JP3631184B2 - Method for manufacturing printed wiring board - Google Patents

Method for manufacturing printed wiring board Download PDF

Info

Publication number
JP3631184B2
JP3631184B2 JP2001281721A JP2001281721A JP3631184B2 JP 3631184 B2 JP3631184 B2 JP 3631184B2 JP 2001281721 A JP2001281721 A JP 2001281721A JP 2001281721 A JP2001281721 A JP 2001281721A JP 3631184 B2 JP3631184 B2 JP 3631184B2
Authority
JP
Japan
Prior art keywords
copper
circuit pattern
plating
copper foil
printed wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001281721A
Other languages
Japanese (ja)
Other versions
JP2003092461A (en
Inventor
達也 日向
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Avionics Co Ltd
Original Assignee
Nippon Avionics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Avionics Co Ltd filed Critical Nippon Avionics Co Ltd
Priority to JP2001281721A priority Critical patent/JP3631184B2/en
Publication of JP2003092461A publication Critical patent/JP2003092461A/en
Application granted granted Critical
Publication of JP3631184B2 publication Critical patent/JP3631184B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、外層回路パターンの表面が絶縁基材表面と同一平面に形成されたプリント配線板を製造する方法に関する。
【0002】
【従来の技術】
通常のプリント配線板は図4で示すように、外層回路パターン101が絶縁基材102の表面に載置された構造を有し、外層回路パターン101の表面101Aは、絶縁基材102の表面102Aから外層回路パターン厚101Bだけ突出した形態になっている。
これに対して、本発明による製造方法で形成されるプリント配線板は、図5で示すように、外層回路パターン201の表面201Aと絶縁基材202の表面202Aとの間に段差がなく、両表面が同一平面となっている。
【0003】
このようなプリント配線板は、摺動接点203が外層回路パターン表面201Aと絶縁基材表面202Aとの間を段差による抵抗なく移動可能であり、また摺動接点が引っ掛かることによる外層回路パターン201の変形あるいは剥離の心配がないなため、スイッチ回路やエンコーダの接触要素として有用である。
【0004】
以上のような特徴を持つプリント配線板の製造には、専用の基板材料を使用し、エッチングにより外層回路パターンを形成した後、これを熱プレスで押し込んで絶縁基材表面と同一平面にする方法があるが、この場合絶縁基材に大きな内部応力が残存し、押し込んだ回路部が熱あるいは経時変化により浮き上がってくる欠点がある。
【0005】
このため図2で示すように、回路パターンを転写して製造する第1の転写法がとられるようになった。
まず、図2(a)のように表面平滑な圧延鏡面銅板51を仮基板とし、この上にフォトレジスト52を張り合わせ、所定の回路を形成した図示しないフォトマスクを介して露光したのち現像し、図2(b)のように未露光回路部53を除去する。
【0006】
次に、図2(c)のように、形成された回路部に金めっき54、ニッケルめっき55、銅めっき56の順にめっきを施した後、図2(d)のように前記フォトレジスト52を全て除去する。つづいてこのパターン形成面に図2(e)のようにプリプレグ57を介して絶縁基板58を熱圧着で積層する。積層後固化したプリプレグ57は絶縁基板58と一体化し、絶縁基材59を形成する。最後に図2(f)のように圧延鏡面銅板51をエッチング除去することにより、外層回路パターンの表面54Aと絶縁基材59の表面59Aが同一平面であるプリント配線板を得ていた。
【0007】
ここで導通パターン転写前の仮基板となる圧延鏡面銅板51は、パターン形成工程におけるベース基材としての機能を果たすべき強度が必要であり、その厚みを薄くすると所定の平面度を維持できないことから、前記図2(f)で示す工程でエッチング除去する場合に長時間を要し、製造工程全体に要する時間の中で占める割合も大きかった。またこの場合、高価な圧延鏡面銅板51は再利用することが不可能なため、製造コスト高の要因ともなっていた。
【0008】
そこで、転写法において前記製造方法(第1の転写法)に改善を加えた方法が実施されるようになった。この第2の転写法を図3に基づいて説明する。
まず図3(a)のようにステンレス板81を仮基板とし、ピロリン酸銅めっき82を施す。このピロリン酸銅めっきは均一電着性に優れており、めっきピット(穴、窪み)が発生しにくいため、この工程で必要な要素とされている。
【0009】
次に、ピロリン酸銅めっきは均一電着性が良好である反面、めっき仕上り面の光沢性、平滑性に劣るので、その表面を炭で手研磨し、さらに#1000程度のペーパーで手研磨を行う。その後図3(b)のように表面平滑性の良好な硫酸銅めっき83を行い、つづいてフォトレジスト84を張り合わせ、所定の回路を形成した図示しないフォトマスクを介して露光したのち現像し、未露光の回路パターン部85を除去する。
【0010】
次に、図3(c)のように、形成された回路パターン部85に金めっき86、ニッケルめっき87、銅めっき88の順にめっきを施した後、図3(d)のように前記フォトレジスト84を全て除去する。つづいてこの回路パターン形成面に図3(e)のようにプリプレグ89を介して絶縁基板90を熱圧着で積層する。積層後固化したプリプレグ89は絶縁基板90と一体化し、絶縁基材91を形成する。
【0011】
次に、図3(f)で示すようにステンレス板81とピロリン酸銅めっき82の間で剥離し、最後に図3(g)のように、ピロリン酸銅めっき82及び硫酸銅めっき83をエッチング除去することで、外層回路パターンの表面86Aと絶縁基材91の表面91Aが同一平面であるプリント配線板が得られる。
【0012】
【発明が解決しようとする課題】
このように、前記第1の転写法に改善を加えて第2の転写法としたことで、パターン転写後のエッチング工程は薄い銅めっき層のみをエッチングすれば良くなったため時間短縮が実現し、仮基板として採用したステンレス板も再利用することができるようになった。
【0013】
しかしながら、ステンレス板81とピロリン酸銅めっき82の密着性のコントロールが困難でありばらつきが生じるために、パターン転写後ステンレス板を剥離する工程で、密着力が強すぎて剥離できない場合がある。また逆に密着力が弱すぎると、回路パターン形成の工程においてステンレス板81に形成した銅めっき層82、83のふくれや破れが発生しやすい。
【0014】
また、平滑度を要求される金めっきの表面86Aは、硫酸銅めっき83の表面形状がそのまま転写されて形成されるので、硫酸銅めっき83の下地処理には細心の注意を払わねばならない。その結果、炭で手研磨を行ってピロリン酸銅めっき82の表面の凹凸を削り取り、更に#1000程度のペーパーで手研磨を行わねばならず、人手間がかかる。
【0015】
更に、ステンレス板81にピロリン酸銅めっき82及び硫酸銅めっき83を施した場合、ステンレス板81の周辺部にはめっきが付きにくく、めっき層が破れたり剥離しやすい傾向がある。従ってそのままパターン形成工程に入ると、周辺部においてステンレス板81とピロリン酸銅めっき82との間に処理液や洗浄液が浸入して不具合を引き起こす可能性が大きい。そのため、この不具合を防止するために、硫酸銅めっき83処理後のステンレス板81の周囲全辺にマスキングテープを貼るという工程が製造するプリント配線板全数に必要となり、人手間がかかる。
【0016】
本発明は、上記課題を解決するためになされたもので、第3の転写法として仮基板の剥離強度が安定しており、銅めっきの下地処理に手研磨の必要がなく、仮基板周辺にマスキングテープを貼る必要もない製造方法を提供することを目的とする。
【0017】
【課題を解決するための手段】
本発明は前記課題を解決するために、外層回路パターンの表面が絶縁基材の表面と同一平面に形成されたプリント配線板の製造方法において、少なくとも一方の面に銅製の薄板からなる銅箔キャリアを有した銅張り積層板の該銅箔キャリアのある一方の面を転写面とし、該転写面の該銅箔キャリア表面に対して機械研磨を行い、前記銅張り積層板に対して硫酸銅めっきを施し、該銅張り積層板の少なくとも前記転写面にはフォトレジスト層を形成し、該転写面の該フォトレジスト層を露光し現像することで所定の回路パターン部を除去し、該回路パターン部に、金、ニッケル、銅の順でめっきを施して回路パターンを形成し、残存した前記フォトレジスト層を除去後、前記転写面にプリプレグを介して絶縁基板を熱圧着で積層し、前記銅張り積層板を、前記転写面の銅箔キャリアを残して剥離除去し、残った該銅箔キャリア及び前記硫酸銅めっきの層をエッチング除去して、露出した前記回路パターンの金めっき層表面をもって外層回路パターンの表面とすることにより、この外層回路パターンの表面が前記プリプレグと前記絶縁基板が一体化して成る絶縁基材の表面と同一平面に形成されることを特徴とするプリント配線板の製造方法を提供するものである。
【0018】
【発明の実施の形態】
以下、本発明の実施の形態を図1に基づいて説明する。
図1は本発明によるプリント配線板の製造方法を示す断面模式図である。
図1(a)は、転写に使用する仮基板の構成を示しており、4は両面銅張り積層板、1は両面銅張り積層板4の基材であり、素材は限定しないが一般にガラス繊維基材のエポキシ樹脂板が入手しやすく、本実施例ではこれを使用している。2及び3は基材1に積層された銅箔、5は銅箔2の銅箔キャリア、6は転写面である。
【0019】
ここで、銅箔キャリア5は一般の銅張り積層板を製造する工程で広く使用されているもので、積層前の銅箔の補強を目的として、単独状態の銅箔にしわがよったりしないように銅箔と圧着されて使用されるものである。つまり、積層により銅張り積層板が完成した後には必ず剥離されることを前提としているので、安定した剥離性をもって銅箔と圧着されている。また本実施例では、両面銅張り積層板4を使用しているが、銅箔3が無い片面銅張り積層板であっても後述する回路パターンの転写に直接支障はない。
【0020】
次に、銅箔キャリア5の表面を機械研磨する。従来のように2度の手研磨を行わず機械研磨だけで済むのは、ピロリン酸銅めっきの仕上り肌に比較して市販の銅箔キャリアの表面は平滑性に優れているからである。
つづいて、図1(b)のように仮基板に対して硫酸銅めっきを施して硫酸銅めっき層7を形成し、フォトレジスト層8を形成した後、所定の回路を形成した図示しないフォトマスクを介して露光したのち現像し、未露光の回路パターン部9を除去する。
【0021】
次に、図1(c)のように、形成された回路パターン部9に金めっき10、ニッケルめっき11、銅めっき12の順にめっきを施した後、図1(d)のように前記フォトレジスト層8を全て除去する。つづいてこの回路パターン形成面に図1(e)のようにプリプレグ13を介して絶縁基板14を熱圧着で積層する。積層後固化したプリプレグ13は絶縁基板14と一体化し、絶縁基材15を形成する。
【0022】
次に、図1(f)で示すように銅箔2と銅箔キャリア5の間で剥離し、最後に図1(g)のように、銅箔キャリア5及び硫酸銅めっき7をエッチング除去することで、外層回路パターンの表面10Aと絶縁基材15の表面15Aが同一平面であるプリント配線板が得られる。
【0023】
【発明の効果】
本発明によれば、従来のステンレス板とこれに施されたピロリン酸銅めっきの剥離強度のばらつきに比較して、安定した剥離強度が得られることにより、密着力が強すぎて剥離不可能となったり、逆に密着力が弱すぎて、回路パターン形成工程で銅めっき層のふくれや破れが発生することがない。したがって、不良率を低減することができ、納期遅延の防止及びコストダウンが実現できる。
【0024】
また従来は、ピロリン酸銅めっき後、炭による手研磨と更に重ねてペーパーによる手研磨を行っていたが、本発明により研磨工程は機械研磨のみで満足する結果を得られた。これにより人手による作業が激減し、コストダウン及び品質の安定化が図れる。さらに、従来行ってきた回路パターン形成工程での仮基板周囲全辺のマスキング作業も省略でき、人手作業を削減できる。
【0025】
加えて従来のステンレス板を基材にした仮基板に比較して、本発明で仮基板として使用している銅箔キャリア付き銅張り積層板は格段に安価であり、プリント配線板の製造コストの低減に大きく寄与する。
【図面の簡単な説明】
【図1】本発明の1実施の形態を示す断面模式図
【図2】従来技術である第1の転写法を示す断面模式図
【図3】従来技術である第2の転写法を示す断面模式図
【図4】通常のプリント配線板の形態を示す断面模式図
【図5】本発明の製造方法により形成されたプリント配線板の形態を示す断面模式図
【符号の説明】
1 基材
2 銅箔
3 銅箔
4 両面銅張り積層板
5 銅箔キャリア
6 転写面
7 硫酸銅めっき層
8 フォトレジスト層
9 回路パターン部
10 金めっき
11 ニッケルめっき
12 銅めっき
13 プリプレグ
14 絶縁基板
15 絶縁基材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing a printed wiring board in which the surface of an outer layer circuit pattern is formed in the same plane as the surface of an insulating substrate.
[0002]
[Prior art]
As shown in FIG. 4, the normal printed wiring board has a structure in which the outer layer circuit pattern 101 is placed on the surface of the insulating base material 102, and the surface 101 </ b> A of the outer layer circuit pattern 101 is the surface 102 </ b> A of the insulating base material 102. Thus, the outer layer circuit pattern thickness 101B protrudes.
On the other hand, as shown in FIG. 5, the printed wiring board formed by the manufacturing method according to the present invention has no step between the surface 201A of the outer circuit pattern 201 and the surface 202A of the insulating substrate 202. The surface is flush.
[0003]
In such a printed wiring board, the sliding contact 203 can move between the outer layer circuit pattern surface 201A and the insulating substrate surface 202A without resistance due to a step, and the outer layer circuit pattern 201 of the outer layer circuit pattern 201 can be formed by the sliding contact being caught. Since there is no fear of deformation or peeling, it is useful as a contact element for a switch circuit or an encoder.
[0004]
A method of manufacturing a printed wiring board having the above-described features uses a dedicated substrate material, forms an outer layer circuit pattern by etching, and then presses it with a hot press to make it flush with the surface of the insulating substrate. However, in this case, there is a drawback that a large internal stress remains in the insulating base material and the pushed-in circuit portion is lifted by heat or a change with time.
[0005]
For this reason, as shown in FIG. 2, a first transfer method for transferring and manufacturing a circuit pattern has been adopted.
First, as shown in FIG. 2 (a), a rolled mirror-finished copper plate 51 having a smooth surface is used as a temporary substrate, a photoresist 52 is laminated thereon, exposed through a photomask (not shown) in which a predetermined circuit is formed, and developed. The unexposed circuit portion 53 is removed as shown in FIG.
[0006]
Next, as shown in FIG. 2 (c), the formed circuit part is plated in the order of gold plating 54, nickel plating 55, and copper plating 56, and then the photoresist 52 is applied as shown in FIG. 2 (d). Remove all. Subsequently, an insulating substrate 58 is laminated on the pattern formation surface by thermocompression bonding via a prepreg 57 as shown in FIG. The prepreg 57 solidified after lamination is integrated with the insulating substrate 58 to form an insulating base 59. Finally, as shown in FIG. 2F, the rolled mirror surface copper plate 51 is removed by etching to obtain a printed wiring board in which the surface 54A of the outer circuit pattern and the surface 59A of the insulating base 59 are in the same plane.
[0007]
Here, the rolled mirror surface copper plate 51 serving as a temporary substrate before transferring the conductive pattern needs to have a strength to function as a base substrate in the pattern forming process, and if the thickness is reduced, a predetermined flatness cannot be maintained. In the process shown in FIG. 2 (f), it takes a long time to remove by etching, and the ratio of the entire manufacturing process is large. Further, in this case, the expensive rolled mirror surface copper plate 51 cannot be reused, which has been a cause of high manufacturing cost.
[0008]
Therefore, in the transfer method, a method in which the manufacturing method (first transfer method) is improved has been implemented. This second transfer method will be described with reference to FIG.
First, as shown in FIG. 3 (a), a stainless steel plate 81 is used as a temporary substrate, and copper pyrophosphate plating 82 is applied. This copper pyrophosphate plating is excellent in throwing power and is difficult to generate plating pits (holes or dents), so it is regarded as a necessary element in this step.
[0009]
Next, while copper pyrophosphate plating has good throwing power, the surface finish is inferior in gloss and smoothness. Therefore, the surface is hand-polished with charcoal and then hand-polished with about # 1000 paper. Do. Thereafter, copper sulfate plating 83 with good surface smoothness is performed as shown in FIG. 3 (b), followed by bonding a photoresist 84, exposure through a photomask (not shown) on which a predetermined circuit is formed, development, and development. The circuit pattern portion 85 for exposure is removed.
[0010]
Next, as shown in FIG. 3C, the formed circuit pattern portion 85 is plated in the order of gold plating 86, nickel plating 87, and copper plating 88, and then the photoresist as shown in FIG. 3D. Remove all 84. Subsequently, an insulating substrate 90 is laminated on the circuit pattern forming surface by thermocompression bonding via a prepreg 89 as shown in FIG. The prepreg 89 solidified after lamination is integrated with the insulating substrate 90 to form an insulating base material 91.
[0011]
Next, as shown in FIG. 3 (f), peeling is performed between the stainless steel plate 81 and the copper pyrophosphate plating 82, and finally the copper pyrophosphate plating 82 and the copper sulfate plating 83 are etched as shown in FIG. 3 (g). By removing the printed circuit board, the surface 86A of the outer circuit pattern and the surface 91A of the insulating base 91 are on the same plane.
[0012]
[Problems to be solved by the invention]
Thus, by improving the first transfer method and using the second transfer method, the etching process after the pattern transfer can be performed by etching only a thin copper plating layer, thereby reducing the time. The stainless steel plate used as a temporary substrate can be reused.
[0013]
However, since it is difficult to control the adhesion between the stainless steel plate 81 and the copper pyrophosphate plating 82 and variations occur, the adhesion may be too strong in the process of peeling the stainless steel plate after pattern transfer. On the other hand, if the adhesion is too weak, the copper plating layers 82 and 83 formed on the stainless steel plate 81 are likely to bulge or break in the circuit pattern forming process.
[0014]
Further, since the surface 86A of the gold plating that requires smoothness is formed by transferring the surface shape of the copper sulfate plating 83 as it is, careful attention must be paid to the base treatment of the copper sulfate plating 83. As a result, it is necessary to perform manual polishing with charcoal to remove the irregularities on the surface of the copper pyrophosphate plating 82, and to perform manual polishing with about # 1000 paper, which is labor intensive.
[0015]
Furthermore, when the copper pyrophosphate plating 82 and the copper sulfate plating 83 are applied to the stainless steel plate 81, the peripheral portion of the stainless steel plate 81 is difficult to be plated, and the plating layer tends to be broken or easily peeled off. Therefore, if the pattern forming process is started as it is, there is a high possibility that the processing liquid and the cleaning liquid enter between the stainless steel plate 81 and the copper pyrophosphate plating 82 in the peripheral portion to cause a problem. For this reason, in order to prevent this problem, a process of applying a masking tape to the entire periphery of the stainless steel plate 81 after the copper sulfate plating 83 treatment is necessary for the total number of printed wiring boards to be manufactured.
[0016]
The present invention has been made to solve the above-mentioned problems, and as a third transfer method, the peel strength of the temporary substrate is stable, and there is no need for manual polishing for the base treatment of the copper plating. It aims at providing the manufacturing method which does not need to stick a masking tape.
[0017]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention provides a printed wiring board manufacturing method in which the surface of the outer circuit pattern is formed on the same plane as the surface of the insulating substrate, and a copper foil carrier comprising a thin copper plate on at least one surface. One surface of the copper foil carrier of the copper-clad laminate having a transfer surface is used as a transfer surface, the copper foil carrier surface of the transfer surface is mechanically polished, and the copper-clad laminate is plated with copper sulfate Forming a photoresist layer on at least the transfer surface of the copper-clad laminate, and exposing and developing the photoresist layer on the transfer surface to remove a predetermined circuit pattern portion. Then, plating is performed in the order of gold, nickel, and copper to form a circuit pattern, and after removing the remaining photoresist layer, an insulating substrate is laminated on the transfer surface via a prepreg, and the copper-clad The layer board is peeled off leaving the copper foil carrier on the transfer surface, the remaining copper foil carrier and the copper sulfate plating layer are etched away, and the outer layer circuit having the exposed gold plating layer surface of the circuit pattern A method of manufacturing a printed wiring board, wherein the surface of the outer layer circuit pattern is formed on the same plane as the surface of an insulating base material formed by integrating the prepreg and the insulating substrate. It is to provide.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to FIG.
FIG. 1 is a schematic sectional view showing a method for producing a printed wiring board according to the present invention.
FIG. 1A shows the configuration of a temporary substrate used for transfer, 4 is a double-sided copper-clad laminate, 1 is a substrate of double-sided copper-clad laminate 4, and the material is not limited, but generally glass fiber A base epoxy resin plate is easily available, and this is used in this embodiment. 2 and 3 are copper foils laminated on the substrate 1, 5 is a copper foil carrier of the copper foil 2, and 6 is a transfer surface.
[0019]
Here, the copper foil carrier 5 is widely used in the process of manufacturing a general copper-clad laminate, and for the purpose of reinforcing the copper foil before lamination, the copper foil in a single state is not wrinkled. It is used by being crimped to copper foil. That is, since it is assumed that the copper-clad laminate is always peeled after the lamination is completed, it is pressure-bonded to the copper foil with stable peelability. In this embodiment, the double-sided copper-clad laminate 4 is used. However, even a single-sided copper-clad laminate without the copper foil 3 does not directly interfere with the transfer of a circuit pattern, which will be described later.
[0020]
Next, the surface of the copper foil carrier 5 is mechanically polished. The reason why only the mechanical polishing is performed without performing the manual polishing twice as in the prior art is that the surface of the commercially available copper foil carrier is excellent in smoothness as compared with the finished surface of the copper pyrophosphate plating.
Subsequently, as shown in FIG. 1B, a copper sulfate plating is performed on the temporary substrate to form a copper sulfate plating layer 7, a photoresist layer 8 is formed, and then a photomask (not shown) in which a predetermined circuit is formed. Then, development is performed, and the unexposed circuit pattern portion 9 is removed.
[0021]
Next, as shown in FIG. 1C, the formed circuit pattern portion 9 is plated in the order of gold plating 10, nickel plating 11 and copper plating 12, and then the photoresist as shown in FIG. 1D. All layer 8 is removed. Subsequently, an insulating substrate 14 is laminated on the circuit pattern forming surface by thermocompression bonding via a prepreg 13 as shown in FIG. The prepreg 13 solidified after the lamination is integrated with the insulating substrate 14 to form an insulating base material 15.
[0022]
Next, it peels between the copper foil 2 and the copper foil carrier 5 as shown in FIG. 1 (f), and finally the copper foil carrier 5 and the copper sulfate plating 7 are removed by etching as shown in FIG. 1 (g). Thus, a printed wiring board is obtained in which the surface 10A of the outer layer circuit pattern and the surface 15A of the insulating base material 15 are in the same plane.
[0023]
【The invention's effect】
According to the present invention, a stable peel strength is obtained as compared to the variation in peel strength between a conventional stainless steel plate and copper pyrophosphate plating applied thereto, and the peel strength is too strong to be peeled off. On the contrary, the adhesive force is too weak, and the copper plating layer does not bulge or break in the circuit pattern forming process. Therefore, the defect rate can be reduced, delay in delivery date can be prevented, and cost can be reduced.
[0024]
Conventionally, after copper pyrophosphate plating, manual polishing with paper was further overlapped with manual polishing with charcoal. However, according to the present invention, a satisfactory result was obtained only by mechanical polishing. As a result, manual work is drastically reduced, and costs can be reduced and quality can be stabilized. Furthermore, the masking work for the entire periphery of the temporary substrate in the conventional circuit pattern forming process can be omitted, and the manual work can be reduced.
[0025]
In addition, the copper-clad laminate with a copper foil carrier used as a temporary substrate in the present invention is much cheaper than the temporary substrate based on a conventional stainless steel plate, and the production cost of the printed wiring board Significantly contributes to reduction.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing an embodiment of the present invention. FIG. 2 is a schematic cross-sectional view showing a first transfer method as a prior art. FIG. 3 is a cross-sectional view showing a second transfer method as a prior art. Schematic diagram [FIG. 4] Schematic cross-sectional view showing the form of a normal printed wiring board [FIG. 5] Schematic cross-sectional view showing the form of a printed wiring board formed by the manufacturing method of the present invention [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Base material 2 Copper foil 3 Copper foil 4 Double-sided copper clad laminated board 5 Copper foil carrier 6 Transfer surface 7 Copper sulfate plating layer 8 Photoresist layer 9 Circuit pattern part 10 Gold plating 11 Nickel plating 12 Copper plating 13 Prepreg 14 Insulating substrate 15 Insulation substrate

Claims (1)

外層回路パターンの表面が絶縁基材の表面と同一平面に形成されたプリント配線板の製造方法において、
少なくとも一方の面に銅製の薄板からなる銅箔キャリアを有した銅張り積層板の該銅箔キャリアのある一方の面を転写面とし、
該転写面の該銅箔キャリア表面に対して機械研磨を行い、
前記銅張り積層板に対して硫酸銅めっきを施し、
該銅張り積層板の少なくとも前記転写面にはフォトレジスト層を形成し、
該転写面の該フォトレジスト層を露光し現像することで所定の回路パターン部を除去し、
該回路パターン部に、金、ニッケル、銅の順でめっきを施して回路パターンを形成し、
残存した前記フォトレジスト層を除去後、前記転写面にプリプレグを介して絶縁基板を熱圧着で積層し、
前記銅張り積層板を、前記転写面の銅箔キャリアを残して剥離除去し、
残った該銅箔キャリア及び前記硫酸銅めっきの層をエッチング除去して、露出した前記回路パターンの金めっき層表面をもって外層回路パターンの表面とすることにより、この外層回路パターンの表面が前記プリプレグと前記絶縁基板が一体化して成る絶縁基材の表面と同一平面に形成されることを特徴とするプリント配線板の製造方法。
In the manufacturing method of the printed wiring board in which the surface of the outer layer circuit pattern is formed in the same plane as the surface of the insulating substrate,
One surface of the copper-clad laminate having a copper foil carrier made of a copper thin plate on at least one surface is the transfer surface,
Perform mechanical polishing on the copper foil carrier surface of the transfer surface,
Apply copper sulfate plating to the copper-clad laminate,
Forming a photoresist layer on at least the transfer surface of the copper-clad laminate;
A predetermined circuit pattern portion is removed by exposing and developing the photoresist layer on the transfer surface,
The circuit pattern portion is plated with gold, nickel and copper in this order to form a circuit pattern,
After removing the remaining photoresist layer, an insulating substrate is laminated on the transfer surface via a prepreg by thermocompression bonding,
The copper clad laminate is peeled off leaving the copper foil carrier on the transfer surface,
The remaining copper foil carrier and the copper sulfate plating layer are removed by etching, and the exposed gold plating layer surface of the circuit pattern is used as the surface of the outer circuit pattern, so that the surface of the outer circuit pattern becomes the surface of the prepreg. A method for manufacturing a printed wiring board, wherein the insulating substrate is formed on the same plane as a surface of an insulating base material formed by integrating the insulating substrates.
JP2001281721A 2001-09-17 2001-09-17 Method for manufacturing printed wiring board Expired - Fee Related JP3631184B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001281721A JP3631184B2 (en) 2001-09-17 2001-09-17 Method for manufacturing printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001281721A JP3631184B2 (en) 2001-09-17 2001-09-17 Method for manufacturing printed wiring board

Publications (2)

Publication Number Publication Date
JP2003092461A JP2003092461A (en) 2003-03-28
JP3631184B2 true JP3631184B2 (en) 2005-03-23

Family

ID=19105494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001281721A Expired - Fee Related JP3631184B2 (en) 2001-09-17 2001-09-17 Method for manufacturing printed wiring board

Country Status (1)

Country Link
JP (1) JP3631184B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007059439A (en) * 2005-08-22 2007-03-08 Shindo Denshi Kogyo Kk Conductor multilayer film for flexible wiring board and flexible wiring board and their production process
JP2007067276A (en) * 2005-09-01 2007-03-15 Nippon Avionics Co Ltd Printed wiring board and method of manufacturing the same
JP2008091685A (en) 2006-10-03 2008-04-17 Seiko Epson Corp Element substrate, and its production process
JP4344954B2 (en) 2006-10-03 2009-10-14 セイコーエプソン株式会社 Method for manufacturing element substrate
CN101528010B (en) * 2008-03-06 2011-12-21 欣兴电子股份有限公司 Method for manufacturing circuit structure
JP4805304B2 (en) * 2008-05-12 2011-11-02 Jx日鉱日石金属株式会社 Metal foil with carrier and method for producing multilayer coreless circuit board
KR20100043547A (en) * 2008-10-20 2010-04-29 삼성전기주식회사 Coreless substrate having filled via pad and a fabricating method the same

Also Published As

Publication number Publication date
JP2003092461A (en) 2003-03-28

Similar Documents

Publication Publication Date Title
US5426850A (en) Fabrication process of wiring board
CN113163622B (en) Thermoplastic polyimide subtraction process for ultrathin rigid-flexible printed circuit board
JP3631184B2 (en) Method for manufacturing printed wiring board
KR101862243B1 (en) Method for manuracturing printed circuit board with via and fine pitch circuit and printed circuit board by the same method
JP3402372B2 (en) Manufacturing method of wiring board
JPH04127492A (en) Material for printed wiring, manufacture thereof and printed wiring board
JP2001068856A (en) Insulation resin sheet and its manufacture
KR100990575B1 (en) Printed circuit board having fine pattern and manufacturing method of the same
JP2003298212A (en) Printed wiring board and manufacturing method thereof
JP2003234564A (en) Printed circuit board provided with embedded type outer layer conductor
JP3172711B2 (en) Transfer medium, method of manufacturing the same, and method of manufacturing wiring pattern using the transfer medium
JP2011171353A (en) Method of manufacturing printed board, and printed board using this
JP2010056373A (en) Method of manufacturing printed circuit board, and printed circuit board
JP4718031B2 (en) Printed wiring board and manufacturing method thereof
JPH10178241A (en) Printed wiring board and method for manufacturing the same
JP2005136361A (en) Manufacturing method of wiring board
JP4449228B2 (en) Manufacturing method of inspection jig
JP2003008213A (en) Wiring board and manufacturing method therefor
JP2762604B2 (en) Method of laminating multilayer printed wiring board
JP2003051659A (en) Circuit board
JP2002100851A (en) Method of manufacturing printed wiring board
JP2002344135A (en) Insulation layer transfer sheet in manufacturing wiring board, built-up printed wiring board, and manufacturing method
JP3665036B2 (en) Printed wiring board manufacturing method and printed wiring board
JP4130873B2 (en) Printed circuit board manufacturing method
JP2000349418A (en) Manufacture of printed wiring board

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041215

R150 Certificate of patent or registration of utility model

Ref document number: 3631184

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees