JP3636047B2 - センサ昇温用電力制御装置 - Google Patents

センサ昇温用電力制御装置 Download PDF

Info

Publication number
JP3636047B2
JP3636047B2 JP2000236127A JP2000236127A JP3636047B2 JP 3636047 B2 JP3636047 B2 JP 3636047B2 JP 2000236127 A JP2000236127 A JP 2000236127A JP 2000236127 A JP2000236127 A JP 2000236127A JP 3636047 B2 JP3636047 B2 JP 3636047B2
Authority
JP
Japan
Prior art keywords
temperature
exhaust pipe
exhaust gas
exhaust
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000236127A
Other languages
English (en)
Other versions
JP2002048749A (ja
Inventor
裕介 鈴木
慎治 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2000236127A priority Critical patent/JP3636047B2/ja
Publication of JP2002048749A publication Critical patent/JP2002048749A/ja
Application granted granted Critical
Publication of JP3636047B2 publication Critical patent/JP3636047B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の排気通路上に配設され、電力を供給されることによって昇温されるセンサへの昇温用電力の供給を制御するセンサ昇温用電力制御装置に関する。
【0002】
【従来の技術】
内燃機関の排気通路上には、排気ガスに関する情報を検出するセンサが配設されている。このようなセンサで最も代表的なのは、排気ガス中の酸素濃度を検出することによって排気空燃比を検出する酸素センサなどである。いわゆる酸素センサは、排気空燃比がストイキを境にリーンであるかリッチにあるかによって、その出力を大きく変化させ、排気空燃比がリーンであるかリッチであるかをオン-オフ的に検出するものである。しかし、上述したセンサとしては、排気空燃比をリニアに検出するいわゆるリニア空燃比センサや、リーン域やリッチ域においてのみリニアに検出する空燃比センサなどもある。あるいは、排気ガス中の未燃燃料である炭化水素の濃度や他の成分の濃度を検出するセンサなどもある。
【0003】
そして、これらのセンサの中には、ある所定の温度(活性化温度)にまで昇温されなければ、その検出能力を充分に発揮することのできないものがある。以前は、内燃機関の排気ガス自体の熱によってセンサを昇温させていたが、これではセンサが活性化温度に達するまでは、有効なセンサ出力を得ることができない。近年、排気ガスの浄化に対する改善が強く望まれるようになり、このようなセンサにヒータを内蔵させ、このヒータに通電することによってセンサを強制的に昇温させ、より早期にセンサ出力を利用できるようになってきている。
【0004】
【発明が解決しようとする課題】
このように電力によって昇温されるセンサにおいては、以下に説明するような問題があった。極低温環境下(例えば外気温が-20℃など)での始動時には、内燃機関のシリンダ内で燃焼された後の排気ガスは、まだ暖まっていない冷たい排気管によって冷やされて内部の水分が凝縮され、この水分が排気管の内表面上に結露する。この水分が強制的に昇温されているセンサに触れると、いわゆるサーマルショックによってセンサ素子が損傷してしまうことがあった。
【0005】
そこで、排気管の温度が結露を生じさせることのない温度(以下、水分不発生温度と言うこととする)となるまでは、センサに対して昇温用の電力を供給しないようにする制御が考えられた。このような制御は、特開平8-15213号公報に記載されている。上記公報に記載されている制御は、内燃機関の負荷を算出し、算出された負荷が所定値以上である時間の積算値から排気管温度を推定し、排気管温度が水分不発生温度となってからセンサのヒータへの通電を開始するものであった。
【0006】
しかし、上述した公報に記載された制御手法では、排気管温度の検出精度が高くなく、適切な通電開始タイミングが得られ難く、更なる精度向上が望まれるものであった。なお、排気管の温度を検出するために排気管自体に温度センサを配設することも考えられるが、この手法は上述した公報にも記載されているように、コスト上昇の要因となるだけでなく、設置スペースや経時的な特性も安定させる必要があるなど現状では実用的ではない。そこで、やはり排気管温度を精度よく推定し、適切な通電タイミングを得ることが要望されている。
【0007】
従って、本発明の目的は、内燃機関の排気通路上に配設されるセンサへの昇温用電力の供給を適切に開始することのできるセンサ昇温用電力制御装置を提供することにある。
【0008】
【課題を解決するための手段】
請求項1に記載のセンサ昇温用電力制御装置は、内燃機関の排気通路上に配設されて排気ガスに関する情報を検出するセンサに対して昇温用電力を供給制御するセンサ昇温用電力制御装置であって、内燃機関の運転状態に基づいて排気ガス熱量又は排気ガス温度を算出し、算出された排気ガス熱量又は排気ガス温度、排気ガスと排気管との間の熱伝達、及び、排気管と外気との間の熱伝達を考慮して排気管温度を推定する排気管温度推定手段、及び、排気管温度推定手段によって推定された排気管温度が排気管内部に排気ガス内の水分を結露させない温度である水分不発生温度に達しているときに、センサへの昇温用電力の供給を行う電力供給開始手段を備えていることを特徴としている。
【0009】
請求項2に記載のセンサ昇温用電力制御装置は、請求項1に記載の発明において、排気管温度推定手段は、排出ガスと排気管との間の熱伝達、及び、排気管と外気との間の熱伝達を数学的にモデル化した熱伝達モデルに基づいて、排気管の温度を推定することを特徴としている。
【0010】
【発明の実施の形態】
本実施形態の制御装置を有するエンジン(内燃機関)1を図1に示す。エンジン1は、多気筒エンジンであるが、ここではそのうちの一気筒のみを断面図に示す。エンジン1は、図1に示されるように、点火プラグ2によって各シリンダ3内の混合気に対して点火を行うことによって駆動力を発生する。エンジン1の燃焼に際して、外部から吸入した空気は吸気通路4を通り、インジェクタ5から噴射された燃料と混合され、混合気としてシリンダ3内に吸気される。シリンダ3の内部と吸気通路4との間は、吸気バルブ6によって開閉される。シリンダ3の内部で燃焼された混合気は、排気ガスとして排気通路7に排気される。シリンダ3の内部と排気通路7との間は、排気バルブ8によって開閉される。
【0011】
吸気通路4上には、シリンダ3内に吸入される吸入空気量を調節するスロットルバルブ9が配設されている。このスロットルバルブ9には、その開度を検出するスロットルポジションセンサ10が接続されている。また、スロットルバルブ9は、スロットルモータ11と連結されており、スロットルモータ11の駆動力によって開閉される。スロットルバルブ9の近傍には、アクセルペダルの操作量(アクセル開度)を検出するアクセルポジションセンサ12も配設されている。さらに、吸気通路4上には、吸入空気量Gaを検出するためのエアフロメータ13も取り付けられている。エアフロメータ13は、吸入空気の温度を検出する吸気温センサとしても機能する。
【0012】
エンジン1のクランクシャフト近傍には、クランクシャフトの位置を検出するクランクポジションセンサ14が取り付けられている。クランクポジションセンサ14の出力からは、シリンダ3内のピストン15の位置や、エンジン回転数Neを求めることもできる。エンジン1には、エンジン1のノッキングを検出するノックセンサ16や冷却水温THWを検出する水温センサ17も取り付けられている。
【0013】
これらの点火プラグ2、インジェクタ5、スロットルポジションセンサ10、スロットルモータ11、アクセルポジションセンサ12、エアフロメータ13、クランクポジションセンサ14、ノックセンサ16、水温センサ17やその他のセンサ類は、エンジン1を総合的に制御する電子制御ユニット(ECU)18と接続されており、ECU18からの信号に基づいて制御され、あるいは、検出結果をECU18に対して送出している。ECU18には、排気通路7上に配設された排気浄化触媒19の温度を測定する触媒温度センサ20、チャコールキャニスタ21によって捕集された燃料タンク内での蒸発燃料を吸気通路4上にパージさせるパージコントロールバルブ22も接続されている。
【0014】
また、ECU18には、排気浄化触媒19の上流側に取り付けられた酸素センサ23も接続されている。酸素センサ23は排気ガスの酸素濃度から排気空燃比を検出するものである。なお、酸素センサ23は、上述したように所定の活性化温度に達しないと有効に機能しないので、早期に活性化温度に昇温されるようにECU18から供給される電力によって発熱するヒータが内蔵されている。ECU18から昇温用電力が供給されることによってヒータが発熱して酸素センサ23が昇温される。
【0015】
上述したエンジン1の排気通路7における各部温度の説明図を図2に示す。以下、図2を参照しつつ、本実施形態の制御装置による制御について説明する。ここでは、図2に示されるように、排気ガスと排気管との間の熱伝達、及び、排気管と外気との間の熱伝達を数学的にモデル化し、このモデルを用いて排気管温度を推定している。
【0016】
図2には、上述したモデルが適用される排気通路7の一部が示されており、その中央にモデル対象区間が示されている。モデル対象区間の排気通路7は、排気管7aの内部を通過している。本実施形態では、モデル対象区間は、シリンダ3を出た直後から酸素センサ23までの区間である。そして、モデル対象区間の上流側、即ち、シリンダ3から出てくる排気ガスの温度をTaとする。このシリンダ3からの排気ガスがモデル対象区間に流入し、排気ガスと排気管7aとの間、及び、排気管7aと外気との間での熱のやり取りが生じた後のモデル対象区間内の排気ガスの温度をTbとする。
【0017】
同様に、排気ガスと排気管7aとの間、及び、排気管7aと外気との間での熱のやり取りが生じた後の排気管7aの温度をTwとする。そして、モデル対象区間から下流側に流出する排気ガスの温度をTcとする。外気温はToとする。また、これらの各温度の中には、前回値に対して温度変化分を積算していくことによって今回値を得るものもある。このため、以下には、便宜上、各記号にダッシュ(')を付けたものを前回値、ダッシュ(')のないものを今回値として表す。なお、エンジン1の始動前の状態を考慮して、温度Ta,Tb,Tc,Twの初期値は外気温Toである。
【0018】
まず、本実施形態においては、下記式(I)によってまずシリンダ3内の燃焼によって排気ガスがどの程度の温度Taとなるかを算出する。
【数1】
Figure 0003636047
式(I)中のPは点火時期、a,b,cは定数である。ここでは、温度Taが点火時期の二次関数として近似されることが実験を通して経験的に得られているので、式(I)のような式となる。上述した定数a,b,cも実験によって定められる。式(I)に示されるように、吸入空気の温度は外気温Toであり、吸入された空気は燃焼によってaP2+bP+cだけ高温化する。
【0019】
なお、ここでは、エンジン1が低温状態下で始動されたときの排気通路7内での水分の結露を問題としており、エンジン1の始動直後の暖機運転下での制御である。エンジン1の始動直後の暖機運転下では、排気管7a、酸素センサ23、排気浄化触媒19などを早期に昇温させるため、点火時期は排気ガスを高温化させることのできる遅角側に制御される。即ち、上記式(I)での点火時期Pは、遅角側を正として設定した値である。
【0020】
なお、本実施形態では、点火時期Pを用いたモデル化によって温度Taを求めるが、他のモデル化を採用することも可能である。その一例を以下に示す。例えば、シリンダ3内での燃焼による単位時間(ここでは0.05秒とする)あたりの発熱量をQとすると、発熱量Qは下記式(I')によって得られる。
【数2】
Figure 0003636047
ここで、Gaは吸入空気量、Neはエンジン回転数(rpm)、d,eは定数である。(Ga/Ne)は一回転あたりの吸入空気量であり、(Ne/60)は一秒あたりのエンジン回転数である。即ち、(Ga/Ne)×(Ne/60)×0.05 は、0.05秒あたりの吸入空気量であり、単位時間(0.05秒)あたりの発熱量はこれに比例する。結局、定数部分をまとめてしまえば、単位時間(0.05秒)あたりの発熱量は検出される吸入空気量Gaに比例する。
【0021】
また、シリンダ3内での燃焼による単位時間(ここでは0.05秒とする)あたりの発熱量Qは、下記式(I'')と表すこともできる。
【数3】
Figure 0003636047
ここで、ρ1は大気の密度、C1は大気の比熱、V1は単位時間(0.05秒)あたりの吸入空気量、ΔTa/Δtは温度Taの時間変化率である。ρ1C1は定数として実験などによって求めることが好ましい。式(I'')を変形して式(I')を代入すると、下記式(I''')が得られる。
【数4】
Figure 0003636047
【0022】
さらに、V1をGa・0.05とし、Δtを0.05とし、温度Taの初期値をToとして、式(I''')の微分方程式を解くと、下記式(I'''')が得られる。
【数5】
Figure 0003636047
ここで、定数部分をまとめて定数fとすると、下記式(I''''')が得られる。
【数6】
Figure 0003636047
即ち、このモデルでは、シリンダ3内の燃焼では、式(I''''')に示されるように、吸入空気の温度は外気温Toであり、吸入された空気は燃焼によってfだけ高温化する。このようなモデルを用いることもできるが、本実施形態では、式(I)に示されるものを用いる。
【0023】
次いで、上述した温度Taの排気ガスが下流側に流入し、排気管7aと熱のやり取りをした後の温度がTbであるとすれば、下記式(II)式が成立する。
【数7】
Figure 0003636047
ここで、温度Tb'は温度Tbの前回値、h1は排気ガスと排気管7aとの間の熱伝達係数、S1は排気ガスと排気管7aとの間の熱伝達面積、V2はモデル対象区間内の排気ガスの体積である。なお、h1S1も、ρ1C1と同様に実験などによって求めることが好ましい。
【0024】
ρ1C1V1Taはモデル対象区間に流入する排気ガスの持つ熱量である。また、モデル対象区間内の排気ガスの前回値温度Tb'が、モデル対象区間から流出する排気ガスの今回値温度Tcに等しい(即ち、Tb'=Tc)ことを考慮すると、ρ1C1V1Tb'はモデル対象区間から流出する排気ガスの持つ熱量である。これらのことを考慮すれば、式(II)の左辺第一項ρ1C1V1(Ta-Tb')は、モデル対象区間に流入する排気ガスが有している熱量とモデル対象区間から流出する排気ガスが有している熱量との差である。そして、このρ1C1V1(Ta-Tb')は、モデル対象区間内の排気ガスが有している熱量の変化量とモデル対象区間内の排気ガスから排気管7aに伝達された熱量との和に等しい。
【0025】
また、h1S1(Tb-Tw')は、モデル対象区間内の排気ガスの温度Tbとそれまでの排気管7aの温度(即ち排気管温度Twの前回値温度Tw')との差に応じて、排気ガスから排気管7aに伝達される熱量である。このため、式(II)の左辺第一項から左辺第二項を引くことによって、モデル対象区間内の排気ガスが有している熱量の変化量が得られる。また、モデル対象区間内の排気ガスの熱量の変化量は、式(II)の右辺のようにも規定できるので、式(II)が成立する。
【0026】
式(II)変形することによって、下記式(II')が得られる。
【数8】
Figure 0003636047
このΔTbをTb=Tb'+ΔTbの式に代入すると、今回値温度Tb以外の各値は定数や前回値、吸入空気量Gaやエンジン回転数Neなどから決定されるため、温度Tbについての方程式が得られる。Tb=Tb'+ΔTbは、前回値に変化量を加えると今回値になるという式である。この温度Tbに関する方程式を解けば今回値温度Tbが得られる。なお、式(II')を微分方程式として解いて温度Tbの式を求め、これを演算することによっても温度Tbを得ることができる。しかし、この手法は演算が複雑になるため、本実施形態ではECU18の演算処理能力などを考慮して上述した手法によって、今回値温度Tbを得るようにしている。
【0027】
次いで、排気管7aに注目し、モデル対象区間内の排気ガスから受け取った熱量と排気管7aから外気に伝達された熱量を考慮して、最終的に排気管温度Twを算出する。ここでは、下記式(III)が成立する。
【数9】
Figure 0003636047
ここで、h2は外気と排気管7aとの間の熱伝達係数、S2は外気と排気管7aとの間の熱伝達面積、ρ2は排気管7aの密度、C2は排気管7aの比熱、V3は排気管7aから外気への熱伝達の対象となる排気管7aの体積である。なお、h2S2も、ρ1C1やh1S1と同様に実験などによって求めることが好ましい。
【0028】
式(III)の左辺第一項のh1S1(Tb-Tw)は、排気管温度Twとモデル対象区間内の排気ガスの温度Tbとの差に応じて、排気ガスから排気管7aに伝達される熱量である。また、式(III)の左辺第二項のh2S2(Tw-To)は、排気管温度Twと外気温Toとの差に応じて、排気管7aから外気に伝達される熱量である。このため、式(III)の左辺第一項から左辺第二項を引くことによって、排気管7aが有している熱量の変化量が得られる。また、排気管7aが有している熱量の変化量は、式(III)の右辺のようにも規定できるので、式(III)が成立する。
【0029】
式(III)変形することによって、下記式(III')が得られる。
【数10】
Figure 0003636047
このΔTwをTw=Tw'+ΔTwの式に代入すると、今回値排気管温度Tw以外の各値は定数や前回値であるため、排気管温度Twについての方程式が得られる。Tw=Tw'+ΔTwは、前回値に変化量を加えると今回値になるという式である。この排気管温度Twに関する方程式を解けば今回値排気管温度Twが得られる。なお、式(II')についても説明したように、式(III')を微分方程式として解いて排気管温度Twの式を求め、これを演算することによっても排気管温度Twを得ることができる。しかし、この手法は演算が複雑になるため、本実施形態ではECU18の演算処理能力などを考慮して上述した手法によって、今回値排気管温度Twを得るようにしている。
【0030】
次に、上述した排気管温度Twの推定手法を用いて、酸素センサ23のヒータへの昇温用電力の通電に関する制御について説明する。この制御のフローチャートを図3に示す。
【0031】
図3に示されるフローチャートの制御は、イグニッションオンの後開始される。まず、エンジンが完爆した後であるか否かを判定する(ステップ100)。以下の制御を行う上で、ステップ100では、エンジン1が確実に運転を開始しているか否かを予め判定しておく。ステップ100が否定されるようであれば、再度ステップ100を繰り返し判定し、ステップ100が肯定されるまで待つ。ステップ100が肯定された場合は、次にエアフロメータ13によって検出される吸気温が-10℃以下であるか否かを判定する(ステップ110)。
【0032】
ステップ110が否定される場合、即ち、吸気温が-10°を超えているような場合は、排気管7aの温度がすぐに水分不発生温度に達するので、排気管7a内の結露による水分で酸素センサ23が損傷する危険性はないとして、すぐに酸素センサ23への昇温用電力が供給される(ステップ140)。一方、ステップ110が肯定される場合、即ち、吸気温が-10℃以下である場合は、排気管7aの内部に水分が結露する可能性があると判断できる。このような場合は、まず、上述した手法によって、各種センサの出力などを基に、ECU18によって排気管7aの温度Twを推定する(ステップ120)。
【0033】
次いで、算出された排気管温度Twが、所定値Tmよりも大きいか否かを判定する(ステップ130)。この温度Tmは、排気管7aがこの温度以上であれば排気ガス中の水分が排気管7aの内部で結露しないという水分不発生温度である。発明者らは、実験を通してこの温度が52〜54℃程度であることを発見した。排気管7aの温度がこの温度であれば、排気管7aの内部で水分が発生し、この水分で酸素センサ23が破損してしまうことがないと判断できる。ステップ130が否定されるようであれば、再度ステップ120に戻って排気管7aの排気管温度Twの算出を継続され、ステップ130が肯定されるまで続けられる。
【0034】
そして、ステップ130が肯定されるようになったところで、酸素センサ23への昇温用電力の供給が開始される(ステップ140)。このときには、排気管7aの温度は水分不発生温度に達しており、排気管7a内で水分が結露することはなく、酸素センサ23がヒータで暖められても水分による損傷は生じ得ない。即ち、本実施形態によれば、酸素センサ23への昇温用電力の供給を適切に開始することができ、酸素センサ23の損傷を防止することができる。
【0035】
また、本実施形態によれば、排気管温度Twの推定に必要な定数を決定するための実験を一回(数回でも良いが)行うだけでよい。従来、推定した排気管温度に基づいて昇温用電力の通電を開始するようなことをしていなかったときには、排気管内に発生した水分がセンサ内部に入り込まないように、エンジン毎に防水カバーの形状をチューニングしており、この作業に多大な開発工数を必要としていた。これに対して、本実施形態の制御装置よれば、排気管の内部に水分が発生することがなくなってから昇温用の電力を供給するので、多大な開発工数を必要とすることはない。
【0036】
また、排気管温度を推定し、推定した排気管温度に基づいて昇温用電力の通電を開始する場合であっても、従来は、エンジンの運転状態毎にマップを作成していたため、予めマップを作成するための実験回数は非常に多く、開発工数が膨大であった。これに対して本実施形態の制御装置は予め行わなくてはならない実験回数を大幅に削減することができる。
【0037】
本発明は、上述した各実施形態に限定されるものではない。例えば、上述した実施形態においては、吸気温をエアフロメータ13を利用して検出したが、吸気温センサを設け、これによって吸気温を検出しても良い。また、排気管温度Twの算出を数学的なモデルを用いて算出する場合には、必ずしも上述した式を用いたモデルでなくても良く、排出ガスと排気管との間の熱伝達、及び、排気管と外気との間の熱伝達を数学的にモデル化した熱伝達モデルであればどのようなものであっても良い。
【発明の効果】
【0038】
請求項1に記載の発明によれば、内燃機関の運転状態に基づいて排気ガス熱量又は排気ガス温度を算出し、算出された排気ガス熱量又は排気ガス温度、排気ガスと排気管との間の熱伝達、及び、排気管と外気との間の熱伝達を考慮して排気管温度を推定し、推定された排気管温度が排気管内部に排気ガス内の水分を結露させない温度である水分不発生温度に達しているときにセンサへの昇温用電力の供給を行うので、センサへの昇温用電力の供給を適切に開始することができ、センサの損傷を防止することができる。
【0039】
請求項2に記載の発明によれば、上述した請求項1に記載発明による効果に加えて、熱伝達モデルを用いて排気管の温度を推定するため、新たなセンサなどを必要とせずに正確な温度推定を行うことができる。
【図面の簡単な説明】
【図1】本発明の制御装置の一実施形態を有する内燃機関を示す断面図である。
【図2】排気通路上のモデル対象区間における排気ガス温度と排気ガス熱量とを模式的に示した説明図である。
【図3】本発明の制御装置によるセンサ昇温用電力制御を示すフローチャートである。
【符号の説明】
1…エンジン(内燃機関)、7…排気通路、7a…排気管、13…エアフロメータ、18…ECU(排気管温度推定手段、電力供給開始手段)、23…酸素センサ。

Claims (2)

  1. 内燃機関の排気通路上に配設されて排気ガスに関する情報を検出するセンサに対して昇温用電力を供給制御するセンサ昇温用電力制御装置であって、
    前記内燃機関の運転状態に基づいて排気ガス熱量又は排気ガス温度を算出し、算出された排気ガス熱量又は排気ガス温度、排気ガスと排気管との間の熱伝達、及び、排気管と外気との間の熱伝達を考慮して排気管温度を推定する排気管温度推定手段、及び、
    前記排気管温度推定手段によって推定された排気管温度が排気管内部に排気ガス内の水分を結露させない温度である水分不発生温度に達しているときに、前記センサへの昇温用電力の供給を行う電力供給開始手段
    を備えていることを特徴とするセンサ昇温用電力制御装置。
  2. 前記排気管温度推定手段は、排出ガスと排気管との間の熱伝達、及び、排気管と外気との間の熱伝達を数学的にモデル化した熱伝達モデルに基づいて、排気管の温度を推定することを特徴とする請求項1に記載のセンサ昇温用電力制御装置。
JP2000236127A 2000-08-03 2000-08-03 センサ昇温用電力制御装置 Expired - Fee Related JP3636047B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000236127A JP3636047B2 (ja) 2000-08-03 2000-08-03 センサ昇温用電力制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000236127A JP3636047B2 (ja) 2000-08-03 2000-08-03 センサ昇温用電力制御装置

Publications (2)

Publication Number Publication Date
JP2002048749A JP2002048749A (ja) 2002-02-15
JP3636047B2 true JP3636047B2 (ja) 2005-04-06

Family

ID=18728231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000236127A Expired - Fee Related JP3636047B2 (ja) 2000-08-03 2000-08-03 センサ昇温用電力制御装置

Country Status (1)

Country Link
JP (1) JP3636047B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007327425A (ja) * 2006-06-08 2007-12-20 Nissan Motor Co Ltd 車両用排気特性検出装置
CN100510338C (zh) * 2006-03-06 2009-07-08 日产自动车株式会社 用于车辆的车辆控制方法和车辆控制装置
CN115638900A (zh) * 2022-12-23 2023-01-24 潍柴动力股份有限公司 一种排气管温度的确定方法、系统、存储介质及电子设备

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007009878A (ja) 2005-07-04 2007-01-18 Denso Corp 内燃機関の排気管温度推定装置
JP4621984B2 (ja) * 2005-10-18 2011-02-02 株式会社デンソー 排出ガスセンサのヒータ制御装置
JP4631664B2 (ja) * 2005-11-18 2011-02-16 株式会社デンソー ガスセンサのヒータ制御装置
US7805928B2 (en) 2006-04-06 2010-10-05 Denso Corporation System for controlling exhaust gas sensor having heater
JP4325641B2 (ja) 2006-05-24 2009-09-02 トヨタ自動車株式会社 空燃比センサの制御装置
JP4872793B2 (ja) * 2007-05-15 2012-02-08 トヨタ自動車株式会社 内燃機関の制御装置
US8362405B2 (en) 2008-01-18 2013-01-29 Denso Corporation Heater controller of exhaust gas sensor
DE112017002955B4 (de) 2016-08-05 2022-08-11 Hitachi Astemo, Ltd. Auslassrohrtemperaturabschätzvorrichtung und Sensorheizvorrichtungssteuereinrichtung für einen Abgassensor, die die Auslassrohrtemperaturabschätzvorrichtung verwendet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100510338C (zh) * 2006-03-06 2009-07-08 日产自动车株式会社 用于车辆的车辆控制方法和车辆控制装置
JP2007327425A (ja) * 2006-06-08 2007-12-20 Nissan Motor Co Ltd 車両用排気特性検出装置
CN115638900A (zh) * 2022-12-23 2023-01-24 潍柴动力股份有限公司 一种排气管温度的确定方法、系统、存储介质及电子设备

Also Published As

Publication number Publication date
JP2002048749A (ja) 2002-02-15

Similar Documents

Publication Publication Date Title
US10337384B2 (en) System and method for determining exhaust temperature
US5544639A (en) Temperature predicting system for internal combustion engine and temperature control system including same
JP5587838B2 (ja) 内燃機関の制御装置
US20150152793A1 (en) Control device for internal combustion engine
JP3636047B2 (ja) センサ昇温用電力制御装置
JP4359298B2 (ja) エンジンの制御装置
US8000883B2 (en) Control apparatus and method for air-fuel ratio sensor
JP4062285B2 (ja) 蓄熱システム
JP6551317B2 (ja) 内燃機関の排気温度推定装置
JP3331758B2 (ja) 排出ガス浄化装置の温度制御装置
JP2010071197A (ja) グロープラグ一体型筒内圧センサの較正方法およびその装置
JP3259536B2 (ja) 内燃機関の燃料噴射量制御装置
JP3627335B2 (ja) 触媒下流側空燃比センサのヒータ制御装置
JP2006144584A (ja) 内燃機関の燃料噴射制御装置
JP2009121298A (ja) 内燃機関用スロットルバルブの凍結防止制御方法
JP2006046071A (ja) 車両の大気圧推定装置
JP2017115646A (ja) 吸気温度制御装置
JP4029784B2 (ja) 内燃機関のバルブクリアランス量推定装置
JP4936138B2 (ja) 混合燃料の性状判定方法および装置ならびに内燃機関の運転制御方法および装置
JP4415803B2 (ja) 内燃機関の制御装置
JP5241694B2 (ja) エンジン始動時のシリンダ流入空気量補正方法、及びその方法を備えた燃料制御装置
JP5021605B2 (ja) 内燃機関の燃料噴射制御装置
JP2008297932A (ja) 内燃機関のセンサ情報検出装置、排気温度検出装置
JP4613893B2 (ja) 内燃機関の排気浄化触媒温度推定装置
JP2007063994A (ja) 内燃機関のバルブ温度推定装置及びこれを利用したバルブクリアランス量推定装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041227

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080114

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees