JP3648713B2 - 渦流探傷装置 - Google Patents

渦流探傷装置 Download PDF

Info

Publication number
JP3648713B2
JP3648713B2 JP2002032969A JP2002032969A JP3648713B2 JP 3648713 B2 JP3648713 B2 JP 3648713B2 JP 2002032969 A JP2002032969 A JP 2002032969A JP 2002032969 A JP2002032969 A JP 2002032969A JP 3648713 B2 JP3648713 B2 JP 3648713B2
Authority
JP
Japan
Prior art keywords
signal
flaw
detection
phase
eddy current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002032969A
Other languages
English (en)
Other versions
JP2003232775A (ja
Inventor
英文 松川
龍夫 廣島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marktec Corp
Original Assignee
Marktec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marktec Corp filed Critical Marktec Corp
Priority to JP2002032969A priority Critical patent/JP3648713B2/ja
Publication of JP2003232775A publication Critical patent/JP2003232775A/ja
Application granted granted Critical
Publication of JP3648713B2 publication Critical patent/JP3648713B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電磁誘導を利用して金属材料の表面に生じた傷の検出をする渦流探傷装置に関する。
【0002】
【従来の技術】
金属の探傷対象物の表面に置いた励磁コイルに交流電流を与えて、探傷対象物表面に交流磁界を加えることにより探傷対象物表面近傍に渦電流を発生させ、探傷対象物表面の傷の存在、形状、寸法等による渦電流の変化を検出コイルにより検出し、傷の存在、形状、寸法等を知る渦流探傷方法が知られている。利用するコイルとしては環状ソレノイドが知られており、ソレノイドコイルの内部に管、棒等を挿入して試験する貫通コイル、あるいは、パンケーキ状のコイルを板、管等の表面に上置して試験するプローブコイル等がある。渦流探傷方法は、金属製の板、管、棒等の製造工程における外表面検査や熱交換器等の共用中検査等において利用されている。
【0003】
他方、橋梁や道路の床板、パイプライン、石油・ガスタンク等の鋼構造物等における防錆塗装上からの探傷検査のニーズは、年々高まっているが、従来の渦流探傷方法においては不可能と言われていた。理由は、塗装膜等の被覆厚みが一定でないこと、通常、鋼構造物等は屋外に設置されていることから屋外での作業となり、プローブコイルと探傷対象物表面との距離(リフトオフ)を一定に維持することが困難であること等により、傷による信号と同様なリフトオフによる信号が多く発生するのに対し、傷による信号とリフトオフによる信号との弁別が困難であるからである。また、リフトオフが大きいことから、傷信号が極めて小さくなる。対策として、通常、プローブコイルへの励磁電流を大きくするが、これは探傷装置の消費電力を大きくすることになり、電池による探傷装置の駆動が困難となり、電源確保の困難な室外での作業を更に困難なものとしていた。
【0004】
図5は、従来の渦流探傷装置において用いられる渦流探傷用プローブの概略構成を示す模式図である。図において、1は探傷対象物であり、探傷対象物1の上部に渦流探傷用プローブ2を構成する励磁コイル2aと検出コイル2bが一体的に配置される。励磁コイル2aと検出コイル2bは、ほぼ同径の円環状に形成されており、相互に平行に配置されている。検出コイル2bの探傷対象物1に対向する側、つまり励磁コイル2aと反対側の面が探傷面となる。探傷対象物1は、導電性を有する材料、例えば金属であり、励磁コイル2aにより生じた磁束により渦電流が流れうる材料が検査対象となる。
【0005】
従来の探傷方法について説明する。探傷対象物1に検出コイル2bの探傷面を適当な距離離間して対向させ、探傷対象物1の表面に対し、励磁コイル2aの中心軸がほぼ直交するように励磁コイル2a、検出コイル2bを配置し、励磁コイル2aに交流電流を流す。この結果、励磁コイル2aの周囲には交流磁界が発生し、この交流磁界により探傷対象物1の表面には渦電流が誘起される。探傷対象物1に、傷が存在する場合、渦電流は傷に沿って流れるので、傷が存在しない部分から傷が存在する部分へ渦流探傷用プローブ2を移動させると、渦電流の流路が変化する。この渦電流の流路の変化により、渦電流により生じている交流磁界の強さと方向が変化する。この磁界は、検出コイル2bにおいて検出されるので、交流磁界の強さと方向の変化は、検出コイル2bの端子の出力(傷信号)の変化として現れる。従って、検出コイル2bの端子における傷信号の振幅と位相を測定し、その変化を観測すれば、探傷対象物1における傷の有無、傷の状況等を知ることができる。
【0006】
このような、従来の渦流探傷用プローブ2は、探傷対象物1の表面に適当な距離離間して配置するだけでよく、種々の形状の探傷対象物1に対して適用が可能であり、構造が簡単であり取り扱いも簡単であることから、多くの分野で利用されている。しかし、従来の渦流探傷用プローブ2は、検出コイル2bからの傷信号に、励磁コイル2aと探傷対象物1との間隔(いわゆるリフトオフ)による位相成分が含まれることから、リフトオフの変化がそのまま検出され、ノイズ成分となる。このノイズ成分が存在することから、真の傷信号のみを検出することが困難であり、傷の種類、深さ等傷の性状解析に利用される位相解析の適用が困難であるという欠点を有していた。
【0007】
また、従来の渦流探傷用プローブ2は、上述の通り、橋梁や道路の床板、パイプライン、石油・ガスタンク等の鋼構造物等における防錆塗装上からの渦流探傷において、塗装膜等の被覆厚みが一定でないこと等から、渦流探傷用プローブ2と探傷対象物表面の距離(リフトオフ)を一定にすることが困難であり、傷信号と同様なリフトオフによる信号が多く発生し、傷信号とリフトオフによる信号との弁別が困難であるという欠点を有していた。
【0008】
図6は、従来の渦流探傷装置の例を示す概略ブロック図である。このような渦流探傷装置は、例えば「鉄鋼製品の渦流探傷法」(社団法人日本鉄鋼協会発行。第52ページ、図3.17)等に開示されている。図において、渦流探傷用プローブ2は、検出コイルとなる第1コイル21と第2コイル22により構成されている。発振器23は、基準となる交流信号を発生し、励磁増幅器24及び移相器28に交流信号を出力する。発振器23が発生する交流信号は、周波数10Hz乃至10MHzであり、この範囲において所定の周波数を発生する。また、この交流信号は、傷信号SSを正確に検出するために、変動しない連続波とされる。励磁増幅器24は、交流信号を励磁電流Ieに変換して、励磁コイル(不図示)に供給する。第1コイル21と第2コイル22は、ブリッジ25に接続され、ブリッジ25を介して、検出した傷信号SSを検出増幅器26へ出力する。検出増幅器26は、入力された傷信号SSを適当な大きさに増幅し、傷信号DSとして位相検波器29に出力する。検出増幅器26の出力である傷信号DSは、自動平衡器27にも入力され、傷信号DSの大きさに応じて自動的にブリッジの平衡(バランス)が取られるように構成される。移相器28は、交流信号の位相を適宜シフトして移相交流信号を出力し、参照信号として位相検波器29へ入力する。位相検波器29は、参照信号に基いて入力された傷信号DSを位相検波し、直流信号化された位相検波信号Vsを出力する。位相検波信号Vsは、傷の有無、傷の大きさ、深さ等により変動することから、この位相検波信号Vsを観察することにより、傷の状態を検出することができる。
【0009】
渦流探傷装置におけるコイルインピーダンスの変化は非常に小さいことから、検出コイル(21、22)から得られる傷信号SSは極めて小さい。傷信号SSを観察可能な信号にするために大きく増幅する必要があるが、増幅手段として通常使用される線形増幅回路においては増幅率に一定の限界がある。従って、ダイナミックレンジの範囲内でできるだけ傷信号SSに対する増幅率を上げるために、傷信号SSそのものとは無関係な不要な電圧を抑制して、検出増幅器26へは傷信号SSの変化分のみを入力することが必要であり、ブリッジ25は、このための回路として利用される。つまり、ブリッジ25は、2個の検出コイル(21、22)の、バランスを取り、定常的に存在する不要な電圧を除去して傷信号SS(変化分)そのものを出力するための回路である。このような、検出コイル(21、22)のバランスを取るブリッジ25は、従来の渦流探傷装置においては、必須のものであり、このことは、例えば、励磁方式が全く異なる渦流探傷プローブに関する公開特許公報である特開2001−349875号公報においても、ブリッジ回路として記載されていることからも理解できる。
【0010】
従来の渦流探傷装置においては、このようなブリッジ(ブリッジ回路)を備えることから、探傷試験の開始時、探傷試験条件の変更時、探傷対象物のロット変更時等探傷条件の変動があった場合には、先ずブリッジバランスを取り、傷のない状態において傷信号の出力が生じないように調整する作業が必要となる。
【0011】
また、実際の探傷においては、探傷対象物を搬送用のローラコンベア等により高速で走行させることから、走行中の振動等により、探傷対象物1と渦流探傷用プローブ2との間のリフトオフが変動し、その変動による信号がバックグランド信号として傷信号SSに重畳される。通常、移相器28と位相検波器29は、傷信号SSにおける位相を検出して、傷の深さ等傷に関する情報を得るために調整するように設計されるが、このバックグランド信号によるノイズ除去のために用いられることが多い。即ち、バックグランド信号によるノイズを除去するために、移相器28における交流信号に対する位相シフト量が制御されるのが実情である。
【0012】
更に、従来の渦流探傷装置においては、リフトオフが大きい場合には、傷信号SSが微小となることから、探傷を容易にするために、励磁電流Ieを大きくし、あるいは検出増幅器26の増幅率を大きくする必要があった。この結果、探傷装置全体として大きな電源容量が必要となることから、通常の電池による駆動が困難となり、特に電源の確保が困難な屋外での探傷装置の適用は一層困難であった。また、仮に電池式にしても、大きい電池容量が必要であることから、電池重量が大きくなり探傷装置が全体として大型化し作業性、効率性及び経済性等の面で大きな問題があった。さらに、軽量化を図る場合には、電池容量を犠牲にすることから、電池寿命が短くなり、短時間での電池交換が必要になる等の不都合が生じ、作業性、効率性及び経済性等の面で大きな問題があった。このような背景から、従来の渦流探傷装置では、電池駆動式のものは、殆ど存在しなかったし、存在していても実用性に乏しいものであった。
【0013】
例えば、従来の渦流探傷装置において、励磁電流Ieは100〜300mA程度、励磁コイルのインピーダンスは5〜20Ω程度である。市販の二次電池では5時間容量が1200mAH程度のものが標準であるから、軽量化の観点から6個の電池を用いた場合(全電池重量は600gr)を考えると、励磁電流の供給のみで約4時間使用できる容量である。しかし、実際の渦流探傷装置では、傷を検出した際の警報ブザーや警報ランプ、各種の表示をする液晶表示装置のバックライト等に200mA程度の消費電流を必要とするから、実質的な使用可能時間は約2〜3時間でしかない。
【0014】
なお、消費電力を小さくするために、励磁電流Ieを間欠交流信号とすることが考えられる。図7は、従来の探傷装置において、励磁電流を間欠交流信号とした場合の傷信号及び位相検波信号の概略波形を示す波形図である。何れも横軸を時間Tとして、同図(a)は励磁電流を、(b)は傷信号(SS又はDS)を、(c)は位相検波信号Vsを示す。更に、傷のない場合(イ)、傷のある場合(ロ)の波形も併せて示す。間欠交流信号とされた励磁電流Ieは、バースト時間Tbにおいて交流信号の波(ここでは、3〜4波を示す)を含み、バースト時間Tb以外においては交流信号を含まない無信号状態となる。間欠交流信号の間欠周期Tpはバースト時間Tbに対して、より長い時間となるように設定される。このような、間欠交流信号が励磁電流Ieとして励磁コイルに入力されると、励磁コイルと検出コイル(21、22)とは直接電磁的に結合していることから、バースト時間Tbの立上り時、立下り時の励磁コイルにおける磁界の変化が検出コイル(21、22)に電磁誘導起電力を発生させ、検出コイル(21、22)は、この電磁誘導起電力を傷信号SSとして出力するので、傷のない場合(イ)においても擬似的に傷信号を生じる。また、傷のある場合(ロ)においては、擬似的に生じた傷信号は真の傷信号以上の値を有することがあるから、真の傷信号の検出が困難となる。この傷信号(SS又はDS)を「真の傷信号」と「擬似的な傷信号」とに分離することは、極めて困難であり、従来の渦流探傷用プローブ2を用いた従来の渦流探傷装置においては、励磁電流Ieを間欠交流信号にすると、事実上探傷をすることができない。
【0015】
【発明が解決しようとする課題】
従来の渦流探傷装置においては、(1)リフトオフによる信号と傷による信号との弁別が困難であり、特にリフトオフの大きい非導電体を被覆した鋼構造物においては探傷が困難であること、(2)リフトオフが大きい場合への対策として、励磁電流を大きくし、検出増幅器の増幅率を大きくすると装置全体としての消費電力が大きくなること、(3)励磁電流を間欠交流信号とすることによっては探傷が困難であり、励磁電流への対策によっては渦流探傷装置の低消費電力化を図ることができないこと、(4)装置全体の低消費電力化が困難であることから電池駆動方式を採用した実用的な渦流探傷装置を実現することができないこと等の問題があった。
【0016】
本発明は斯かる事情に鑑みなされたものであり、その目的とするところは、リフトオフによる信号の発生がなく、リフトオフの影響を受けない、簡便な構成の低消費電力型で電池駆動可能な渦流探傷装置を提供することにある。
【0018】
【課題を解決するための手段】
第1発明に係る渦流探傷装置は、交流信号を入力する励磁コイル及び傷信号を出力する検出コイルを有する渦流探傷用プローブと、前記交流信号の位相をシフトして移相交流信号を出力する移相器と、前記交流信号を参照信号として前記傷信号の位相検波をすることにより第1位相検波信号を出力する第1位相検波器と、前記移相交流信号を参照信号として前記傷信号の位相検波をすることにより第2位相検波信号を出力する第2位相検波器とを備える渦流探傷装置において、前記検出コイルの中心軸は前記励磁コイルの中心軸と交差する方向に配置してあり、前記交流信号は間欠交流信号であり、該間欠交流信号のバースト時間を制御するバースト制御部を備え、前記移相器は、ゲート部及び移相部を備え、該ゲート部は、前記バースト時間に同期して前記間欠交流信号を前記移相部へ入力することを特徴とする。
【0020】
発明に係る渦流探傷装置は、第1発明において、前記バースト時間は、前記交流信号を3波乃至300波含む時間であることを特徴とする。
【0021】
発明に係る渦流探傷装置は、第1発明又は第2発明において、前記間欠交流信号は、前記バースト時間の2倍乃至100倍の時間の間欠周期を有することを特徴とする。
【0022】
発明に係る渦流探傷装置は、第1発明乃至第発明のいずれかにおいて、前記交流信号は、1kHz乃至200kHzの周波数を有することを特徴とする。
【0023】
発明に係る渦流探傷装置は、第1発明乃至第発明のいずれかにおいて、前記渦流探傷装置は、電池を電源とすることを特徴とする。
【0025】
第1発明においては、検出コイルの中心軸を励磁コイルの中心軸と交差する方向に配置してあり、励磁コイルに供給する励磁電流を間欠交流信号として、間欠交流信号のバースト時間を制御するバースト制御部を備えることとしたので、リフトオフによる信号の発生がなく、リフトオフの影響を受けることがなく、非導電体皮膜を施された探傷対象物においても探傷が可能であり、簡便な構成の低消費電力型で電池駆動可能な渦流探傷装置を提供することが可能となる。そしてゲート部は、バースト時間に同期して交流信号を移相部へ入力することとしたので、確実な移相処理ができる渦流探傷装置の提供が可能となる。
【0027】
発明乃至第発明においては、交流信号の周波数、バースト時間、間欠周期の関係を所定の範囲としたので、一層確実な間欠交流信号による探傷が可能となり、確実に低消費電力型の電池駆動可能な渦流探傷装置を提供することが可能となる。
【0028】
発明においては、電源を電池により構成することとしたので、小型化した渦流探傷装置を提供することが可能となる。
【0030】
【発明の実施の形態】
以下本発明をその実施の形態を示す図面に基づいて詳述する。図1は、本願発明に用いる渦流探傷用プローブの原理説明図である。図2は、本願発明に用いる渦流探傷用プローブの概略外形斜視図である。図1において、1は探傷対象物であり、その表面に対向して、渦流探傷用プローブ2が間隔(リフトオフDL)をおいて配置される。渦流探傷用プローブ2は、励磁コイル2aと検出コイル2bにより構成され、励磁コイル2aの中心軸と検出コイル2bの中心軸とは相互に交差する方向に配置される。励磁コイル2aの中心軸は、探傷対象物1の表面に対し交差する方向(通常は、ほぼ垂直方向)になるように配置されるから、励磁コイル2aの端部が形成する励磁コイル端部面2asは、探傷対象物1の表面に対し、ほぼ平行となる。検出コイル2bの端部が形成する検出コイル端部面2bsは、励磁コイル端部面2asに対し交差する方向(通常は、ほぼ垂直方向)に配置される。
【0031】
励磁コイル2aに交流信号である励磁電流が入力され供給されると、それに従い、図上矢印(下向き)で示すように探傷対象物1の表面に対して交差する方向に交流磁界が生じ、探傷対象物1の表面には渦電流が生じる。傷の無い場合においては、渦電流による磁界は、図上矢印(上向き)で示すように探傷対象物1の表面に対して交差する方向に生じるから、検出コイル2bとは鎖交することがなく検出コイル2bにより傷信号が検出されることはない。これに対し、傷のある場合においては、渦電流による磁界は、図上矢印(左向き)で示すように探傷対象物1の表面に対して平行な方向に生じるから、検出コイル2bと鎖交することになり検出コイル2bにより傷信号として検出され、出力される。つまり、本願発明に用いる渦流探傷用プローブ2においては、励磁コイル2aと検出コイル2bとは、電磁的には直接結合していないので、リフトオフDLによる影響がノイズ成分として検出コイル2bに現れることはない。また、励磁電流に変化があっても、その変化が検出コイル2bに電磁誘導起電力を生じることはないので、後述するように励磁電流を間欠交流信号としても、検出コイル2bはなんら影響されることはなく、励磁電流を間欠交流信号とすることが可能となる。
【0032】
図2において、励磁コイル2aは円環状であり、検出コイル2bは矩形の場合(a)と、三角形の場合(b)を示す。励磁コイル2aは、例えば、外径18mm、内径14mmの円形ナイロンボビンに100μmの被覆銅線を150回巻いたものである。矩形の検出コイル2bは、例えば、一辺が10mmの矩形枠に70μmの被覆銅線を120回巻いて、一辺が14mmの矩形に仕上げたものであり、少なくとも一辺が励磁コイル2aの内径方向と一致するように励磁コイル2aの内部空間に嵌め込まれている。従って、検出コイル2bの少なくとも一辺は、励磁コイル2aが形成する端部面に平行となるように構成される。三角形の検出コイル2bの場合においても、矩形の場合と同様に、少なくとも一辺が励磁コイル2aの内径方向と一致するように励磁コイル2aの内部空間に嵌め込まれている。なお、励磁コイル2aは円環状としたが、これに限られるものではない。また、検出コイル2bは、矩形状、三角形状に限らず、台形状、家型五角形等の多角形が可能である。
【0033】
また、励磁コイル2aから離間した空間においては、励磁コイル2aにより発生した磁束が湾曲し、検出コイル2bと鎖交する磁束を生じるようになり、この鎖交する磁束が検出コイル2bにより擬似の傷信号として検出される。この擬似の傷信号は、リフトオフの変動により変動することから、最終的にはノイズとして探傷の誤差を生じる原因となる。従って、多角形の形状は、励磁コイル2aから離間するに従って、その内側の空間を小さくする形状が望ましい。つまり、励磁コイル2aの内径方向と一致するように励磁コイル2aの内部空間に嵌め込まれている一辺から離間する空間において、該一辺と平行な方向における幅(図上矢符2bdにより示す)が、該一辺の長さより小さい多角形状の検出コイル2b(例えば、三角形、台形、家型五角形等)とすることにより、励磁コイル2aによる磁束との鎖交を低減でき、リフトオフによるノイズを一層低減することができる。
【0034】
図3は、本願発明に係る渦流探傷装置のブロック図である。図4は、本願発明に係る渦流探傷装置における各部の波形を示す波形図である。図4は、横軸を時間Tとして、縦軸に、(a)は励磁電流Ieを、(b)は傷信号(SS又はDS)を、(c)は第1位相検波信号Vx(又は第2位相検波信号Vy)を、(d)はゲート開閉(状態)を示し、更に、傷のない場合(イ)、傷のある場合(ロ)の波形も併せて示す。
図3において、1は探傷対象物であり、探傷対象物金属部1a、探傷対象物被覆部1b、探傷対象物1に含まれる傷1cが模式的に示される。探傷対象物1の表面に対向して、励磁コイル2a及び検出コイル2bからなる渦流探傷用プローブ2が配置され、所定の速度により、探傷対象物1の表面を走査され、探傷を行う。なお、励磁コイル2aの中心軸が、探傷対象物1の表面に対して交差する方向に配置されること等は、図1等において述べた通りであり、渦流探傷用プローブ2についての詳細な説明は省略する。励磁コイル2aには、間欠交流信号である励磁電流Ieが入力され、検出コイル2bからは傷信号SSが出力される。
【0035】
発振器3は、信号処理の基準となる間欠交流信号を発生するものであり、発振部3aとバースト制御部3bとにより構成される。発振部3aにおいて発生する発振周波数は、例えば、1kHz〜200kHzであり、出力電圧は約1Vである。バースト制御部3bにより発振部3aに対して、いわゆるバースト制御がなされ、発振部3aから間欠交流信号が出力される。バースト制御により、交流信号が含まれるバースト時間Tb、交流信号が含まれない無信号時間ひいては間欠周期Tpが制御される(図4(a)参照)。なお、発振部3aに対するバースト制御としては、連続的に発振する交流信号に対してバースト制御することにより間欠交流信号を形成する方法と、バースト制御により交流信号の発振自体を間欠的にさせる方法とがあるが、何れの方法であっても良いことは言うまでもない。また、発振器3は、渦流探傷装置本体の内部に内蔵して一体化するのが望ましいが、必要に応じて外付けにすることも可能である。
【0036】
図4(a)において、間欠交流信号とされた励磁電流Ieは、バースト時間Tbと間欠周期Tpを有しており、ここではバースト時間Tbに3〜4個の交流信号の波を含み、バースト時間Tb以外においては交流信号を含まない無信号状態となることを示す。バースト時間Tbに含まれる交流信号の波数は最低3波あれば、信号処理をすることは可能である。また、3波の100倍である300波程度あれば、どのような探傷条件においても十分な探傷が可能であり、低消費電力の観点からもこの程度に抑えることが望ましい。さらに、間欠周期Tpは、バースト時間Tbの2倍あれば、励磁電流Ieによる消費電力は単純に計算して約5割になり、渦流探傷装置全体としても十分な低消費電力が実現する。間欠周期Tpは、バースト時間Tbの100倍程度までであれば、通常の探傷速度に十分対応可能である。しかし、これらは、ここで述べた数値に限定されるものではなく、探傷対象物の状況、探傷速度等の観点から適宜選択決定可能なものであることはいうまでもない。
【0037】
発振器3(発振部3a)による間欠交流信号は、励磁増幅器4により適宜電流増幅され、所定の電流値の励磁電流Ieが励磁コイル2aに供給され、間欠交流信号に応じて、励磁コイル2aによる探傷用の交流磁界が発生する。励磁増幅器4の増幅率は、励磁コイル2aにおいて必要となる励磁電流Ieの大きさを考慮して、適宜設定する。検出増幅器5は、探傷対象物1に含まれる傷1cに応じて検出コイル2bにより検出され、検出コイル2bの端子から出力される傷信号SSを適宜増幅して、以降の信号処理が可能なレベルにまで増幅した傷信号DSを出力する。ここでは、検出増幅器5の増幅率は約20倍とした。
【0038】
図4(b)において、バースト時間と対応させて傷信号SS又は傷信号DSを示す。図1、図2において説明したとおり、傷のない場合(イ)には、バースト時間Tbの立上り時、立下り時のいずれにおいても傷信号が生じることはない。傷のある場合(ロ)には、バースト時間Tbの立上り時、立下り時に影響を受けることなく、傷により生じた傷信号(SS又はDS)のみを生じる。つまり、探傷対象物1において傷1cの存在しない部分を渦流探傷用プローブ2が走査した場合においては、検出コイル2bの端子からは、傷信号SSが出力されることはない。従って、本願発明においては、従来の渦流探傷装置において必要であったブリッジ(ブリッジ回路)及びブリッジの平衡を取るための平衡器(バランス回路)は、必要がなくなる。また、従来の渦流探傷装置において、リフトオフにより生じていたノイズが生じることもない。つまり、本願発明は、原理的に傷信号SSにノイズが重畳しないノイズフリーであることから、検出増幅器5のダイナミックレンジを大きく取ることが可能となる。また、リフトオフが大きい状態での探傷が可能となり、非導電体皮膜を施された探傷対象物に対する探傷が可能となる。
【0039】
移相器6は、ゲート部6aと移相部6bとにより構成される。ゲート部6aは、バースト制御部3bからの制御信号により、その開閉時間をバースト時間Tbに同期して制御され、バースト時間Tbに対応してゲート開時間Tgが設定される(図4(d)参照)。通常は、バースト時間Tbの立上り時とゲート開時間Tgの立上り時とは同期させ、バースト時間Tbの立下り時に対しゲート開時間Tgの立下り時が遅くなるように設定される。つまり、確実な信号処理をするためにゲート開時間Tgは、バースト時間Tbより長いことが望ましい。このようにバースト時間Tbとゲート開時間Tgとを同期して設定することにより、発振器3からの間欠交流信号を確実に移相部6bへ入力することができる。また、移相部6bは、ゲート開時間Tgにおいて入力された間欠交流信号のみを移相処理すればよく、不要な移相信号処理をする必要がない。
【0040】
移相部6bは、間欠交流信号の位相を適宜移相するものであり、ここでは、位相解析を簡単にできる2チャンネル方式(X方向・Y方向)とするため、間欠交流信号の位相を90度シフトした移相交流信号を出力するものとする。本願発明においては、移相器6は1つでよく、従来の2チャンネル方式において必要とされた2つの移相器(ノイズキャンセルしてSN比を向上させるための移相器とX方向・Y方向の2チャンネル形成用の90度移相器)を備える必要はない。
【0041】
第1位相検波器7は、増幅された傷信号DSに対して位相検波を行うが、発振器3からの間欠交流信号を参照信号(制御信号ともいう)RSAとするので、第1位相検波信号Vxとして傷信号DSのベクトルの0度成分(X方向成分)を出力する。第2位相検波器8は、増幅された傷信号DSに対して位相検波を行うが、移相交流信号を参照信号(制御信号ともいう)RSBとするので、第2位相検波信号Vyとして傷信号DSのベクトルの90度成分(Y方向成分)を出力する。図4(c)において、第1位相検波信号Vx又は第2位相検波信号Vyを示す。バースト時間Tbに対応した時間内において、バースト時間Tbの立上り時、立下り時にお影響されることなく、傷信号SS又は傷信号DSに応じた第1位相検波信号Vx又は第2位相検波信号Vyを得ることができる。なお、移相器6をバースト時間Tbに同期させる場合を述べたが、第1位相検波器7、第2位相検波器8についても、バースト時間Tbに同期させるように構成しても良いことは言うまでもない。
【0042】
第1位相検波信号Vxと第2位相検波信号Vyは、演算器9により適宜演算処理される。即ち、傷信号の位相θが、θ=tan-1(Vy/Vx)1/2 として算出され、傷信号の振幅Eが、E=(Vx2 +Vy21/2 として算出される。傷信号の位相θは、傷の深さに対して相関関係を持つことが知られているから、傷信号の位相θを知ることにより、傷の深さを検出することができる。また、傷信号の振幅Eは、傷の長さ等に相関関係を持つことが知られているから、傷信号の振幅Eを知ることにより、傷の有無その他、傷の状況を検出することができる。なお、傷信号の振幅Eを求めずに、第1位相検波信号Vx、第2位相検波信号Vy各々を単独で評価して、より支配的な方の値を採用することによりいずれか一方により傷の状況を検出することも可能である。
【0043】
位相比較器10は、演算器9により演算処理して求められた傷信号の位相θを入力し、予め設定した基準値と比較して弁別する。例えば、基準値を1つ設定した場合は、傷信号の位相θが基準値の上、下、いずれに対応するかにより、傷レベルを「大」、「小」の2つに弁別することができる。通常、傷信号の位相θは傷の深さに対して相関関係を持つことから、傷の深さが「深い」、「浅い」の2種類に区分することができる。例えば、「深い」場合は、不良として対策し、「浅い」場合は、要経過観察として対応すること等が可能となる。また、基準値を2つ設定した場合は、傷信号の位相θが基準値の上、下、中間のいずれに対応するかにより、大、中、小の3つの傷レベルに弁別することができる。このように、位相比較器10により、傷信号の位相θを予め設定した基準値と比較して弁別することから、探傷作業時の確認、判断が極めて確実、容易にできるようになり、探傷作業の効率化が可能となる。なお、基準値は、固定する必要はなく、適宜弁別レベルを変更可能なように構成し、探傷対象物1の物性に応じて広範囲に探傷ができるようにする。
【0044】
電圧比較器11は、演算器9により演算処理して求められた傷信号の振幅Eを入力し、予め設定した基準値と比較して弁別する。例えば、基準値を1つ設定した場合は、傷信号の振幅Eが基準値の上、下、いずれに対応するかにより、傷レベルを「大」、「小」の2つに弁別することができる。このように、電圧比較器11により、傷信号の振幅Eを予め設定した基準値と比較して弁別することから、探傷作業時の確認、判断が極めて確実、容易にできるようになり、探傷作業の効率化が可能となる。なお、基準値は、固定する必要はなく、適宜弁別レベルを変更可能なように構成し、探傷対象物1の物性に応じて広範囲に探傷ができるようにする。
【0045】
表示器12は、位相比較器10、電圧比較器11における弁別結果を表示するものであり、視認性を高め、探傷作業の効率化を図るためには、自発光する能動的な光学素子(例えば、発光ダイオード等)により構成することが好ましい。しかし、これに限らず、液晶表示素子等の受動的な光学素子を用いることも可能である。例えば、3色(赤、黄、青)の発光ダイオードを用いた場合には、傷の状況(例えば、深さ、長さ等)を3色に対応させて表示すること(深い傷:赤。中程度の傷:黄。浅い傷:青)等が可能となる。なお、表示器12は、位相比較器10、電圧比較器11における弁別結果を表示するものであることから、小型化が容易であり、渦流探傷用プローブとの一体化が可能である。
【0046】
更に、リフトオフを測定し、リフトオフの大きさに応じて励磁増幅器4の増幅率を制御して、励磁電流Ieを変更するようにしても良い。同様に、リフトオフの大きさに応じて検出増幅器5の増幅率を制御するようにしても良い。リフトオフに応じて適宜各回路の動作条件を変更調整することが可能であることは言うまでもない。
【0047】
本願発明においては、励磁電流Ieを間欠交流信号とすることにより、励磁増幅器4、検出増幅器5等における消費電力を大幅に低減できることから、これら各回路の電源を電池により供給する。つまり、電池駆動式の渦流探傷装置として構成するので、渦流探傷装置の低消費電力化、小型化が可能となった。また、従来の電池駆動式の渦流探傷装置に比較して極めて長時間化が可能となり、作業性、経済性を高めることができる。
【0048】
本願発明に係る渦流探傷装置においては、リフトオフ(探傷対象物1と流探傷用プローブ2との距離)に基く擬似の傷信号は生じないことから、探傷対象物1の健全部においては、探傷による信号が出力されない(表示器に表示されない)ので、正常動作をしていることを確認する必要がある。このため、探傷対象物1の表面を走査する前に、リフトオフ及び傷の深さについて標準値を有する標準試験片により動作確認をする。
【0049】
具体的には、標準試験片(ウレタンで被覆された鋼板)の健全部上に、渦流探傷用プローブ2を配置し、表示器に探傷による信号が出力されないことを確認し、各種のセットボタン(不図示)を設定し、励磁増幅器4の動作特性を確定し、励磁コイル2aへの励磁電流Ieを設定する。また、併せて、検出増幅器5の動作特性を確定し、傷信号SS、傷信号DSの検出が可能な状態に設定する。次に、標準試験片の傷部上を渦流探傷用プローブ2により走査して、傷信号SS、傷信号DSが出力し、表示器12に表示されることを確認する。この際、必要に応じて位相比較器10、電圧比較器11の基準値を設定し、表示レベルの変更等の対応を行う。このように、被覆膜を有する標準試験片により、リフトオフに応じた設定を事前に行うことにより、より容易正確な探傷が可能となる。
【0050】
設定終了後、探傷対象物1の表面上を渦流探傷用プローブ2により走査して、探傷を実施する。従来の探傷装置によれば、リフトオフノイズの大きいものが傷信号と同様に表示され、傷信号の発生がノイズを含めると本願発明の数倍以上発生し、このようなリフトオフノイズと傷信号とは、簡単に弁別できないことから、探傷に長時間を必要としていた。これに対し、本願発明においては、傷が存在しない限り表示器に表示されることはないので、表示器12に傷表示がされた場合にのみ、その箇所において、渦流探傷用プローブ2を更に精密に走査し、詳細な探傷を行えば良く、容易正確に作業性良く短時間に探傷を行うことができる。
【0051】
【発明の効果】
以上詳述したように、第1発明にあっては、検出コイルの中心軸と励磁コイルの中心軸とを交差する方向に配置する渦流探傷プローブと、励磁コイルへの励磁電流を間欠交流信号としてバースト時間を制御するバースト制御部とを備えることにより、リフトオフ変動による傷信号の発生がなく、リフトオフの影響を受けない、簡便な構成で低消費電力型の渦流探傷装置とすることができ、取り扱いが容易で、作業性の良い、効率的で経済的な渦流探傷が可能な渦流探傷装置とすることができる。特に屋外に設置された鋼構造物への適用が容易な小型化した渦流探傷装置が実現可能となる。そして移相器をバースト時間に同期して動作させることにより、間欠交流信号に対する一層確実な移相処理ができる渦流探傷装置とすることが可能となる。
【0053】
発明乃至第発明においては、バースト時間、間欠周期、交流信号の周波数を特定することにより、間欠交流信号による一層確実な探傷と低消費電力化が可能となり、確実に低消費電力型の電池駆動可能な渦流探傷装置とすることが可能となる。
【0054】
発明においては、電池駆動の渦流探傷装置とすることにより、小型化、軽量化した渦流探傷装置とできるので、取り扱いが容易で、作業性の良い、効率的で経済的な渦流探傷が可能な渦流探傷装置とすることができる。
【図面の簡単な説明】
【図1】本願発明に用いる渦流探傷用プローブの原理説明図である。
【図2】本願発明に用いる渦流探傷用プローブの概略外形斜視図である。
【図3】本願発明に係る渦流探傷装置のブロック図である。
【図4】本願発明に係る渦流探傷装置における各部の波形を示す波形図である。
【図5】従来の渦流探傷装置において用いられる渦流探傷用プローブの概略構成を示す模式図である。
【図6】従来の渦流探傷装置の例を示す概略ブロック図である。
【図7】従来の探傷装置において、励磁電流を間欠交流信号とした場合の傷信号及び位相検波信号の概略波形を示す波形図である。
【符号の説明】
1 探傷対象物
1c 傷
2 渦流探傷用プローブ
2a 励磁コイル
2b 検出コイル
3 発振器
3a 発振部
3b バースト制御部
4 励磁増幅器
5 検出増幅器
6 移相器
6a ゲート部
6b 移相部
7 第1位相検波器
8 第2位相検波器
9 演算器
10 位相比較器
11 電圧比較器
12 表示器
Ie 励磁電流
SS 傷信号
DS 傷信号
RSA 参照信号(間欠交流信号)
RSB 参照信号(移相交流信号)
Vx 第1位相検波信号
Vy 第2位相検波信号
θ 傷信号の位相
E 傷信号の振幅

Claims (5)

  1. 交流信号を入力する励磁コイル及び傷信号を出力する検出コイルを有する渦流探傷用プローブと、前記交流信号の位相をシフトして移相交流信号を出力する移相器と、前記交流信号を参照信号として前記傷信号の位相検波をすることにより第1位相検波信号を出力する第1位相検波器と、前記移相交流信号を参照信号として前記傷信号の位相検波をすることにより第2位相検波信号を出力する第2位相検波器とを備える渦流探傷装置において、前記検出コイルの中心軸は前記励磁コイルの中心軸と交差する方向に配置してあり、前記交流信号は間欠交流信号であり、該間欠交流信号のバースト時間を制御するバースト制御部を備え、前記移相器は、ゲート部及び移相部を備え、該ゲート部は、前記バースト時間に同期して前記間欠交流信号を前記移相部へ入力することを特徴とする渦流探傷装置。
  2. 前記バースト時間は、前記交流信号を3波乃至300波含む時間であることを特徴とする請求項1に記載の渦流探傷装置。
  3. 前記間欠交流信号は、前記バースト時間の2倍乃至100倍の時間の間欠周期を有することを特徴とする請求項1又は2に記載の渦流探傷装置。
  4. 前記交流信号は、1kHz乃至200kHzの周波数を有することを特徴とする請求項1乃至のいずれかに記載の渦流探傷装置。
  5. 前記渦流探傷装置は、電池を電源とすることを特徴とする請求項1乃至のいずれかに記載の渦流探傷装置。
JP2002032969A 2002-02-08 2002-02-08 渦流探傷装置 Expired - Fee Related JP3648713B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002032969A JP3648713B2 (ja) 2002-02-08 2002-02-08 渦流探傷装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002032969A JP3648713B2 (ja) 2002-02-08 2002-02-08 渦流探傷装置

Publications (2)

Publication Number Publication Date
JP2003232775A JP2003232775A (ja) 2003-08-22
JP3648713B2 true JP3648713B2 (ja) 2005-05-18

Family

ID=27775929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002032969A Expired - Fee Related JP3648713B2 (ja) 2002-02-08 2002-02-08 渦流探傷装置

Country Status (1)

Country Link
JP (1) JP3648713B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2468098B (en) * 2007-12-31 2012-03-07 Gen Electric Method for compensation of responses from eddy current probes
JP6688687B2 (ja) * 2015-06-12 2020-04-28 大日機械工業株式会社 非破壊検査装置および非破壊検査方法

Also Published As

Publication number Publication date
JP2003232775A (ja) 2003-08-22

Similar Documents

Publication Publication Date Title
JP4998821B2 (ja) 渦流検査方法及び該渦流検査方法を実施するための渦流検査装置
JP4756409B1 (ja) 交番磁場を利用した非破壊検査装置および非破壊検査方法
US20090102473A1 (en) Eddy current testing method and eddy current testing apparatus
JPH0854375A (ja) 電磁誘導型検査装置
JP5269564B2 (ja) 管状体の欠陥評価方法及び管状体の欠陥評価装置
JP2008032575A (ja) 渦電流測定用プローブ及びそれを用いた探傷装置
KR101746072B1 (ko) 강자성체 증기발생기 튜브의 비파괴 검사장치 및 그 방법
JP2003232776A (ja) 渦流探傷装置および渦流探傷方法
JP3648713B2 (ja) 渦流探傷装置
JPH10197493A (ja) 渦電流探傷プローブ
JP2004205212A (ja) 磁性材料の渦電流探傷プローブと渦電流探傷装置
JPH102883A (ja) 渦電流探傷装置
JP2014066688A (ja) 渦流探傷プローブ、渦流探傷装置
JP2004354282A (ja) 漏洩磁束探傷装置
JP2007163263A (ja) 渦電流探傷センサ
JP3979606B2 (ja) 渦電流探傷用プローブとそのプローブを用いた渦電流探傷装置
JPH0353155A (ja) 鋼材の内部欠陥又は損傷検出装置
JPH06242076A (ja) 電磁気探傷装置
JP2003149209A (ja) 渦電流探傷用プローブとそのプローブを用いた渦電流探傷装置
JPH05203629A (ja) 電磁気探傷方法およびその装置
JPH0429054A (ja) 金属管の渦流探傷装置
JP7434194B2 (ja) 渦電流探傷プローブと渦電流探傷方法
JPS5910846A (ja) 金属表面の渦電流探傷装置
JPH0599901A (ja) 渦電流探傷装置
JPH0727868A (ja) 埋設金属物体の位置検出装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050203

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130225

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees