記NOx触媒に吸蔵されているNOxの吸蔵量を推定するNOx吸蔵量推定手段と、前記推定されるNOxの吸蔵量に基づいて、前記劣化判定の禁止される第2所定期間を決定する禁止期間決定手段とを有することとしてもよい。
【0031】
上述した通り、前記還元剤の供給が行われない状態が持続した後、前記還元剤の供給が行われると、前記NOx触媒から放出されるNOxの一部が還元・浄化されずに当該NOx触媒の下流に流出し、前記検出されるNOx濃度に影響を及ぼす。この影響が続く期間は、前記NOx触媒に吸蔵されているNOxの量に関係する。同構成によれば、前記還元剤の供給が行われない状態が持続した結果、発生し得る誤判定の懸念が解消されるために必要十分な期間、前記劣化判定が禁止されることとなる。すなわち、前記NOx触媒の劣化判定の機会を不要に損なうことなく、しかも十分に信頼性の高い劣化判定を行うことができるようになる。
【0032】
第2の発明は、内燃機関の排気系に設けられ、同排気系内を流れる排気中の還元成分濃度が低いときにNOxを吸収し、前記排気中の還元成分濃度が高くなると吸収したNOxを放出及び還元するNOx触媒と、前記NOx触媒に流入する排気中に還元剤を供給する還元剤供給手段と、前記NOx触媒下流における排気中のNOx濃度を検出するNOx検出手段と、前記検出されるNOx濃度に基づいて、前記還元剤供給手段による還元剤の供給動作を制御する第1の制御手段と、前記還元剤供給手段が前記還元剤の供給を行う期間及び前記還元剤の供給を行わない期間を決定する供給期間決定手段と、前記還元剤の供給が行われない期間から前記還元剤の供給が行われる期間に移行した後、所定の期間は、前記第1の制御手段による制御を禁止し、且つ前記還元剤供給手段に予め設定された条件に従って前記還元剤を供給させる制御を行う第2の制御手段とを有することを要旨とする。
【0033】
前記還元剤の供給が行われない状態が持続することにより、前記NOx触媒に吸蔵されているNOx量が増大すると、当該還元剤の供給が行われたときに放出されるNOx量(放出率)が、還元・浄化されるNOx量(還元・浄化率)を、上回るようになる。このような条件下で前記還元剤の供給が行われると、前記NOx触媒から放出されるNOxの一部が還元・浄化されずに当該NOx触媒の下流に流出し、前記検出されるNOx濃度に影響を及ぼす。
【0034】
同構成によれば、前記NOx触媒に対し、前記還元剤の供給が所定量ずつ周期的に行われることで当該NOx触媒内のNOx吸蔵量が所定範囲内にある場合には、当該NOx吸蔵量を正確に反映するパラメータとして前記検出されるNOx濃度を採用し、これを前記還元剤の供給態様(例えば供給タイミングや供給量)にフィードバック(フィードバック制御)することとなる。一方、前記還元剤の供給が行われることで、前記NOx触媒から放出されるNOxの一部が還元・浄化されずに当該NOx触媒の下流に流出し、前記検出されるNOx濃度に影響を及ぼすような場合には、予め設定された条件に従い所定量の還元剤が所定タイミングで前記NOx触媒に供給されるようになる。
【0035】
すなわち、前記還元剤の供給が行われない状態が持続することにより、前記NOx触媒内のNOx吸蔵量が変動する場合であれ、当該NOx触媒によるNOxの浄化機能を常時安定して確保することができるようになる。
【0036】
また、前記第2の制御手段による制御の実行は、前記検出されるNOx濃度が所定値を下回ったときには解除されるのがよい。
【0037】
なお、前記第2の制御手段による制御の実行が解除されると、「前記第1の制御手段による制御の禁止し、且つ、前記還元剤供給手段に予め設定された条件に従って前記還元剤を供給させる制御」は行われなくなる。すると、「前記NOx検出手段によって検出されるNOx濃度に基づいて、前記還元剤供給手段による還元剤の供給動作を制御する」といった前記第1の制御手段による制御の実行が復帰する。
【0038】
前記NOx触媒に還元剤の供給が行われたときに放出されるNOx量(放出率)が、還元・浄化されるNOx量(還元・浄化率)を上回る現象は、前記還元剤の供給が行われたときに観測されるNOx濃度の低下量と有意に相関する。同構成によれば、前記還元剤の供給が行われたときに観測されるNOx濃度の最小値が所定値を下回ったときに、前記第2の制御手段による制御の実行が解除されることとなる。従って、前記フィードバック制御の制御性が阻害される懸念がなくなるまでに必要十分な期間のみ、当該フィードバック制御が禁止されることとなる。すなわち、当該NOx触媒の状態(NOx吸蔵量)に応じた適正な制御を正確に選択して行うことができるようになる。
【0039】
また、前記NOx触媒に吸蔵されているNOxの吸蔵量を推定するNOx吸蔵量推定手段と、前記第2の制御手段による制御が行われる前記所定の期間を、前記推定されるNOxの吸蔵量に基づいて決定する期間決定手段とを有することとしてもよい。
【0040】
前記NOx触媒への前記還元剤の供給により、前記NOx触媒から放出されるNOxの一部が還元・浄化されずに当該NOx触媒の下流に流出し、前記検出されるNOx濃度に影響を及ぼす影響が続く期間が、前記NOx触媒に吸蔵されているNOxの量に関係することは上述した通りである。
【0041】
従って、同構成によっても、前記フィードバック制御の制御性が阻害される懸念なくなるまでに必要十分な期間のみ、当該フィードバック制御が禁止されることとなる。すなわち、当該NOx触媒の状態(NOx吸蔵量)に応じた適正な制御を正確に選択して行うことができるようになる。
【0042】
【発明の実施の形態】
(第1の実施形態)
以下、本発明にかかる内燃機関の排気浄化装置を、ディーゼルエンジンシステムに適用した第1の実施の形態について説明する。
【0043】
図1において、内燃機関(以下、エンジンという)1は、燃料供給系10、燃焼室20、吸気系30及び排気系40等を主要部として構成される直列4気筒のディーゼルエンジンシステムである。
【0044】
先ず、燃料供給系10は、サプライポンプ11、コモンレール12、燃料噴射弁13、遮断弁14、調量弁16、燃料添加ノズル17、機関燃料通路P1及び添加燃料通路P2等を備えて構成される。
【0045】
サプライポンプ11は、燃料タンク(図示略)から汲み上げた燃料を高圧にし、機関燃料通路P1を介してコモンレール12に供給する。コモンレール12は、サプライポンプ11から供給された高圧燃料を所定圧力に保持(蓄圧)する蓄圧室としての機能を有し、この蓄圧した燃料を各燃料噴射弁13に分配する。燃料噴射弁13は、その内部に電磁ソレノイド(図示略)を備えた電磁弁であり、適宜開弁して燃焼室20内に燃料を噴射供給する。
【0046】
他方、サプライポンプ11は、燃料タンクから汲み上げた燃料の一部を添加燃料通路P2を介して燃料添加ノズル17に供給する。添加燃料通路P2には、サプライポンプ11から燃料添加ノズル17に向かって遮断弁14及び調量弁16が順次配設されている。遮断弁14は、緊急時において添加燃料通路P2を遮断し、燃料供給を停止する。調量弁16は、燃料添加ノズル17に供給する燃料の圧力(燃圧)を制御する。燃料添加ノズル17は所定圧以上の燃圧(例えば0.2MPa)が付与されると開弁し、排気系40内に燃料を噴射供給する機械式の開閉弁である。すなわち調量弁16により燃料添加ノズル17上流の燃圧が制御されることにより、所望の燃料が適宜のタイミングで燃料添加ノズル17より噴射供給(添加)される。
【0047】
吸気系30は、各燃焼室20内に供給される吸入空気の通路(吸気通路)を形成する。一方、排気系40は、各燃焼室20から排出される排気ガスの通路(排気通路)を形成する。
【0048】
また、このエンジン1には、周知の過給機(ターボチャージャ)50が設けられている。ターボチャージャ50は、シャフト51を介して連結された2つのタービンホイール52,53を備える。一方のタービンホイール(吸気側タービンホイール)52は、吸気系30内の吸気に晒され、他方のタービンホイール(排気側タービンホイール)53は排気系40内の排気に晒される。このような構成を有するターボチャージャ50は、排気側タービンホイール52が受ける排気流(排気圧)を利用して吸気側タービンホイール53を回転させ、吸気圧を高めるといったいわゆる過給を行う。
【0049】
吸気系30において、ターボチャージャ50に設けられたインタークーラ31は、過給によって昇温した吸入空気を強制冷却する。インタークーラ31よりもさらに下流に設けられたスロットル弁32は、その開度を無段階に調節することができる電子制御式の開閉弁であり、所定の条件下において吸入空気の流路面積を絞り、同吸入空気の供給量を調整(低減)する機能を有する。
【0050】
また、エンジン1には、燃焼室20の上流(吸気系30)及び下流(排気系40)をバイパスする排気還流通路(EGR通路)60が形成されている。このEGR通路60は、排気の一部を適宜吸気系30に戻す機能を有する。EGR通路60には、電子制御によって無段階に開閉され、同通路を流れる排気流量を自在に調整することができるEGR弁61と、EGR通路60を通過(還流)する排気を冷却するためのEGRクーラ62が設けられている。
【0051】
また、排気系40において、同排気系40及びEGR通路60の連絡部位の下流には、吸蔵還元型NOx触媒(以下、単に触媒という)41を収容した触媒ケーシング42が設けられている。触媒ケーシング42に収容された触媒41は、例えばアルミナ(Al23)を担体とし、この担体上に例えばカリウム(K)、ナトリウム(Na)、リチウム(Li)、セシウムCsのようなアルカリ金属、バリウムBa、カルシウムCaのようなアルカリ土類、ランタン(La)、或いはイットリウム(Y)のような希土類と、白金Ptのような貴金属とが担持されることによって構成される。
【0052】
この触媒41は、排気中に多量の酸素が存在している状態においてはNOxを吸収し、排気中の酸素濃度が低く且つ還元成分(例えば燃料の未燃成分(HC))が多量に存在している状態においてはNOxをNO2若しくはNOに還元して放出する。NO2やNOとして放出されたNOxは、排気中のHCやCOと速やかに反応することによってさらに還元されN2となる。ちなみにHCやCOは、NO2やNOを還元することで、自身は酸化されH2OやCO2となる。すなわち、触媒ケーシング42(触媒41)に導入される排気中の酸素濃度やHC成分を適宜調整すれば、排気中のHC、CO、NOxを浄化することができることになる。
【0053】
また、エンジン1の各部位には、各種センサが取り付けられており、当該部位の環境条件や、エンジン1の運転状態に関する信号を出力する。
【0054】
すなわち、レール圧センサ70は、コモンレール12内に蓄えられている燃料の圧力に応じた検出信号を出力する。燃圧センサ71は、添加燃料通路P2内を流通する燃料のうち、調量弁16へ導入される燃料の圧力(燃圧)Pgに応じた検出信号を出力する。エアフロメータ72は、吸気系30内のスロットル弁32下流において吸入空気の流量(吸気量)Gaに応じた検出信号を出力する。空燃比(A/F)センサ73は、排気系40の触媒ケーシング42下流において排気中の酸素濃度に応じて連続的に変化する検出信号を出力する。排気温センサ74は、同じく排気系40の触媒ケーシング42下流において排気の温度(排気温度)Texに応じた検出信号を出力する。NOxセンサ75は、同じく排気系40の触媒ケーシング42下流において排気中のNOx濃度に応じて連続的に変化する検出信号を出力する。
【0055】
また、アクセル開度センサ76はエンジン1のアクセルペダル(図示略)に取り付けられ、同ペダルへの踏み込み量Accに応じた検出信号を出力する。クランク角センサ77は、エンジン1の出力軸(クランクシャフト)が一定角度回転する毎に検出信号(パルス)を出力する。これら各センサ70〜77は、電子制御装置(ECU)80と電気的に接続されている。
【0056】
ECU80は、中央処理装置(CPU)81、読み出し専用メモリ(ROM)82、ランダムアクセスメモリ(RAM)83及びバックアップRAM84、タイマーカウンタ85等を備え、これら各部81〜85と、A/D変換器を含む外部入力回路86と、外部出力回路87とが双方向性バス88により接続されて構成される論理演算回路を備える。
【0057】
このように構成されたECU80は、上記各種センサの検出信号を外部入力回路を介して入力し、これら信号に基づいてエンジン1の燃料噴射等についての基本制御を行う他、還元剤(還元剤として機能する燃料)添加にかかる添加タイミングや供給量の決定等に関する還元剤(燃料)添加制御、触媒41に堆積するSOxを適宜取り除くSOx被毒回復制御、触媒41の劣化の有無や程度を判定する劣化判定等、エンジン1の運転状態に関する各種制御の実施を司る。
【0058】
ここで、燃料噴射弁13を通じて各気筒に燃料を供給する他、燃料添加ノズル17を通じて排気系40に燃料を添加する機能を備えた燃料供給系10、排気系40に備えられた触媒41、およびこれら燃料供給系10や触媒41の機能を制御するECU80等は、併せて本実施の形態にかかるエンジン1の排気浄化装置を構成する。上記燃料添加制御、SOx被毒回復制御、或いは劣化判定等は、当該それら制御に関する指令信号を出力するECU80を含め、この排気浄化装置を構成する各種部材が作動することによってなされる。
【0059】
次に、本実施の形態にかかる燃料添加制御の基本原理や制御手順等について詳述する。
【0060】
一般に、ディーゼルエンジンでは、燃焼室内で燃焼に供される燃料及び空気の混合気の酸素濃度が、ほとんどの運転領域で高濃度状態にある。
【0061】
燃焼に供される混合気の酸素濃度は、燃焼に供された酸素を差し引いてそのまま排気中の酸素濃度に反映されるのが通常であり、混合気中の酸素濃度(空燃比)が高ければ、排気中の酸素濃度(空燃比)も基本的には同様に高くなる。一方、上述したように、吸蔵還元型NOx触媒は排気中の酸素濃度が高ければNOxを吸収し、低ければNOxをNO2若しくはNOに還元して放出する特性を有するため、排気中の酸素が高濃度状態にある限りNOxを吸収することとなる。ただし、当該触媒のNOx吸収量に限界量が存在し、同触媒が限界量のNOxを吸収した状態では、排気中のNOxが同触媒に吸収されず触媒ケーシングを素通りすることとなる。
【0062】
そこで、エンジン1のように燃料添加ノズル17を備えた内燃機関では、適宜の時期に燃料添加ノズル17を通じ排気系40の触媒41上流に燃料を添加することで、一時的に排気中の酸素濃度を低減し、且つ還元成分量(HC等)を増大させる。すると触媒41は、これまでに吸収したNOxをNO2若しくはNOに還元して放出し、自身のNOx吸収能力を回復(再生)するようになる。放出されたNO2やNOが、HCやCOと反応して速やかにN2に還元されることは上述した通りである。
【0063】
このとき、自身の吸収したNOxを、上記態様で放出し、さらに還元浄化する触媒41にとって、触媒ケーシング42内に流入する排気中の還元成分量(燃料の濃度)と、酸素濃度(空燃比)とにより還元浄化の効率が決定づけられることとなる。
【0064】
エンジン1のECU80は、NOxセンサ75の出力信号に基づいて触媒41下流における排気中のNOx濃度を連続的に観測する。触媒41によるNOxの吸収能力(吸収効率)は、当該触媒41に吸蔵されているNOx量が大きくなるほど、言い換えれば、触媒41に吸蔵されているNOx量が当該触媒41の吸蔵し得るNOxの最大量(飽和量)に近づくほど低くなる。すなわち、触媒41内におけるNOxの吸蔵量が増大すれば、当該触媒41を素通りして下流に放出されるNOx濃度も上昇するようになる。こうした両者の推移態様には、十分な相関性があるため、NOx濃度の推移態様に基づいて触媒41内におけるNOxの吸蔵量を把握することができる。
【0065】
そこで、ECU80は、触媒41下流におけるNOx濃度が所定値を上回ったところで、触媒41内のNOx吸蔵量が所定量を上回ったものと判断して、排気系40の触媒41上流に所定量の燃料を添加することにより、触媒ケーシング42内に流入する排気中の還元成分量を一時的に増量し、空燃比を低下させる。以下、排気系40の触媒41上流に燃料を添加することを、単に燃料添加という。
【0066】
図2は、燃料添加を周期的に実施した場合に、触媒41下流において観測される排気中のNOx濃度の推移を示すタイムチャートである。なお、同図中、時間軸上に示される時刻t1,t2,t3,t4は、燃料添加が実施されるタイミングに相当する。
【0067】
同図2に示すように、燃料添加は、触媒41下流において観測される排気中のNOx濃度が上昇する過程で基準値Cstdを上回ったときに実施される。燃料添加が実施されると、触媒41下流において観測される排気中のNOx濃度(以下、単にNOx濃度という)が一時的に増大して比較的小さな極大値に達し、その後、急速に降下して極小値に達する。そしてその後、NOx濃度が徐々に上昇して再び基準値Cstdに達すると、次回の燃料添加が実施されることになる。
【0068】
このとき、例えば、ある時刻に燃料添加の実施が開始されてから次回の燃料添加の実施が開始されるまでに観測されるNOx濃度の推移態様は、経過時間(例えば、時刻t1及びt2間の期間;以下、燃料添加インターバルという)P、NOx濃度の極大値Cmaxや極小値Cmin、或いはNOx濃度の変化率も含めて高い再現性を示す。
【0069】
ここで、先の従来技術においても説明したように、排気中に存在するSOxは、NOxの場合と同様のメカニズムに基づき、しかも、NOxに比べてより高い効率で触媒41に吸収される特性を有する。また、一旦触媒に吸収されたSOxは、同触媒に吸蔵されているNOxを放出するために十分な条件、すなわち排気中の酸素濃度が所定値を下回る条件下にあっても、同触媒から容易には放出されない。このため、機関運転の継続に伴い触媒41には、排気中のSOxが徐々に触媒41に堆積していく所謂SOx被毒が生じることとなる。また、長期に亘る使用や、所定温度を超える高温条件下での使用により、触媒41が熱劣化することもある。NOx触媒の熱劣化は、当該触媒を構成する貴金属(例えばPt)の凝集現象(シンタリング)によって生じることが知られている。また同じく、長期に亘る使用や、特定の運転条件下での使用により、排気中の炭化水素(HC)が触媒41の表面に堆積し、HCの被膜が形成されることもある。
【0070】
これらSO被毒、熱劣化、及びHC被膜等といった触媒41の劣化現象は、いずれも触媒41によるNOxの吸蔵量の限界値や、NOxの吸収効率を減少させ、結果としてNOxの浄化効率を低下させることとなる。このような劣化現象が発生した場合には、周期的な燃料添加の実施に伴って観測されるNOx濃度の推移態様が、触媒41が正常に機能している場合と比べ異なるものになる。具体的には、触媒41の劣化が進行してその浄化機能が低下すれば、NOx濃度の極大値Cmaxや極小値Cminは高くなり、添加インターバルPは短くなる傾向がある。また、NOx濃度の示す変化率については、同じく触媒41の劣化が進行してその浄化機能が低下するにつれ、極大値Cmaxから極小値Cminに推移する際にみられる変化率は小さくなり(緩慢になり)、極小値Cminから基準値Cstdに推移する際にみられる変化率は大きくなる(急勾配となる)傾向がある。
【0071】
本実施の形態にかかるエンジン1のECU80は、基本的には燃料添加の実施毎に極小値Cminを把握し、当該極小値Cminが所定値(以下、設定上限値)H1を上回った場合には、触媒41が劣化し、十分な浄化機能を発揮していない旨の判定を行う。
【0072】
ところで、燃料添加は、触媒41が十分活性化された状態にある時期を選定して実施される。例えばECU80は、触媒41の温度の代表値として排気温度Texを常時把握し、この排気温度Texが所定範囲内にある状態を触媒41が十分活性化されている状態として認識する。
【0073】
図3には、排気温度Texと、触媒41の活性度との関係を示す。同図に示すように、触媒41の触媒活性度は、排気温度(触媒温度の代表値)Texが特定温度Tex2である場合に最大となり、排気温度Texが当該温度Tex2より低温になるにつれ、また高温になるにつれ減少する傾向にある。本実施の形態では、排気温度Texが、所定の排気温度Tex1(ただし、Tex1<Tex2)を下限、所定の排気温度Tex3(ただし、Tex2<Tex3)を上限とする温度範囲(以下、触媒活性化領域という)にあれば、触媒41が十分に活性化されているとみなす。すなわち、ECU80は、排気温度Texが触媒活性化領域にあるときには燃料添加の実施を許可し、排気温度Texが触媒活性化領域外にあるときには燃料添加の実施を禁止する。
【0074】
一方、排気温度Texが触媒活性化領域内になくとも(図3中の斜線部に相当する)、触媒41はある程度の活性度を有しており、燃料添加を実施しない状態が持続すれば、触媒ケーシング42に流入する排気中のNOxが多量に吸蔵されることとなる。そして、このように燃料添加を実施しない状態が持続し、触媒41が十分活性化された状態になったところで直ちに燃料添加が再開されると、当該触媒41によって還元・浄化できる限界量を上回る量のNOxが、急速に放出されることとなる。
【0075】
例えば、図4は、異なる条件下において触媒41内に吸蔵されているNOxの吸蔵量を例示するグラフである。図中において、NOx吸蔵量(以下、標準吸蔵量という)Raは、排気温度Texが触媒活性化領域内にあり、燃料添加が周期的に繰り返されている場合であって、燃料添加が実施される直前のNOx吸蔵量に相当する。また、NOx吸蔵量(以下、添加再開前の吸蔵量という)Rbは、燃料添加が実施されない状態が所定期間持続した後、燃料添加が再開される直前のNOx吸蔵量に相当する。また、NOx吸蔵量R100は、排気温度Texが触媒活性化領域内にある場合に触媒41が吸蔵し得る最大のNOx吸蔵量(以下、限界量という)に相当する。なお、標準吸蔵量Raは、燃料添加の実施タイミングを決定するために設定されるNOx濃度の基準値Cstd(図2参照)に対応する数値である。
【0076】
同図4に示すように、各条件下における標準吸蔵量Ra及び限界量R100は、「Ra<R100」なる関係にある。燃料添加が周期的に実施されている場合、燃料(還元剤)の添加前に限界量R100のNOxを触媒41に吸蔵させることはなく、限界量R100よりも少量(Ra)のNOxが触媒41に吸蔵された時点で燃料が添加されるようNOx濃度の基準値Cstdは設定される。触媒41内のNOx吸蔵量が限界量R100に達した状態で僅かな期間でも当該触媒41内への排気流入が継続すれば、相当量のNOxが当該触媒41下流に流出してしまうことになる。また、温度条件等の微妙な変化や触媒41自体の経年変化に起因して限界量R100が変動する懸念もある。すなわち、エンジン1のECU40は、燃料添加の周期的な実施に際し、触媒41内に実際に吸蔵させるNOx量(標準吸蔵量)Raと、限界量R100との間に予め十分な幅を設定しておき、触媒41に流入する全てのNOxを確実に当該触媒41に吸蔵させる制御構造を適用する。
【0077】
一方、添加再開前の吸蔵量Rbは、燃料添加が実施されない状態が持続した期間、その期間中におけるエンジン1の運転状態、或いは触媒41の晒される温度条件等によって変動するものの、同図4に示すように、限界量R100を上限として標準吸蔵量Raを上回る場合も多い。先ず、添加再開前の吸蔵量Rbが標準吸蔵量Raと異なっている場合に触媒14への燃料添加が行われると、燃料添加が周期的に実施されている場合と比べて、触媒41から放出されるNOx量が異なるようになり、触媒41下流で観測されるNOx濃度の推移態様も異なるものとなる。とくに、添加再開前の吸蔵量Rbが標準吸蔵量Raを上回っている場合、NOx濃度の推移態様について、NOx濃度の極大値Cmaxや極小値Cminは高くなり、添加インターバルPが短くなる傾向、言い換えれば、触媒41の劣化が進行してその浄化機能が低下する場合と類似した傾向がみられるようになる。触媒41に所定量を上回るNOxが吸蔵されている状態で燃料添加を実施すると、当該触媒41によって還元・浄化できる量を上回る過剰量のNOxが当該触媒41から放出されるようになるからである。
【0078】
例えば、図5は、燃料添加を行った場合に触媒41下流において観測されるNOx濃度の推移態様を示すタイムチャートである。ここで、推移態様αは、正常な(劣化していない)状態にあり、且つ、標準吸蔵量RaのNOxが吸蔵されている触媒に対し燃料が添加された場合にみられる推移態様に相当する。また、推移態様βは、SOx被毒等による劣化が進行している状態にあり、且つ、標準吸蔵量Ra(図4参照)のNOxが吸蔵されている触媒に対し燃料が添加された場合にみられる推移態様に相当する。また、推移態様γは、正常な(劣化していない)状態にあり、且つ、標準吸蔵量Raをやや上回る程度のNOxが吸蔵されている触媒に対し燃料が添加された場合にみられる推移態様に相当する。また、推移態様δは、正常な(劣化していない)状態にあり、且つ、推移態様γの場合よりさらに多量のNOxが吸蔵されている触媒に対し燃料が添加された場合にみられる推移態様に相当する。なお、同図5の時間軸上、時刻t10は、燃料添加の実施時刻を示す。また、推移態様αは、先の図2において示した推移態様の一部と同等である。
【0079】
同図5に示すように、推移態様α及びβを比較して明らかなように、触媒41に劣化が生じると、NOx濃度の極大値Cmaxや極小値Cmin(図2を併せ参照)は高くなり、添加インターバルPが短くなる。その一方、推移態様γや推移態様δが示すように、燃料添加時における触媒41のNOx吸蔵量が増加した場合にも、NOx濃度の極大値Cmaxや極小値Cminは高くなり、添加インターバルPが短くなる。すなわち、推移態様βと、推移態様γ又はδとの判別を行うことは難しく、触媒41の劣化の有無や程度について、誤判定がなされる懸念が生じる。とくに、推移態様δが示すように、触媒41のNOx吸蔵量が所定量を上回ると、燃料添加の実施によって到達する極小値Cminが基準値Cstdを上回ってしまうこともある。このような場合に、NOx濃度が設定上限値を上回ったところで燃料添加を実施するといった本来のフィードバック制御を継続すると、触媒41に対して過剰な燃料添加が行われることとなるため、HC排出量の増大による排気特性の悪化を招くことにもなる。
【0080】
そこで、本実施の形態にかかるエンジン1のECU80は、燃料添加が実施されない状態が持続すると所定期間は、触媒41についての劣化判定を禁止するといった制御を行う。また、触媒41下流において観測されるNOx濃度が基準値Cstdを上回ると燃料添加を実施するといった制御構造を通常の燃料添加では適用するとともに、燃料添加が実施されない状態が持続した後の所定期間は、予め設定されたタイミングで燃料添加を実施するといった制御構造に切り換える処理を行う。
【0081】
以下、本実施の形態にかかるエンジン1のECU80が実施する「燃料添加制御」に関し、その具体的な処理手順についてフローチャートを参照して説明する。
【0082】
図6には、排気系40へ燃料添加を行うにあたり、その添加量や添加時期を制御するために実施される「燃料添加制御ルーチン」の処理内容を示す。このルーチン処理は、ECU80を通じてエンジン1の始動と同時にその実行が開始され、所定時間毎に繰り返される。
【0083】
処理がこのルーチンに移行すると、ECU80はステップS101において、燃料添加に関して現在までに行われた処理の履歴を把握する。
【0084】
本ルーチンに従って行う燃料添加の実施態様は、(1)NOxセンサ75の出力信号に基づいて把握されるNOx濃度が上昇過程において基準値Cstdを上回る毎に燃料添加を繰り返す実施態様(フィードバック制御による実施態様)と、(2)制御マップ上に予め設定された添加インターバルP毎に燃料添加を繰り返す実施態様(制御マップによる実施態様)と、(3)燃料添加を実施しない(禁止する)態様とに分別される。
【0085】
同ステップS101においては、先ず、燃料添加に関する上記3通りの実施態様(1)〜(3)のうち、何れの態様が前回のルーチン処理で適用されていたかを把握する。また、前回のルーチン処理で、(3)燃料添加を実施しない態様が適用されていた場合には、当該(3)の態様が持続した期間を把握する。
【0086】
さらに、同ステップS101においてECU80は、燃料添加の実施にかかる調量弁16の制御等にとって必要な運転状態を把握する。例えばECU80は、クランク角センサ77の出力信号に基づいてエンジン1の機関回転数Neを、またNOxセンサ75の出力信号に基づいて排気中のNOx濃度を各々演算する。また、アクセルの踏み込み量Acc、排気温度Tex等を把握する。
【0087】
ステップS102においては、エンジン1の運転状態に関し、燃料添加の実施に不可欠な条件(必要条件)が成立しているか否かを判断する。例えば以下の条件(A1)及び(A2)が何れも成立していることが、燃料添加を実施するための必要条件となる。
【0088】
(A1)排気温度Texが所定温度(例えば250℃)を上回っていること。これは、触媒41が十分活性化された状態になる条件に相当する。
【0089】
(A2)機関回転数Ne及びアクセルの踏み込み量Accの関係等からエンジン1の運転状態が燃料添加に適していると判断されること。
【0090】
上記条件(A1)及び(A2)が何れも成立していれば、ECU80はその処理をステップS103に移行し、上記条件(A1)及び(A2)のうち何れか一方でも成立していなければ、本ルーチンを一旦抜ける。
【0091】
ステップS103においては、フィードバック制御の実施条件が成立しているか否かを判断する。この判断は、先のステップS101で把握した燃料添加の実施に関する履歴を基になされる。すなわち、燃料添加が実施されない状態((3)の態様)の持続期間が所定期間以下である場合、若しくは、フィードバック制御による実施態様((1)の態様)が継続している場合には、フィードバック制御の実施条件が成立していると判断して、処理をステップS201に移行する。一方、燃料添加が実施されない状態((3)の態様)が所定期間より長く持続している場合、若しくは制御マップによる実施態様((2)の実施態様)が継続している場合には、フィードバック制御の実施条件が成立していないと判断して、処理をステップS301に移行する。
【0092】
ステップS201〜S205で行う一連の処理は、上記フィードバック制御による実施態様((1)の実施態様)に関する。
【0093】
先ず、ステップS201においては、現時点が、燃料添加を実施すべきタイミングに相当するか否かを判断する。
【0094】
具体的には、NOxセンサ75の出力信号に基づいて把握される排気中のNOx濃度が、上昇過程にあり且つ予め設定される基準値Cstd(図2参照)を上回っていれば、現時点が、燃料添加を実施すべきタイミングであると判断する。ECU80は、上記判断が肯定であればその処理をステップS202に移行し、上記判断が否定であれば、本ルーチンを一旦抜ける。
【0095】
ステップS202においては、調量弁16を開弁量を調整することにより、燃料添加ノズル17を通じて燃料添加を実施する。
【0096】
ここで、燃料添加ノズル17を通じて噴射される添加燃料量(総量)Qは、基本的には調量弁16の開弁時間T(ミリ秒;ms)、および同弁16の開弁中燃料通路P2を通じて燃料添加ノズルに付与される燃圧Pgの関数として、次式(i)によって決定づけられる。
【0097】
Q=f(T,Pg) …(i)
すなわち、ECU80は、上記決定した添加燃料量Qの燃料が排気系に噴射供給されるように、添加燃料通路P2内を流通する燃料のうち調量弁16へ導入される現在の燃圧Pgに基づいて開弁時間Tを演算する。そして同じく上記決定された添加パターンに従って燃料が噴射されるよう、所定のタイミングで、継続的、或いは断続的に調量弁16を通電制御することで、総計時間(開弁時間)Tに亘って同弁16を開弁させる。
【0098】
続くステップS203においては、触媒41について劣化判定を行うための条件が成立しているか否かを判断する。劣化判定は、例えば以下の条件(B1)及び(B2)が何れも成立したときに行う。
【0099】
(B1)ステップS202での処理が前回行われた後、ステップS102又はS103において否定の判断がなされることなく、ステップS202での処理が今回行われたこと、言い換えれば、制御マップによる実施態様((2)の実施態様)や、燃料添加が実施されない状態((3)の態様)に移行することなく、フィードバック制御による実施態様((1)の実施態様)に従った燃料添加の実施が、今回の実施を含め2回以上連続して行われたこと。
【0100】
(B2)前回の燃料添加の実施から今回の燃料添加の実施までの期間(添加インターバルP;図2参照)中、機関回転数Neやアクセルの踏み込み量Acc等に代表されるエンジン1の運転状態の変動幅が所定値を下回っていたこと、言い換えれば、エンジン1の運転状態が安定していたこと(準定常状態にあったこと)。
【0101】
ECU80は、上記条件(B1)及び(B2)が何れも成立しているときには、触媒41について劣化判定を実施すべきと判断してその処理をステップS20に移行する。一方、上記条件(B1)及び(B2)が何れか1つでも成立していなければ、本ルーチンを一旦抜ける。
【0102】
ステップS204においては、劣化判定の実施に先立ち、前回の燃料添加の実施後、触媒41下流で観測されたNOx濃度の極小値Cminを把握する。
【0103】
ステップS205においては、触媒41について劣化発生の有無を判定する。具体的には、上記ステップS204で把握した燃料添加の実施後にみられるNOx濃度の極小値Cminが設定上限値H1を上回っている場合、触媒41が劣化し、その機能が低下している旨の判定を行う。同ステップS205での処理を経た後、ECU80はその後の処理を一旦終了する。
【0104】
一方、先のステップS103で否定の判断がなされた後、ステップS301及びS302で行う一連の処理は、上記制御マップによる実施態様((2)の実施態様)に関する。
【0105】
先ず、ステップS301においては、現時点が、燃料添加を実施すべきタイミングに相当するか否かを判断する。ECU80は、燃料が添加されない状態が所定期間を上回って持続した後、初めて同ステップ301にその処理を移行した場合、制御マップ(図示略)を参照し、燃料が添加されない状態が持続した期間や、その期間中に観測されたエンジン1の運転状態(例えば、排気温度Tex、エンジン回転数Ne、機関燃焼に供される燃料の供給量等)の履歴等に基づいて、添加インターバルPを求める。また、初回の燃料添加の実施タイミングは、燃料が添加されない状態が所定期間を上回って持続した後、初めて同ステップ301にその処理を移行した時点とすればよい。同ステップS301における判断が肯定である場合、ECU80はその処理をステップS302移行する。一方、同ステップS301における判断が否定である場合、ECU80は本ルーチンを一旦抜ける。
【0106】
ステップS302においては、先述したステップS202での処理と同様に調量弁16の開弁制御を通じて燃料添加を実施する。
【0107】
さらに、続くステップS303では、上記ステップS302における燃料添加の実施後に観測されるNOx濃度の極小値Cmin(図2を参照)を把握する。ここで、当該NOx濃度の極小値Cminが所定値を上回っている場合、ECU80は、触媒41のNOx吸蔵量が、燃料添加を周期的に実施している際のレベルまで低下(回復)していないと判断する。すなわち、制御マップによる実施態様((2)の実施態様)を継続して適用すべき旨を記憶しておき、ステップS103において、次回も否定の判断を行うことにする(フィードバック制御による実施態様は適用しない)。一方、当該NOx濃度の極小値Cminが所定値以下である場合、ECU80は、触媒41のNOx吸蔵量が、燃料添加を周期的に実施している際のレベルまで低下(回復)したと判断する。すなわち、制御マップによる実施態様((2)の実施態様)の適用を一旦終了すべき旨を記憶しておき、ステップS103において、次回には肯定の判断を行うことにする(フィードバック制御による実施態様を適用する)。
【0108】
上記ステップS303を経た後、ECU80はその後の処理を一旦終了する。
【0109】
上記処理手順に基づき、本実施の形態にかかるエンジン1の排気浄化装置は、触媒41に吸収されたNOxの還元浄化を継続的に行いつつ、同触媒41のNOx吸収能力の再生と、同触媒41の劣化判定とを併せ行う。
【0110】
以上の態様で、触媒41を介して排気中のNOxを還元・浄化するとともに、当該触媒41の劣化判定を適宜のタイミングで併せ行うエンジン1の排気浄化装置によれば、燃料が添加されない状態が持続した後、所定の期間は、触媒41について劣化判定を実行しない(劣化判定の実行を禁止する)。従って、触媒41の下流に流出する過剰なNOxが誤判定を引き起こす懸念は好適に解消される。
【0111】
また、触媒41内のNOx吸蔵量に応じ、制御マップに基づく燃料添加の実施(周期的な実施)と、フィードバック制御による燃料添加の実施(周期的な実施)とを適宜選択すること、すなわち、触媒41の状態に応じた適正な燃料添加の実施態様を選択することにより、触媒41の還元・浄化にかかる性能が常時最適化されるようになる。
【0112】
なお、上記「燃料添加制御ルーチン」においては、燃料添加の実施後、触媒41下流で観測されるNOx濃度の極小値Cminが設定上限値H1を上回った場合、当該触媒41に劣化が発生していると判断することにした(ステップS205)。これに対し、例えば燃料添加の実施後、触媒41下流で観測されるNOx濃度の極大値Cmaxが所定値を上回った場合、当該触媒41に劣化が発生していると判断することとしてもよい。また、前回の燃料添加の実施から今回の燃料添加の実施までの期間、すなわち添加インターバルPが所定時間を下回った場合、当該触媒41に劣化が発生していると判断することとしてもよい。要は、触媒41が劣化することで、燃料添加の実施後に触媒41下流で観測されるNOx濃度の変化態様が異なるものとなることを識別できれば、他の如何なる基準を採用しても、本実施の形態と同等若しくはこれに準ずる効果を奏することはできる。
【0113】
また、上記「燃料添加制御ルーチン」においては、燃料添加の実施に関し制御マップによる実施態様の適用を開始した後、燃料の添加後に観測されるNOx濃度の極小値Cminが所定値以下となるようになれば、その時点で当該制御マップによる実施態様の適用を一旦終了すること(フィードバック制御による実施態様を復帰させること)とした。ところで、制御マップによる実施態様を適用して燃料添加を周期的に実施すると、燃料の添加後に推移するNOx濃度の極大値Cmax及び極小値Cminは、燃料添加の実施回数を重ねる毎に、徐々に低下する。そこで、制御マップによる実施態様の適用後、極大値Cmax、極小値Cmin、或いは両者Cmax,Cminの平均値が所定値を下回るようになれば、その時点で当該制御マップによる実施態様の適用を一旦終了すること(フィードバック制御による実施態様を復帰させること)としても、本実施の形態と同等若しくはこれに準ずる効果を奏することはできる。
【0114】
また、制御マップによる実施態様の適用を開始する時点における触媒41のNOx吸蔵量に基づき、当該制御マップによる実施態様の適用を継続する期間を設定することとしてもよい。この場合、制御マップによる実施態様の適用を開始する時点における触媒41のNOx吸蔵量qnstkは、例えば触媒41に流入する排気(入りガス)中のNOx量(流量)qninと、触媒41から流出する排気(出ガス)中のNOx量(流量)qnoutとの差に基づく関数として算出することとすることができる(次式(ii)参照)。
【0115】
qnstk=f(qnin−qnout)…(ii)
ここで、触媒41に流入する排気(入りガス)中のNOx量(流量)qninは、燃料添加が実施されない期間中に把握されるエンジン回転数Neやエンジン1の機関燃焼に供される燃料消費量等に基づき制御マップ(図示略)を参照して算出すればよい。また、触媒41から流出する排気(出ガス)中のNOx量(流量)qnoutは、同じく燃料添加が実施されない期間中に把握されるNOxセンサ75の出力信号に基づいて算出すればよい。
【0116】
また、燃料添加の実施態様を、制御マップによる実施態様からフィードバック制御による実施態様に切り換えるタイミング(切り換えタイミング)を決定づける基準としては、各種基準を採用し得ることは上述した通りであるが、これら基準の全て、或いはその中から複数の基準を採用してもよい。この場合、例えば、採用された各基準に基づく複数の切り換えタイミングを想定し、そのうち最も早いタイミング、或いは最も遅いタイミング等を実際に採用して、制御マップによる実施態様からフィードバック制御による実施態様に切り換える制御を行えばよい。
(第2の実施の形態)
次に、本発明にかかる内燃機関の排気浄化装置を、ディーゼルエンジンシステムに適用した第2の実施の形態について、第1の実施の形態と異なる点を中心に説明する。
【0117】
なお、当該第2の実施の形態にあって、適用対象とするエンジンシステムの構成、ECU及びその周辺の電気的構成(図1)は先の第1の実施の形態と同一である。このため、同一の機能および構造を有する部材やハードウエア構成等については同一の符号を用い、ここでの重複する説明は割愛することとする。
【0118】
先の第1の実施の形態において説明した「燃料添加制御ルーチン」では、フィードバック制御による燃料添加の実施を繰り返し行う場合にみられる添加インターバルPの長さ等に基づいて、触媒41の劣化の有無について判定を行うこととした。
【0119】
ところで、先の従来技術においても説明したように、排気中に存在するSOxは、NOxの場合と同様のメカニズムに基づき、しかも、NOxに比べてより高い効率で触媒41に吸収される特性を有する。また、一旦触媒に吸収されたSOxは、同触媒に吸蔵されているNOxを放出するために十分な条件、すなわち排気中の酸素濃度が所定値を下回る条件下にあっても、同触媒から容易には放出されない。このため、機関運転の継続に伴い触媒41には、排気中のSOxが徐々に触媒41に堆積していく所謂SOx被毒が生じることとなる。すなわち、触媒41におけるSOxの堆積量(吸蔵量)が増加することにより、同触媒41が吸収できるNOxの限界量が減少し、NOxの浄化率が低下する。すなわち、触媒41の劣化が生じる。
【0120】
当該第2の実施の形態にかかるエンジン1のECU80は、第1の実施の形態にかかる「燃料添加制御ルーチン」の同等のルーチンに従う燃料添加制御を行う。その一方、当該ルーチンにおいて、触媒41に劣化が生じNOxの浄化機能が低下している旨の判定がなされた場合、触媒41にSOxが堆積している(SOx被毒が生じている)ものと推定して、当該SOxを触媒41から除去する処理(SOx被毒回復処理)を行う。さらに、触媒41の劣化状態が、SOx被毒が進行すること、或いはHC被毒や熱劣化等、他の劣化現象が発生することより、回復不能な状態(以下、完全劣化という)にまで及んでいないかどうかを、SOx被毒回復処理の終了後の触媒41の状態に基づいて判定する。
【0121】
以下、上記SOx被毒回復処理と、触媒41の完全劣化についての判定とに関し、本実施の形態にかかるエンジン1のECU80が行う具体的な処理手順について、フローチャートを参照して説明する。
【0122】
図7には、触媒41に堆積したSOxを適宜放出させるために実施される「SOx被毒回復制御ルーチン」の処理内容を示す。
【0123】
「燃料添加制御ルーチン」のステップS205(図6参照)において、触媒41に劣化が生じNOxの浄化機能が低下している旨の判定がなされると、ECU80は、同ルーチンでの処理を一旦終了した後、その処理を速やかに「SOx被毒回復制御ルーチン」に移行する。なお、この「SOx被毒回復制御ルーチン」は「燃料添加制御ルーチン」と択一的に実施される制御ルーチンであり、一方のルーチン処理が実施されている場合、他方のルーチン処理は実施されない。
【0124】
処理がこのルーチンに移行すると、ECU80は先ずステップ401において、SOx被毒回復処理を実施するにあたって必要な運転状態を把握する。例えばECU80は、クランク角センサ77の出力信号に基づいてエンジン1の機関回転数Neを、またNOxセンサ75の出力信号に基づいて排気中のNOx濃度を各々演算する。また、アクセルの踏み込み量Acc、排気温度Tex等を把握する。
【0125】
続くステップS402においては、エンジン1の運転状態に関し、SOx被毒回復処理の実施に不可欠な条件(必要条件)が成立しているか否かを判断する。例えば以下の条件(C1)及び(C2)が何れも成立していることが、燃料添加を実施するための必要条件となる。
【0126】
(C1)排気温度Texが所定温度(例えば300℃)を上回っていること。これは、触媒41が十分活性化され、且つ高温となり、SOxが放出されやすい状態となる条件に相当する。なお、この条件を満たすべく、同触媒41或いは排気系40の触媒41上流にはヒータ等(図示略)を設け、このようなヒータ等を作動させること、或いはエンジン1に低温燃焼(EGR率を高める等して排気中の未燃成分を増加させること)を行わせること等して、積極的に触媒41を昇温させるのが好ましい。
【0127】
(C2)機関回転数Ne及びアクセルの踏み込み量Accの関係等からエンジン1の運転状態がSOx被毒回復処理に適していると判断されること。この条件には、燃料添加の実施に際して適用される実施条件(「燃料添加制御ルーチン」のステップS102において適用される条件(A2))に比し、機関負荷がより低い状態(より軽負荷の運転領域)が設定される。
【0128】
上記条件(C1)及び(C2)が何れも成立していれば、ECU80はその処理をステップS403に移行し、上記条件(C1)及び(C2)のうち何れか一方でも成立していなければ、本ルーチンを一旦抜ける。
【0129】
ステップS403においてECU80は、SOx被毒回復処理を実施する。
【0130】
SOx被毒回復処理は、通常の燃料添加と同じく、調量弁16の開弁量を調整することにより燃料添加ノズル17を通じて当該触媒41に燃料を添加供給する処理である。ただし、触媒41の晒される温度条件に関し、通常の燃料添加に際して採用される温度条件よりも高温の条件(本実施の形態では、300℃を上回る温度条件)下で、しかも、通常の燃料添加と比べると、比較的長時間に亘り、言い換えると比較的多量の燃料(還元剤)を触媒41に供給する。
【0131】
続くステップS404においては、触媒41の完全劣化について判定を実施する。触媒41の完全劣化についての判定は、以下の手順1〜4に従って行う。
【0132】
[手順1]
前回のSOx被毒回復処理の完了時から今回のSOx被毒回復処理の完了時までに、触媒41に流入した総SOx量Sinを、次式(iii)に従って算出する。
【0133】
Sin=Qtotal×Sconc×a …(iii)
ただし、
Qtotal:前回のSOx被毒回復処理の完了時から今回のSOx被毒回復処理の完了時までに、エンジン1の消費した燃料量(触媒41を通過した排気の起源となった全燃料量に相当する;以下、全燃料消費量という)
Sconc :エンジン1の燃料中に含まれる硫黄(S)成分の含有率(例えば、0.1〜0.5重量%)
a :係数(例えば吸気量Gaや排気温度Texに基づいて決定する)
[手順2]
今回のSOx被毒回復処理により触媒41から放出されたSOx量(以下、SOx放出量という)Srelを算出する。SOx放出量Srelは、SOx被毒回復処理の実施期間(燃料添加の継続時間)に略比例することが確認されている。従って、SOx放出量は、今回のSOx被毒回復処理の実施期間に基づき、制御マップ(図示略)を参照して算出する。
【0134】
[手順3]
次式(iv)に従い、今回実施したSOx被毒回復処理の完了時において、今だ触媒41に蓄積されているSOx量(以下、SOx蓄積量という)Sstkを算出する。
【0135】
Sstk=Sin−Srel+Sstk(old) …(iv)
ただし、
Sstk(old):前回実施したSOx被毒回復処理の完了時におけるSOx蓄積量
[手順4]
SOx蓄積量Sstkが所定量を上回っているか否かを判断する。当該判断が肯定であることは、SOx被毒回復処理を行ったにも関わらず、相当量のSOxが触媒41に蓄積されている状態が続いていることを意味し、この場合、ECU80は、「触媒41に完全劣化が生じている」旨の判定を行う。一方、上記判断が否定であることは、SOx被毒回復処理を行ったことにより、触媒41がSOx被毒から十分に回復したことを意味し、この場合、ECU80は、「触媒41に完全劣化は生じていない(触媒41は再生可能な状態である)」旨の判定を行う。
【0136】
ステップS404を経た後、ECU80は、その後の処理を一旦終了する。ちなみに、ステップS404において、「触媒41に完全劣化が生じている」旨の判定を行った場合、ECU80は、例えば警告灯(図示略)の点灯や、警告音の発生等を通じ、運転者に対して触媒41の交換等、適宜の処置を促す。
【0137】
上記処理手順に基づき、本実施の形態にかかるエンジン1の排気浄化装置は、第1の実施の形態と同様の燃料添加制御を実行する他、適宜のタイミングでSOx被毒回復処理と、触媒41の完全劣化についての判定とを併せ行う。そして、こうした一連の制御を通じ、エンジン1の排気中に含まれるNOxの還元・浄化と、触媒41の劣化発生の有無の認識、劣化した触媒41の機能回復措置、機能回復が困難な完全劣化の発生の検知とを、併せて行う。
【0138】
以上の態様で、触媒41を介して排気中のNOxを還元・浄化するとともに、当該触媒41の劣化判定を適宜のタイミングで併せ行うエンジン1の排気浄化装置によれば、先の第1の実施の形態による効果に加え、触媒41に回復不能な劣化(完全劣化)が生じた場合、これを正確に検知(判定)することで、適切な措置を講じることができるようになる。
【0139】
さらに、上記第1の実施の形態と同様、燃料が添加されない状態が持続した後、所定の期間は、このような完全劣化の判定を禁止する(判定を行わない)制御構造を適用することで、触媒41の下流に流出する過剰なNOxが当該触媒41の完全劣化についての誤判定を引き起こす懸念は好適に解消される。
【0140】
すなわち、触媒41の劣化状態に関し、回復可能な劣化と、回復不可能な劣化とを正確に判別して検知することができるようになる。言い換えれば、劣化の有無のみならず、劣化の程度に応じて、精度及び信頼性の高い判定を行うことができるようになる。
【0141】
なお、上記「SOx被毒回復制御ルーチン」のステップS404において行うこととした判定の手順に替え、以下の手順に従い触媒41の完全劣化について判定を行ってもよい。すなわち、SOx被毒回復処理の実施後、通常の燃料添加を実施し、その後に観測されるNOx濃度の極大値Cmax、極小値Cmin、或いは添加インターバルP等の変化態様を把握する。そして、「燃料添加制御ルーチン」のステップS205と同様の原理に従い、極大値Cmax又は極小値Cminが所定値を上回っている場合、若しくは、添加インターバルPが所定時間を下回っている場合には、触媒41が完全劣化している旨の判定を行う。このような手順に従い触媒41の完全劣化についての判定を行っても、上記第2の実施の形態に準ずる効果を得ることはできる。
【0142】
また、上記第2の実施の形態では、SOx被毒回復制御の実施にあたり積極的に触媒41を昇温させることとした。これに対し、触媒41の床温が上昇するタイミングを選択してSOx被毒回復制御、すなわち排気空燃比の低下を促す制御を実施することとしてもよい。
【0143】
また、上記各実施の形態では、燃料添加、或いはSOx被毒回復処理の実施にあたり、燃料添加ノズル17の通じて排気系40に燃料(還元剤)を供給し、排気空燃比を低下(リッチ化)させることとした。このような構成に替え、燃料噴射弁13を通じて行う各気筒(燃焼室20)への燃料供給の態様として、ある気筒が排気行程にあるときに燃料を供給することで排気空燃比を低下させてもよい。またこのように、各気筒が排気行程にあるときに燃料噴射弁13を通じた燃料供給(いわゆるポスト噴射)を実施することで、排気温度を上昇させて触媒41の昇温を図ることとしてもよい。
【0144】
また、上記各実施の形態では、ECU80が燃料添加の実施に先立って把握するエンジン1の運転状態を代表する一パラメータとして、排気系40の触媒ケーシング42下流に設けられた排気温センサ74の検出信号に基づいて把握される排気温度Texを適用することとした。これに対し、排気温センサを排気系40内の触媒ケーシング42上流や、各気筒の排気ポート内に設け、これらセンサの検出信号に基づいて把握される排気系40内の温度を適用してもよい。また、エンジン回転数Neやアクセルの踏み込み量等、エンジン1の運転状態を代表する他のパラメータを用いて、排気系40内の温度(排気ポート内、触媒ケーシング42上流若しくは下流の温度)を推定(演算)し、その推定温度を上記排気温度Texに替えて適用することとしてもよい。
【0145】
また、上記各実施の形態においては、還元剤としてディーゼルエンジンの燃料(軽油)を適用することとした。この他、ガス中の還元成分としてNOxを還元する機能を有するものであれば、他の還元剤、例えばガソリン、灯油等を用いても構わない。
【0146】
また、上記各実施の形態においては、燃料タンクからコモンレール12へ燃料を供給するサプライポンプ11を用いて、サプライポンプ11の汲み上げた燃料の一部を排気系40内に添加供給する装置構成を適用することとした。しかし、こうした装置構成に限らず、例えば添加燃料を燃料タンク、或いは他の燃料(還元剤)供給源から供給する独立した供給系を備える装置構成を適用してもよい。
【0147】
また、上記各実施の形態においては、燃料の排気系への添加にあたり、添加燃料通路P2を介して供給される燃料の圧力を調量弁16によって制御し、その圧力制御によって燃料添加ノズル17の開閉弁動作を制御する構成を適用している。これに対し、例えば燃料噴射弁13のように、ECU80による通電を通じて直接開閉弁動作を制御される電磁弁等を燃料添加を行う噴射弁として適用してもよい。
【0148】
また、上記各実施の形態においては、本発明の排気浄化装置を内燃機関としての直列4気筒のディーゼルエンジン1に適用することとしたが、希薄燃焼を行うガソリンエンジンにも好適に本発明を適用することができる。また、直列4気筒の内燃機関に限らず、搭載気筒数の異なる内燃機関にも本発明を適用することはできる。
【0149】
【発明の効果】
以上説明したように、第1の発明によれば、還元剤の供給が実施されない状態が第1所定期間より長く持続した場合であって、還元剤の供給が行われない期間から前記還元剤の供給が行われる期間に移行した後、第2所定期間は、前記劣化判定の実行を禁止することにより、前記NOx触媒の下流に流出する過剰なNOxが当該NOx触媒の劣化判定に関し誤判定を生じさせる懸念を解消することができるようになる。よって、前記NOx触媒の劣化判定にかかる精度や信頼性の向上が図られるようになる。
【0150】
また、前記還元剤の供給と、当該還元剤の供給によって変化するNOx濃度との対応関係について、高い再現性を得ることができるようになり、前記検出されるNOx濃度に基づいて行われる前記NOx触媒の劣化判定について、その精度や信頼性が一層向上するようになる。
【0151】
また、NOx触媒の劣化の有無や劣化の程度を正確に反映するパラメータを基準としてNOx触媒の劣化判定が行われ、当該劣化判定に十分な精度や信頼性が確保されるようになる。
【0152】
また、前記NOx触媒の劣化判定の機会を不要に損なうことなく、しかも十分に信頼性の高い劣化判定を行うことができるようになる。
【0153】
第2の発明によれば、前記NOx触媒に対し、前記還元剤の供給が所定量ずつ周期的に行われることで当該NOx触媒内のNOx吸蔵量が所定範囲内にある場合には、当該NOx吸蔵量を正確に反映するパラメータとして前記検出されるNOx濃度を採用し、これを前記還元剤の供給態様(例えば供給タイミングや供給量)にフィードバック(フィードバック制御)することとなる。一方、前記還元剤の供給が行われることで、前記NOx触媒から放出されるNOxの一部が還元・浄化されずに当該NOx触媒の下流に流出し、前記検出されるNOx濃度に影響を及ぼすような場合には、予め設定された条件に従い所定量の還元剤が所定タイミングで前記NOx触媒に供給されるようになる。
【0154】
すなわち、前記還元剤の供給が行われない状態が持続することにより、前記NOx触媒内のNOx吸蔵量が変動する場合であれ、当該NOx触媒によるNOxの浄化機能を常時安定して確保することができるようになる。
【0155】
また、前記フィードバック制御の制御性が阻害される懸念がなくなるまでに必要十分な期間のみ、当該フィードバック制御が禁止されることとなり、当該NOx触媒の状態(NOx吸蔵量)に応じた適正な制御を正確に選択して行うことができるようになる。
【図面の簡単な説明】
【図1】本発明の一実施の形態にかかるディーゼルエンジンシステムを示す概略構成図。
【図2】燃料添加制御の実施に際し、触媒下流で観測されるNOx濃度の推移を示すタイムチャート。
【図3】排気温度Texと触媒の活性度との関係を示すグラフ。
【図4】異なる条件下において触媒内に吸蔵されているNOxの吸蔵量を例示するグラフ。
【図5】NOx吸蔵量の異なる触媒について、燃料添加の実施後、触媒下流で観測されるNOx濃度の推移を示すタイムチャート。
【図6】同実施の形態にかかる燃料添加制御手順を示すフローチャート。
【図7】同実施の形態にかかるSOx被毒回復制御手順を示すフローチャート。
【符号の説明】
1 ディーゼルエンジン(内燃機関)
10 燃料供給系
11 サプライポンプ
12 コモンレール
13 燃料噴射弁
14 遮断弁
16 調量弁
17 燃料添加ノズル
20 燃焼室
30 吸気系
31 インタークーラ
32 スロットル弁
40 排気系
41 吸蔵還元型NOx触媒(NOx触媒)
42 触媒ケーシング
50 ターボチャージャ
51 シャフト
52 排気側タービンホイール
53 吸気側タービンホイール
60 EGR通路
61 EGR弁
62 EGRクーラ
70 レール圧センサ
71 燃圧センサ
72 エアフロメータ
73 空燃比(A/F)センサ
74 排気温センサ
75 NOxセンサ
76 アクセル開度センサ
77 クランク角センサ
80 電子制御装置(ECU)
81 中央処理装置(CPU)
82 読み出し専用メモリ(ROM)
86 外部入力回路
87 外部出力回路
88 双方向性バス
P1 機関燃料通路
P2 添加燃料通路

Claims (8)

  1. 内燃機関の排気系に設けられ、同排気系内を流れる排気中の還元成分濃度が低いときにNOxを吸収し、前記排気中の還元成分濃度が高くなると吸収したNOxを放出及び還元するNOx触媒と、
    前記NOx触媒下流における排気中のNOx濃度を検出するNOx検出手段と、
    前記検出されるNOx濃度に基づいて前記NOx触媒の劣化判定を行う劣化判定手段と、
    前記NOx触媒に流入する排気中に還元剤を供給する還元剤供給手段と、
    前記還元剤供給手段が前記還元剤の供給を行う期間及び前記還元剤の供給を行わない期間を決定する供給期間決定手段と、
    還元剤の供給が実施されない状態が第1所定期間より長く持続した場合であって、前記還元剤の供給が行われない期間から前記還元剤の供給が行われる期間に移行した後、第2所定期間は、前記劣化判定の実行を禁止する判定禁止手段と
    を有することを特徴とする内燃機関の排気浄化装置。
  2. 前記供給期間決定手段は、当該内燃機関の運転状態および前記NOx触媒の活性状態のうち少なくとも一方に基づいて、前記還元剤供給手段が前記還元剤の供給を行う期間及び前記還元剤の供給を行わない期間を決定する
    ことを特徴とする請求項1記載の内燃機関の排気浄化装置。
  3. 前記還元剤供給手段が還元剤を供給するタイミングを、前記検出されるNOx濃度に基づいて決定する還元剤供給時期決定手段を有して、且つ、
    前記劣化判定手段は、前記還元剤供給時期決定手段により決定されるタイミングの時間間隔に基づいて前記NOx触媒の劣化判定を行う
    ことを特徴とする請求項1又は2記載の内燃機関の排気浄化装置。
  4. 前記劣化判定手段は、前記還元剤の供給後に検出される前記NOx濃度の変化に基づいて、前記NOx触媒の劣化判定を行う
    ことを特徴とする請求項1〜3のうち何れかに記載の内燃機関の排気浄化装置。
  5. 前記NOx触媒に吸蔵されているNOxの吸蔵量を推定するNOx吸蔵量推定手段と、前記推定されるNOxの吸蔵量に基づいて、前記劣化判定の禁止される第2所定期間を決定する禁止期間決定手段とを有することを特徴とする請求項1〜4のうち何れかに記載の内燃機関の排気浄化装置。
  6. 内燃機関の排気系に設けられ、同排気系内を流れる排気中の還元成分濃度が低いときにNOxを吸収し、前記排気中の還元成分濃度が高くなると吸収したNOxを放出及び還元するNOx触媒と、
    前記NOx触媒に流入する排気中に還元剤を供給する還元剤供給手段と、
    前記NOx触媒下流における排気中のNOx濃度を検出するNOx検出手段と、
    前記検出されるNOx濃度に基づいて、前記還元剤供給手段による還元剤の供給動作を制御する第1の制御手段と、
    前記還元剤供給手段が前記還元剤の供給を行う期間及び前記還元剤の供給を行わない期間を決定する供給期間決定手段と、
    前記還元剤の供給が行われない期間から前記還元剤の供給が行われる期間に移行した後、所定の期間は、前記第1の制御手段による制御を禁止し、且つ前記還元剤供給手段に予め設定された条件に従って前記還元剤を供給させる制御を行う第2の制御手段と
    を有する
    ことを特徴とする内燃機関の排気浄化装置。
  7. 前記第2の制御手段による制御の実行は、前記検出されるNOx濃度が所定値を下回ったときには解除される
    ことを特徴とする請求項6記載の内燃機関の排気浄化装置。
  8. 前記NOx触媒に吸蔵されているNOxの吸蔵量を推定するNOx吸蔵量推定手段と、
    前記第2の制御手段による制御が行われる前記所定の期間を、前記推定されるNOxの吸蔵量に基づいて決定する期間決定手段と
    を有する
    ことを特徴とする請求項6又は7記載の内燃機関の排気浄化装置。
JP2001013684A 2001-01-22 2001-01-22 内燃機関の排気浄化装置 Expired - Lifetime JP3649130B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2001013684A JP3649130B2 (ja) 2001-01-22 2001-01-22 内燃機関の排気浄化装置
EP02001430A EP1225323B1 (en) 2001-01-22 2002-01-21 Exhaust gas purifying device for internal combustion engine
DE60203201T DE60203201T2 (de) 2001-01-22 2002-01-21 Abgasreinigungsvorrichtung für einen Verbrennungsmotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001013684A JP3649130B2 (ja) 2001-01-22 2001-01-22 内燃機関の排気浄化装置

Publications (2)

Publication Number Publication Date
JP2002221028A JP2002221028A (ja) 2002-08-09
JP3649130B2 true JP3649130B2 (ja) 2005-05-18

Family

ID=18880499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001013684A Expired - Lifetime JP3649130B2 (ja) 2001-01-22 2001-01-22 内燃機関の排気浄化装置

Country Status (3)

Country Link
EP (1) EP1225323B1 (ja)
JP (1) JP3649130B2 (ja)
DE (1) DE60203201T2 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4314089B2 (ja) * 2003-09-29 2009-08-12 トヨタ自動車株式会社 内燃機関の触媒制御装置及び触媒劣化判定装置
JP4267534B2 (ja) * 2004-07-23 2009-05-27 日野自動車株式会社 排気浄化装置の異常検知方法
JP4552714B2 (ja) * 2005-03-23 2010-09-29 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP4635860B2 (ja) 2005-12-20 2011-02-23 株式会社デンソー 内燃機関の排気浄化装置
JP5194590B2 (ja) * 2007-07-03 2013-05-08 トヨタ自動車株式会社 エンジンの排気浄化装置
DE102007040439A1 (de) 2007-08-28 2009-03-05 Daimler Ag Betriebs- und Diagnoseverfahren für ein SCR-Abgasnachbehandlungssystem
JP5462056B2 (ja) * 2010-04-05 2014-04-02 ボッシュ株式会社 排気浄化システムの異常診断装置及び異常診断方法並びに排気浄化システム
WO2012117553A1 (ja) * 2011-03-03 2012-09-07 トヨタ自動車株式会社 触媒劣化判定システム
EP2682576A4 (en) * 2011-03-03 2015-04-08 Toyota Motor Co Ltd SYSTEM FOR DETERMINING CATALYST WEAR
JP5673797B2 (ja) * 2011-03-22 2015-02-18 トヨタ自動車株式会社 触媒劣化判定システム
JP2017057842A (ja) * 2015-09-18 2017-03-23 いすゞ自動車株式会社 触媒劣化度合推定装置
CN109944664B (zh) * 2019-02-19 2020-05-19 上海市环境科学研究院 尾气净化设备设计方法及其装置、系统和存储介质

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3674017B2 (ja) * 1996-03-19 2005-07-20 株式会社デンソー 排出ガス浄化用触媒劣化検出装置
WO1998055742A1 (de) * 1997-06-03 1998-12-10 Siemens Aktiengesellschaft VERFAHREN ZUR REGENERATION EINES NOx-SPEICHERKATALYSATORS
DE19755600C2 (de) * 1997-12-15 2002-01-17 Bosch Gmbh Robert Betrieb eines Verbrennungsmotors in Verbindungmit einem NOx-Speicherkatalysator
JP3456401B2 (ja) * 1998-02-12 2003-10-14 日産自動車株式会社 内燃機関の排気浄化装置
JP3684854B2 (ja) * 1998-07-02 2005-08-17 日産自動車株式会社 内燃機関の触媒劣化診断装置
DE19843871B4 (de) * 1998-09-25 2005-05-04 Robert Bosch Gmbh Diagnose eines NOx-Speicherkatalysators mit nachgeschaltetem NOx-Sensor
DE19922981A1 (de) * 1999-05-19 2000-11-30 Bosch Gmbh Robert Verfahren zur Kontrolle der Funktionstüchtigkeit eines NO¶x¶-Speicherkatalysators

Also Published As

Publication number Publication date
EP1225323A1 (en) 2002-07-24
DE60203201T2 (de) 2006-03-23
EP1225323B1 (en) 2005-03-16
JP2002221028A (ja) 2002-08-09
DE60203201D1 (de) 2005-04-21

Similar Documents

Publication Publication Date Title
US7454900B2 (en) Catalyst recovery method
EP1793099B1 (en) Method of exhaust gas purification and exhaust gas purification system
US7506502B2 (en) Exhaust gas purifying system for internal combustion engine
EP1860292B1 (en) Exhaust gas purification method and system
US6834496B2 (en) Exhaust gas purifying apparatus for internal combustion engine and control method thereof
JP4615808B2 (ja) 内燃機関の排気ガス経路内に配置されたnox貯蔵触媒を脱硫する方法
JP4720054B2 (ja) 内燃機関の排気浄化装置
JP4304428B2 (ja) 内燃機関の排気ガス浄化システム
JP2003206732A (ja) 排気浄化装置付き内燃機関
EP2559876B1 (en) Exhaust gas purification device, and control method for exhaust gas purification device
JP3649130B2 (ja) 内燃機関の排気浄化装置
JP5776619B2 (ja) 排気浄化装置
JP4692376B2 (ja) 内燃機関の排気浄化装置
JP3858779B2 (ja) 排気ガス浄化装置
JP4114355B2 (ja) 内燃機関の排気浄化装置及びその劣化判定方法
EP1512848B1 (en) Exhaust purifying apparatus and method for purifying exhaust gas
JP3552603B2 (ja) 内燃機関の排気浄化装置
JP3624812B2 (ja) 内燃機関の排気浄化装置
JP4193553B2 (ja) 内燃機関の排気浄化装置
JP2010106753A (ja) 内燃機関の排気浄化装置
JP3925203B2 (ja) 内燃機関の排気浄化装置及びその劣化判定方法
EP1657411B1 (en) Exhaust gas purifying apparatus of internal combustion engine
JP2001227325A (ja) 内燃機関の排気浄化装置
JP4315121B2 (ja) 排気浄化触媒の劣化判定装置
JP2004316604A (ja) 内燃機関の排気浄化装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050207

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3649130

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130225

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130225

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term